

CRYPTREC 2002

CRYPTREC Report 2002

March 2003

Information-technology Promotion Agency, Japan
Telecommunications Advancement Organization of Japan

 i

CONTENTS

Preface 1

Note on the Use of This Report ·· 4

Evaluation Committee Members 5

Cryptography Research and Evaluation Committees (title, etc. as of the end of March 2003) 5

Public-key Cryptography Subcommittee (title, etc. as of the end of March 2003) 5

Symmetric-Key Cryptography Subcommittee (title, etc. as of the end of March 2003) 6

Observers (title, etc. as of the end of March 2003) 6

Secretariat 7

Chapter 1 Overview of Evaluation Activities 9

1.1 History ··· 9

1.2 CRYPTREC Structure·· 11

1.3 Background of Evaluation Activities·· 12

1.4 Public Offering and Evaluation Targets ·· 16

1.5 Evaluation and Selection of Cryptographic Techniques ·· 18

1.6 e-Government Recommended Ciphers List (Draft) ·· 22

1.7 Other Results·· 25

1.8 Acknowledgments·· 29

Chapter 2 Evaluation of Public-key Cryptographic Techniques 31

2.1 Overview·· 31

2.1.1 Evaluation policy···31

2.1.2 Evaluated cryptographic techniques ··33

2.1.3 Evaluation method···33

2.2 Evaluation result ·· 36

2.2.1 Outline of evaluation result··36

2.2.2 Overall evaluation of individual cryptographic technique···37

ii CONTENTS

2.2.3 General Evaluation of the Difficulty of Number-Theoretic Problems·································42

2.2.4 Creation of e-government recommended ciphers list (draft) ···42

2.3 Evaluation of Individual Cryptographic Techniques ··· 45

2.3.1 DSA···45

2.3.2 ECDSA··49

2.3.3 ESIGN signature··53

2.3.4 RSA (RSA-PSS, RSASSA-PKCS1-v1_5, RSA-OAEP, RSAESPKCS1-v1_5) ·················61

2.3.5 ECIES··74

2.3.6 HIME(R) ···77

2.3.7 ECDH ··81

2.3.8 DH ···83

2.3.9 PSEC-KEM ···85

2.4 Evaluation of the Difficulty of Number-Theoretic Problems ·· 90

2.4.1 Integer Factoring Problem ···90

2.4.2 Discrete logarithm problem ···95

2.4.3 Elliptic curve discrete logarithm problem··99

2.5 Selection of Parameters Relating to Public-key Cryptographic Techniques ···························· 103

2.5.1 Cryptographic techniques relating to the integer factoring problem··································103

2.5.2 Cryptographic techniques relating to the discrete logarithm problem ·······························106

2.5.3 Cryptographic techniques relating to the elliptic curve discrete logarithm problem··········106

Chapter 3 Evaluation of symmetric-key cryptographic techniques 113

3.1 Evaluation method ··113

3.1.1 Evaluation method of symmetric-key ciphers ···113

3.1.2 Software implementation evaluation ···117

3.1.3 Hardware implementation evaluation··119

3.2 Overview of evaluation results ··· 121

3.2.1 64-bit block ciphers ···121

3.2.2 128-bit block ciphers ···129

3.2.3 Stream ciphers ···140

3.3 Evaluation of individual ciphers ··· 145

3.3.1 CIPHERUNICORN-E···145

3.3.2 Hierocrypt-L1 ··153

3.3.3 MISTY1···162

3.3.4 Triple DES···170

 iii

3.3.5 Advanced Encryption Standard (AES)··179

3.3.6 Camellia···186

3.3.7 CIPHERUNICORN-A ··196

3.3.8 Hierocrypt-3 ··207

3.3.9 RC6··216

3.3.10 SC2000 ··220

3.3.11 MUGI ··230

3.3.12 MULTI-S01 ···235

3.3.13 RC4 and Arcfour ···244

Chapter 4 Hash Function Evaluation 249

4.1 Evaluation Method and General Evaluation ··· 249

4.2 Evaluation Results·· 249

4.3 Evaluation of Individual Cryptographic Techniques ··· 250

4.3.1 RIPEMD-160···250

4.3.2 SHA-1/SHA-256/ SHA-384/ SHA-512···254

Chapter 5 Evaluation of Pseudo-random Number Generators 269

5.1 Evaluation Method ··· 269

5.2 General Review of Evaluation Results ··· 269

5.3 Evaluation of Individual Cryptographic Techniques ··· 270

5.3.1 PRNG in ANSI X9.42-2001 Annex C.1··270

5.3.2 PRNG in ANSI X9.42-2001 Annex C.2··270

5.3.3 PRNG in ANSI X9.62-1998 Annex A.4 ···274

5.3.4 PRNG in ANSI X9.63-2001 Annex A.4 ···274

5.3.5 PRNG in FIPS PUB 186-2 (+ change notice 1) Appendix & revised Appendix···············274

5.3.6 PRNG for DSA in FIPS PUB 186 Appendix 3 ···282

5.4 Verification of Pseudo-Random Number Generators ·· 289

5.4.1 Overview of pseudo-random number verification···289

5.4.2 NIST: Special Publication 800-22 ···289

5.4.3 DIEHARD···292

Chapter 6 Side-channel Attacks 295

6.1 Summary of Survey Report on Implementation Attacks and Countermeasures ······················ 295

6.1.1 Introduction ···295

6.1.2 IC Card Overview··296

iv CONTENTS

6.1.3 Categories of side-channel attacks···296

6.1.4 Probe attack ···296

6.1.5 Faults-based Attack ···297

6.1.6 Timing attacks ···299

6.1.7 Power analysis attacks ···300

6.1.8 Electromagnetic analysis attacks ···302

6.1.9 Countermeasures ···302

6.2 Recent Topics on Implementation Attacks·· 305

6.2.1 Trend of Research on Recent Implementation Attacks··305

6.2.2 Summary of Attacks on Symmetric Key Block Ciphers ···306

Chapter 7 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government
Recommended Ciphers List 309

7.1 Public-key cryptographic techniques ·· 309

7.1.1 DSA···309

7.1.2 ECDSA (Elliptic Curve Digital Signature Algorithm) ··309

7.1.3 RSA Public-Key Cryptosystem with Probabilistic Signature Scheme (RSA-PSS)···········310

7.1.4 RSASSA-PKCS1-v1_5 ···311

7.1.5 RSA Public-Key Cryptosystem with Optimal Asymmetric Encryption Padding
(RSA-OAEP)···311

7.1.6 RSAES-PKCS1-v1_5··311

7.1.7 DH ···312

7.1.8 ECDH (Elliptic Curve Diffie-Hellman Scheme) ···312

7.1.9 PSEC-KEM Key agreement ··313

7.2 Symmetric-key Cryptographic Techniques ··· 314

7.2.1 CIPHERUNICORN-E ··314

7.2.2 Hierocrypt-L1 ··315

7.2.3 MISTY1···316

7.2.4 Triple DES···316

7.2.5 AES ···316

7.2.6 Camellia···317

7.2.7 CIPHERUNICORN-A ··318

7.2.8 Hierocrypt-3 ··319

7.2.9 SC2000 ··320

7.2.10 MUGI ··321

7.2.11 MULTI-S01 ···322

 v

7.2.12 RC4··323

7.3 Hash Functions··· 323

7.3.1 RIPEMD-160···323

7.3.2 SHA-1, SHA-256, SHA-384, SHA-512 ···323

7.4 Pseudo-random Number Generators··· 323

7.4.1 PRNG in ANSI X9.42-2001 Annex C.1/C.2···323

7.4.2 PRNG in ANSI X9.62-1998 Annex A.4 ···323

7.4.3 PRNG in ANSI X9.63-2001 Annex A.4 ···323

7.4.4 PRNG for DSA in FIPS PUB 186-2 Appendix 3 ··323

7.4.5 PRNG for general purpose in FIPS PUB 186-2 (+ change notice 1) Appendix 3.1 ··········323

7.4.6 PRNG in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1/3.2 ·······················324

Chapter 8 List of Cryptographic Techniques to Be Evaluated 325

1. Public-key Cryptographic Techniques ·· 325

2. Symmetric-key Cryptographic Techniques ··· 327

3. Hash Functions··· 329

4. Pseudo-random Number Generators ··· 330

Index 331

 1

Preface

This reports the activity of the CRYPTREC Evaluation Committee, which was established to evaluate
cryptographic techniques adequate to the Japanese e-Government, in the year 2002. This committee has
been actively undertaking the project for evaluation of cryptographic techniques (CRYPTREC Project)
for selection of cryptographic techniques applicable to the use in the e-Government whose infrastructure
and primary system is supposed to be established by the year 2003. This fiscal year is a turning point for
our project, and so, we compile a comprehensive report on our three years long project since the year
2000.

In order to create the e-Government that enables computerization of administrative procedures such as
various application/notification procedures and governmental procurement, the use of cryptographic
techniques is indispensable for advanced-level security of e-Government services. Though various
cryptographic techniques have been developed in the past, and many products and software packages
using such techniques can be purchased in the market, their security is not necessarily guaranteed.
Therefore, in order to use the cryptographic techniques for the e-Government, it is extremely important
that such techniques be properly evaluated, and that the relevant information be made readily available.

Prior to the start of the current activities of CRYPTREC Evaluation Committee, in fiscal year 1999, two
study groups were created: the "Investigation and Research Group on Security Standards (Criteria) for
Information Acquired by the Government" by the Information-technology Promotion Agency, Japan
(IPA), and the "Study Group for Promotion and Advancement of Cryptographic Communications"
(chaired by Professor Shigeo Tsujii of Chuo University) by the Ministry of Posts and
Telecommunications (the now Ministry of Public Management, Home Affairs, Posts and
Telecommunications). In their reports, both study groups concluded that an evaluation of cryptographic
techniques should be conducted. One of the common points in the two reports is that the cryptographic
techniques, on which information security is based, are subject to objective evaluation -- especially in
terms of security -- from technical and highly professional viewpoints.

In response to these reports, the consulting committee of “Investigation and Research Group on Security
Standards (Criteria) for Information Acquired by the Government” in IPA was dissolved in May 2000,
and then this was followed by the establishment of CRYPTREC Evaluation Committee, the secretariat of
which is IPA, as a project sponsored by the Ministry of International Trade and Industry (the now
Ministry of Economy, Trade and Industry). This committee comprised of specialists with relevant
academic background and highly developed specialized knowledge, and took the responsibility of
security evaluation of cryptographic techniques with participants from related government ministries and
agencies as observers.

In 2001, in order to broaden the scope of evaluation across governmental organizations, while
Telecommunications Advancement Organization of Japan (TAO) and IPA served as the secretariat of
CRYPTREC Evaluation Committee, CRYPTREC Advisory Committee, for which the Ministry of Public
Management, Home Affairs, Posts and Telecommunications and the Ministry of Economy, Trade and
Industry functioned as its secretariat, was newly established to discuss issues of policies on cryptographic
techniques. The evaluation of cryptographic techniques was carried out under cooperation of these two
committees.

2 Preface

In 2002, the evaluation of cryptographic techniques was further continued to select e-Government
recommended ciphers supposed to be used for the e-Government system from 2003.

It is necessary to explain in more detail about the significance of this project. It is assumed that the
e-Government system in a network society will be based on an open network like the Internet. In such an
open network, of essential importance is a strategy to maintain confidentiality and privacy of
communication. It is indisputable that cryptographic techniques play the crucial role that supports the
information security of the e-Government. Accordingly, evaluating the cryptographic techniques is one of
the most essential tasks toward creating the e-Government system in network society.

It is not an easy task to evaluate cryptographic techniques. Ciphers that are widely and generally used can
be evaluated to a certain reliable extent by completely publicizing their specifications of algorithms and
then staging ‘attacks’ from a large group of researchers for assessment purposes over a sufficient period
of time. However, in order to construct the e-Government system in a limited time frame, parties
concerned must determine the cipher security level based on current techniques. For such a judgment,
they require pertinent information on the evaluation of cryptographic techniques. According to the
"Cryptography Policy Guidelines" recommended by the OECD council, an evaluation of cryptographic
techniques to be used for the e-Government, on which public welfare services are to be based, is a duty of
government organizations that are responsible for implementing e-Government systems. CRYPTREC
Project shares this duty of government organizations, and their role is extremely important.

However, it is extremely difficult to strictly evaluate the security of cryptographic techniques from the
present knowledge. In addition, we cannot guarantee the long-range securement. For example,
“provable security” makes sense under some assumptions and the concept indicates our confidence for
the security of cryptographic techniques and it is an important criteria. However, the provable security
does not necessarily mean that a cryptographic technique is secure forever. Thus, the security of
cryptography is comprehensively determined by the experienced experts who have highly technical
knowledge.

Different experts may have different opinions, yet in many cases, experts who are at the forefront of the
cryptographic techniques field and play an active role in the international arena, share common concerns
and a mutual understanding of the issues involved. The committee tried to extract and represent correctly
these common intuitions and ideas as much as possible in this report. In cases where a consensus in
agreement could not be reached in certain areas, the committee worked to ensure that sufficient
discussions were conducted from all possible angles and conclusions were then focused toward the safer
side, that is to say, we chose a severe conclusion for candidate algorithms. This was considered
unavoidable for the committee to fulfill its mandate of evaluating cryptographic techniques that are to be
used for the e-Government.

Since no similar evaluation task had been undertaken by Japanese government in the past, we referred the
corresponding criteria of the AES Project of the United States to make our criteria for evaluation of
proposed/submitted techniques and also took into account the activities of the cryptography evaluation
project (NESSIE) in Europe and the cryptographic technique international standardization of ISO/IEC. In
June 2000 and August 2001, proposals/submissions for cryptographic techniques were publicly invited. In
October 2001, the CRYPTREC Cryptographic Technique Submissions Briefing for introducing
proposed/submitted techniques was held. In January 2002, the CRYPTREC Cryptographic Technique
Evaluation Workshop was held. Caution was constantly exercised to ensure fairness and openness to the
maximum extent. This report represents the outcome of such activities, and includes the e-Government
recommended ciphers list (draft) that comprises the highest-level of evaluation results at present, which
will play an important role in establishing the Japanese e-Government system. I strongly hope that this
report will be of great help in the construction of the e-Government system.

Preface 3

Though this report is the outcome of three years of evaluation activities, not all evaluation work for
cryptographic techniques are completed. The security of cryptographic techniques will be greatly affected
by the progress and development of the theory and practice of cryptographic techniques. With this in
mind, I hope that this cryptography research and evaluation project will continue and an establishment of
an official agency for evaluation of cryptographic techniques will come true. I strongly hope the activities
of CRYPTREC Evaluation Committee will serve as the foundation of such an agency.

I am pleased to note that we were able to gather a great number of most influential cryptography
researchers in Japan to take part in CRYPTREC and its two subcommittees: the Symmetric-key
Cryptography Subcommittee, and the Public-key Cryptography Subcommittee. Despite the pressures
placed on them by their public duties, each committee member worked diligently to find the time
necessary to participate in the activities of each committee. And they recognized that the evaluation of
cryptographic techniques is a project of historical significance indispensable to the construction of the
e-Government and to the sound development of the network society in the 21st century. Furthermore, I
would like to express my special thanks to Professor Toshinobu Kaneko of Science University of Tokyo
and Professor Tsutomu Matsumoto of Yokohama National University, the subcommittee chairpersons, for
their fruitful collaboration to incorporate all of the evaluation activities into this report. Of course, I also
wish to thank all the committee members for sharing their knowledge and experience in order to help
advance the activities of this project and taking full advantage of the network of researchers. I believe
accurate evaluation could be conducted through the efforts of many cryptographers who represent various
national and international academic societies.

The significant outcome of this cryptography evaluation project is largely the result of efforts by staff at
the Ministry of Public Management, Home Affairs, Posts and Telecommunications and the Ministry of
Economy, Trade and Industry who promoted study on policies as CRYPTREC Advisory Committee
secretariat, and the staff of TAO and IPA who promoted evaluation work as CRYPTREC Evaluation
Committee secretariat. We are greatly indebted to them. As stated above, this report is the fruition of such
cooperative efforts of many persons involved.

In conclusion, I wish to express my deepest thanks to all the parties involved in this Project -- the first
cryptography evaluation project in Japan -- for providing us with valuable time away from their public
duties/careers to participate in it.

March 2003

Hideki Imai

Chairperson, CRYPTREC Evaluation Committee

4 Preface

Note on the Use of This Report
This report assumes that readers have a basic general knowledge of information security. Those who are
engaged in business related to cryptosystems for electronic government such as digital signature or GPKI
systems, for example, are the targeted readers of this report. However, it is desirable to have a certain
level of knowledge on cryptosystems to read and understand the evaluation results for each cipher.

An overview of the evaluation work is described in Chapter 1, and evaluations of individual
cryptographic techniques are presented in Chapters 2 to 5. Public-key cryptographic techniques are
described in Chapter 2, symmetric-key cryptographic techniques (block ciphers and stream ciphers) in
Chapter 3, the Hash function in Chapter 4, and pseudo-random number generators in Chapter 5.
Side-channel attacks are described in Chapter 6.

This cryptography evaluation was compiled by the CRYPTREC, which is composed of Japan's foremost
cryptography experts. However, due to the nature of cryptographic techniques, the results of security
evaluation described in this report may not remain valid in the future. Thus, it is considered necessary to
continue such evaluations for a long time to come.

The evaluation was conducted in accordance with technical specifications submitted in response to a call
for submissions on cryptographic techniques in August and September of 2001. Therefore, some of the
cryptographic techniques may differ from those used for products of the same name or from those
proposed to other organizations including ISO/IEC.

Since the cryptographic techniques evaluated were limited to those whose specifications had been
disclosed to the public, the technical specifications of the cryptographic techniques submitted for
evaluation can be obtained through the submitters’ websites. Note that this committee shall not be held
responsible for any inadequacies, incompleteness, etc. regarding the information provided.

In implementing cryptographic techniques submitted for this cryptography evaluation, the
recommended/utilized methodology was to obtain advice from experts with special knowledge of the
cryptographic technique in question, or to use cryptography tools (libraries) prepared by experts skilled in
cryptographic techniques.

For further information, please contact the Security Center or the Telecommunications Advancement
Organization of Japan. All opinions and comments are welcome.

(e-mail: cryptrec-call@ipa.go.jp)

Evaluation Committee Members 5

Evaluation Committee Members

Cryptography Research and Evaluation Committees (title, etc. as of the end of
March 2003)

Chairperson Hideaki Imai Professor, University of Tokyo

Adviser Shigeo Tsujii Professor, Chuo University

Committee member Eiji Okamoto Professor, University of Tsukuba

Committee member Tatsuaki Okamoto Fellow, Nippon Telegraph and Telephone Corporation

Committee member Toshinobu Kaneko Professor, Science University of Tokyo

Committee member Mitsuru Matsui Head Researcher, Mitsubishi Electric Corporation

Committee member Tsutomu Matsumoto Professor, Yokohama National University

Public-key Cryptography Subcommittee (title, etc. as of the end of March 2003)

Chairperson Tsutomu Matsumoto Professor, Yokohama National University

Committee member Seigo Arita Senior Researcher, NEC Corporation

Committee member Kazuo Ohta Professor, the University of Electro-Communications

Committee member Jun Kogure Senior Researcher, FUJITSU LABORATORIES LTD.

Committee member Yasuyuki Sakai Senior Researcher, Mitsubishi Electric Corporation

Committee member Hiroki Shizuya Professor, Tohoku University

Committee member Atsushi Shinbo Research Scientist, Toshiba Corporation

Committee member Seiichi Susaki Unit Leader Researcher, Hitachi Ltd.

Committee member

Natsume Matsuzaki

Senior Researcher, Matsushita Electric Industrial Co.,
Ltd.

Committee member

Hajime Watanabe

National Institute of Advanced Industrial Science and
Technology

6 Evaluation Committee Members

Symmetric-Key Cryptography Subcommittee (title, etc. as of the end of March
2003)

Chairperson Toshinobu Kaneko Professor, Science University of Tokyo

Committee member Kazumaro Aoki Nippon Telegraph and Telephone Corporation

Committee member Kiyomichi Araki Professor, Tokyo Institute of Technology

Committee member Shinichi Kawamura Senior Research Scientist, Toshiba Corporation

Committee member Tohru Kohda Professor, Kyushu University

Committee member Kazukuni Kobara Research Associate, University of Tokyo

Committee member Kouichi Sakurai Professor, Kyushu University

Committee member Akashi Sato Senior Researcher, IBM Japan Ltd.

Committee member Takeshi Shimoyama Researcher, FUJITSU LABORATORIES LTD.

Committee member Kazuo Takaragi Senior Researcher, Hitachi, Ltd.

Committee member Makoto Tatebayashi Chief Engineer, Matsushita Electric Industrial Co., Ltd.

Committee member Yukiyasu Tsunoo Principal Researcher, NEC Corporation

Committee member Toshio Tokita Head Researcher, Mitsubishi Electric Corporation

Committee member Masakatsu Morii Professor, University of Tokushima

Observers (title, etc. as of the end of March 2003)

Koichi Yamada Info-Communications Bureau, National Police Agency

Shinichi Iida Info-Communications Bureau, National Police Agency

Hideyuki Torii Info-Communications Bureau, National Police Agency

Tsukasa Akaiwa Info-Communications Bureau, National Police Agency

Chikami Chishiki Police Info-Communications Research Center

Masahiro Masuga Command Communication Division, Japan Defense Agency (until July 2002)

Toru Tomita Command Communication Division, Japan Defense Agency

Noriyasu Matsui Ground Staff Office, Japan Defense Agency (until July 2002)

Yasuhiko Ichijo Ground Staff Office, Japan Defense Agency

Taku Kiyasu

Information and Communications Policy Bureau, Ministry of Public
Management, Home Affairs, Posts and Telecommunications (until July 2002)

Manabu Kanaya

Information and Communications Policy Bureau, Ministry of Public
Management, Home Affairs, Posts and Telecommunications

Hiroshi Monma

Information and Communications Policy Bureau, Ministry of Public
Management, Home Affairs, Posts and Telecommunications (until July 2002)

Masahiko Fujimoto

Information and Communications Policy Bureau, Ministry of Public
Management, Home Affairs, Posts and Telecommunications

Kenichiro Sato

Information and Communications Policy Bureau, Ministry of Public
Management, Home Affairs, Posts and Telecommunications

Evaluation Committee Members 7

Akira Fukuoka

Information and Communications Policy Bureau, Ministry of Public
Management, Home Affairs, Posts and Telecommunications

Masato Wakitani

Administrative Management Bureau, Ministry of Public Management, Home
Affairs, Posts and Telecommunications (until July 2002)

Hiroshige Yamamoto

Administrative Management Bureau, Ministry of Public Management, Home
Affairs, Posts and Telecommunications

Hiroshi Inagaki

Administrative Management Bureau, Ministry of Public Management, Home
Affairs, Posts and Telecommunications (until October 2002)

Kazuo Nakahara

Administrative Management Bureau, Ministry of Public Management, Home
Affairs, Posts and Telecommunications

Sadao Okumura Communications Division, Ministry of Foreign Affairs

Hidetoshi Ohno

Business Affairs and Information Policy Bureau, Ministry of Economy, Trade
and Industry

Mondo Yamamoto

Business Affairs and Information Policy Bureau, Ministry of Economy, Trade
and Industry (until July 2002)

Yuji Tanabe

Business Affairs and Information Policy Bureau, Ministry of Economy, Trade
and Industry (until July 2002)

Yasuhiro Kitaura

Business Affairs and Information Policy Bureau, Ministry of Economy, Trade
and Industry

Toshihiro Imai Business Affairs and Information Policy Bureau, Ministry of Economy, Trade
and Industry

Tatsuo Kido

Industrial Technology Environment Bureau, Ministry of Economy, Trade and
Industry

Taro Fukazawa

Industrial Technology Environment Bureau, Ministry of Economy, Trade and
Industry

Osamu Takizawa Communication Research Laboratory

Secretariat
Information-technology Security Center, Information–technology Promotion Agency, Japan

Osamu Naito, Hiroaki Kawachi, Kazuhiro Amijima, Kyoichi Kurokawa, Takashi Kurokawa, Masaki
Takeda, Yasuhiro Takeya (until April 2002), Kimiaki Tanaka, Kenichi Yada, Atsuhiro Yamagishi

Telecommunications Advancement Organization of Japan
Kaoru Suzuki (until July 2002), Taku Kiyasu, Kazuharu Yamada (until July 2002), Takahiro
Yokoyama, Shigeru Amano, Yasushi Kasai, Masayuki Kanda, Masayasu Kumagai (until October
2002), Hidema Tanaka, Noriyuki Hanzawa, Akihiro Yamamura

8 Evaluation Committee Members

 9

Chapter 1

Overview of Evaluation Activities

The rapid and widespread development of the Internet and its open network technology has produced
numerous services on networks. The most important issue that allows us to benefit from the advantages
of this open network with ease is a total guarantee to network security. The cryptographic technique is
the basic technology of security in open networks and its reliability is constantly improved by objective
evaluations. The evaluation activities associated with cryptographic techniques are the first joint effort
for such investigations between industry, academia, and government in Japan. This chapter provides
general information about the cryptographic technique evaluation activities performed in a period of three
years.

1.1 History
CRYPTREC (Cryptography Research and Evaluation Committees) consists of CRYPTREC Advisory
Committee and CRYPTREC Evaluation Committee, and plays a role in evaluating basic cryptographic
techniques for e-Government over three years from the 2000 fiscal year in order to assure security for the
e-Government system scheduled for construction in fiscal 2003.

In 1999, Information-technology Promotion Agency, Japan (hereafter referred to as IPA) convened an
"Investigation and Research on Security Standards (Criteria) for Information Acquired by the
Government". At the same time, the Ministry of Public Management, Home Affairs, Posts and
Telecommunications (hereafter referred to as MPHPT) (formerly Ministry of Posts and
Telecommunications) set up a "Study Group for Promotion and Advancement of Cryptographic
Communications". These research groups started out on the premise that cryptographic techniques were
the basic technology of information security. It was soon recognized that the reliability of cryptographic
techniques must be objectively evaluated from a technical and professional viewpoint. Therefore, it was
proposed that the methods of cryptographic technique evaluation should be upgraded immediately to
carry out these studies and investigations.

In May 2000, the Ministry of Economy, Trade and Industry (hereafter referred to as METI) (formerly
Ministry of International Trade and Industry) outsourced the tasks involving evaluation of e-Government
cryptographic techniques to IPA. Subsequently, CRYPTREC Evaluation Committee was set up and
cryptographic technique evaluation activities (CRYPTREC activities) were started. In June 2000,
CRYPTREC Evaluation Committee requested the general public to submit cryptographic techniques and
received forty-seven applications from inside and outside Japan.

10 Chapter 1 Overview of Evaluation Activities

In 2001, Telecommunications Advancement Organization of Japan (hereafter referred to as TAO) joined
CRYPTREC Evaluation Committee as the secretariat, and took responsibility for CRYPTREC joint
activities with IPA. CRYPTREC Advisory Committee was also formed in a joint endeavor involving
the Director-General for Technology Policy Coordination, MPHPT and the Head of the Business Affairs
and Information Bureau, METI. The purpose of CRYPTREC Advisory Committee is to make a
policymaking study of the application of cryptographic techniques. The cryptographic techniques to be
used in e-Government system must follow the standards set by this committee, which has also surveyed
and studied methods for the procurement and use of ciphers. CRYPTREC Evaluation Committee
sought cryptographic techniques from the general public for the second time in August of 2001, and
received total of sixty-three applications (including first-time applications) from Japan and overseas.
In 2001 and 2002, CRYPTREC Evaluation Committee evaluated cryptographic techniques used in
SSL3.0/TLS1.0 by request of CRYPTREC Advisory Committee. The Law concerning Electronic
Signatures and Certification Services was enforced in April of 2001. A legal system regarding the use of
electronic signatures completed, and then CRYPTREC Evaluation Committee also took responsibility of
evaluating the security of the electronic signatures specifed in Guidelines on Accreditation of Designation
Certification Services based on the Law concerning Electronic Signatures and Certification Services
(hereafter abbreviated to “Guidelines on the law concerning electric signatures and certification
services”).

In 2002, CRYPTREC Evaluation Committee continuously carried out joint activities with CRYPTREC
Advisory Committee for the evaluation of cryptographic techniques and compiled the e-Government
Recommended Ciphers List (draft)*1 (Table 1.3). This draft lists the cryptographic techniques that can
be used for constructing e-Government system. Furthermore, CRYPTREC evaluation activities and the
status of evaluation were introduced at Meeting of ISO/IEC JTC 1/SC27 WG2 on Warsaw, and at
NESSIE. Table 1.1 summarizes the evaluation activities for cryptographic techniques.

*1 The e-Government Recommended Ciphers List (draft) was finally compiled as the “e-Government Recommended

Cifers List” by MPHPT and METI, after the review at CRYPTREC Advisory Committee and the call for public
comments.

1.2 CRYPTREC Structure 11

Table 1.1 Main Activities of CRYPTREC Evaluation Committee

May 2000 CRYPTREC Evaluation Committee is organized.
June to July 2000 Cryptographic techniques are sought from general public in fiscal 2000.
August to October 2000 Screening evaluation is performed in fiscal 2000.
October 2000 Cryptographic Technique Symposium (CRYPTREC objectives are introduced).
October 2000 to March 2001 Full evaluation of cryptographic techniques is performed in fiscal 2000.
March 2001 CRYPTREC Report 2000 is issued.
April 2001 CRYPTREC Workshop (Fiscal 2000 CRYPTREC activities report).
August to September 2001 Cryptographic techniques are sought from general public in fiscal 2001.
October 2001 CRYPTOREC Cryptographic Technique Submissions Briefing
October 2001 to March 2002 Full evaluation of cryptographic techniques is performed.

Screening evaluation of newly submitted cryptographic techniques in fiscal 2001.
January 2002 Cryptography Evaluation Workshop (Status report on evaluation)
March 2002 CRYPTREC Report 2001 is issued.
April 2002 CRYPTREC Workshop (Fiscal 2001 CRYPTREC activities report).
April 2002 to February 2003 Full evaluation of cryptographic techniques is performed.

The e-Government Recommended Ciphers List (draft) is created.
October 2002 CRYPTREC Report 2001 (English version) is issued.
October 2002 CRYPTREC activities are introduced at the Meeting of ISO/IEC JTC 1/SC27 WG2 on

Warsaw
February 2003 CRYPTREC activities are introduced at NESSIE.
April 2003 CRYPTREC Report 2002 is issued.
May 2003 A CRYPTREC Workshop (Fiscal 2002 CRYPTREC activities report).

1.2 CRYPTREC Structure
CRYPTREC is comprised of two committees: CRYPTREC Advisory Committee and CRYPTREC
Evaluation Committee. CRYPTREC Advisory Committee mainly makes the policy-oriented decisions
and CRYPTREC Evaluation Committee performs the technical evaluations. Many professionals and
experts on information security were selected from industry, academia, and government to be members of
CRYPTREC Advisory Committee and CRYPTREC Evaluation Committee in order to reflect opinions
from a wide range of fields. Two subcommittees, the Public-key Cryptography Subcommittee and
Symmetric-key Cryptography Subcommittee, were formed under CRYPTREC Evaluation Committee.
IPA and TAO served as its secretariat. The Public-key Cryptography Subcommittee was put in charge
of evaluating public-key cryptographic techniques, and the Symmetric-key Cryptography Subcommittee
evaluated symmetric-key cryptographic techniques, hash functions, and pseudo-random number
generators (see Figure. 1.1). The Cipher Procurement Guidebook Working Group, formed under
CRYPTREC Advisory Committee, prepared the "Cipher Procurement Guidebook" on the usage of
cryptographic techniques and procurement methods. In order to grasp the overall evaluation activities
related to cryptographic techniques, wthe reader is referred to the "Cryptographic Advisory Committee
Report 2002" as well as this report. The reader is also referred to the "Cipher Procurement Guidebook" to
select and use cryptographic techniques for the construction of various e-Government systems.*2

*2 http://www.soumu.go.jp/s-news/2003/pdf/030331_4_1.pdf, http://www.meti.go.jp/kohosys/press/0003876/1

12 Chapter 1 Overview of Evaluation Activities

Cryptography Research and Evaluation Committees (CRYPTREC)

 Requests technical evaluations on cryptographic techniques.
 Seeks advice on technical matters.

CRYPTREC Advisory �
Committee
(Chairman: Hideki Imai, Professor of �
the University of Tokyo)
Secretariat: Ministry of Public �
Management, Home Affairs, Posts and �
Telecommunications and Ministry of �
Economy, Trade and Industry

 Advises the Ministry of Public Management, �
 Home Affairs, Posts and Telecommunications �
 and Ministry of Economy, Trade and Industry �
 on the usage of ciphers.
 Formulates policymaking decisions on the �

 usage of ciphers for e-Government.
 Requests evaluation of specific ciphers.

 Reports the evaluation results �
 on cryptographic techniques.
 Gives advices on technical matters.

CRYPTREC Evaluation Committee
(Chairman: Hideki Imai, �
Professor of the University of Tokyo)
Secretariat: CRYPTREC Evaluation Committee (IPA) �
and Telecommunications
Advancement Organization of Japan (TAO)

 Performs specific technical evaluations.
 Prepares various guidelines for the �

 proper use of ciphers in e-Government �
 systems.
 Gives advices on technical matters.

The Cipher Procurement
Guidebook Working Group
(Leader: Ryoich Sasaki, Professor of �
Tokyo Electrical Engineering College)

Symmetric-key Cryptography �
Subcommittee
(Chairman: Toshinobu Kaneko, �
Professor of Science University of Tokyo)

 Evaluates symmetric-key ciphers, hash function, �
 and pseudo-random number generators.

Public-key Cryptography �
Subcommittee
(Chairman: Tsutomu Matsumoto, �
Professor of Yokohama National University)

 Evaluates public-key ciphers �
 (signature, authentication, confidentiality, �
 key agreement).

Figure 1.1 Organization of CRYPTREC (Fiscal 2002)

1.3 Background of Evaluation Activities

In this section we introduce several aspects in cryptographic technique evaluation that is related to public
needs and requests.

 Construction of e-Government systems

In 2001 and 2002, the IT Strategic Headquarters of Japanese government set up the e-Japan Priority
Policy Program and the e-Japan Priority Policy Program - 2002, respectively. One of their goals is
characterized as the promotion of a) computerization of administrative bodies and b) use of information
telecommunication techniques in the public sector. They set the implementation of the "e-Government"
as an outcome of these measures. Furthermore, as one of many specific measures for assuring security
and reliability of advanced information and telecommunication network, they filed the following report:

To make an objective evaluation of the security of cryptographic techniques available and adopt
the cryptographic techniques that have sufficient security and performance, the evaluation and
standardization of cryptographic techniques that contribute to the formation of e-Government
should be performed within fiscal 2002. The evaluation and standardization of these
cryptographic techniques should be conducted in consideration of the trends in global
standardization of cryptographic techniques by ISO, ITU, and other organizations through holding
of CRYPTREC Advisory Committee and the like run by experts.

1.3 Background of Evaluation Activities 13

In 2000, the Basic Law on the Formulation of an Advanced Information and Telecommunication Network
Society (FY2000 Law No. 144)*3 was established and evaluation/authentication systems were set up for
information technology (IT) products. With many corporations also working on e-Government system
solutions, full-fledged operation of such systems came closer to reality. When the e-Japan Priority Policy
Program appeared, one of the critical issues was the assurance of security of the e-Government system.
This matter was discussed at the IT Security Promotion Committee*4. The result of this meeting was
proposed as the "Action plan for Ensuring e-Government’s IT Security"*5 (October 10, 2001). The
statement in this proposal regarding the evaluation of cryptographic techniques is stated as follows:

In order to assure "e-Government" security, it is essential for government agencies to comply with
the criteria (ISO/IEC 15408) fo information equipments to guarantee a certain level of security in
the procurement by government agencies as much as poccible. Similarly, it is imperative to use
ciphers that have sufficient security and reliability and it is also necessary to promote the use of
such ciphers. To this end, MPHPT and METI shall make a list of recommendable ciphers based
on the output of their study groups that will be helpful for "e-Government" procurements. They
shall also endeavor to reach a consensus among ministries and governmental agencies regarding
the policies of usage of ciphers.

Therefore, it was recognized that the requirement of "evaluating cryptographic techniques, a fundamental
components for secure e-Government systems, and recommending them after obtaining a consensus
among ministries and governmental entities" was an important issue. For further information about
governmental IT security policies, visit the website: http://www.bits.go.jp/about/about.html.

 Law concerning Electronic Signatures and Certification Services

The "Law concerning Electronic Signatures and Certification Services (FY2000 Law No.102)" *6 was
enforced on April 1, 2001 and a legal basis was established to give electronic signatures equal status with
handwritten signatures and seals. Furthermore, three laws providing online administrative procedures
for promoting e-Government and e-Municipalities*7 (including the Law concerning Digital Signature
Certification at Local Public Entity (Public Individual Certification Law)*8 were passed by the Diet in
December 2002. The CRYPTREC Advisory Committee Report 2001 also stated that local public
entities should encourage the use of guidelines for electronic signatures authentication through
application and publications activities. Therefore, it became necessary to select and specify
cryptographic techniques with adequate security in the "Guidelines on the law concerning electric
signatures and certification services (2001 Notification No. 2, MPHPT; Ministry of Justice; and METI) *9
in order to assure the security of the information telecommunication systems of e-Government and local
public authorities. Legal systems related to electronic signature laws have been created in many
countries and are summarized on the website: http://www.soumu.go.jp/joho_tsusin/top/ninshou-law/

*3 http://www.kantei.go.jp/jp/it/kihonhou/honbun.html
*4 http://www.bits.go.jp/index.html
*5 http://www.kantei.go.jp/jp/it/security/suisinkaigi/dai4/actionplan.html
*6 http://www.soumu.go.jp/joho_tsusin/top/ninshou-law/law-index.html and

http://www.meti.go.jp/policy/netsecurity/digitalsign.htm
*7 http://www.soumu.go.jp/gyoukan/kanri/sanhou.html
*8 http://www.soumu.go.jp/kyoutsuu/syokan/pdf/020607_3c.pdf
*9 http://www.soumu.go.jp/joho_tsusin/top/ninshou-law/1-6.pdf and

http://www.meti.go.jp/policy/netsecurity/digitsign_sisin.htm

14 Chapter 1 Overview of Evaluation Activities

 Cryptography evaluation and standardization activities overseas

To find cryptographic techniques that have sufficient security, it is necessary to invite the general public
to submit such techniques for evaluation without restrictions on country of origin and applicant's
organization and then impartially evaluate them and select techniques having sufficient security. Such
an approach will benefit both the individual who procures and uses a cryptographic technique and the
general public. It helps to get reliability on the cryptographic techniques used in the e-Government from
overseas as well. The well-known evaluation activities overseas are the projects described below. Both
projects invite cryptographic techniques from all over the world and evaluate them without any
discrimination.

The two well-known evaluation activities are the Advanced Encryption Standard (AES) project in U.S.A.
and the New European Schemes for Signatures, Integrity and Encryption (NESSIE) project in Europe.
Both projects request cryptographic techniques from all over the world and evaluate them without any
restriction on country and company.

In 1997, the National Institute of Standards and Technology (NIST) *10 taking responsibility in selecting
technical standards under the U.S. Department of Commerce, initiated a next-generation standard block
cipher selection project that was to serve as a substitute for the Data Encryption Standard (DES, Triple
DES). Rijndael*11, submitted by a researcher in Belgium, was selected as AES in October 2000 and
established officially as FIPS PUB 197 in November 2001.

In 2000, the NESSIE project*12 started as a cryptographic algorithm evaluation activity in Europe. The
European Commission under the European Union (EU) undertook a part of its Information Societies
Technology Programme. NESSIE set up high achievement goals as it listed recommendable cipher
components, including public key cryptosystems, symmetric key ciphers, and hash functions. On
February 26, 2003, the project committee published a recommended cipher list (NESSIE portfolio) as the
final results of three years long evaluations. Visit the web page http://www.cryptonessie.org for more
information.

Besides the above, there are the standardization activities by the International Standards Organization
(ISO). The ISO/IEC 18033 cryptographic algorithms standard is in the creation process at ISO/IEC
JTC1/SC27*13. This standard is comprised of Part I for general introduction, Part II for public key, Part
III for block cipher, and Part IV for stream cipher. As of March 2003, 18033-1 is in the Final
Committee Draft (FCD) stage while 18033-2, 18033-3 and 18033-4 are in the Committee Draft (CD)
stage.

ISO/IEC 9979 (JIS X 5060) has also been established as a cryptographic technique registration system.
This is used for registering cryptographic algorithms only and does not evaluat security or perfomance.
Therefore, registering with ISO/IEC 9979 does not guarantee technical performance of cryptographic
techniques.

*10 http://www.nist.gov/
*11 http://www.esat.kuleuven.ac.be/~rijmen/rijndael/
*12 http://www.cryptonessie.org/
*13 http://www.din.de/ni/sc27/

1.3 Background of Evaluation Activities 15

 Information security evaluation organizations overseas

The definite criteria are necessary for a meaningful evaluation of cryptographic techniques. It is not an
easy task to establish such criteria because of the complicated involvement of so many factors. Since
evaluation criteria vary in accordance with the purpose and operating conditions of a cryptographic
technique, the selection of cryptographic techniques should be left to user discretion. In many instances,
the governmental agencies in each country actually take charge of the evaluation and selection of
cryptographic techniques for security of their government's information systems. For example, NIST in
the U.S., Communications Security Establishment (CSE) *14 in Canada, Communications Electronics
Security Group (CESG) *15 in the U.K., Direction Centrale de la Securite des Systems d'Information
(DCSSI) *16 in France, Bundesamt fur Sicheit in der Informationstechnic (BSI) *17 in Germany, Defense
Signals Directorates (DSD) *18 in Australia, Government Communications Security Bureau (GCSB) *19 in
New Zealand, and Korea Information Security Agency (KISA) *20 in Korea are all actively engaged in the
evaluation of their information system security. In Japan, it is necessary to set up a system where an
evaluation organization can constantly and impartially (without developer or vendor influence) evaluate
cryptographic techniques. Such organizations are responsible for: a) conducting technical evaluation of
cryptographic tecniques, b) providing assistance for development and operation of cryptographic
techniques, c) monitoring cryptographic technique trends, c) accumulating and publicizing relevant
information, d) promoting the awareness and educating users about cryptographic techniques and their
operating methods, and e) developing human resources. The organizations above deal comprehensively
with information security matters. In Japan, there is a need to exchange information among departments
in charge of information security and local offices , in addition to close links with international
organizations.

 Providing objective technical information

ISO/IEC 15408 is an evaluation standard for the security of information equipment. It does not clearly
define the cryptographic techniques. This does not imply that there is no need to evaluate cryptographic
techniques, and moreover, use of secure cryptographic techniques is assumed ISO/IEC 15408 evaluation.

When the technical specifications of a cryptographic technique are kept secret (detailed information about
this technique cannot be freely accessed by the public) and there has been no adequate third-party evaluation,
this technique has not been objectively verified whether the technique reaches the security claimed by its
developer. If the algorithm specifications are also kept secret, there might be some secret information (trap
door) known only to the developer. Therefore, if the algorithm specifications are kept secret and the
security of the cryptographic algorithm has not been evaluated by third parties, it is difficult to determine
whether the specifications do not have any security problems (even if the algorithm specifications have been
disclosed) or not. Furthermore, there is always a risk that the algorithm specifications suddenly become
disclosed one day for some reason (including illegal means). In particular, the latter situation of finding
problems when an algorithm is disclosed would have greater perils. Therefore, we strongly believe it
important to procure only cryptographic techniques whose security has been sufficiently evaluated and
verified by third parties for e-Government systems and even for information systems in general. Note that
there is a significant number of commercial software that has adopted cryptographic techniques whose
specifications are not publicized. Such cryptographic techniques have not been thoroughly evaluated by a
third parity, and some of them are technically quite underdeveloped.

*14 http://www.cse-cst.gc.ca/
*15 http://www.cesg.gov.uk/
*16 http://www.ssi.gouv.fr/
*17 http://www.bsi.bund.de/
*18 http://www.dsd.gov.au/infosec/
*19 http://www.gcsb.govt.nz/
*20 http://www.kisa.or.kr/

16 Chapter 1 Overview of Evaluation Activities

On the other hand, there are no easy conditions for getting results of third-party objective evaluations on
cryptographic techniques. From this perspective, it has also become necessary to openly provide
objective evaluation results on security and processing performance of cryptographic techniques by third
parties to the public and to establish evaluation organizations and a system that allows any individual to
obtain the required information.

1.4 Public Offering and Evaluation Targets
The importance of evaluating cryptographic techniques has been recognized based on the various social
situations described in the previous section. Inspection and verification of the security of cryptographic
techniques have become indispensable to the security assurance of the e-Government system that is
scheduled to start constructing in 2003. CRYPTREC undertook evaluation activities related to
cryptographic techniques.

In fiscal 2000 and 2001, CRYPTREC Evaluation Committee called for submission of the cryptographic
techniques in order to compile a list of cryptographic techniques that could be contributed to the
e-Government system. In starting this public offering, CRYPTREC Evaluation Committee did not
impose any restrictions on national origin or applicant’s organization to provide an opportunity for
impartial evaluation to all applicants. It is important to make CRYPTREC activities impartial and fair.
It is important for all submitted cryptographic techniques to be evaluated equally as a candidate for
e-Government recommended ciphers. CRYPTREC Evaluation Committee specified several
cryptographic techniques as "indispensable cryptographic techniques.". CRYPTREC Evaluation
Committee also evaluated several cryptographic techniques as "specific evaluation" target ciphers for
special reasons such as requests from standardization organizations and the Law concerning Electronic
Signatures and Certification. Basically, the evaluation targets can be categorized into the following
three types: "submitted cryptographic techniques", "cryptographic techniques for specific evaluation", and
"indispensable cryptographic techniques.

 Submitted cryptographic techniques

From June 13th to July 14th in 2000 and August 1st to September 27th in 2001, CRYPTREC Evaluation
Committee called for cryptographic techniques. Cryptographic techniques in the categories of a)
signature, authentication, confidentiality, and key agreement for public-key cryptography, b) 64-bit block
ciphers, 128-bit block ciphers, and stream ciphers for symmetric-key cryptography, and c) hash function
and pseudo-random number generators were sought for evaluation. The applicants of submitted
techniques are asked to make their cryptographic techniques procurable by the end of the fiscal year 2002.
CRYPTREC Evaluation Committee received a total of sixty-three applications in both fiscal 2000 and
2001.

When CRYPTREC Evaluation Committee called for cryptographic techniques, it requested the applicants
to submit documents such as "cryptographic techniques application form", "cryptographic techniques
outline description", "cryptographic techniques specifications", "self-evaluation report (evaluation of
proposed cipher by applicant)", "test vectors", "reference programs", and "disclosure status of
specifications". Disclosure of a cipher's technical specifications was an absolute precondition for
evaluation. CRYPTREC Evaluation Committee requested the applicants comply with the following two
conditions.

(A1) The cryptographic technique outline description, cryptographic technique specifications, and
self-evaluation report must be disclosed (i.e. detailed information should be available to the
general public).

1.4 Public Offering and Evaluation Targets 17

(A2) The information about the submitted cryptographic techniques such as specifications must be
available at the applicant's website. Or, the exact procedure for accessing the information such as
specifications must be available so that any number of people can obtain it without restraint.

 Indispensable cryptographic techniques

In addition to the cryptographic techniques submitted by applicants, CRYPTREC Evaluation Committee
selected techniques that were considered to be indispensable in the construction of e-Government systems.
Such cryptographic techniques must have either comparatively long track records of use and evaluation,
or have a long history of usages. These targets were selected for evaluation as "indispensable
cryptographic techniques" whether or not an applicant submitted them.

The cryptographic techniques that were evaluated as "indispensable cryptographic techniques" include
DSA, ECDSA (ANSI X9.62), RSASSA-PKCS1-v1_5, DH, Triple DSA, AES, MD5, RIPEMD-160,
SHA-1, SHA-256, SHA-384, SHA-512, PRNG for DSA in FIPS PUB 186-2 Appendix 3*21.

In 2002, CRYPTREC evaluated the following five cryptographic techniques: PRNG in ANSI X9.42-2001
Annex C.1/C.2, PRNG in ANSI X9.62-1998Annex 4, PRNG in ANSI X9.63-2001 Annex 4, PRNG for
general purpose in FIPS PUB 186-2 (+ change notice 1) Appendix 3.1, and PRNG in FIPS PUB 186-2 (+
change notice 1) revised Appendix 3.1/3.2.

 Cryptographic techniques for specific evaluation

"Cryptographic techniques for specific evaluation" are the cryptographic techniques that were evaluated
by CRYPTREC based on a special request, whether or not an applicant submitted them or they are
specified as "indispensable cryptographic techniques ". The cryptographic techniques for specific
evaluation are evaluated for a specific purpose. Therefore, the selection of such cryptographic
techniques as e-Government recommended cipers depends on the purpose of the evaluation of the
cryptographic techniques and such a cryptographic technique was not automatically selected as a
candidate for e-Government recommended ciphers. Cryptographic techniques for specific evaluation in
fiscal 2000 and 2001 are classified into the following three categories.

(B1) Cryptographic techniques specified in Guidelines on the Law concerning Electronic Signatures
and Certification Services
The signature techniques DSA, ECDSA(ANSI X9.62), ESIGN, and RSASSA-PKCS1-v1_5
specified in the Guidelines on the law concerning electric signatures and certification services
(2001 Notification No. 2, MPHPT; Ministry of Justice; and METI (Extra Edition No. 86 of the
Official Gazette, April 27, 2001)), were selected as targets for specific evaluation. DSA, ECDSA
(ANSI X9.62), and RSASSA-PKCS1-v1_5 were also specified as "indispensable cryptographic
techniques". ESIGN is a cryptographic technique submitted in fiscal 2001.

(B2) Cryptographic techniques used in SSL3.0/TLS1.0
CRYPTREC Advisory Committee requested CRYPTREC Evaluation Committee to evaluate
cryptographic techniques having a long record of usage and integrated in SSL/TLS, which is
supposed to be used in the e-Government system. The cryptographic techniques to be used in
SSL/TLS include RSA (RSAES-PKCS1-v1_5, RSASSA-PKCS1-v1_5), DES/Triple DES (40-,
56-, and 168-bit keys), RC2 (40- and 128-bit keys), RC4 (40- and 128-bit keys). The
cryptographic techniques used in SSL3.0/TLS1.0 were evaluated as candidates for e-Government
recommended ciphers. Among them, ones that can be used for e-Government are included in the
e-Government recommended ciphers list (draft). RSASSA-PKCS1-v1_5 and Triple DES were
also specified as "indispensable cryptographic techniques".

*21 Includes a cryptographic technique referred to as "PRNG based on SHA-1" in CRYPTREC Report 2001.

18 Chapter 1 Overview of Evaluation Activities

(B3) Contribution to ISO/IEC JTC1/SC27
In fiscal 2001, the Japanese ISO/IEC JTC1/SC27 Committee requested CRYPTREC Advisory
Committee to evaluate a 128-bit block cipher called SEED. This is a standard cipher for the
Korean government and has been proposed in ISO/IEC 18033. CRYPTREC Evaluation
Committee accepted this request in a spirit of global contribution and cooperation and evaluated
SEED as a target of specific evaluation. Since SEED was evaluated in a cooperative effort with
ISO/IEC JTC1/SC27 and was not submitted to CRYPTREC, it was not evaluated as a candidate
for e-Government recommended ciphers.

 Cryptographic techniques evaluated in CRYPTREC

Table 1.2 summarizes the evaluation targets in the fiscal year 2002. In this document, we use the names
provided by the applicants for "submitted cryptographic techniques", and the names given in their
specifications for "indispensable cryptographic techniques" and "cryptographic techniques for specific
evaluation".

Table 1.2 Cryptographic Techniques evaluated in the fiscal year 2002

Submitted cryptographic
techniques

ECDSA (SEC1), ESIGN, RSA-PSS, RSA-OAEP,
ECIES (SEC1), HIME(R), ECDH (SEC1),
PSEC-KEM, CIPHERUNICORN-E, Hierocrypt-L1,
MISTY1, Camellia, CIPHERUNICORN-A,
Hierocrypt-3, RC6 Block Cipher, SC2000, MUGI,
MULTI-S01

Indispensable cryptographic
techniques

RSASSA-PKCS1-v1 5, DSA, ECDSA (ANSI X9.62),
DH, Triple DES, AES, RIPEMD-160, SHA-1,
SHA-256, SHA-384, SHA-512,
PRNG for DSA in FIPS PUB 186-2 Appendix 3 PRNG
in ANSI X9.42-2001 Annex C.1/C.2,
PRNG in ANSI X9.62-1998 Annex A.4,
PRNG in ANSI X9.63-2001 Annex A.4,
PRNG for general purpose in FIPS PUB 186-2 (+
change notice 1) Appendix 3.1,
PRNG in FIPS PUB 186-2 (+ change notice 1) revised
Appendix 3.1/3.2

Cryptographic techniques for
specific evaluation

RSASSA-PKCS1-v1 5, DSA, ECDSA (ANSI X9.62),
ESIGN, RSAES-PKCS1-v1 5, 3-key Triple DES,
RC4 (40- and 128-bit keys)

1.5 Evaluation and Selection of Cryptographic Techniques
To compile the e-Government recommended ciphers list (draft), CRYPTREC performed security
evaluations in order to select cryptographic techniques that satisfy the level of security (sufficiently
strong) sufficient for the e-Government system. CRYPTREC also performed software and hardware
implementation evaluations to measure the processing speed and amount of system resources required.
To ensure that the technical evaluations were impartial and adequate, CRYPTREC requested several
specialists besides its own members to conduct evaluations (referred to as external evaluations). To
make evaluations fair for all the cryptographic techniques in the same category, CRYPTREC applied the
same evaluation methods as much as possible to allow relative comparisons.

1.5 Evaluation and Selection of Cryptographic Techniques 19

Research on side-channel attacks has been rapidly progressing recently. Side-channel attacks use error
messages or physical quantities (such as processing speed and current consumption) that are acquired by
unauthorized means or leaked from physical devices in the cryptographic algorithms implementation
environment to obtain secret information. Because CRYPTREC mainly evaluated algorithms of
cryptographic techniques from fiscal 2000 to 2002 (from non-side-channel attack perspectives), it only
surveyed the researches on side-channel attacks to date.

 Evaluation items

The evaluation in CRYPTREC progressed gradually and in parallel to get a good understanding of
algorithm properties and characteristics like security, performance and imprementation feasibility in a
prompt and efficient manner.

(C1) Screening evaluation
We first confirmed that the specifications of the cryptographic technique were made public.
Then, we studied submitted documents to investigate whether the target cryptographic technique
had any problems in the design concept, design policies, security, or implementation. We also
checked whether the submitted documents provided enough information for a third party to
implement.

(C2) Full evaluation
The following items were investigated:

• Whether known attacks are applicable or not
• Computation cost required for a known attack to succeed
• Validity of provable security
• Validity of parameter/key generating methods
• Selection of auxiliary functions and methods used to implement them in the scheme
• Anticipated problems of submitted cryptographic techniques in a realistic systems
• Whether any attack can be mounted or not using evaluators expertises.

We also compare the techniques with other cryptographic techniques and tried to extract merits
and defects.

(C3) Software implementation evaluation
We verify the integrity with computing resources and environments, check whether the software
operated as described in the submitted documents in environments: (1) general PC environment,
(2) most popular server environment, and (3) high-performance, high-end environment. We
evaluated all submitted block ciphers in a PC environment. We evaluated block ciphers in server
and high-end environments when the applicants agreed. We evaluated some 128-bit block ciphers
on the Z80 simulator in order to test a low-specification environment (IC card environment) such
as an 8-bit CPU. We evaluated MUGI ad MULTI-S01 in a PC environment for stream ciphers.
We did not perform software implementation evaluations for hash functions and pseudo-random
number generators. For public-key cryptosystems, we checked whether they operate correctly
using the test vectors submitted by the applicants in a PC environment.

(C4) Hardware implementation evaluation
We investigated whether a third party could design the hardware using submitted documents
(algorithm specifications and test vectors) only. Altough we restricted the evaluation targets to
symmetric-key ciphers, we still had to evaluate twelve cryptographic techniques. Therefore, we
tried to determine how easy it was to evaluate the implementation of FPGA as a target device.
As a result, we confirmed that all symmetric-key block ciphers (ten) and stream ciphers (two)
could be implemented using submitted documents only.

20 Chapter 1 Overview of Evaluation Activities

(C5) Survey
Research on security against side-channel attacks has been rapidly progressing recently. We
surveyed side-channel attacks to draw the attention from the persons in charge of procurement and
implementation of e-Government systems.
We are holding seminars on the integer factoring problems as well. We are preparing for
computer experiments. We also investigated the current state of the research on hardware circuits
that would solve the integer factoring problems.
We also conducted a survey on the use of SSL3.0/TLS1.0.

 Evaluation criteria

We have set the following criteria for evaluation of cryptographic techniques according to the categories.

(D1) Public-key cryptographic techniques (for further information, See Chapter 2)
• If a public-key cryptographic technique has a solid track record of operation and evaluation

over a relatively long period of time and its specifications cannot be changed easily from
the standpoint of interoperability, the following conditions must be satisfied: 1) the
cryptographic techniques must have been evaluated and researched thoroughly by a number
of researchers and 2) no security problems was reported in a realistic system.

• For relatively new public-key cryptographic techniques, we require them to have at least
“provable security” because its specifications can be defined separately from existing
cryptographic techniques. We carried out a comprehensive security evaluation in addition
to checking the provable security, including issues such as the validity of number theoretic
problems, method of selecting recommended parameters, and method of using auxiliary
functions in a scheme.

(D2) Symmetric-key cryptographic techniques (for further information, See Chapter 3)
We require that symmetric-key cryptographic techniques should satisfy either of the following
conditions.

• Even with the best attacking technique available to date, computational cost of 2128 or more
(i.e. exhaustive search for a secret key) is required to break symmetric-key cryptographic
techniques. It is necessary for the techniques to be shown that they are secure against
typical attacking techniques such as differential and linear cryptanalysis.

• Widely used symmetric-key cryptographic techniques which have been evaluated in
detailes and have no security problems in a realistic system, are selected. In this case,
computational cost of 2100 or more is required to break them.

(D3) Hash functions (See Chapter 4 for further information.)
 We require that hash functions should satisfy either of the following conditions.

• Even with the best attacking technique available to date, computational cost to find the
input value for a specific output value is not less than computational cost required for the
exhaustive search. Also, even if the best attacking technique is used, computational cost
to find a pair of input values with the same output value is 2128 or more.

• Widely used hash functions that have no security problems in a realistic systems and its
hash length is160 bits or longer, are selected.

(D4) Pseudo-random number generators (for further information, See Chapter 5)
We require that pseudo-random number generators should satisfy all the following conditions.

• The statistical properties are close to that of a true random number. An unknown output
bit of the future or past is hard to predict from the known output bit history.

• The seed size must be large enough to be secureagainst an exhaustive key search of the
system that uses a pseudo-random number generator.

1.5 Evaluation and Selection of Cryptographic Techniques 21

• The statistical properties of pseudo-random number generators should pass a typical
statistical test suite for randomness such as SP800-22.

 Stability of cryptographic technique specifications

Specifications of various cryptographic techniques have undergone modifications according to the
advancements made in cryptographic theory. Such modifications must indicate a shift toward better
technology. If specifications are modified frequently and too many specifications exist for a
cryptographic technique with the same name, the users and persons in procurement agency of
cryptographic techniques face the need of the reconstruction of a system or the replacement of
cryptographic techniques. It also makes the users selection of cryptographic techniques. The users and
procurement personnels desire to reduce losses caused by frequent modifications of specifications.
Modifying specifications by the developers without considering the users caused losses of the users.
Cryptographic techniques can be considered unstable if they are frequently modified without taking into
account the users. There are cases where modification of specifications becomes unavoidable due to
improvement of cryptography. This, however, also may be considered as evidence that the developers
have not performed adequate security evaluations. Since the users of cryptographic techniques will
continue to use them regardless of the advancements made in cryptography, it is desired for developers to
consider users and persons in charge of procurement. To implement a cryptographic technique in a real
system, it is desired to provide reliable maintainance and support services after the procurement as well as
developing the cryptographic techniques using the cirrent technology. Furthermore, specifications of
e-Government recommended ciphers must be stable from the technical standpoints as well.

 Modifications of the submitted cryptographic technique specifications

As a rule, we did not approve modification of a specification after submission whereas AES and NESSIE
approve modification of specifications. The conditions between those organizations and CRYPTREC
are slightly different. Mainly there are three reasons why CRYPTREC did not approve modification of
the specifications.

The first reason was that we did not want modifications to cause delay of the construction of the
e-Government system that was scheduled to start in fiscal 2003. Procuring cryptographic techniques was
supposed to start in fiscal 2003. Being available in fiscal 2003 was the necessary condition. We did not
approve modification of the specifications because any significant correction would extend the evaluation
period and that would certainly delay the construction schedule for the e-Government system to start in
fiscal 2003. When we called for cryptographic techniques, we clearly stated that "the cryptographic
techniques are ready for procurement in fiscal 2002".

The second reason was that we wanted an equal distribution of resources for cipher evaluations. We
believed that to have fair and impartial evaluations, the resources (budget, human resources, time) needed
to be allocated as equally as possible to all cryptographic techniques and extra resources could not be
used for a certain cryptographic technique. If CRYPTREC allowed major modifications, it would have
to prepare a draft of the corrections and request a reevaluation of the revised specifications. As a result,
a disproportionate amount of resources would have to be allocated for a specific cryptographic technique.
In public enterprise, it is absolutely necessary to distribute the limited evaluation resources fairly and
efficiently. We tried to avoid biased evaluation to certain techniques. Therefore, we established a
policy of not allowing modifications and not evaluating a cryptographic technique whose specifications
were modified after submission.

22 Chapter 1 Overview of Evaluation Activities

The third reason was that we required the cryptographic techniques to be in optimal condition at the time
of submission to CRYPTREC. Cryptographic techniques should have stable specifications for the
e-Government system will be used over a long period of time. Therefore, they are required to have
highly reliable specifications and security. Taking the users into consideration, we cannot recommend a
cryptographic technique that have a big chance to be modified soon after implemented on the
e-Government system. Since the cryptographic techniques are being recommended for the government,
their specifications must have stability as well as security.

 Requirements for the draft of the e-Government recommended ciphers list

At CRYPTREC Advisory Committee in fiscal 2002, it was reported that a list of cryptographic
techniques with sufficient security would be very important for the construction of e-Government system.
Then CRYPTREC Advisory Committee requested CRYPTREC Evaluation Committee to evaluate the
candidates for e-Government ciphers, cryptographic techniques that allow authentication, key agreement,
confidentiality, and electronic signature functions in the e-Government system, in fiscal 2001 project and
prepare an e-Government recommended ciphers list (draft) considering the following three points.

(E1) Select several cryptographic techniques with sufficient security for the use in the e-Government
system (security guaranteed roughly 10 years).

(E2) Select at least one cryptographic technique pre-incorporated or likely to be incorporated in
commercial software used in the general public for each category.

(E3) Confirm the specifications of cryptographic techniques recommended for e-Government to assure
that ciphers with the identical specifications can be surely procured.

In addition, we stipulated the following conditions for cryptographic techniques in the e-Government
recommended ciphers list (draft) because these are expected to be used for constructing e-Government
system in fiscal 2003.

• Specifications must be fixed and available by fiscal 2003.
• The document must be available to specify clearly the technical specifications.
• Procurement is actually ready.
• The licensing policies must be absolutely clear.

1.6 e-Government Recommended Ciphers List (Draft)
As a three-year comprehensive project, the "e-Government recommended ciphers list (draft)" made by
CRYPTREC Evaluation Committee was submitted to CRYPTREC Advisory Committee for their review.
Then, MPHPT and METI invited comments from the general public. Finally, the draft was uthorized as
the "e-Government recommended ciphers list". This list was established as the guiding principle in the
usage of cryptographic techniques in the government ministries and agencies (approved during the
meeting of heads of various bureaus in government ministries responsible for the security of information
held on February 28, 2003)".

In Table 1.3, we show the e-Government recommended ciphers list (draft). We added notes in the list so
that the users can pay attention to the cryptographic techniques that require caution in employing in the
e-Government.

1.6 e-Government Recommended Ciphers List (Draft) 23

Table 1.3 e-Government Recommended Ciphers List (Draft) (Prepared in November 2002)

Category Name

DSA
ECDSA
RSASSA-PKCS1-v1 5

Signature

RSA-PSS
RSA-OAEP

Confidentiality
RSAES-PKCS1-v1 5 (Note 1)
DH
ECDH

Public-key
ciphers

Key agreement

PSEC-KEM (Note 2)
CIPHERUNICORN-E
Hierocrypt-L1
MISTY1

64-bit block ciphers (Note 3)

3-key Triple DES (Note 4)
AES
Camellia
CIPHERUNICORN-A
Hierocrypt-3

128-bit block ciphers

SC2000
MUGI
MULTI-S01

Symmetric-key
ciphers

Stream ciphers

128-bit RC4 (Note 5)

RIPEMD-160 (Note 6)

SHA-1 (Note 6)
SHA-256
SHA-384

Hash function

SHA-512
PRNG based on SHA-1 in ANSI X9.42-2001 Annex C.1
PRNG based on SHA-1 for general purpose in FIPS 186-2
(+ change notice 1) Appendix 3.1

Others

Pseudo-random number generator
(Note 7)

PRNG based on SHA-1 for general purpose in FIPS 186-2
(+ change notice 1) revised Appendix 3.1

Notes:
(Note 1) Use of this is permitted for the time being because it was used in SSL3.0/TLS1.0.
(Note 2) On the assumption that this is used in the KEM (Key Encapsulation Mechanism)-DEM (Data Encapsulation

Mechanism) construction.
(Note 3) When constructing a new e-Government system, 128-bit block ciphers are preferable if possible..
(Note 4) Using the 3-key Triple DES is permitted for the time being under the following conditions:

1) It is specified as FIPS 46-3
2) It is positioned as the de facto standard.

(Note 5) It is assumed that the 128-bit RC4 will be used only infor SSL3.0/TLS(1.0 or later). If any other cipher listed above
is available, it should be used instead.

(Note 6) If any ciphers with a longer hash value are available when constructing a new e-Government system, it is preferable
that a 256-bit (or more) hash function be selected. However, this does not apply in cases where the hash function to be
used has already been designated according to the public-key cryptographic specifications.

(Note 7) Since pseudo-random number generators do not require interoperability due to their usage characteristics, no problems
will be generated from the use of a cryptographically secure pseudo-random number generating algorithm. Therefore,
these algorithms are examples.

24 Chapter 1 Overview of Evaluation Activities

Next, we explain several exceptional measures that were taken in preparing the e-Government
recommended ciphers list (draft).

(F1) Cryptographic techniques used in SSL/TLS
There is a requirement (E2) that calls for the selection of at least one cryptographic technique that
is already incorporated or likely to be incorporated in general commercial software. For this
requirement, we evaluated cryptographic techniques that are used in SSL/TLS and included in the
specific evaluation (B2). Consequently, we added RSA (RSAES-PKCS1-v1_5 and
RSASSA-PKCS1-v1_5) and RC4 (128-bit key) to the e-Government recommended ciphers list
(draft). Since RSASSA-PKCS1-v1_5 has empirical security, we have determined that it was
secure and recommend it not only for the use in SSL3.0/TLS1.0 but for the use in other
applications. On the other hand, we do not unconditionally recommend the use of
RSAES-PKCS1-v1_5 or RC4 (128-bit key). We give the conditions shown in (Note 1) and (Note
5). The users exercise utmost caution regarding implementation-related attacks for SSL3.0/TLS1.0
by applying the latest patch programs and so on. We considered that any of DES (40- and 56-bit
keys), RC2 (40- and 128-bit keys), and RC4 (40-bit key length) is no longer secure. These
algorithms are not recommended, whether or not they are used in SSL/TLS.

(F2) Elliptic curve parameters used for e-Government recommended ciphers list
CRYPTREC Evaluation Committee recommend the elliptic curve generation methods in SECG
for the elliptic curve parameter selection. We confirmed that this method is free from known
attacks and its specifications allow considerable freedom in making selections of parameters.
ECDSA (ANSI X9.62) and ECDSA (SEC1) are identical as a scheme, however, there are
differences like the elliptic curve parameter selection and so on. Because of the requirement (E3),
CRYPTREC specified the method in SEC1 for ECDSA specifications.

(F3) Specifications of DH
There are several specifications for DH. Because of requirement (E3), we recommend ANSI
X9.42-2001, "Public Key Cryptography for the Financial Services Industry: Agreement of
Symmetric Keys Using Discrete Logarithm Cryptography" as the specifications for DH.

(F4) Authentication techniques
CRYPTREC Evaluation Committee called for authentication techniques, however, no
authentication techniques is given in the e-Government recommended ciphers list (draft) as a
public-key cryptographic technique. There were no cryptographic techniques secure enough
among the submitted cryptographic techniques and therefore none was recommended. In most
cases, theentity authentication involved in the e-Government system can be made using the other
public-key cryptographic techniques. Any party can be identified by verifying the electronic
signature attached to a certain information by this party. Therefore, all signature techniques listed
in the e-Government recommended ciphers list can be basically applied to a entity authentication if
these methods are used with certain procedures. For examples, such procedures are given in JIS
X5056-3:2002 (ISO/IEC 9798-3:1998)*22.

*22 This information can be obtained from the Japanese Standards Association (http://www.jsa.or.jp).

1.7 Other Results 25
(F5) Examples of pseudo-random number generators

There are no recommended pseudo-random number generators among the submitted cryptographic
techniques. Pseudo-random number generators are a crucial technique for constructing
e-Government system. Unlike other cryptographic techniques, pseudo-random number
generators do not require interoperability. They are operated as an auxiliary function in
public-key cryptography. Therefore, we included three pseudo-random number generators,
which were not reported to have practical problem, to the e-Government recommended ciphers list
(draft) as examples.
The reader should note that these three cryptographic techniques are not recommended. In other
words, pseudo-random number generators other than these three cryptographic techniques can be
used if the users are convinced that the specifications are made public and objectively evaluated in
detail.

1.7 Other Results
 Revision of Guidelines on the Law concerning Electronic Signatures and Certification Services

Guidelines on the Law concerning Electronic Signatures and Certification Services were revised
corresponding to the CRYPTREC evaluation results in fiscal 2001. We show the description of the
Guidelines on the law concerning electric signatures and certification services before and after partial
revision in 2002 Notification No. 13, MPHPT; Ministry of Justice; and METI (Extra Edition No. 3492 of
the Official Gazette, November 21, 2002) and explain the reason of the revision.

 Guidelines on the law concerning electric signatures and certification services issued in April 2001 is
shown below.

Requirements for electronic signature associated with designated certification service
Article 3 Electronic signatures which fit one of the definitions given below meet the requirement in
Article 2 of the Rule:
1. RSA type (object identifier: 1 2 840 113549 1 1 5 or 1 2 840 113549 1 1 4) with a modulus which is

composed of 1024 bits or more.
2. ECDSA type (object identifier: 1 2 840 1 0045 4 1). Both defined field and order of an elliptic

curve are composed of 160 bits or more.
3. DSA type (object identifier: 1 2 840 1 0040 4 3) with a modulus prime number which is composed

of 1024 bits or more.
4. ESIGN type (object identifier: 0 2 440 5 5 3 4 or 0 2 440 5 5 3 3) with a modulus composed of 1024

bits or higher and an exponent for verification, composed of 8 or more.

2001 Notification No. 2, Ministry of Public Management, Home Affairs, Posts and
Telecommunications; Ministry of Justice; and Ministry of Economy, Trade and Industry (Extra
Edition No. 86 of the Official Gazette, April 27, 2001)

26 Chapter 1 Overview of Evaluation Activities

It was revised in November 2002 as follows.

There are three revisions.

(G1) The MD5 hash function is used in the RSA (object identifier 1 2 840 113549 1 1 4). However,
the hash value length of MD5 is 128 bits, which is not long enough. Therefore, MD5 cannot be
used securely over a long period of time. Furthermore, the SHA-1 hash function, which is
securer than MD5, is already widely used. RSA (object identifier 1 2 840 113549 1 1 4) has been
removed.

(G2) ESIGN is not secure because one can forge with non-negligible probability when using some
recommended parameters. Thus, ESIGN (object identifier 0 2 440 5 5 34 or 0 2 440 5 5 3 3) has
been removed.

(G3) The RSA-PSS (object identifier 1 2 840 113549 1 1 10) is a signature technique having the
provable security. The RSA-PSS (object identifier 1 2 840 113549 1 1 10) has been added.

Table 1.4 summarizes the relationship between the signature techniques listed in Guidelines on the law
concerning electric signatures and certification services (as of March 2003) and the signature techniques
in the e-Government recommended ciphers list (draft).

Requirements for electronic signature associated with designated certification service
Article 3 Electronic signatures which fit one of the definitions given below meet the requirement in
Article 2 of the Rule:
1. RSA type (object identifier: 1 2 840 113549 1 1 5) or RSA-PSS type (object identifier: 1 2 840

113549 1 1 10) with a modulus, which is composed of 1024 bits or more.
2. ECDSA type (object identifier: 1 2 840 1 0045 4 1). Both defined field and order of an elliptic

curve are composed of 160 bits or more.
3. DSA type (object identifier: 1 2 840 1 0040 4 3) with a modulus prime number which is composed

of 1024 bits or more.

After partial revision in 2002 Notification No. 13, Ministry of Public Management, Home Affairs,
Posts and Telecommunications; Ministry of Justice; and Ministry of Economy, Trade and
Industry (Extra Edition No. 3492 of the Official Gazette, November 21, 2002)

1.7 Other Results 27

Table 1.4 Guidelines on the Law concerning Electronic Signatures and Certification and Corresponding
e-Government Recommended Ciphers List (Draft)

Electronic signatures indicated in Article 3 of
Guidelines on Accreditation of Designation

Certification Services based on the Law
concerning Electronic Signatures and

Certification Services
(After partial revision in 2002 Notification No.

13, MPHPT; Ministry of Justice; and METI
(November 21, 2002))

Names of the algorithms of
public-key cryptographic

techniques indicated in the
e-Government Recommended

Ciphers List (Draft)
(The names of specifications are

indicated in parentheses.)

Relationship

RSA
(object identifier 1 2 840 113549 1 1 5)

RSASSA-PKCS1-v1 5
(PKCS#1 v2.1)

Identical (when SHA-1 is
used as the hash function).

RSA-PSS
 (object identifier 1 2 840 113549 1 1 10)

RSA-PSS
(PKCS#1 v2.1)

Identical

ECDSA
 (object identifier 1 2 840 10045 4 1)

ECDSA
(SEC 1, Version 1.0)

Identical (excluding
differences of elliptic curve
parameter).

RSA
(object identifier 1 2 840 10040 4 3)

DSA
(ANSI X9.30:1-1997)

Identical

 SSL/TLS evaluation report

In fiscal 2001, CRYPTREC Advisory Committee requested CRYPTREC Evaluation Committee to
evaluate the cryptographic techniques used in SSL/TLS. The evaluations conducted by CRYPTREC
Evaluation Committee on RSA (RSAES-PKCS1-v1_5 and RSASSA-PKCS1-v1_5), DES/Triple DES
(40-, 56-, and 168-bit keys), RC2 (40- and 128-bit keys), and RC4 (40- and 128-bit keys) are briefly
described below.

We determined that RSASSA-PKCS1-v1_5 is empirically secure and therefore included it in the
e-Government recommended ciphers list (draft). The use of RSAES-PKCS1-v1_5 (size of the modulus
is 1024 bits) is permitted for the time being and shown in the e-Government recommended ciphers list
(draft). However, it seems to have no chance of showing the provable security and the possibility of
mounting active attacks cannot be ignored. Therefore, it is necessary to provide adequate
countermeasures against attacks in an actual operating environment. Due attention must be paid also in
its use with SSL3.0/TLS1.0, by taking actions such as constantly upgrading to the latest revised
programs.

DES, RC2, and RC4 of 40-bit key lengths and DES of 56-bit key lengths can be broken in a realistic time
by the exhaustive search of a key, or the possibility of being broken has become extremely high.
Therefore, we did not rlist these in the e-Government recommended ciphers list (draft). We also
recommend not using them if possible. RC2 of 128-bit key lengths is vulnerable to the attacks that are
more efficient than the exhaustive search, furthermore, it is not supported in SSL3.0/TLS1.0 or later.
Thus, we did not include it in the e-Government recommended ciphers list (draft).

28 Chapter 1 Overview of Evaluation Activities

No major security problems have been pointed out in real systems using Triple DES (168-bit key)*23 at
this time. Considering comprehensively the requirements like guaranteeing interoperability, we approve
the use of Triple DES for the time being and included it in the e-Government recommended ciphers list
(draft). Because the security of RC4 (128-bit key)*24 has been verified when it is used in
SSL3.0/TLS1.0, we included RC4 (128-bit key) in the e-Government recommended ciphers list (draft)
assuming the use of RC4(128-bit key) is restricted to SSL3.0/TLS1.0 or later. We reccomned to use
thecryptographic techniques other than the RC4 (128-bit key) and Triple DES (168-bit key) listed in the
e-Government recommended ciphers list if possible.

In the CRYPTREC Report 2001, evaluation of SSL3.0/TLS1.0 as a cryptographic protocol is concluded
as follows:

The SSL/TLS is secure against the existing attacks. Using SSL/TLS, one needs care like applying
patch programs and setting proper parameters. some caution is necessary. SSL/TLS is considered
to have adequate security for a practical use. TLS is still expanding their function. A new
security hole can emerge out of these expansions. Therefore, it is necessary to monitor the
current situation of TLS and investigate and study its security.

See the relevant sections on each cryptographic technique for further information on evaluation results.
Precautions on the use of SSL/TLS are summarized in CRYPTREC Report 2001. Although several
versions of SSL/TLS are available, we recommend to use the latest version of SSL3.0/TLS1.0. See
the detailed investigation report attached to CRYPTREC Report 2001. You can access this information
at the following websites.

http://www.shiba.tao.go.jp/kenkyu/CRYPTREC/PDF/c01.pdf and
http://www.ipa.go.jp/security/fy13/report/cryptrec/c01.pdf

 Publicizing external evaluation reports

CRYPTREC considers it important to publicize the cryptographic technique evaluation results in order to
improve the reliability of security evaluations. All external evaluation reports that were compiled as a
part of the evaluation activities of CRYPTREC are available on the CRYPTREC website*25 in principle.
We hope that publicizing our external evaluation reports will enhance the reliability of CRYPTREC
evaluations and person and these reports can contribute cryptographers’ research.

Some of publicized external evaluation reports do not reveal the names of authors and their affiliations by
their request.

 Contact for technical information

Please contact the CRYPTREC Secretariat (e-mail: info@cryptrec.org) for technical comments and
inquiries on this evaluation report.

*23 "Triple DES" is indicated as "3-key Triple DES" in the e-Government recommended ciphers list (draft).
*24 RC4 (128-bit key) is indicated as "128-bit RC4" in the e-Government recommended ciphers list (draft).
*25 http://www.shiba.tao.go.jp/kenkyu/CRYPTREC/index.html and

http://www.ipa.go.jp/security/enc/CRYPTREC/index.html

1.8 Acknowledgments 29

1.8 Acknowledgments
CRYPTREC Evaluation Committee, the Public-Key Cryptography Subcommittee, and the
Symmetric-Key Cryptography Subcommittee were convened 25, 37, and 34 times, respectively, for the
last three years. The members of each committee put in the best effort to accomplish the evaluation
activities and prepare reports. The observers attended each subcommittee and gave us valuable
opinions.

Many cryptographers from inside and outside the country cooperated with us as external evaluators.
Without their expertise and diligent dedication toward cryptography, CRYPTREC activities would have
been unsuccessful. The contributions of researchers concerning the integer factoringexperiment project
were also extremely important.

Submittions of many cryptographic techniques were most important in the project. Submitting
cryptographic techniques, the applicants prepared plenty of documents on a very tight time schedule. It
was crucial for CRYPTREC to receive many cryptographic techniques, which helped to gain international
recognition for the CRYPTREC activities.

The participants in the cryptography seminars and workshops and people who gave us valuable comments
support our project.

We hereby extend our deepest gratitude to all for their sincere contributions to the CRYPTREC project.

30 Chapter 1 Overview of Evaluation Activities

 31

Chapter 2

Evaluation of Public-key Cryptographic Techniques

This chapter provides an evaluation report of public-key cryptographic techniques. First, the chapter
provides an overview of the evaluation policy, evaluated cryptographic techniques, evaluation methods,
and evaluation results. Next, it reports the evaluation results of each public-key cryptographic technique
for full evaluation targets of fiscal year 2002.

2.1 Overview

2.1.1 Evaluation policy

Cryptographic techniques should have the following basic characteristics to be used for e-Government:
the cipher in concrete form with specific parameter designation is secure at present with little possibility
of becoming insecure, and consensus is obtained that it will continue to be effective over a decade.
Empirical knowledge that the techniques has a good track record with no particular security problems will
help build such consensus. Besides, it is effective to use the concept of provable security in eliminating
ambiguous points as mush as possible in evaluating the security.

We performed the security evaluation based on the following policies.

1. With regard to public key cryptographic techniques that have a solid track record of use and

evaluation over relatively long period of time, and whose specifications cannot be changed easily
from the viewpoint of interoperability, provable security may not necessarily be presented.

2. With regard to new public key cryptographic techniques that have little track record of use,
provable security must be presented, since its specifications can be defined apart from existing
cryptographic techniques.

3. In addition, a comprehensive, total security evaluation must be carried out including the aspects
such as the complexity of number theoretic problems underlying primitive’s security and the
method of selecting recommended parameters and using an auxiliary function in a cryptographic
scheme.

32 Chapter 2 Evaluation of Public-key Cryptographic Techniques

"Empirical security" referred to here means that: a) a cryptographic technique has a solid track record of
use over a relatively long period of time, b) no specific attack has been revealed in spite of extensive
research, and c) no weakness for the actual operation have been detected. Note, however, that
nonexistence of attacks and vulnerabilities cannot be proven by the above facts.

Also note that "provable security" referred to here does not mean that the security of a scheme has been
proved. In this chapter, the expression "has provable security under a certain assumption" refers to the
following: The expression "a certain public-key scheme has provable security" means that if there exits an
attack against a scheme or its idealized scheme which compromises security, then it is possible to prove
accurately, under a certain assumption, that this fact induces a method solving another mathematical
problem with lower computational cost. An idealized scheme for a certain scheme means a virtual
scheme that is exactly identical to the original scheme except that the auxiliary function (such as a hash
function) used by this cryptographic scheme is replaced with a virtual one (such as a random function).
The expression "under a certain assumption" means that confidences in security of a scheme varies
according to differences in terms of the target of attacks (original scheme or an idealized scheme), types
for mathematical problem and computational complexity, security levels, methods of attack and
underlying assumptions, etc.. For signature schemes, we require to provide an existential unforgeability
against adaptive chosen message attacks. For confidentiality schemes, we require to provide a
semantical security against adaptive chosen ciphertext attacks.

As far as the evidence of provable security itself is correct, the fact that a certain scheme has provable
security cannot be failed by the passage of time. The estimated computational complexity in a
mathematical problem, however, may change depending on the development of a theory or technological
environment. Therefore, even if a scheme has provable security under a certain assumption at this time,
its security may be compromised in the future. Also, large security gaps between an original scheme
and idealized scheme may emerge in the future. On the other hand, even if it is not provided that a
certain scheme has provable security at this point in time, it does not mean this scheme is insecure.
Again, there may be cases where though a certain scheme has a track record of use and no particular
security problems have not been found, one cannot demonstrate provable security by the present
techniques of proof.

With regard to side-channel attacks that have been studied intensively today, we do not give high priority
in the evaluation of public key cryptographic techniques since its security depends to a great extent on the
implementation of the algorithm. With the current serious research trends, however, it is expected that
both attacks and countermeasures will be analyzed further in the future. At this point in time, it is
crucial to take into careful consideration the latest research trends on side-channel attacks in order to
implementan algorithm prior to actual operation. Even if an algorithm has provable security,
side-channel attacks in the actual operating environment may be possible by careless implementations.
Chapter 6 provides surveys on side-channel attacks.

2.1 Overview 33

2.1.2 Evaluated cryptographic techniques

The cryptographic techniques targeted for evaluation in fiscal 2002 were put into the following three
categories.

1. Submitted cryptographic techniques (full-evaluation targets)

ESIGN*1, ECDSA (SEC 1), RSA-PSS, RSA-OAEP, HIME(R), ECIES, ECDH (SEC 1),
PSEC-KEM

2. Other cryptographic techniques to be evaluated
RSAES-PKCS1-v1_5, TSH-ESIGN, RSA-OAEP, RSA-PSS, DH

3. Cryptographic techniques that are specific evaluation targets
DSA, ECDSA (ANSI X9.62), RSASSA-PKCS1-v1_5, ESIGN

ESIGN is a submitted cryptographic technique that is also a specific evaluation target. RSA-OAEP and
RSA-PSS are categorized both as submitted cryptographic techniques and "Other cryptographic
techniques to be evaluated".

2.1.3 Evaluation method

Only full and related investigations were carried out in fiscal 2002. We outsourced the evaluation tasks
to experts in cryptographic theory at home and abroad. The Public-key Cryptography Subcommittee
reviewed and summarized all evaluation results including the outsourced tasks mentioned above. Fiscal
2002 was set as the closing year of cryptographic technique evaluation activities. In fiscal 2002, we
conducted detailed studies of issues that were not fully resolved in fiscal 2001. By request of the
Cryptographic Advisory Committee, we also evaluated RSAES-PKCS1-v1_5 in the category of "Other
cryptographic techniques to be evaluated". RSAES-PKCS1-v1_5 has a track record of use with the
cryptographic protocol SSL/TLS.

2.1.3.1 Full evaluation

We have confirmed that there are no problems in public-key cryptographic techniques that have a track
record of use and evaluation over a relatively long period of time. We have also discussed the provable
security of new public-key cryptographic techniques that do not have a long track record and investigated
whether there are problems in the methods used for parameter selection and auxiliary functions. In
addition to its evaluation activities, the Public-key Cryptography Subcommittee summarized the security
evaluations that were outsourced to cryptographic researchers at home and abroad (see Table 2.1).

*1 This signature scheme was included in Guidelines on the Law concerning Electronic Signatures and Certification

Services (2001 Notification No. 2, Ministry of Public Management, Home Affairs, Posts and Telecommunications,
Ministry of Justice, and Ministry of Economy, Trade and Industry (Extra Edition No. 86 of the Official Gazette, April
27, 2001)). This article was then deleted in an amendment made in accordance with 2001 Notification No. 13 of
Ministry of Public Management, Home Affairs, Posts and Telecommunications, Ministry of Justice, and Ministry of
Economy, Trade and Industry (Official Gazette No. 3492, November 21, 2001).

34 Chapter 2 Evaluation of Public-key Cryptographic Techniques

 Full evaluation items

We carried out a security evaluation of each evaluation target cryptographic technique according to the
schemes and complexities in number-theoretic problems that are crucial to security. Our efforts were
focused on the following points.

• Security evaluation items involving complexities of number-theoretic problems
i) Integer factoring problem

- Investigation of known solution algorithms and a comparison of their effectiveness
- Comparison between pq type and pdq type (d ≥ 2)
- Validity and workability of a research that involves implementing the general

number field sieve method on a hardware circuit
ii) Discrete logarithm problem

- Investigation of known solution algorithms and a comparison of their effectiveness
iii) Elliptic curve discrete logarithm problem

- Investigation of known solution algorithms and comparison of their effectiveness
- Investigation of problems regarding restricted curves (such as the Koblitz curve)

• Parameter selection and security
- Differences between SEC 1 and ANSI parameters with elliptic curves and their

security
- Parameter selecting method used for RSA

• Security evaluation items regard ing cryptographic schemes
i) DSA

- Security evaluation of primitives and schemes
- Problems in the random number generation method given by FIPS186-2 Appendix

3
ii) ECDSA

- Competence and significance of the provable security of existential unforgeability
in a generic group model

- Vulnerability in the reduction function and DSKS characteristics
- Security evaluation of Koblitz curve

iii) ESIGN, TSH-ESIGN
- Adequacy of the size of recommended parameters
- Approximate e-th root problem and p2q type integer factoring problem
- Provable security in SO-CMA model

iv) RSA
- Security evaluation of RSASSA-PKCS1-v1_5 and RSAES-PKCS1-v1_5

signatures
- Provable security of RSA-PSS and RSA-OAEP and their reduction efficiency

v) ECIES
- Investigation of vulnerability regarding MAC and KDF functions

vi) HIME(R)
- Verification of overall security including provable security
- p2q type integer factoring problem

vii) DH
- Security evaluation of scheme (ANSI X9.42-2001)

viii) ECDH
- Security evaluation of scheme (SEC 1)

2.1 Overview 35

ix) PSEC-KEM
- Provable security of KEM required for KEM-DEM construction
- Security of hybrid-type public-key schemes by KEM-DEM construction
- Security in use methods other than KEM

2.1.3.2 Evaluation of software implementation

CRYPTREC verified the performance of cryptographic techniques by evaluating the software
implementation and confirmed that there are no problems regarding operation. No standards were
provided for the processing speed of public-key cryptographic techniques. Public-key cryptographic
techniques were verified by evaluating the software implementation only in fiscal 2000. Evaluation of
the software implementation was not carried out in fiscal 2001 and 2002 because many of the full
evaluation target ciphers were already measured in fiscal 2000 or had a long track record of use indicating
that there was no operation-related problem.

Table 2.1: Number of Outsourced Full Evaluations for Prospective e-Government Ciphers and

Fiscal 2002 Full Evaluation Target Cryptographic Techniques

Target of evaluation Fiscal 2000 Fiscal 2001 Fiscal 2002 Total

DSA 0(1) 3(2) - 3(3)

ECDSA 2(1) 3(1) 0(1) 5(3)

ESIGN - 3(1) - 3(1)

RSA-OAEP, RSA-PSS 0(1) 2(2) - 2(3)

PKCS# v1.5 Signature, etc. - - 2(1) 2(1)

ECIES 2(1) - 2(0) 4(1)

HIME - - 3(0) 3(0)

DH 0(1) - - 0(1)

ECDH 2(1) - - 2(1)

Scheme

PSEC-KEM - 1(2) 0(2) 1(4)

Integer factoring problem
(experiment) 0(1) 0(1) 0(1) 0(3)

Integer factoring problem
(investigation) - 0(1) 0(1) 0(2)

Integer factoring problem in
specific form

- 3(1) - 3(1)

Discrete logarithm problem 0(1) 2(1) - 2(2)

Difficulty of
number theoretic
problems

Elliptic curve discrete
logarithm problem

- 2(0) 1(0) 3(1)

[Number of overseas evaluations (Number of domestic evaluations)]

36 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.1.3.3 Related investigations

CRYPTREC investigated SSL/TLS in fiscal 2001 and side-channel attacks in fiscal 2002. The
investigation report is in Chapter 6. Side-channel attacks research is also expected to move forward into
the future. Therefore, you must be up to date with the latest information for a comprehensive
implementation of the cryptographic techniques.

Computer experiments on the integer factoring problem were commenced in fiscal 2001 to research the
implementation method of integer factoring algorithm and also to work out the configuration of the
computer environment.

2.2 Evaluation result

2.2.1 Outline of evaluation result

Public key cryptographic techniques evaluated in 2001 can be classified in Table 2.2 depending on the
functions and associated number theoretic problems.

Evaluations were made according to the policy shown in section 2.1.1, and the following results from (1)
to (7) were obtained. In Table 2.2, the evaluation result is shown at the end of the name of each
cryptosystem.

Table 2.2 Evaluation result of public key cryptographic techniques

 Integer factoring problem Discrete logarithm problem Elliptic curve discrete
logarithm problem

Signature ESIGN(4)
TSH-ESIGN(5)
RSA-PSS(1)
RSASSA-PKCS1-v1_5(1)

DSA(1) ECDSA (ANSI X9.62, SEC
1)(1)

Confidentiality HIME (R)(7)
RSA-OAEP(1)
RSAES-PKCS1-v1_5(3)

−
ECIES(6)

Key agreement
−

DH(1) ECDH(1)
PSEC-KEM(2)

(1) DSA, ECDSA (ANSI X9.62, SEC 1), RSASSA-PKCS1-v1_5, RSA-PSS, RSA-OAEP, DH, and ECDH are

empirically secure and are expected to pose no problems in e-Government operation. RSA-PSS and
RSA-OAEP also have provable security. Moreover, proper parameters should be selected for use.

(2) The use of PSEC-KEM is subject to the KEM (Key Encapsulation Mechanism)-DEM (Data
Encapsulation Mechanism) construction. Also recommended is the use of elliptic curve
parameters defined by SEC 1.

(3) The use of RSAES-PKCS1-v1_5 is allowed for the meanwhile in view of a solid track record in
SSL3.0/TLS1.0. RSAES-PKCS1-v1_5 does have empirical security but no prospects of achieving provable
security. The possibility of active attacks being actually initiated cannot be ignored either. Therefore, it is
necessary to provide sufficient countermeasures against attacks in an actual operation environment and to
exercise maximum caution.

2.2 Evaluation result 37

(4) A forgeable factor has been discovered in the ESIGN parameters recommended by the person who submitted
this technique. Therefore, ESIGN does not have provable security.

(5) TSH-ESIGN was evaluated in relation to ESIGN. It does not have the desired provable security.
(6) ECIES has problems regarding inputs for the KDF function and handling method of MAC. ECIES is

vulnerable to adaptive chosen-ciphertext attacks and cannot be said to have the desired provable security.
(7) It has been found out that the proof presented in the self-evaluation report on HIME(R) was incorrect.

While there is a possibility of establishing provable security through careful discussions, this had not been
confirmed as of September 2002. The specification document contains some errors.

2.2.2 Overall evaluation of individual cryptographic technique

1. DSA (Signature)

DSA, which was proposed and standardized by NIST (National Institute of Standards and
Technology), is one of the signature schemes that is listed in the Guideline on the Law concerning
Electronic Signatures and Certification Services. (object identifier 1 2 840 10040 4 3) NIST
allows the user to select the size of parameter p from 1024, 2048, 3072, 7680, and 15360 bits.
NIST also plans to disclose an FIPS draft of DSA that allows the use of SHA-256, SHA-384, and
SHA-512 as well as SHA-1 with respect to hash functions.

DSA security depends on the complexity of the discrete logarithm problem involving finite fields.
Although its provable security has not been established, DSA is empirically secure. We strongly
recommend selecting 1024 bits as the size of parameter p from the standpoint of security. There
is a problem regarding the pseudo-random number generator in FIPS 186-2 Appendix 3, which is
the pseudo-random number generation method defined in the DSA specifications. Therefore, it is
necessary to upgrade the pseudo-random number generator according to the corrections proposed
in FIPS PUB 186-2 (+ change notice 1) by NIST in October 2001. Furthermore, it is
recommendable to keep up with the trends of the pseudo-random number generator used for DSA.

2. ECDSA (signature)

CRYPTREC has evaluated ECDSA (ANSI X9.62) (special evaluation target cipher) and ECDSA
(SEC 1) (submitted cipher). ECDSA (ANSI X9.62) is a signature method (object identifier 1 2
840 10045 4 1) that is mentioned in the guidelines related to the Law concerning Electronic
Signature and Certification Services. ECDSA (ANSI X9.62) and ECDSA (SEC 1) are identical
as far as their scheme is concerned. They use nearly the same stipulated elliptic curve parameters
too. ECDSA (SEC 1) complies with guidelines related to the Law concerning Electronic
Signature and Certification Services when the parameter value is 160 bits or more.

The security of ECDSA depends on the complexity of the discrete logarithm problem involving
the elliptic curve. Although its provable security has not been established, ECDSA is empirically
secure. No critical problems regarding security have been discovered. We believe that there
will be no security-related problems if the key generation process is taken into careful
consideration. With regard to the pseudorandom number generator, the procedure listed in
FIPS186-2 is specified, but since a problem was pointed out in DSA, which is the original form of
ECDSA, it is recommended to pay attention to the development of the pseudorandom number
generator described by NIST in FIPS186-2 (+ change notice 1).

 ECDSA (ANSI X9.62)

One of the signature methods described in the guidelines related to the Law concerning Electronic
Signatures and Certification Services.

38 Chapter 2 Evaluation of Public-key Cryptographic Techniques

 ECDSA (SEC 1)

The method for selecting elliptic curve parameters is described in SEC 1. The recommended
specific elliptic curve is given in SEC 2. From the standpoint of security, we strongly
recommend selecting a parameter whose group order has a prime factor of 160 bits or more. It is
assured that existing efficient attacks cannot be carried out on any one of the specific elliptic
curves indicated in SEC 2. Koblitz curve (or anomalous binary curve) included in SEC 2 because
of its high-speed processing and its history of usage is an elliptic curve in a restricted class, so
there is a possibility that attacks specifically against the class may emerge. Attention should be
paid to the possibility.

3. ESIGN (signature)

There are several specifications for the ESIGN signature. CRYPTREC has evaluated ESIGN
(submitted cipher) and TSH-ESIGN. CRYPTREC evaluated TSH-ESIGN as a reference for
ESIGN (submitted cipher). The information on ESIGN has been deleted in compliance with an
amendment to the Law concerning Electronic Signatures and Certification Services by 2002
Notification No. 13 of Ministry of Public Management, Home Affairs, Posts and
Telecommunications, Ministry of Justice, and Ministry of Economy, Trade and Industry (Official
Gazette No. 3492, November 21, 2002).

The security of a primitive depends on the complexity of the n = p2q type integer factoring
problem and e-th root approximation problem, which is unlike the complexity of the n = pq type
integer factoring problem of RSA. ESIGN can generate a signature faster than RSA. To
achieve the same level of security as the RSA primitive, however, the ESIGN primitive must use a
parameter (modulus) that is slightly larger than the RSA parameter.

 ESIGN (submitted cipher)

This cipher does not have provable security essential to the newly proposed cryptographic
techniques. As a matter of fact, the signature can be forged by an unavoidable probability when
some parameters (for example, |n| = 2048 and e = 8 when SHA-1 is used) are used.

 TSH-ESIGN

The provable security of TSH-ESIGN is merely an existential unforgeability against SO-CMA*2.
No provable security essential to the newly proposed cryptographic techniques (existential
unforgeability against CMA*3) has been established for TSH-ESIGN.

*2 Abbreviation of Single-Occurrence Chosen-Message Attack. This chosen-message attack model allows only one inquiry

per message to the signature oracle (you can get only one signature per message).
*3 Abbreviation of Chosen-Message Attack. This is a chosen-message attack model.

2.2 Evaluation result 39

4. RSA (signature, confidentiality)

Several specifications are available for signatures using the RSA primitive. CRYPTREC has
evaluated RSASSA-PKCS1-v1_5 (special evaluation and other cryptographic techniques requiring
evaluation) and RSA-PSS (submitted cipher). There are also several specifications of
confidentiality techniques that use the RSA primitive. CRYPTREC has evaluated
RSAES-PKCS1-v1_5 (special evaluation) and RSA-OAEP (submitted cipher).

RSASSA-PKCS1-v1_5 and RSA-PSS are signature methods (object identifier 1 2 840 113549 1 1
5 and object identifier 1 2 840 113549 1 1 10, respectively) defined in guidelines related to the
Law concerning Electronic Signature and Certification. Since the hash function MD5 is not
secure enough, the definition of the RSA method (object identifier 1 2 840 113549 1 1 4) using
MD5 has been deleted in compliance with an amendment to the Law concerning Electronic
Signatures and Certification Services by 2002 Notification No. 13 of Ministry of Public
Management, Home Affairs, Posts and Telecommunications, Ministry of Justice, and Ministry of
Economy, Trade and Industry (Official Gazette No. 3492, November 21, 2002).

The security of a primitive depends on the difficulty of n = pq type factorization problem. RSA
has a track record of use over a long period of time, and its security has been evaluated from
various points of view. From the standpoint of security, we strongly recommend using 1024 bits
or more for the size of the parameter (modulus) n = pq.

 RSASSA-PKCS1-v1_5

Although it provable security is not established, this algorithm is empirically secure. However,
since forgery of signature on encoding of many signature schemes has been presented, security of
the encoding method adopted in this system must be reviewed further.

 RSA-PSS

In order to provide the provable security (existentially unforgeable against adaptive chosen
message attacks) required by a newly proposed technique, it is ultimately necessary to focus on the
complexity of the RSA problem based on a random oracle model. RSA-PSS has a feature that
can be used to establish a closer relationship with regard to reduction than other secure signature
schemes (such as the full domain hash scheme). There is a slight difference between the method
submitted to CRYPTREC for evaluation and the one confirmed in the paper. Therefore, it is
necessary to review the relationship between parameters and select design parameters accordingly.

 RSAES-PKCS1-v1_5

The use of RSAES-PKCS1-v1_5 is approved for the time being because of its track record of
operation with SSL3.0/TLS1.0. Although RSAES-PKCS1-v1_5 has empirical security, it shows
no prospect of achieving provable security. The possibility of actual active attacks cannot be
ignored either. Therefore, it is necessary exercise maximum caution and to provide adequate
countermeasures against attacks in an actual operation environment.

 RSA-OAEP

In order to provide the provable security (semantically secure against adaptive chosen ciphertext
attacks) required by a newly proposed technique, it is necessary to minimize the complexity of the
RSA problem based on a random oracle model. Since the indication by Shoup in 2000, its
security has been discussed. As a result, its security has been verified even though the security
reduction efficiency has been reduced.

40 Chapter 2 Evaluation of Public-key Cryptographic Techniques

5. ECIES (confidentiality)

Several specifications are available for ECIES. CRYPTREC has evaluated ECIES based on the
specifications in SEC 1 of the submitted documents. SEC 1 specifications are different from the
ECIES specifications (according to Abdalla, Bellare, and Rogaway) for which provable security
has been established.

ECIES security depends on the complexity of the discrete logarithm problem involving an elliptic
curve. The ECIES scheme, which is a submitted cryptographic technique, is vulnerable because
of problems regarding inputs for the KDF function and handling method of MAC. ECIES does
not have the provable security (semantically secure against adaptive chosen ciphertext attack)
essential for newly proposed techniques.

6. HIME(R) (confidentiality)

The HIME(R) technique submitted in fiscal 2001 is an upgraded version of HIME1 and HIME2,
which were submitted in fiscal 2000.

The security of the primitive depends on the difficulty of the n = p2q type integer factoring
problem, unlike the difficulty of the n = pq type integer factoring problem of RSA. To achieve
the same level of security as the RSA primitive, HIME(R) must use a slightly larger parameter
(modulus) for the HIME(R) primitive than the parameter of RSA. As of September 2002, the
conditions for officially providing reliable HIME(R) specifications have not been established
because they include some inadequate and ambiguous descriptions. Therefore, third parties have
not been able to secure the implementability and mutual interoperability of HIME(R). Even if
the HIME(R) specifications are defined rationally by correcting the ambiguous descriptions, some
problems still remain in the proof of provable security described in the self-evaluation report.
Although an outside evaluator has offered prospective proof of provable security, different
researchers have not tested its worthiness. Therefore, as of September 2002, it has not been
concluded whether HIME(R) has the provable security (semantically secure against adaptive
chosen ciphertext attacks) essential to newly proposed techniques.

7. ECDH (key agreement)

ECDH in SEC 1 was submitted to CRYPTREC as ECDHS in SEC 1 in 2000. In 2001 the name
of cryptographic technique submitted was changed to ECDH in SEC 1. The security of ECDH in
SEC 1 depends on the difficulty of the elliptic curve discrete logarithm problem. CRYPTREC
has evaluated ECDH based on the specifications defined in SEC 1 of the submitted documents.
Although provable security is not provided, this algorithm is empirically secure. No problems
have been pointed out in the basic scheme so far with regard to passive attacks (when an attacker
does not harm the data to be transmitted for the key agreement). However, it is important to
exercise caution on the following two points regarding active attacks (when there is a possibility
that an attacker may harm the data to be transmitted for the key agreement).

(1) A measure to secure the bond between a public key and the Entity must be assured.

(2) When using a session key agreement system (assuming updating), the public key to be
exchanged should be a temporary one.

The method for selecting elliptic curve parameters is described in SEC 1. The recommended
specific elliptic curves are defined in SEC 2. From a security standpoint, we strongly recommend
selecting a parameter that has prime factors with a group order of 160 or more.

2.2 Evaluation result 41

With regard to elliptic curves specifically presented by SEC 2, it has been proved that existing
efficient attacks cannot be applied to any of those curves. Koblitz curve, which is included in
SEC 2 because of its high-speed processing and the firm track record of use, is an elliptic curve in
a restricted class, so there is a possibility that attacks specifically against the class may emerge.
Attention should be paid to the possibility.

8. DH (key agreement)

Several protocol specifications are available for DH (reference: actually used protocols include
RFC2631, ISO/IEC 11770-3, Oakley, and PGP). CRYPTREC used the ANSI X9.42-2001
specifications as the evaluation target.

The security of DSA depends on the complexity of the discrete logarithm problem involving the
finite field. Although the provable security of DSA has not been established, it is empirically
secure. No problems have so far been pointed out against passive attacks (the attacks that do not
affect the data transmitted for key agreement), but when using a basic scheme, attention should be
paid to at least the following three points against active attacks (the attacks that may affect the
transmitted data for key agreement).

(1) A measure to secure the bond between the public key and the Entity must be assured.

(2) When using a session key agreement system (assuming updating), the public key to be
exchanged should be a temporary one.

9. PSEC-KEM (key agreement)

PSEC-KEM was submitted in fiscal 2001 as an updated version of PSEC, which was submitted in
fiscal 2000, in order to comply with KEM technique examined by ISO/IEC 18033-2.

To establish provable security related to the KEM technique, it is ultimately necessary to focus on
the elliptic curve DH computation problem based on the random oracle model. Therefore,
CRYPTREC decided that using PSEC-KEM in the KEM (Key Encapsulation Mechanism)-DEM
(Data Encapsulation Mechanism) configuration is a secure method. It should be noted, however,
that research on its security for other purposes has not been carried out sufficiently. Therefore,
you should keep up to date with future research efforts. The specifications do not contain
comprehensive information on the elliptic curve domain parameter selection methods.
CRYPTREC recommends the use of elliptic curves defined in SEC 1. Specific elliptic curves
created in accordance with SEC 1 are provided in SEC 2. From a security standpoint, we
strongly recommend selecting a parameter that has prime factors with a group order of 160 or
more. It is guaranteed that none of the specific elliptic curves presented in SEC 2 is vulnerable to
known efficient attack methods. The Koblitz curve is included in SEC 2 because it enables
high-speed processing and has an established track record. The Koblitz curve is an elliptic curve
of a limited category. Therefore, it is necessary to exercise caution regarding the possibility of
the emergence of attacks that are specific to this category.

42 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.2.3 General Evaluation of the Difficulty of Number-Theoretic Problems

2.2.3.1 Integer factoring problem

With regard to the integer factoring problem, a composite number n is supposed to be secure as of 2002 if
n = pq with |p| = |q| and |n| ≥ 1024, or if n = p2q with |p| = |q| and |n| ≥ 1024. Although there is research
regarding implementation of the number field sieve method on hardware, this is not an actual threat.
Prospects on the difficulty of the integer factoring problem are described in detail in section 2.4.1.3.

2.2.3.2 Discrete logarithm problem

With regard to the discrete logarithm problem of a subgroup (of order q) of a prime field p, it is
considered to be secure as of 2002 if |p| ≥ 1024 and |q| ≥ 160. Prospects on the security of the discrete
logarithm problem are described in detail in 2.4.2.3.

2.2.3.3 Elliptic curve discrete logarithm problem

With regard to the elliptic curve discrete logarithm problem, it is considered to be secure enough as of
2002, if the order of a group (more precisely the order of the base point) has a prime factor of 160 bits or
longer, except for some special elliptic curves. Prospects on the security of the elliptic curve discrete
logarithm problem are described in 2.4.3.4.

2.2.4 Creation of e-government recommended ciphers list (draft)

During its fiscal 2002 activities, CRYPTREC defined the cryptographic techniques recommended for
e-Government through technical evaluation of such techniques. The CRYPTREC Advisory Committee
asked for some considerations to be provided for (E2) and (E3) in Section 1.5. The considerations are as
follows: (E2) "at least one cryptographic technique already included or most likely to be included in
general-use commercial software must be selected for each category" and (E3) "the specifications of
ciphers recommended for e-Government must be confirmed in order to assure that ciphers with the same
specifications (as the recommended ciphers) can be procured". We also made decisions regarding the
above after careful consideration of user interests such as effects on existing systems and interoperability.

(1) Standardization of specifications

Since several specifications are often available for cryptographic techniques that use the same scheme,
we standardized these specifications based on (E3) to identify them for cryptographic techniques to be
used in constructing e-Government systems.

1. ECDSA (SEC 1) and ECDSA (ANSI X9.62) have the same scheme, but with differences such as
the elliptic curve selection method. CRYPTREC decided to use SEC 1 for the selection method
of elliptic curve parameters. SEC 1 specifications were used for the ECDSA specifications.
The selection of elliptic curve parameters was discussed to determine whether countermeasures
against known attacks could be fully implemented. An elliptic curve parameter group that can be
selected in ANSI has a greater degree of freedom than a parameter group that can be selected in
SEC 1. However, the parameter selection method in SEC 1 includes a random number
generation method that enables a wide range of elliptic curves to be selected.

2. CRYPTREC evaluated the cryptographic schemes defined in the Diffie-Hellman paper during its
evaluations of DH in fiscal 2000 and fiscal 2001. The specifications of DH are very diversified.
In fiscal 2002, CRYPTREC evaluated the ANSI X9.42-2001 specifications of DH. Since DH is
not a submitted cryptographic technique, no special specifications were designated in fiscal 2000
and fiscal 2001.

2.2 Evaluation result 43

(2) Cryptographic techniques used in SSL/TLS
RSAES-PKCS1-v1_5 was selected based on the decision (E2) that it was absolutely essential to use
SSL/TLS for e-Government applications. The use of RSAES-PKCS1-v1_5 is conditionally allowed
for the time being because of its track record of operation with SSL/TLS.

Table 2.3 and Table 2.4 summarize the security evaluation results of cryptographic techniques to be listed
in the e-government recommended ciphers list.

Table 2.3: Summary of Security Relating to Signature Techniques Listed in the e-Government

Recommended Ciphers List
Type of usage Signature
Name of cryptographic algorithm DSA ECDSA RSASSA-PKCSI-v1_5 RSA-PSS

Reference specifications ANSI X9.30:1-1997
(http://www.x9.prg/)

SEC 1
(http://www.secg.org/)

PKCS#1v2.1
(http://www.rsasecurity .c
om/rsa;abs/pkcs/)

PKCS#1v2.1
(http://www.rsasecurity .c
om/rsa;abs/pkcs/)

Empirical security
With/without provable security − − −

Assumed model − − − Random Oracle model
Resulting
problem − − − Difficulty of RSA

problems
Reasons for
inclusion in list

Level of securit y
achieved − − −

Existentially unforgeable
against adaptive chosen
message attacks

Reasons for security of primitive Discrete logarithm
problem in the finite field

Discrete logarithm problem in
the elliptic curve Integer factoring problem Integer factoring problem

Range of parameters Be sure to use those parameters that satisfy the conditions specified in CRYPTREC Report 2002 among parameters
specified in each cryptographic technique specification listed in "Reference specifications".

Hash function Be sure to use the parameters listed in the e-Government recommended ciphers list.

Requirements
related to main
parameters and
auxiliary
functions Pseudo-random number generator Be sure to refer to Note 7 of the e-Government recommended ciphers list.

Guidelines on the
Law concerning
Electronic
Signatures and
Certification
Services

ANSI (Note 1) X9.30:1-1997 X9.62-1998 − −
IEEE (Note 2) P1363-2000 P1363-2000 P1363a (Draft) P1363a (Draft)

ISO/IEC (Note 3) 14888-3 14888-3
15946-2 − −

NESSIE (Note 4) − −

Planning of
specifications

NIST (Note 5) FIPS PUB 186-2
(+Change Notice 1)

FIPS PUB 186-2
(+Change Notice 1) − −

IETF (Note 6)

RFC2246
(Proposed Standard)
RFC3275
(Draft Standard)
RFC3279
(Proposed Standard)
RFC3370
(Proposed Standard)

RFC3278 (Informational)
RFC3279
(Proposed Standard)
ipsec (Internet-Draft)
tls (Internet-Draft)

RFC2246
(Proposed Standard)
RFC3275 (Draft Standard)
RFC3279
(Proposed Standard)
RFC3370
(Proposed Standard)
RFC3447 (Infomational

RFC3447
(Informational)
Pkix (Internet-Draft)
Smime (Internet-Draft)

SET (Note 7) − − −
SSL3.0 (Note 8) − −
WAP/WTLS (Note 9) − −

Status of
application for
international
standards, etc.
(January to
March 2003)

Track record of
use

W3C (Note 10)
XML-Signature Syntax
and Processing
(12 Feburuary 2002)

−
XML-Signature Syntax
and Processing
(12 Feburuary 2002)

−

Special notes

Note that a revision of the
specifications has been
considered to enable the
selection of larger size
parameters.

• Also complies with
guidelines on the Law
concerning Electronic
Signatures and
Certification Services.

• Caution is required for the
possibility of an
emergence of attacks that
are unique to the category
of the Koblitz curve.

− −

(Note 1) Americal National Standards Institute (http://www.ansi.org)
(Note 2) Institute of electrical and Electronics Bngineers.Inc. (http://www.ieee.org)
(Note 3) International Organization for Standardizaiton (http://www.iso.org)
 International Electrotechnial Commission (http://www.iec.ch)
(Note 4) New European Schemes for Signatures, Integrity, and Encryption (http://www.cryptonessie.org)
(Note 5) National Institute of Standards and Technoloty (http://www/nist.gov)
(Note 6) Internet Bngineering Task Force (http://www.ietf.org)
(Note 7) Secure Electronic Transaction (http://www.set.co.jp)
(Note 8) Secure Sockets Layer protocal (http://www.netscape.com/eng/ss13)
(Note 9) Wireless Application Protocal (http://www.wapforum.org)
(Note 10) World Wide Web Consortium (http://www.w3.org)

44 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Table 2.4: Summary of Security in Confidentiality and Key Agreement Listed in e-Government
Recommended Ciphers List

Type of usage Confidentiality Key Agreement Listed
Name of cryptographic algorithm RSA-OAEP RSAES-PKCSI-v1_5 DH ECDH PSEC-KEM

Reference specifications
PKCS#1v2.1
(http://www.rsasecurity
.com/rsa;abs/pkcs/)

PKCS#1v2.1
(http://www.rsasecurity
.com/rsa;abs/pkcs/)

ANSI X9.30:1-1997
(http://www.x9.prg/)

SEC 1(Version 1.0)
(http://www.secg.org/)

PSEC-KEM
(14 May 2002)
(http://info.isl.ntt.co.jp
/psec/CRYPTREC/
index-j.html)

Empirical security
With/without provable security − − −

Assumed
model − − − − Random Oracle

model

Resulting
problem − − − −

DH computation
problem related to
the elliptic curve

Reasons for
inclusion in
list

Level of
securit y
achieved

− − − −

Semantically secure
against adaptive
chosen-ciphertext
attacks as a key
encapsulation
mechanism

Reasons for security of primitive Integer factoring
problem

Integer factoring
problem

Discrete logarithm
problem in the finite
field

Discrete logarithm
problem in the
elliptic curve

Discrete logarithm
problem in the
elliptic curve

Range of parameters Be sure to use those parameters that satisfy the conditions specified in CRYPTREC Report 2002 among parameters
specified in each cryptographic technique specification listed in "Reference specifications".

Hash function

Be sure to use the
parameters listed in
the e-Government
recommended
ciphers list.

−

Be sure to use the parameters listed in the e-Government
recommended ciphers list.

Requirements
related to main
parameters
and auxiliary
functions

Pseudo-random number
generator Be sure to refer to Note 7 of the e-Government recommended ciphers list.

Guidelines on
the Law
concerning
Electronic
Signatures and
Certification
Services

− − − − −

ANSI (Note 1) − X9.44 (Draft) X9.42-2001 X9.63-2001 -
IEEE (Note 2) P1363-2000 P1363-2000 P1363-2000 P1363a (Draft)

ISO/IEC (Note 3) 11770-3 11770-3
15946-3

18033-2
(Committee Draft)

NESSIE (Note 4) (Public-key
Encryption)

Planning of
specifications

NIST (Note 5) FIPS PUB 186-2
(+Change Notice 1) FIPS PUB 186-2

(+Change Notice 1) − −

IETF (Note 6)

RFC3447
(Infomational)
Pkix (Internet-Draft)
Smime
(Internet-Draft)

RFC2246
(Proposed Standard)
RFC3370
(Proposed Standard)
RFC3447
(Infomational)

RFC2246
(Proposed Standard)
RFC2409
(Proposed Standard)
RFC2631
(Proposed Standard)
RFC3370
(Proposed Standard)
RFC3279
(Proposed Standard)

RFC3278
(Informational)
RFC3279
(Proposed Standard)
ipsec
(Internet-Draft)
tls (Internet-Draft)

SET (Note 7) − − − − −
SSL3.0 (Note 8) − − −
WAP/WTLS
(Note 9) − −

Status of
application for
international
standards, etc.
(January to
March 2003)

Track record
of use

W3C (Note 10)
XML Encryption
Syntax and
Processing (10
December 2002)

XML Encryption
Syntax and
Processing (10
December 2002)

XML Encryption
Syntax and
Processing (10
December 2002)

− −

Special notes −

This algorithm has a
track record of
operation with
SSL3.0/TLS and its
use is approved for
the time being.

A public key to be
replaced should be
temporarily used
when a guarantee is
provided for the
association between
key and entity and
the key is used as a
session key.

A public key to be
replaced should be
temporarily used when
a guarantee is provided
for the association
between key and entity
and the key is used as a
session key.
Caution is required for
the possibility of an
emergence of attacks
that are unique to the
category of the Koblitz
curve.

The use of this
algorithm is a
precondition for the
KEM (Key
Encapsulation
Mechanism)-DEM
(Data Encapsulation
Mechanism)
configuration.
Caution is required for
the possibility of an
emergence of attacks
that are unique to the
category of the Koblitz
curve.

(Note 1) Americal National Standards Institute (http://www.ansi.org)
(Note 2) Institute of electrical and Electronics Bngineers.Inc. (http://www.ieee.org)
(Note 3) International Organization for Standardizaiton (http://www.iso.org)
 International Electrotechnial Commission (http://www.iec.ch)
(Note 4) New European Schemes for Signatures, Integrity, and Encryption (http://www.cryptonessie.org)
(Note 5) National Institute of Standards and Technoloty (http://www/nist.gov)
(Note 6) Internet Bngineering Task Force (http://www.ietf.org)
(Note 7) Secure Electronic Transaction (http://www.set.co.jp)
(Note 8) Secure Sockets Layer protocal (http://www.netscape.com/eng/ss13)
(Note 9) Wireless Application Protocal (http://www.wapforum.org)
(Note 10) World Wide Web Consortium (http://www.w3.org)

2.3 Evaluation of Individual Cryptographic Techniques 45

2.3 Evaluation of Individual Cryptographic Techniques

2.3.1 DSA

2.3.1.1 Cryptographic technique evaluated

ANSI X9.30 Pubic Key Cryptography for the Financial Services Industry: Part 1: The Digital Signature
Algorithm (DSA) [1]

2.3.1.2 Technical overview

DSA (Digital Signature Algorithm) is a signature scheme suggested and standardized by NIST (National
Institute of Standards and Technology) of the United States [1, 2]. DSA is also one of the signature
schemes listed in the Guidelines on the Law concerning Electronic Signatures and Certification Services.

The security of DSA is based on the difficulty of the discrete logarithm problem on the finite field

2.3.1.3 Technical specifications

Key generation

Key generation in DSA is performed as shown below.

1. Select prime number p that satisfies 2511+64j < p < 2511+64j (j ∈ {0, 1, .., 8}).

2. Select 160-bit prime number q (2159 < q < 2160) that divides p – 1.

3. Calculate g that satisfies g = h (p-1)/q mod p, where h is an integer which meets the condition 1 <
h < p - 1.

4. Generate random number x that satisfies (0 < x < q).

5. Calculate y that satisfies y = gx mod p.

(p, q, g, y) generated in the steps above is the public key, and x is the private key.

Signature generation

Signature generation for plaintext M in DSA is performed as shown below.

1. Generate random number k that satisfies (0 < k < q).

2. Calculate r that satisfies r = (gk mod p) mod q.

3. Calculate s that satisfies s = (k-1 (SHA-1(M) + xr)) mod p, where SHA -1(M) is the result of
conversion of plaintext M performed by using Secure Hash Algorithm specified in FIPS 180-1.

(M, r, s) generated in the steps above is the signature.

46 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Signature verification

Verification for signature (M', r', s') in DSA is performed as shown below.

1. Calculate w that satisfies w = (s')-1 mod q.

2. Calculate u1 that satisfies u1 = ((SHA-1(M'))w) mod q.

3. Calculate u2 that satisfies u2 = ((r')w) mod q.

4. Calculate v that satisfies v = ((g)u1(y)u2 mod p) mod q

5. Check to see if v = r'.

Only when v equals r' in the step 5 above, the received signature can be authenticated.

2.3.1.4 Evaluation of security

Random number generation of FIPS 186-2 Appendix 3

FIPS 186-2 Appendix 3 defines generation of the parameter k by using the pseudo-random number
generator G with an output range of (0, 2160) as shown below.

k = G(t, KVAL) mod q where, t and KVAL are random number seeds.

Originally, the parameter k should be generated with the same probability in the range of (0, q - 1).
However, in the above method, the probability of k falling in the range of (0, 2160 - q - 1) becomes twice
as high as the probability of falling in the range of (2160 -q, q - 1) through the loopback effect of mod q.

D. Bleichenbacher pointed out an attack utilizing this problem [3]. The Bleichenbacher 's attack utilizes
the bias of the parameter k but he has not disclosed the details to the public. An evaluator describes, in
an external evaluation report, the Bleichenbacher's attack as follows:

The bias of parameter k is indicated by*







= e q

ki
Ekbias

π2
)(

If the bias of the generation probability above is considered:

∑
−

=
=

1

0

)mod(21)(
N

r
q

qri

eN
kbias

π

∑
−

=
=

1

0

21N

r
q

ri

eN

π

1

11
2

2

−

−
×=

e
e

q
i

q
Ni

N π

π



















×=

−

q

q
N

N
ei q

N

π

π
π

sin

sin1









×≈

−

q
N

N
qei q

N

π
π

π
sin

1

where, (N = 2160).

2.3 Evaluation of Individual Cryptographic Techniques 47

Since Nq ≈ , bias(k) is largely dependent upon
q
Nπ .

If this property is used, the secret key x may be derived.

In response to the point-out by Bleichenbacher, NIST modified the steps of random number generation by
adding Change Notice to FIPS 186-2 in October 2001. Since the problem described above can be
avoided if random numbers generated in the corrected steps are used, it is desirable to follow the steps
described in the FIPS186-2 Change Notice.

z1 = G(t,KVAL1) mod q

z2 = G(t,KVAL2) mod q

k = (z1 × 2160 z2) mod q

With regard to pseudo-random number generator G described above, the methods using SHA-1 and DES
are specified in Appendix 3 of FIPS 186-2. However, there is a report that, since the method using DES
has specific properties, it is better to use SHA -1. However, even if DES is used, the properties pointed
out do not seem to affect the security of DSA.

Parameter selection

As is described in the technical specifications above, the size of parameter p can be selected from 512 to
1024 bits in steps of 64 bits in the original DSA specification. On the other hand, the Guidelines on the
Law concerning Electronic Signatures and Certification Services and FIPS 186-2 Change Notice confine
the size of parameter p to 1024 bits. At present, there are various opinions on the proper and secure
parameter size, and it is difficult to indicate the precise value. It may be widely agreed upon that
security may not be maintained with 512 bits with the capability of present computers. Therefore, we
strongly recommend that the most secure parameter size in the present specifications, 1024 bits, be
selected.

NIST started to review the revision of specifications with regard to the parameter size and hash functions
[4]. Specifically, the size of parameter p will be selectable from 1024, 2048, 3072, 7680, and 15360 bits.
Furthermore, hash functions SHA-256, SHA-384, and SHA-512 as well as SHA-1 will be available. *4

We also consider it necessary to pay careful attention to the world's trends including changes to
specifications in the future. See "2.4.2 Discreet logarithm problem" for secure parameter size.

With regard to random number k used for signature generation, the secret key x is derived if multiple
plaintexts are signed by using the same random number k. For example, if the signatures for two
plaintexts M1 and M2 are (r,s1) and (r,s2), respectively, the secret key x can be derived from the following
expression. Therefore, it is necessary to select a different random number k for each signature
generation.

q
ssr

MSHAsMSHAs
x mod

)(
)(1)(1

12

2112

−
−−−

=

*4 Based on the private information exchange between NIST and CRYPTREC. It is said that public review will be

conducted in May 2003 and the formal FIPS (FIPS186-3) will be prepared at the end of 2003 or at the beginning of 2004.
For details, please visit http://crsc.nist.gov/encryption/tkdigsigs.html.

48 Chapter 2 Evaluation of Public-key Cryptographic Techniques

There is also a report that, if the bit of a part of a random number k is revealed, the private key may be
calculated. The attack shown in the reference [5] depends on the lattice reduction technique. The
result of the experiment shown is as follows: When 70 signatures (with 512-bit parameter p) are given,
the private key can be computed with a probability of 100% if 5 bits of random number k are known, and
with a probability of 90% if 4 bits are known. The author of reference [5] also suggests the possibility
of attacks with fewer bits, and thereby the need to pay attention to the development of further researches.

Other than the above, attacks using some special parameters (such as g = 0, g =yα mod p) have been
reported, so a proper parameter should be selected when using DSA.

Provable security

If a slight modification is made to DSA, provable security equivalent to the difficulty of the discrete
logarithm problem can be presented in the random oracle model. With regard to DSA itself, however,
provable security on a proper model or assumption has not so far been reported.

However, considering that DSA has been widely used, there seems no problem at present that may greatly
affect the security.

References

[1] ANSI X9.30 Public Key Cryptography for the Financial Services Industry: Part 1: The Digital
Signature Algorithm (DSA), American National Standard for Financial Services, 1997.

[2] FIPS PUB(Federal Information Processing Standards publication) 186-2: DIGITAL
SIGNATURE STANDARD (DSS), U.S. DEPARTMENT OF COMMERCE/National Institute
of Standards and Technology, 2000.

[3] Lucent Technologies, Press releases: Scientist discovers significant flaw that would have
threatened the integrity of on-line transactions,
http://www.lucent.com/press/0201/010205.bla.html

[4] NIST Second Key Management Workshop: Key Management Guideline (Draft),
http://csrc.nist.gov/encryption/kms/workshop2-page.html

[5] P. Q. Nguyen and I. E. Shparlinski, The insecurity of the Digital Signature Algorithm with
partially known nonces, Journal of cryptology, Volume 15 - Number 3,

2.3 Evaluation of Individual Cryptographic Techniques 49

2.3.2 ECDSA

2.3.2.1 Cryptographic techniques evaluated

• SEC 1:

Elliptic Curve Cryptography
(September 20, 2000, Version 1.0) [3]

• ANSI X9.62-1998,
"Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA)" [1]

2.3.2.2 Technical overview

ECDSA is a signature scheme based on the elliptic curve discrete logarithm problem.

ECDSA has multiple specifications. CRYPTREC mainly evaluated ECDSA in SEC 1 [3] submitted to
the 2000 CRYPTREC. ECDSA in SEC 1 was published in 2000 as SEC 1: Elliptic Curve Cryptography
(Version 1.0)[3] by SECG (Standards for Efficient Cryptography Group), a consortium for defining the
standard specifications of elliptic curve cryptography. ANSI X9.62-1998 [1] listed in the Guidelines on
the Law concerning Electronic Signatures and Certification Services, is provided as another specification.

2.3.2.3 Technical specifications

Overview of signature procedure and verification procedure by ECDSA

Signature generation and signature verification by ECDSA are performed as shown below.

An elliptic curve parameter is defined as T. T includes the base point G whose order is a prime
number n.

Key generation: Select the secret key d ∈ [0, n - 1] at random and define the public key Q = dG.

Signature generation: Signature of plaintext M is generated as follows.

1 Select a random integer k ∈ [0, n - 1]

2 Calculate R = kG = (x1, y1).

3 Calculate r = x1 mod n.

4 Calculate e = h(M), where h is the hash function SHA-1.

5 Calculate s = k-1(e + dr) mod n.

6 Define (r, s) as the signature of plaintext M.

Signature verification: Verification for plaintext M, signature (r,s), and public key Q is performed as
follows.

1 Calculate R' = (x2, y2) = (s-1 h (M))G + (s-1r)Q.

2 Verify that x2 mod n = r holds or not.

50 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Differences between ECDSA in SEC 1 and ANSI X9.62

The same ECDSA signature scheme is used for both ECDSA in SEC 1 and ANSI X9.62, however, there
are some differences in the detailed specifications. The major differences of specifications between the
two are:

• Selectable range of elliptic curve parameter
• Hash process for a message in the signature
• Pseudo-random number generator

In ECDSA in SEC 1, selectable range of the elliptic curve parameter is limited. The bit sizes of field
order are limited to 8 types for each of the field Fp and F2

m. Among them, 2 types each with the field
order smaller than 160 bits are included. Furthermore, recommended specific elliptic curve parameters
are listed in the SEC2 document. In the SEC2 document, the curve selected verifiably at random and the
Koblitz curve, based on multiple field sizes, are recommended with regard to the elliptic curves with
characteristic p and characteristic 2. The approach to select a curve at random in a verifiable manner is
described in ANSI X9.62. On the other hand, in ANSI X9.62, the field size is not limited except that the
base point order n is larger than 2160. ANSI X9.62 simply lists elliptic curve parameters as samples in
the Appendix, and includes no recommendable specific curve parameters. However, the Appendix
shows elliptic curve parameter selection procedures; a scheme to select parameters verifiably at random
and other schemes (including Weil method and CM method).

Regarding hash processing of a message in the signature, ECDSA in SEC 1 specifies that the left-most
log2 n bit of h(M) is used for the elliptic curve parameter with the base point order n (log2 n < 160).
In other cases, ECDSA in SEC 1 and ANSI X9.62 use the same hash processing.

With regard to the pseudo-random number generator, ECDSA in SEC 1 describes no specific algorithms.
In contrast, ANSI X9.62 specifies the method described in FIPS186.

2.3.2.4 Evaluation of security

Security of primitives

In ECDSA, the security of primitives is based on the elliptic curve discrete logarithm problem. See
"Section 2.4.3 Elliptic Curve Discrete Logarithm Problem" for the evaluation results of this problem.

Parameters with field order size smaller than 160 bits are included in the parameters specified in ECDSA
in SEC 1 [3]. From the standpoint of security, parameters with field order size of 160 bits or more
should be used.

Provable security

For ECDSA, provable security in the random oracle model has not been verified. On the other hand,
Brown has given the proof of security in a generic group model (also called generic model) that is
different form the random oracle model [2]. The generic group model is a virtual model on the
assumption that expression of group elements is given at random. In other words, this model assumes a
generic group oracle that defines the expression of group elements from the additive group Zn to the bit
string set S ∈ {0,1} *, at random. It also assumes that the operation of group elements is executed by
asking the generic group oracle. In this model, Brown emphasized that ECDSA is existentially
unforgeable against adaptive chosen-plaintext attacks assuming the hash function is collision-free.
Another proof to the Brown's theorem is shown in Reference [5].

2.3 Evaluation of Individual Cryptographic Techniques 51

However, whether the proof of security in the generic group model gives significance to the security of
ECDSA is negatively considered [5]. This is because a seemingly conflicting situation arises, where
'malleable' properties have been found in ECDSA but 'non-malleability' can be proven in the generic
group model. In this context, 'malleable' means a property that allows a third party to create another
signature (r', s') for message m from the signature (r, s) for the same message m. In ECDSA, (r,-s) is a
valid signature given the signature (r,s) and therefore the above-mentioned properties can be verified.
The reason why such a confliction arises is that function σ defining the expression of group elements
cannot be regarded as random and has a special algebraic structure.

As described above, regarding provable security of ECDSA, it is considered that security proof in the
generic group model gives very little significance.

Vulnerability originating from reduction function

The reduction function f(R) of ECDSA that maps point R = (x,y) on an elliptic curve to the element r in
Z/nZ has a property of f(R) = f(-R). Specifically, f(R) = x mod n. The following two types of
vulnerability have been pointed out using this property [5].

• duplicate signature
• malleability

Malleability is the property described in the section of provable security given above. Although
attention should be paid to this property, it will have almost no problem in the actual situation.
Therefore, duplicate signature is explained below. For ECDSA, a malicious user can issue duplicate
signatures. Duplicate signatures mean two pairs of signatures (m1,r,s) and (m2,r,s), where m1 ≠ m2.
The malicious user must execute the illegal key generation procedure. The user defines a secret key d so
that the ECDSA verification sR = h(m)G + r(dG) will hold in two cases; R = kG, r = f(R), e1 = h(m1) and
R' = -R = -kG, r = f(R') = f(-R), e2 = h(m2). When d in the simultaneous equations is solved,
d = -(e1+e2)/(2r) mod n. This d becomes a key that can issue duplicate signatures for messages (m1,m2).
However, the forger will also have a risk because the secret key d will be known by third parties once the
duplicate signatures are issued.

This vulnerability may lead to attacks against non-repudiation that is a basic feature of signature, and may
cause problems depending on the environment where such signatures are used. In an example of
vulnerable operation, the signature recipient saves signature (r,s) only, but does not save message m. In
this case, the signer (forger) may replace the message m with m' that becomes duplicate signatures.
Against this illegal action, the message m as well as the signature must be saved together. Alternatively,
the message hash result e = h(m) should be saved along with the signature. With such operational
precautions, problems regarding duplicate signatures are avoidable. Another preventive measure can be
taken by generating and distributing a user key using a trusted third-party.

There is an example of a similar attack against DSA using the illegal key generation phase [6]. In DSA,
if (m1,m2) that satisfies h(m1)= h(m2) mod q is selected, and then a set of (m1,m2,q) is defined by
repeatedly checking to see if the difference becomes a prime number q with a specified size, the signature
for m1 is also the signature for m2. In DSA, since the attack requires an illegal action to public key
generation, verifiable key generation steps can be a solution. Since the illegal action of duplicate
signature in ECDSA includes the user private key generation steps, it should be noted that the
countermeasure in DSA cannot be used as is.

DSKS (duplicate-signature key selection) characteristic

In ECDSA, if base point changes are permitted, valid signers for the same signature can be added through
illegal key generation.

52 Chapter 2 Evaluation of Public-key Cryptographic Techniques

The attacker generates a random number c between 1 and n-1 for the signature (r,s) to a given message m,
its elliptic curve parameter T (including base point G), and public key Q, and then calculates t = s-1 (h(m)
+ rc) mod n (≠ 0), X = s-1h(m)G + s-1rQ, G' = t-1X, Q′ = cG' Then, (r,s) becomes a valid signature to the
message m, elliptic curve parameter T (however, only base point is changed to G'), and public key Q'.
Actually, X'=s-1 (h(m) G' + rQ′) = s-1(h(m) G' + rcG') = tG'= X .

As a method to prevent this illegal action, the base point G should be common throughout the system or a
trusted third-party should generate base points.

Verification of elliptic curve parameters

There is an opinion that it should be verified that elliptic curve parameters, which are system parameters
used in ECDSA, have no trapdoors.

Related to this matter, ECDSA in SEC 1 describes a method for validating the elliptic curve parameters
by checking conditions for avoiding attacks against the elliptic curve discrete logarithm problem. The
presented checking conditions are satisfactory at present, but new attacks may be found in the future.
There is a potential threat that new attacks are used as a trapdoor, so attention should be paid to the trend
of attacks.

Pseudo-random number generator

ANSI X9.62 [2] specifies the pseudo-random number generator described in FIPS186-2(DSS). Since k
= rand mod n generated by this pseudo-random number generator is not uniformly distributed with
[1,n-1], Bleichenbacher pointed out an attack to DSA using this property. As a countermeasure against
this attack, NIST presents a revision of the pseudo-random number generator in FIPS186-2 Change
Notice. Specifically, by using double-size random number data linking two random numbers rand and
rand', k is generated as k = (rand||rand') mod n. Presently, the specification change of the
pseudo-random number generator for ECDSA has not been proposed. However, similar attacks may be
applied to the pseudo-random number generator in ECDSA, so attention should be paid to the trend.
Regarding this matter, see "2.3.1 DSA" as well.

References

[1] NSI X9.62, "Public Key Cryptography for the Financial Services Industry:

The Elliptic Curve Digital Signature Algorithm (ECDSA)", American National Standard for
Financial Services, 1998.

[2] .Brown, "The exact security of ECDSA", Technical Report CORR 200-34, Dept. of C&O,
University of Waterloo, 2000. Available at http://www.cacr. math.uwaterloo.ca

[3] Standards for Efficient Cryptography, "SEC 1:Elliptic Curve Cryptography", Certicom
Research, Ver.1.0, September 2000, available from http://www.secg.org/secg_docs.htm

[4] Standards for Efficient Cryptography, "SEC2: Recommended Elliptic Curve Domain
Parameters", Certicom Research, Ver.1.0, September 2000, available from
http://www.secg.org/secg_docs.htm

[5] .Stern, D.Pointcheval, J.M.-Lee, and N.P.Smart, "Flaws in Applying Proof Methodologies to
Signature Schemes", Advanced in Cryptology – CRYPTO2002, Lecture Notes in Computer
Science 2442, Springer-Verlag, pp.93–110, 2002.

[6] .Vaudenay, "Hidden Collisions on DSS", Advances in Cryptology – CRYPTO'96, Lecture
Notes in Computer Science 1109, Springer-Verlag, pp.83–88, 1996.

2.3 Evaluation of Individual Cryptographic Techniques 53

2.3.3 ESIGN signature

2.3.3.1 Cryptographic techniques evaluated

• "ESIGN Specifications", submitted to 2001 CRYPTREC, Nippon Telegraph and

Telephone Corporation [10]
• "TSH-ESIGN: Efficient Digital Signature Scheme Using Trisection Size Hash", T.

Okamoto, E. Fujisaki, H. Morita, Submission to P1353a [12]

2.3.3.2 Technical overview

ESIGN signature is a cryptographic scheme intended for signature. ESIGN signature has multiple
specifications, and they are classified into two categories; one is specifications where no provable security
is presented, and the other presents provable security that ensures existential unforgeability against
single-occurrence adaptive chosen-message attacks, under the assumption of the difficulty of the
approximate e-th root problem and under the random oracle model.

The former is called ESIGN [10]*5, while the latter is called TSH-ESIGN [12, 6]. Unless otherwise
specified, description in the following sections means common evaluation for two types of ESIGN
signature.

2.3.3.3 Technical specifications

Specification changes of ESIGN signature were made several times, so there are several versions other
than the CRYPTREC submission version [10]. Differences in specifications are summarized in Table
2.5. Recommended parameters are increasing year by year. As security theory research develops,
ESIGN signature has been modified into a scheme that can verify the truly strongest security in signature
schemes (under a certain assumption).

*5 A scheme described in Clause 3, No.4 in Guideline on Authorization of Specific Certification Jobs based on the

Guidelines on the Law concerning Electronic Signatures and Certification, Notification No.2, the Ministry of Public
Management, Home Affairs, Posts and Telecommunications, the Ministry of Justice, and the Ministry of Economy, Trade
and Industry in 2001 (Official Gazette Extra Edition No.86, April 27, 2001). Deleted at the time of amendment of
Notification No.13, the Ministry of Public Management, Home Affairs, Posts and Telecommunications, the Ministry of
Justice, and the Ministry of Economy, Trade and Industry in 2002 (Official Gazette Extra Edition No.3492, November 21,
2001).

54 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Table 2.5 Various ESIGN signatures

 Recommended parameter Provable security

Scheme described in the Guidelines
on the Law concerning Electronic

Signatures and Certification Services
|n|≥1024,e≥8

CRYPTREC 2001 |n| = 1152, e = 1024

None at present

CRYPTREC 2000

IEEE P1363a

|n|≥960,e≥8

–

TSH-ESIGN

(Submission to NESSIE)
–

Provided (existential unforgery against
single-occurrence adaptive chosen-message
attacks under the assumption of n=p2q type
integer factoring, assumption of approximation
of e-th root, and random oracle model)

Note
In NESSIE [8], ESIGN-D and ESIGN-R [4, 5] that may have the provable security against ordinary adaptive
chosen-message attacks has also been evaluated. But both are not included in the NESSIE portfolio.

ESIGN and TSH-ESIGN have common specifications for the primitive part. The overview is as
follows:

Key generation

Input: k Security parameter (positive integer)

 e Exponent of 8 or larger (positive integer)

Output: PK Public key (n, k, e)

 SK Private key (p, q)

Step 1 Choose two prime numbers of k bit, p and q.

Step 2 Compute n = p2q.

Step 3 Return PK = (n, k, e) and SK = (p, q).

Signature generation primitive: SP-ESIGN

Input: SK Secret key (p, q)

 PK Public key (n, k, e)

 f Message, an integer that meets 0 ≤ ƒ ≤ 2k−1

Output: s Signature, an integer that meets 0 ≤ s < n

Step 1 Pick r∈ {1, 2, ..., pq −1} at random that meets GCD (r, n) = 1.

Step 2 Compute z = ƒ · 22k.

Step 3 Compute α = (z − re) mod n

2.3 Evaluation of Individual Cryptographic Techniques 55

Step 4 Compute 







=

pq
α w 0

Step 5 Set
1

0
−⋅

=
ere

w
t mod p, then compute s = r + tpq.

Step 6 Return s.

Signature authentication primitive: PV-ESIGN

Input: PK Public key (n, k, e)

 s Signature, an integer that meets 0 ≤ s < n

Output: ƒ Signature data, an integer that meets 0 ≤ ƒ < 2k−1

Step 1 Compute T = s2 mod n.

Step 2 Compute 



=

k

Tf
22

.

Step 3 If ƒ is not in the range 0 ≤ ƒ < 2k−1, return "invalid", and then terminate the
operation.

Step 4 Return ƒ.

Note: The two prime numbers, p and q, must be different from each other to maintain the security of
ESIGN signature. However, this is not clearly described in the ESIGN specifications [6]. We
conducted the evaluation on the assumption that p and q are distinct.

2.3.3.4 Security of primitives

The security of ESIGN signature primitives is based on the following two problems:
• approximate e-th root problem
• n = p2q type integer factoring problem

If either of these problems is solved, the private key of ESIGN signature will be revealed to a third party
or the signature will be forged successfully. We evaluated these two problems.

 Approximate e-th root problem

The approximate e-th root problem, on which the security of ESIGN signature is based, is described
below [11].

Definition 1 (AER problem): Assume G as ESIGN key generation. The approximate e-th root
problem (AER problem) is a problem to find x∈ (Z/nZ)/pZ that satisfies 0||y= [xe mod n]k when
pk := {n, e} ← G (1k) and y ← R {0, 1} k-1 are given.

56 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Assumption that the AER problem is difficult is defined as follows [11]:

Definition 2 (AER assumption): The approximate e-th root problem is difficult if the following
expression is valid with every constant c and a large enough value k for any probabilistic
polynomial time algorithm Adv:

Pr[Adv(k, n, e, y) → x] < 1/kc

Where, 0||y= [xe mod n]k and the probability is taken from the probability spaces G and Adv. The
assumption that the approximation of e-th root problem is difficult is called "approximate e-th root
assumption" (AER assumption).

• Cases of e = 2 and e = 3

If e = 2, a signature is successfully forged by using Brickell and DeLaurentis's method [1]. The
overview of this method is as follows:
Assume that x is an integer close to n1/2, where x2 mod n is O(n1/2) that satisfies the ESIGN
signature verification equation if message m = 0. The method allows this principle to be applied
to an arbitrary m by using continued-fraction expansion to find the approximate value of the square
root.
The method by Brickell and DeLaurentis can be extended easily to the case of e = 3.
Valée, Girault and Toffin presented a signature forgery method against ESIGN signature that uses
the lattice basis reduction algorithm such as the LLL algorithm if e = 2 [16, 17]. With regard to
solving multivariable polynomial over the finite field by using the lattice basis reduction algorithm,
the improvement by Coppersmith is well known [2, 3].

• Case of e ≥ 4

In the case of e ≥ 4, no solution has been reported that is more effective than factoring modulus n.

 n = p2q type integer factoring problem

If factoring modulus n is given, the approximate e-th root problem can be solved. Unlike the type n = pq
(p and q are of the same size) that is used in RSA cryptography, the modulus of ESIGN signature is the
type n = p2q (p and q are of the same size). It is necessary to review the difficulty of the integer
factoring problem of this type. See 2.4.1 for the difficulty of the integer factoring problem.

2.3.3.5 Security of the scheme

As described in the previous section, ESIGN signature has multiple specifications. They are categorized
into two specification groups; ESIGN that does not have the provable security at present, and
TSH-ESIGN that is considered to have provable security that is existentially unforgeable against adaptive
chosen-message attacks, under the assumption n=p2q integer factoring, the approximate e-th root
assumption, and under the random oracle model. Evaluation of the security in each case is described
below.

 Security of the signature

Evaluation of the security categorizes the types of attacks against the signature scheme and performs the
following:

1. Security evaluation of mathematical problems used (in the case of ESIGN signature, the
approximate e-th root problem or the integer factoring problem)

2.3 Evaluation of Individual Cryptographic Techniques 57

2. Evaluation of the correlation between mathematical problems used and the signature scheme

In the previous section, 1 was evaluated, and 2 is evaluated in this section. Tables 2.6 and 2.7 lists the
types of attacks against the signature scheme and the types of forgeries [15, 14]. The strongest security
in the signature scheme is assured by:

"existential unforgeability against an adaptive chosen-message attack (CMA)."

Table 2.6 Type of attacks against the signature scheme

Attack Description

Key-only attack This attack uses a public key only. Passive attack

Known message attack This attack is applicable when signatures for some random
message are available.

Chosen-message attack This attack is applicable when signatures for some messages
specified by the attacker in advance is available. However,
all the message to be signed by the signer must be selected
before the attack.)

Single-occurrence adaptive
chosen-message attack

This attack is applicable when signature selection for
chosen-message attack can be determined by referring to the
information on the signature obtained and the corresponding
message. However, only one signature can be obtained for
a message.

Active attack

Adaptive chosen-message
attack

This attack is applicable when signature selection for
chosen-message attack can be determined by referring to the
information on the signature obtained and the corresponding
message .

Table 2.7: Type of signature forgery

Type of forgery Description

Universal forgery A signature can be forged for arbitrary message.

Selective forgery A signature can be forged for some message selected by the attacker in advance.

Existential forgery A signature can be forged for at least specific message.

If the signature scheme is non-deterministic, multiple valid signatures may exist for one message. In the
CMA, two or more inquiries to the signature oracle per message can be made (multiple signatures can be
obtained). On the other hand, Stern defined an attack model [14]:

"Single-Occurrence adaptive chosen-message attack (SO-CMA)"

In the SO-CMA, only one inquiry to the signature oracle per message is permitted (only one signature can
be obtained).

 TSH-ESIGN

In message encoding of TSH-ESIGN, a hash function H with output length of k-1 bits is used to calculate
the hash value of message m, and m is encoded as follows.

0||H(m)||02k

58 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Stern proved the security of TSH-ESIGN signature in the random oracle model as shown below [14].

Theorem 3 (Stern [14]): Let A be a SO-CMA adversary against TSH-ESIGN signature scheme
that produses an existential forgery, with success probability ε, within time τ, making qH queries to
the hash function and qs distinct requests to the signing oracle respectively. Then approximate
e-th root problem can be solved with probability ε' and within time τ', where

12
1

4
3)(' −−






×+−≥ k

k

sH
H

qq
q
εε

()kTqqk Hs exp)(' ⋅++≤ ττ

Where Texp(k) denotes the computing time of modular exponentiation.

The approach and proof of deriving this theorem are associated with the Shoup's discussion on OAEP
[13]. In this discussion, a Shoup-style approach with a game was used. Note that what is proven by
this theorem is not the existential unforgeability against general adaptive chosen-message attacks (CMA)
but the existential unforgeability against SO-CMA. Stern also pointed out the following:

• The proof [12] provided by the submitter implicitly assumes SO-CAM as an attack model.
• A method to extend the provable security of TSH-ESIGN to the provable security of

general CMAs, is not known yet at present.

Although specific attacks or signature forgery schemes against TSH-ESIGN have not been found, it is not
desirable that the provable security is provided for SO-CMA only, but not for general CMAs.

Granboulan has already proposed the ESIGN signature modified so that TSH-ESIGN will have the
provable security against general CMAs [4, 5]. [4, 5] show two schemes; the deterministic scheme
ESIGN-D and the probabilistic scheme ESIGN-R. TSH-ESIGN has also been submitted to NESSIE.
Note the TSH-ESIGN and ESIGN-D are mutually compatible. The signature generated with
TSH-ESIGN is verified correctly by ESIGN-D and vice versa. This is obvious from both algorithms.

 ESIGN

In ESIGN signature listed in the Guidelines on the Law concerning Electronic Signatures and
Certification Services, that is, the ESIGN signature submitted to CRYPTREC for 2001, a message
encoding method EMSA is used [10]. Stern reported that signature forgery would be successful against
ESIGN at an unignorable probability [14]. This report is outlined below.

The overview of the EMSA encoding method is as follows: In this conversion, the hash value of message
m is calculated first using the hash function H that outputs a hLen ≤ k - 16-bit string, and then the k-
hLen-bit string is added to the hash value. The format is expressed in hexadecimal notation as follows:

00||PS||FF||H (m)

where, PS is a byte string other than FF. In this way, message m is converted to k-bit string.

This padding string PS has an adverse effect on the security. The security does not result in the
approximate e-th root problem, but is associated with the following variant of the approximate e-th root
problem:

Definition 4 (variant of approximate e-th root problem [14]): Given n of bit-size 3k and a bit string v
of lenth hLen, find x such that the binary expansion of xe mod n has a window of bits which coincide with
v at positions 2k + 1, ..., 2k + hLen.

2.3 Evaluation of Individual Cryptographic Techniques 59

This variant of the approximate e-th root problem can be easily solved if e is small. Signature can be
forged if the following condition holds [14]:

2k ≥ e (hLen + log2 + 8)

The Guidelines on the Law concerning Electronic Signatures and Certification Services specified SHA -1
and MD5 as hash functions until November 2002. In the case of SHA-1 (hLen = 160), the above
expression becomes as follows:

e
n

>
04.205

Therefore, if SHA -1 is used, signature forgery will be successful in the following cases, for example:
• |n| = 1024 and e ≤ 4
• |n| = 2048 and e ≤ 8

For MD5 (hLen = 128), signature can be forged in the following case:

e
n

>
04.205

For example, signature forgery will be successful in the following cases:
• |n| = 1024 and e ≤ 4
• |n| = 2048 and e ≤ 9

These parameters include those specified in the Guidelines on the Law concerning Electronic Signatures
and Certification Services (e.g. where |n| = 2048 and e = 8).

2.3.3.6 Auxiliary function

ESIGN signature uses hash functions as auxiliary functions. ESIGN adopts two schemes; a scheme
specifying the use of MD5 as the hash function and another specifying the use of SHA-1. The former
scheme is not recommended. For the security of hash functions, see Chapter 4 and Reference [7].

2.3.3.7 Implementability

In the implementation [11] by the submitter, key generation, signature generation, and signature
verification required 610 ms, 1.04 ms, and 0.70 ms, respectively, on Celeron 800Mz, when modulus n
was 1152 bits and the security parameter e was 1024.

RSA signature and ECDSA signature have been implemented on various platforms by various researchers
and their speeds have been measured. However, ESIGN implementations other than those by submitters
are rarely known. Therefore, it is not known to what extent it will be speeded up. Note, however,
that a part of the speedup technique used for speeding up of RSA such as exponentiation operation can
also be applied to ESIGN signature.

It can be said that the ESIGN signature generation speed is higher than that of RSA signature.

60 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.3.3.8 Summary of ESIGN signature

• ESIGN: When some security parameters described in the Guidelines on the Law
concerning Electronic Signatures and Certification Services (e.g. n is 2048 bits and e is 8 or
smaller using SHA-1) are used, signature forgery will be successful at an unignorable
probability. Therefore, ESIGN was deleted at the time of amendment of the Guidelines in
November 2002.

• TSH-ESIGN: The proved security is not existentially unforgery against general adaptive
chosen-message attacks, but is existential unforgery against the single-occurrence adaptive
chosen-message attacks.

References
[1] E. Brickell, J. DeLaurentis, "An Attack on a Signature Scheme proposed by Okamoto and

Shiraishi," Advances in Cryptology – CRYPTO '85, LNCS, 218 (1986), Springer-Verlag,
28–32.

[2] D. Coppersmith, "Finding a Small Root of a Univeriate Modular Equation," Advances in
Cryptology – EUROCRYPT '96, LNCS, 1070 (1996), Springer- Verlag, 155–165.

[3] D. Coppersmith, "Finding a Small Root of a Bivariate Integer Equation; Factoring with High
Bits Known," Advances in Cryptology – EUROCRYPT '96, LNCS, 1070 (1996),
Springer-Verlag, 178–189.

[4] L. Granboulan, "How to Repair ESIGN," Cryptology ePrint Archive, Report 2002/074, (2002),
available at http://eprint.iacr.org

[5] L. Granboulan, "How to Repair ESIGN," Proceedings of Third NESSIE Workshop, (2002)
[6] "IEEE P1363a Draft Version 9 Standard Specifications for Public Key Cryptography:

Additional Techniques," IEEE (2001), available at
http://grouper.ieee.org/groups/1363/StudyGroup/submissions.html

[7] Information-technology Promotion Agency, Japan, "CRYPTREC Report 2000," (2000).
[8] NESSIE, New European Schemes for Signatures, Integrity, and Encryption,

https://www.cosic.esat.kuleuven.ac.be/nessie/
[9] "NESSIE Security Report, version 1.0," available at

https://www.cosic.esat.kuleuven.ac.be/nessie/
[10] NTT Information Sharing Platform Laboratories, "ESIGN Specifications," (2001), available at

http://info.isl.ntt.co.jp/esign/CRYPTREC/index-j.html
[11] NTT Information Sharing Platform Laboratories, "ESIGN Self-Evaluation Report," submitted

to 2001 CRYPTREC, (2001), available at
http://info.isl.ntt.co.jp/esign/CRYPTREC/index-j.html

[12] T. Okamoto, E. Fujisaki, H. Morita, "TSH-ESIGN: Efficient Digital Signature Scheme Using
Trisection Size Hash," Submission to P1363a, (1998), available at
http://grouper.ieee.org/groups/1363/StudyGroup/submissions.html

[13] V. Shoup, "OAEP Reconsidered," Advances in Cryptology – CRYPTO 2001, LNCS, 2139
(2001), Springer-Verlag, 239–259.

[14] J. Stern, D. Pointcheval, J.M. Lee, N.P. Smart, "Flaws in Applying Proof Methodologies to
Signature Schemes," Advances in Cryptology – CRYPTO 2002, LNCS, 2442 (2002),
Springer-Verlag, 93–110.

[15] M. Une, T. Okamoto, "Latest Trend of the Research of Public Key Cryptosystem Theory,"
IMES Discussion Paper Series 98-J-28, (1998)

2.3 Evaluation of Individual Cryptographic Techniques 61

[16] B. Vall_ee, M. Girault, P. Toffin, "How to Break Okamoto's Cryptosystem by Reducing lattice
Bases," Advances in Cryptology – EUROCRYPT '88, LNCS, 330 (1988), Springer-Verlag,
281–291.

[17] B. Vall_ee, M. Girault, P. Toffin, "How to Guess lth Roots Modulo n by Reducing Lattice
Bases," AAECC-6, LNCS, 357 (1988), Springer-Verlag,

2.3.4 RSA (RSA-PSS, RSASSA-PKCS1-v1_5, RSA-OAEP, RSAESPKCS1-v1_5)

2.3.4.1 Cryptographic technique evaluated

• PKCS #1 v2.1: RSA Cryptography Standard,

RSA Laboratories, June 14, 2002 [21], where the modulus is a product of two different
prime numbers with approximately same sizes

2.3.4.2 Technical overview

CRYPTREC evaluated RSA-OAEP, RSAES-PKCS1-v1_5 (RSA confidentiality), RSA-PSS, and
RSASSA-PKCS1-v1_5 (RSA signature) as cryptographic techniques using RSA primitive. RSA-OAEP
(Optional Asymmetric Encryption Padding) and RSA confidentiality are cryptographic algorithms for
confidentiality of information, while RSA-PSS (Probabilistic Signature Scheme) and RSA signature are
cryptographic algorithms for digital signature.

Regarding confidentiality using RSA, 1) the scheme described in RSA-PKCS #1 v1.5 (hereinafter
referred to as RSAES-PKCS1-v1_5 (RSA confidentiality), and 2) RSA-OAEP (the scheme described in
PKCS#1 v2.1 and submitted to 2001 CRYPTREC) were evaluated.

For RSA-OAEP, evaluation has been continued since 2001. In 2002, the Cryptography Research and
Evaluation Committees requested the adoption of RSAES-PKCS1-v1_5 (RSA confidentiality) because it
had been used, and the Public-key Cryptography Subcommittee evaluated it.

Since Bleichenbacher [5] pointed out that RSA confidentiality standardized by the standard PKCS #1
v1.5 can be broken by a certain attack (i.e. an attack using the information that the ciphertext does not
meet the predefined conditions), it has been mandatory that the encryption algorithm of the public key
cryptosystem meets the non-malleability (IBD-CCA2) against adaptive chosen-message attacks [3, 1].

RSA-OAEP is a cryptosystem that provides the provable security that the strongest security (IND-CCA2)
can be achieved if the primitive in RSA function satisfies the partial domain one-wayness. *6

On the other hand, for signatures using RSA, there are many specifications such as 1) the so-called
"textbook" RSA signature, 2) ANSI X9.31, 3) RSASSA-PKCS1-v1_5 (RSA signature) (the scheme
described in the Guidelines on the Law concerning Electronic Signatures and Certification Services), 4)
RSA-FDH (Full-Domain Hash Scheme: FDH), 5) RSA-PSS (Bellare-Rogaway's research paper version),
and 6) RSA-PSS (IEEE P1363a version).

RSA-PSS is a signature scheme that provides the provable security that the strongest security
(existentially unforgeable against adaptive chosen-message attacks) can be achieved if the primitive in
RSA function satisfies one-wayness.

*6 The reference [15] indicates that this condition is equivalent to “difficulty of RSA” (RSA primitive one-wayness).

62 Chapter 2 Evaluation of Public-key Cryptographic Techniques

For full evaluations of signature schemes, RSASSA-PKCS1-v1_5 (RSA signature) described in the
Guidelines on the Law concerning Electronic Signatures and Certification Services and RSA-PSS (IEEE
P1363a version) submitted to 2001 CRYPTREC were used.

2.3.4.3 Technical specifications

RSA primitive:

Assume a public key as (N, e) and a private key as (N, d), e is an odd number of 3 or larger that satisfies
GCD {e, (p - 1) (q - 1)} = 1, and d satisfies de ≡ 1 (LCM {p - 1, q - 1}).

Define the RSA encryption primitive RSAEP and the RSA signature verification primitive RSAVP as
follows:

RSAEP ((n,e),x) = RSAVP ((n,e),x) = xe mod N (2.1)

And define the decryption primitive RSADP and the signature generation primitive RSASP as follows:

RSADP ((n,d),y) = RSASP ((n,d),y) = yd mod N (2.2)

Where, x and y are integers that is selected from {0, 1, ... ,N-1}=ZN, and the number of N's octets is k
(hereinafter described as |N| = k).

RSA-PSS

Configuration of RSA-PSS is as follows:

EMSA-PSS-Encode (M, emBits)

1. Output "message too long" and terminate the operation if the octet length of M is longer than
the input limit of the hash function (261 - 1 octets for SHA-1).

2. Generate a string with a length of hLen octets; mHash=Hash(M).

3. Output "encoding error" and terminate the operation if emBits < 8hLen + 8sLen + 8t + 1 (t is
an option of Trailer field, taking a value of 1 or 2).

4. Generate a random string salt with a length of sLen. If sLen = 0, salt is a blank string.

5. Assume m' = 00 00 00 00 00 00 00 00 || mHash || salt, (where m' is a string with a length of (8
+ hLen + sLen) octets and contains eight zero octets (P=00 00 00 00 00 00 00 00) at the
beginning).

6. Generate a string with a length of hLen octets; H = Hash(m').

7. Generate a data string PS containing (emLen – sLen – hLen – t – 1) zero octets. |PS| = 0 may
hold.

8. Assume DB = PS||01||salt.

9. Assume dbMask = MGF(H, emLen – hLen – t).

10. Assume MaskedDB = DB ⊕ dbMask.

11. Set (8emLen – emBits) bits from the left in the left-most octets of MaskedDB to zeroes.

2.3 Evaluation of Individual Cryptographic Techniques 63

12. Assume t = 1 and TF = bc. *7

13. Assume EM = MaskedDB||H||TF.

14. Output EM.

EMSA-PSS-Decode (M, EM, emBits)

1. Output "inconsistent" and terminate the operation if the octet length of M is longer than the
input limit of the hash function (261 - 1 octets for SHA-1).

2. Generate a string with a length of hLen octets; mHash=Hash(M).

3. Output "decoding error" and terminate the operation if emBits < 8hLen + 8sLen + 8t + 1.

4. Assume t = 1 and TF = bc.

5. Output "inconsistent" and terminate the operation if rightmost t octet of EM does not match
TF.

6. Assume EM = MaskedDB||H||TF, where |MaskedDB| = emLen – hLen – t and |H| = hLen.

7. Output "inconsistent" and terminate the operation if (8emLen – emBits) bits from the left in the
leftmost octet of MaskedDM do not match zeroes.

8. Assume dbMask = MGF(H, emLen – hLen – t).

9. Assume DB = MaskedDB = DB ⊕ dbMask.

10. Set (8emLen – emBits) bits from the left in DB to zero.

11. Output "inconsistent" and terminate the operation if (emLen – hLen – sLen – t – 1) octets from
the right in DB do not become zero or if the (emLen – hLen – sLen – t)-th octets from the right
do not match 01.

12. Set the last sLen octets in DB to salt.

13. Assume m' = 00 00 00 00 00 00 00 00 || mHash || salt, (where m' is a string with a length of (8
+ hLen + sLen) octets and contains eight zero octets (P=00 00 00 00 00 00 00 00) at its head).

14. Assume a string of hLen octets; mHash' = Hash(m').

15. Output if H = H'. Otherwise, output "inconsistent".

*7 In the specification [20], the setting of Hash1D || cc was also specified for TF. The specification [21] only permits the

setting of bc (SHA-1) for TF.

64 Chapter 2 Evaluation of Public-key Cryptographic Techniques

M

 Hash

MaskedDB H

PS

 Hash

 MGF

salt P mHash salt

0 bc

DB = = m'

Fig. 2.1 RSA-PSS

RSA-PSS signature generation processes message M as described below. RSA-PSS signature
verification processes signature S as described below.

RSA-PSS-Sign ((n, d), M)

1. Assume EM = EMSA-PSS-Encode (M, modBits – 1). Output "message too long" and
terminate the operation if the encoding operation outputs "message too long".

2. Assume S = RSASP ((n, d), EM)

3. Output signature S.

RSA-PSS-Verify ((n, e), M,S)

1. Assume EM = RSAVP ((n, e), S).

2. Assume Result = EMSA-PSS-Decode (M, EM, emBits), where emLen = [(modBits – 1)/8]
octets, modBits is a bit length of modulus n. Output "valid" if the encoding operation
outputs "consistent". Otherwise, output "signature invalid".

Note 5: An applicant has pointed out that the Trailer field option, hash function, and MGF function
must be fixed for a specific pair of keys.

2.3 Evaluation of Individual Cryptographic Techniques 65

00 01 PS(FF ... FF) 00 T (the first included hash_Id)

Fig. 2.2: EMSA-PKCS1-v1_5 output format

RSASSA-PKCS1-v1_5

RSASSA-PKCS1-v1_5 (RSA signature) (the scheme described in the Guidelines on the Law concerning
Electronic Signatures and Certification Services) is specified in the standard PKCS#1 v1.5 [19] and is
inherited by the standards PKCS#1 v2.1 [20, 21].

Descriptions on the signature schemes appearing in these three documents published by RSA can be
summarized as follows:

1. The standard v1.5 contains description (OID) on the hash function MD5 but does not contain
description (OID) of the hash function SHA-1 (Chapter 11 in Reference [19]).

2. The standard v2.0 describes that SHA-1 is newly available as the EMSA-PKCS1-v1_5
encoding method (OID provided) (10.1 in Reference [20]).

3. The standard v2.1 describes that SHA-256, 384, and 512 are newly available as the
EMSA-PKCS1-v1_5 encoding method (OID provided) (9.2 in Reference [21]).

Fig. 2.2 shows the format specified as the EMSA-PKCS1-v1_5 encoding method, where T is specified by
the Distinguished Encoding Rule (DER)*8, the first field identifies hash function, and the next field
contains hash value, and PS is an 8-octet or longer octet string consisting of value FF (hexadecimal).

RSA-OAEP

Configuration of RSA-OAEP is as follows:

EME-OAEP -Encode (M, P, emLen)

1. Output "parameter string too long" and terminate the operation if the octet length of P is longer
than the input limit of the hash function (261 –1 octets for SHA-1).

2. Output "message too long" and terminate the operation if mLen > emLen – 2hLen –2.

3. Generate a data string PS containing (emLen – mLen – 2hLen – 2) zero octets. |PS| = 0 is
acceptable.

4. Generate a string with a length of hLen octets; pHash = Hash(P).

5. Assume DB = pHash||PS||01||M.

6. Generate a random string seed with a length of hLen octets.

7. Assume dbMask = MGF (seed, emLen – hLen – 1).

8. Assume MaskedDB = DB ⊕ dbMask.

9. Assume seedMask = MGF(MaskedDB, hLen).

*8 In v1.5, BER encoding (including DER encoding) is simply specified. Therefore, attention should be paid to the

compatibility.

66 Chapter 2 Evaluation of Public-key Cryptographic Techniques

10. Assume MaskedSeed = seed ⊕ seedMask.

11. Assume EM = 00||Masked Seed||MaskedDB.

12. Output EM.

EME-OAEP -Decode (EM, P)

1. Output "decoding error" and terminate the operation if the octet length of P is longer than the
input limit of the hash function (261 –1 octets for SHA-1).

2. Output "decoding error" and terminate the operation if emLen < 2hLen + 2.

3. Assume EM = X||MaskedSeed||MaskedDB, where |X|=1, |MaskedSeed|=hLen,
|MaskedDB|=emLen – hLen –1.

4. Assume seedMask = MGF (MaskedDB, hLen).

5. Assume seed = MaskedSeed ⊕ dbMask.

6. Assume dbMask = MGF (seed, emLen – hLen – 1).

7. Assume DB = MaskedDB ⊕ dbMask.

8. Assume a string with a length of hLen octets; pHash = Hash(P).

9. Assume DB=pHash'||M', where |pHash'|=hLen.

10. Assume M' =α||T||M'. where T is non-zero leftmost octet in M', |T|=1.

11. Output "decoding error" if pHsh ≠ pHash, X ≠ 00, or T ≠ 01. *9

12. Generate M' by removing T and α (all zero) from M'.

13. Output M.

RSA-OAEP encryption processes message M as described below. RSA-OAEP decryption processes
ciphertext C as described below.

RSAES-OAEP-Encrypt ((n, e), M, P)

1. Assume EM = EME-OAEP-Encode (M, P, k). Output "message too long" and terminate the
operation if the encoding operation outputs "message too long".

2. Assume C = RSAEP ((n, e), EM).

3. Output C.

*9 In this step, the same error notification is output regardless of error reasons. This implementation scheme was introduced

against the attack pointed out in References [5] and [17].

2.3 Evaluation of Individual Cryptographic Techniques 67

RSAES-OAEP-Decrypt ((n, d), C, P)

1. Assume EM = RSADP((n, d), C).

2. Assume M = EME-OAEP-Decode (EM, P). Output "decoding error" and terminate the
operation if the decoding operation outputs "decoding error".

3. Output M.

Note 6: An applicant has pointed out that the seed length, hash function, MGF function, and data string
PS value must be fixed for a specific pair of keys.

RSAES-PKCS1-v1_5

Configuration of RSAES-PKCS1-v1_5 (RSA confidentiality) is as follows:

RSAES-PKCS1-x1_5-Encrypt ((n, e), M)

M is a message to be encrypted and is a string with a length of mLen octets.

1. Output "message too long" and terminate the operation if mLen > k – 11.

2. Generate a data string PS with a length of (k – mLen – 3) octets containing non-zero octets that
is generated at random. The length of PS should be at least 8 octets.

3. Generate the following encoded message by connecting PS, M, and other octets together: EM =
00||02||PS||00||M.

4. Assume C = RSAEP ((n, e), EM).

4. Output C.

Fig. 2.3 RSA-OAEP-Encode

MaskedSeed

 MGF

PS pHash Mt

00

= DB Seed

MaskedDB

 MGF

68 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Fig. 2.4: EME-PKCS1-v1_5 format

RSA-PKCS1-v1_5-Decrypt ((n, d), C)
1. Output "decryption error" and terminate the operation if C is not k octets or k<11.
2. Assume EM = RSADP ((n, d), C).
3. Separate EM into data string PS containing non-zero octets and message M: EM = 00||02||PS||00M.

If the first octet of EM is not hexadecimal 00, if the second octet of EM is not hexadecimal 02, if
octet 00 that separates PS from M does not exist, or if PS is shorter than 8 octets, output
"decoding error". *10

4. Output M.

2.3.4.4 Evaluation of the security

Security of primitives

The security of primitives of RSA cryptosystem is based on:
• n = pq type integer factoring problem.

The evaluation result of the integer factoring problem is described in Section 2.4.1. With regard to the
provable security of RSA cryptosystem, the equivalence to the difficulty of the integer factoring problem
of the above type has not been proven theoretically. However, it is believed to be secure based on the
past experiences. Security evaluation has been made based on the performance over a long period of
time and from a wide range of viewpoints. All evaluators reported that the description of the
self-evaluation report on RSA primitives contains no problems. Examples, as matters common to
encryption and decryption, of usage restrictions that have been pointed out are: 1) sharing of modulus
value, 2) threats when private key d is small, and 3) threats that the whole information may be revealed
from a part of key information. Furthermore, the following are reported as matters used for encryption:
1) threats when public key e is small (Coppersmith's attack), and 2) threats in the broadcast environment
(attacks by Hastad and Coppersmith).

Therefore, pay attention to the RSA parameter selection. For details, see 2.5.1.1.

Security of RSA-PSS

Probabilistic Signature Scheme (PSS) is a digital signature encoding scheme proposed by Bellare and
Rogaway. By adding random-number components to the message to be signed, a deterministic signature
scheme such as RSA signature can generate different signatures. RSA-PSS not only changes a
deterministic signature scheme into probabilistic one but also allows its security to be proven in the
random oracle model [4].

As a signature scheme whose security has been proved, Full Domain Hash Scheme (FDH) [2] and a
conversion method [14] that configures a digital signature from identification scheme have been proposed.
However, PSS has a feature that allows a tighter security reduction to be proven.

*10 In this step, the same error notification is output regardless of error reasons. This implementation scheme was introduced

against the attack pointed out in References [5] and [17].

00 00 02 PS (non-zero octets) M (plaintext to be encrypted)

2.3 Evaluation of Individual Cryptographic Techniques 69

Coron proposed a technique to obtain a tighter FDH reduction relation (Coron's technique) [8]. Jonsson
reevaluated the security of PSS by applying Coron's technique [16]. In addition to evaluation of tight
reduction relations, Paper [16] indicated the following:

1. The proof of security can be given if salt length is made variable.

2. The efficiency of reduction relations was evaluated, including the case where correlations
between Hash and MGF are provided.

The Jonsson's proof did not include Hash-ID for review. Since the standard [21] fixed Hash-ID to bc,
there would be no problem due to such exclusion.

Regarding the salt size, Reference [11] reported that 30-bit size is enough to ensure the security though
180-bit salt size is necessary in the previous proving technique.

Security of RSASSA-PKCS1-v1_5

Regarding RSASSA-PKCS1-v1 5(RSA signature), we requested two external evaluators for security
evaluation. Evaluator #1 reported "For PKCS#1 v1.5 (and ANSI x9.31), we have seen that the attack of
[10] does not apply. To our knowledge, no attack better than factoring the modulus or finding a
collision in the hash function, is known for PKCS#1 v1.5 (and ANSI x9.31)." Evaluator #2 reported
"The attacks are not a threat to the practical security of schemes described in the (ANSI X9.31 and)
PKCS#1 v1.5 standards."

With regard to the complexity of forgery techniques found up to the present (as of the end of September
2002) against RSASSA-PKCS1-v1_5 (RSA signature), it was verified that the complexity was not below
the complexity of integer factoring problem, even if a chosen-message attack is permitted. Therefore,
there is no security problem in particular.

Reference [12] proved the following theorem in connection with the security of RSASSA-PKCS1-v1_5
(RSA signature):

Theorem 7: Let S be the Rabin-Williams partial-domain hash signature scheme with constant γ and hash
size k0 bits. Assume that there is no algorithm which factors a RSA modulus with probability greater
than ε within time t. Then the success probability of a forger against S making at most qhash hash
queries and qsig signature queries within time t' is upper bounded by ε', where:

113

3

2)1(328' 1

k

kqqq sighashsig

⋅−
⋅⋅⋅++⋅+⋅⋅= γεε (2.3)

)()1(' 3
1 kqqktt sighash Ο⋅++⋅⋅−= γ (2.4)

and kkk
3
2

01 −=

This theorem cannot be directly applied to the signature generation primitive in the signature scheme
specified in RSASSA-PKCS1-v1_5 (RSA signature) because the Rabin method (e = 2) is not used.
However, since it was pointed out that the provable security can be guaranteed if the output size of the
hash function is 2/3 or larger of the modulus size, the security of the signature scheme specified in
RSASSA-PKCS1-v1_5 (RSA signature) may be expected in the future if this signature technique is
further improved.

70 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Security of RSA-OAEP

Shoup pointed out at the end of 2000 the faults in the claim on security proposed in the original paper [3]
presented by Bellare-Rogaway, so the security was discussed at academic societies [18].

As a result, it was proven that, even though the security reduction efficiency lowers, provable security of
RSA-OAEP holds on the assumption of the difficulty of the RSA problem [15]. A problem regarding
implementation of OAEP was pointed out in 2001 [9], but it is confirmed that the measures for the
problem were already taken for the current specifications.

Security of PSAES-PKCS1-v1_5

CRYPTREC investigated the development status of attacks against this scheme using Reference [9] and
other documents.

Although no effective attack against RSAES-PKCS1-v1_5 (RSA confidentiality) was found, it should be
noted that chosen-plaintext attacks (Coppersmith's attack [6, 7], Coron-Joye-Naccache-Paillier's attack)
are theoretically possible. Also, note that there is another chosen-ciphertext attack offered by
Bleichenbacher, which attacks the weakness of implementation [5].

Security of RSA-PSS-ES

In 2002, Coron pointed out that the security can be proven if Message recovery type PSS (PSS-R) is used
for padding in encryption [13]. In other words, it was proven that the security of encryption can be
guaranteed even if chosen-ciphertext attacks and chosen-message attacks are permitted, and that the
security of signatures can be guaranteed even if chosen-message attacks and chosen-ciphertext attacks are
permitted, even when the user uses the same private key for decrypting a ciphertext and for generating a
signature of message.

As a result, it is theoretically guaranteed that there is no problem even if a private key is used both as a
decryption key and as a signature generation key. However, an implementation problem by Manger, for
example, is anticipated. Therefore, using different keys for encryption and for decryption is a safer
selection in terms of security.

2.3.4.5 Summary

RSA-PSS

The proof of provable security is reliable in the random oracle model. However, since there is a slight
difference between the scheme submitted to CRYPTREC and the scheme proven in the paper, it is
required to understand the relations of corresponding parameters and to select design parameters.

RSA-PSS was added at the time of the amendment of the Guidelines on the Law concerning Electronic
Signatures and Certification Services in 2002.

For reference, the differences between the specifications of RSA-PSS and those being discussed by the
academic society [4] are summarized in the following table:

2.3 Evaluation of Individual Cryptographic Techniques 71

PSS[4] EMESA-PSS
m
r
k0
0k2

k2
k
k1
w
s||t
G(.)
H(.)

P || mHash
salt
8 × sLen
PS
emBits – 8 × hLen – 8 × sLen – 8
emBits
8 × hLen
H
Set zero in the first (8emLen – emBits) bits for MaskedDB.
Set zero in the first (8emLen – emBits) bits for MGF (.,emLen – hLen – 1).
Hash function

Note 8: Note that Reference [4] uses bit-based notation and RSA-PSS uses byte-based notation.

Use of RSASSA-PKCS1-v1_5 (RSA signature) in the Guidelines on the Law concerning
Electronic Signatures and Certification Services

Although there is no security problem in particular, it is necessary to continue studying the security of the
encoding method shown in Fig. 2.2. In the Guidelines, MD5 and SHA-1 are specified as hash functions
for generating T in Fig. 2.2. As pointed out in CRYPTREC Report 2000, the use of MD5 is not
recommended.

RSA-OAEP

The proof of provable security is reliable in the random oracle model. However, since there is a slight
difference between the scheme submitted to CRYPTREC and the scheme proven in the paper is required
to understand the relations of corresponding parameters and to select design parameters.

For reference, the differences between the specifications of RSA-OAEP and those being discussed by the
academic society [3] are summarized in the following table:

 OAEP[3] EME-OAEP
m
n

0k2
k0
k1

G(.)
H(.)

r
k
s
t

PS || M
8 × mLen
pHash
8 × hLen
8 × hLen
MGF(.,emLen – hLen – 1)
MGF(.,hLen)
seed
8 × eLen
MaskedDB
MaskedSeed

Note 9: Note that the reference [3] uses bit-based notation and RSA-OAEP uses byte-based notation.

There was an opinion that recommends RSA-OAEP+ instead of RSA-OAEP from the viewpoint of
security reduction efficiency.

72 Chapter 2 Evaluation of Public-key Cryptographic Techniques

RSA-OAEP Encryption Scheme. RSA-OAEP has been proven to be semantically secure against
adaptive chosen-ciphertext attacks in the random oracle model under the RSA assumption.
However, the reduction is not tight, and thus it is not clear what security assurances the proof
provides. We recommend that RSA-OAEP be modified to RSA-OAEP+ which has a tighter
security reduction, and furthermore can be easily modified to allow encryption of arbitrarily-long
messages (see [18]).

Use of RSAES-PKCS1-v1_5 (RSA confidentiality)

With regard to the complexity of attacks against RSAES-PKCS1-v1_5 (RSA confidentiality) found up to
the present (as of the end of September 2002), it was confirmed that the complexity was not below the
complexity of integer factoring problem, even if a chosen-plaintext attack is permitted.

However, the care must be taken to the selection of RSA parameters. For details, see 2.5.1.1.

Though, note that there are other chosen-ciphertext attacks offered by Bleichenbacher and Manger, which
attack the weakness of implementation [5, 17]. Since proper counter measures have been taken for the
latest specifications, no problems are anticipated.

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security for

public-key encryption schemes. In H. Krawczyk, editor, Advances in Cryptology —
CRYPTO'98, pages 26–45. Springer, 1998. Lecture Notes in Computer Science No. 1462.

[2] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols,. In Proc. of the First ACM Conference on Computer and Communications Security,
pages 62–73. ACM Press, 1993.

[3] M. Bellare and P. Rogaway. Optimal asymmetric encryption — how to encrypt with RSA. In
A.D. Santis, editor, Advances in Cryptology — EUROCRYPT '94, volume 950 of Lecture Notes
in Computer Science, pages 92–111, Berlin, Heidelberg, New York, 1995. Springer-Verlag.

[4] M. Bellare and P. Rogaway. The exact security of digital signatures –how to sign with RSA
and Rabin. In U. Maurer, editor, Advances in Cryptology — EUROCRYPT '96, volume 1070 of
Lecture Notes in Computer Science, pages 399–416, Berlin, Heidelberg, New York, 1996.
Springer-Verlag.

[5] D. Bleichenbacher. Chosen-Ciphertext Attacks Against Protocols Based on the RSA
Encryption Standard PKCS#1. In H. Krawczyk, editor Advances in Cryptology — CRYPTO '98,
volume 1462 of Lecture Notes in Computer Science, pages 1–12, Berlin, Heidelberg, New
York, 1998. Springer-Verlag. Springer-Verlag,

[6] D. Coppersmith. Finding a small root of a univariate modular equation. In U. Maurer, editor,
Advances in Cryptology — EUROCRYPT '96, volume 1070 of Lecture Notes in Computer
Science, pages 155–165, Berlin, Heidelberg, New York, 1996. Springer-Verlag.

[7] D. Coppersmith, M. K. Franklin, J. Patarin, M. K. Reiter. Low-exponent RSA with related
messages. In U. Maurer, editor, Advances in Cryptology — EUROCRYPT '96, volume 1070 of
Lecture Notes in Computer Science, pages 1–9, Berlin, Heidelberg, New York, 1996.
Springer-Verlag.

[8] J. S. Coron. On the exact security of full domain hash. In M. Bellare, editor, Advances in
Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages
229–235, Berlin, Heidelberg, New York, 2000. Springer- Verlag.

2.3 Evaluation of Individual Cryptographic Techniques 73

[9] J. S. Coron, M. Joye, D. Naccache and P. Paillier. New Attacks on PKCS# 1 v1.5 Encryption.
In P. Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture
Notes in Computer Science, pages 369–379, Berlin, Heidelberg, New York, 2000.
Springer-Verlag.

[10] J. S. Coron, D. Naccache, and T. P. Stern. On the Security of RSA Padding. In Michael J.
Wiener, editor, Advances in Cryptology — CRYPTO '99, volume 1666 of Lecture Notes in
Computer Science, pages 1–18, Berlin, Heidelberg, New York, 1999. Springer-Verlag.

[11] J. S. Coron. Optimal Security Proofs for PSS and other signature Schemes. In Lars R. Knudsen,
editor, Advances in Cryptology — EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 272–287, Berlin, Heidelberg, New York, 2002. Springer-Verlag.

[12] J. S. Coron. Security proof for partial-domain hash signature schemes. In Moti Yung, editor,
Advances in Cryptology - CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 613–626, Berlin, Heidelberg, New York, 2002. Springer-Verlag.

[13] J. S. Coron and M. Joye and D. Naccache and P. Paillier, Universal Padding Schemes for
RSA" In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 226–241, Berlin, Heidelberg, New York, 2002.
Springer-Verlag.

[14] A. Fiat and A. Shamir. How to prove yourself. In A. M. Odlyzko, editor, Advances in
Cryptology — CRYPTO '86, volume 263 of Lecture Notes in Computer Science, pages
186–208, Berlin, Heidelberg, New York, 1986. Springer-Verlag.

[15] E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-OAEP is chosen ciphertext secure
under the RSA assumption. In J. Kilian, editor, Advances in Cryptology — CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 260–274, Berlin, Heidelberg, New
York, 2001. Springer-Verlag.

[16] Jakob Jonsson. Security proofs for the RSA-PSS signature schemes and its variants –draft 1.1.
Available at http://eprint.iacr.org/2001/053/, 2001.

[17] J. Manger. A chosen-ciphertext attack on rsa optimal asymmetric encryption padding (OAEP)
as standardized in PKCS# v2.0. In J. Kilian, editor, Advances in Cryptology — CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 230–238, Berlin, Heidelberg, New
York, 2001. Springer-Verlag.

[18] V. Shoup. OAEP reconsidered. In J. Kilian, editor, Advances in Cryptology — CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 239–259, Berlin, Heidelberg, New
York, 2001. Springer-Verlag.

[19] PKCS #1: RSA Encryption Standard, An RSA Laboratories Technical Note Version 1.5,
Revised November 1, 1993, available at http://www.rsasecurity.
com/rsalabs/pkcs/pkcs-1/index.html

[20] PKCS #1 v2.0: RSA Cryptography Standard, RSA Laboratories, October 1, 1998, available at
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/ index.html

[21] PKCS #1 v2.1: RSA Cryptography Standard, RSA Laboratories, June 14, 2002, available at
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/ index.html

74 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.3.5 ECIES

2.3.5.1 Cryptographic technique evaluated

• SEC 1: Elliptic Curve Cryptography (September 20, 2000, Version 1.0)[5]

2.3.5.2 Technical overview

ECIES is a public key cryptographic technique designed by SECG (Standards for Efficient Cryptography
Group), which adopts an elliptic curve cryptosystem. This cryptographic technique was submitted to
CRYPTREC for evaluation in 2000 as ECAES. In 2001, it was renamed as ECIES and submitted.
Note that they are the same cryptosystems. ECIES [5] is the CRYPTREC submission version. Some
schemes having provable security are described in [1][2][3].

2.3.5.3 Technical specifications

The specifications (overview) of ECIES are as follows. See the specifications for details.

Elliptic curve parameters (i) (p, a, b, G, n, h) or (ii) (m, f(x), a, b, G, n, h):
(i) arameters consisting of the elliptic curve E: y2=x3+ax+b (a,b ∈ Fp) on a prime field Fp, a base

point G ∈ E(Fp) of a prime order n on E, and h=#E(Fp)/n
(ii) arameters consisting of a field F2m represented by the an irreducible binary polynomial f(x) with

degree m, an elliptic curve E: y2+xy= x3+ax2+b(a,b ∈ F2m) over the field F2m, a base point G ∈ E
(F2m) of a prime order n on E, and h=#E(F2m)/n

KDF: Key Derivation Function

MAC: Message Authentication Code

ENC: Symmetric Encryption Scheme

Private key: Integer d (d ∈ [1, n - 1])

Public key: Q, which is the point Q=dG

Encryption: Output a ciphertext C for a plaintext M as described below.

1. Select an integer k ∈ [1, n - 1] at random and calculate R = kG.

2. Calculate the x-coordinate of kQ: Z = x (kQ).

3. culate K = KDF (Z) and then calculate the key EK used in ENC and the key MK used in MAC,
from K = EK || MK.

4. Encrypt a plaintext M with ENC using the key EK: EM = ENC (EK, M) (EM = EK ⊕ M in the
case of XOR).

5. For EM, calculate the authentication code D = MAC (MK, EM) with MAC using the key MK.

6. Output the ciphertext C = R || EM || D.

2.3 Evaluation of Individual Cryptographic Techniques 75

Decryption: Output a plaintext M or "invalid" in response to the input of a ciphertext C as described
below.

1. Calculate R', EM', and D' from C = R' || EM' || D'.

2. Calculate the x-coordinate Z' = x (dR') of dR'.

3. culate K' = KDF (Z') and then calculate the key EK' used in ENC and the key MK' used in
MAC from K' = EK' || MK'.

4. Check that D' = MAC (MK', EM') holds. If it doesn't, output "invalid".

5. Decrypt EM' with ENC using the key EK': M = ENC (EK', EM') (M = EK' ⊕ EM' in the case of
XOR).

6. Output the plaintext M.

2.3.5.4 Security evaluation

• Elliptic curve discrete logarithm problem
ECIES is a public-key cryptosystem depending on the difficulty of the elliptic curve discrete
logarithm problem. Presently, there are various known attacks against the elliptic curve discrete
logarithm problem. With regard to ECIES, elliptic curve parameters, to which known attacks
cannot be applied for practically valid number of bits, are specifically presented in the SEC 2
document. (Note that these are recommended parameters and the use of other elliptic curves is not
permitted.) The elliptic curve consists of an elliptic curve selected at random in a verifiable form
and an elliptic curve called Koblitz curve (see 2.3.2.4 "Security of Koblitz curve"). Since the
Koblitz curve can be processed at a high speed and has a track record of use, it is included in SEC
2. However, as it is a curve in a limited class, attention should be paid to the possibility that
attacks specific to that class may emerge (see 2.3.2.4 "Security of Koblitz curve").

• Differences between ECIES [5] and ECIES [1][2][3] having provable security
In the specifications of ECIES [5], there are some descriptions different from the schemes
provided in papers [1][2][3] on which the specifications of ECIES are based. Such differences
are: (i) Input data to KDF, and (ii) selection of MK (key used for MAC). More precisely, the
differences are distinguished as follows (where the Diffie-Hellman shared key obtained from base
points R and Q on the elliptic curve is represented as DH(R,Q):

Differences between ECIES [5] and ECIES [1][2][3]
(i) Input data to KDF:

In ECIES [5], x(DH(R,Q)(the x-coordinate of DH(R,Q)) is used as input data to KDF. In [1],
R and DH(R,Q) are used. In [2] and [3], DH(R,Q) is used.

(ii) Selection of MK (key used for MAC)
For use of EK and MK, ECIES [5] uses K=EK||MK, while in [1], [2], and [3], K=MK||EK is
used.

For schemes in papers [1], [2], and [3], it has been proven that they are semantically secure against
adaptive chosen-ciphertext attacks (IND-CCA2) if the Oracle Diffie-Hellman assumption is
correct, and ENC and MAC are secure in the standard model.
On the other hand, a full evaluator [6] in 2002 proved that the schemes described in [1], [2], and
[3] are semantically secure against adaptive chosen-ciphertext attacks (IND-CCA2) if the
Gap-Diffie-Hellman assumption is correct, and ENC and MAC are secure in the random oracle
model that assumes the KDF part as a random function. However, in ECIES where provable
security is shown here, R and x(DH(R,Q)) are used as the input data to KDF, and K=MK||EK is
used for taking EK and MK.

76 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Further, in [9], it has been proven that the scheme is semantically secure against adaptive
chosen-ciphertext attacks (IND-CCA2), if ENC and MAC are secure in the generic group model.
However, ECIES that indicates provable security here uses DH(R,Q) as input data to KDF and
uses K=EK||MK for taking EK and MK. As stated in [9], attention should be directed to the
adequacy of discussion on the generic group model for ECIES.

• Security of ECIES
As mentioned above, there are differences in (i) input data to KDF, and in (ii) selection of MK
(key used for MAC), between ECIES [5] and papers [1], [2], and [3]. As pointed out in [8], these
differences have brought about the following vulnerability in the security of ECIES [5]:
(i) Vulnerability due to the difference in the input data to KDF:

For input to KDF, only the data of the x-coordinate of a point on the elliptic curve that is the
Diffie-Hellman shared key, is used. Therefore, the security proof of IND-CCA2 is not
ensured, which will actually allow a chosen-ciphertext attack. (For details, see [8].)

(ii) Vulnerability due to the difference in taking MK (key used for MAC)
If XOR is used as ENC and the use of a plaintext with a variable length is permitted, MK (key
for MAC) is dependent upon the length of the plaintext as well. Therefore, the security proof
of IND-CCA2 is not ensured, which will actually allow a chosen-ciphertext attack. (For details,
see [8].)

References

[1] M. Abdalla, M. Bellare and P. Rogaway, "DHAES: An encryption scheme based on the

Diffie-Hellman problem", submission to IEEE P1363a, September, 1998.
[2] M. Abdalla, M. Bellare and P. Rogaway, "The oracle Diffie-Hellman assumptions and an

analysis of DHIES", Topics in Cryptology, - CT-RSA 2001, LNCS 2020, pages 143-158,
Springer-Verlag, 2001.

[3] M. Abdalla, M. Bellare and P. Rogaway, "DHIES: An encryption scheme based on the
Diffie-Hellman problem", full version of [4] [2], September, 2001. Available at
http://www-cse.ucsd.edu/users/mihir/

[4] M. Bellare and P. Rogaway, "Minimizing the use of random oracles in authenticated
encryption schemes", Information and Communications Security, LNCS 1334, pages 1-16,
Springer-Verlag, 1997.

[5] Certicom Research, Standards for Efficient Cryptography Group (SECG), September 20, 2000.
Version 1.0. Available at http://www.secg.org/

[6] CRYPTREC Evaluation Reports, CRYPTREC, 2002.
[7] IEEE P1363a/D9 - standard specifications for public key cryptography: Additional techniques,

June 2001. Draft version 9.
[8] V. Shoup, "A proposal for an ISO Standard for public key encryption", Version 2.0, September

17, 2001. Version 2.1, December 20, 2001. Available at http: //shoup.net/papers/
[9] N. P. Smart, "The exact security of ECIES in the generic group model", Cryptography and

Coding 2001, 2001.

2.3 Evaluation of Individual Cryptographic Techniques 77

2.3.6 HIME(R)

2.3.6.1 Cryptographic technique evaluated

• "Cryptographic Technique Specification: HIME(R) Cryptography" submitted to 2002

CRYTREC, Hitachi, Ltd.

2.3.6.2 Technical overview

HIME(R) a public key cryptosystem intended for confidentiality. With a modular square function
(Rabin scheme) as a primitive using N=pdq modulus, the scheme is configured using OAEP padding [5].
The submitter stated that the design policy of HIME(R) was to have provable security in the random
oracle model on the assumption of computational difficulty for the integer factoring problem, to make the
encryption and decryption speeds high, and to have a plaintext space equivalent to or larger than that of
RSA-OAEP.

2.3.6.3 Technical specification

Specifications (overview) of HIME(R) are as follows:

Private key: Prime numbers p and q, where p ≡ 3 (mod 4), q ≡ 3 (mod 4)

Public key: N=pdq, where d>1, d=2 or 3 is recommended. |N|=k.

Auxiliary function: Hash functions G and H. G: {0,1}k0 → {0,1}k-k0-1, H: {0,1} k-k0-1 → {0,1} k0, |k0| > 128
is recommended.

Encryption: Encrypt message m as described below.

1. Select random number r ∈ {0,1}k0 for message m ∈ {0,1}n and calculate the following:

x = (m0k1 ⊕ G(r))||r ⊕ H(m0 k1 ⊕ G(r)))

 where, n+k1=k-k0-1, 2k0<k. |k1|>128 is recommended.

2. Calculate y=x2 mod N, where y is a ciphertext.

Decryption: Decrypt message m from ciphertext y as described below.

1. Check that y is a quadratic residue on ZN. Otherwise, reject y.

2. Obtain x1, x2, x3, and x4 that satisfy y = x2mod N. An original procedure using the fact that
modulus N is the pdq type and p ≡ q ≡ 3 (mod 4), is specified in the specifications [1]. This
procedure is associated with the procedure in Reference [9].

3. Obtain (si, ti) that satisfies xi=si||ti, si ∈ {0,1}n+k1, ti ∈ {0,1}k0 where xi ∈ {0,1}k-1 for
xi (1 < i < 4).

4. Obtain wi (1 < i < 4) that satisfies ri =H(si) ⊕ ti, wi = si ⊕ G(ri).

5. Obtain wi= mi || zi, mi ∈ {0,1}n, zi ∈ {0,1} k1 (1 < i < 4). Obtain mi that satisfies zi =0 k1 as a
plaintext. If such mi (1 < i < 4) does not exist, output "reject".

78 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.3.6.4 Description of specifications

The HIME(R) specification contains some flaws and unclear points. At present, reliable HIME(R)
specification is not officially available. Therefore, implementability of HIME(R) by third parties and
interoperability are not ensured.

Flaws and unclear points in the HIME(R) specification [1] are shown below.
• There is an undefined symbol x0 in the decryption procedure.
• Multiple candidates of plaintext may be obtained in the decryption procedure. Although

probability of this problem is negligible, it should be mentioned in the specification.
• In the message after OAEP padding, the upper 1 bit is fixed to 0. This is not considered

for the implementation using parameters k=1344, k0=128, and k1=128 described in Chapter
3 of the specification, and "n =1088" is described instead of "n =1087". In the decryption
procedure in Chapter 3, it should be checked that the most significant bit is 0 as a result of
the calculation to find the square root of the ciphertext.

• Although specifications of hash functions G and H are described in Section 3.2 of the
specification, a technique different from the method to hash by linking the input and
counter value, which is the simplest configuration, is adopted. The rationale in terms of
security on which the technique was adopted should be explained. There is another error
regarding constant Ci(1< i < 10). '128' should come to the upper side (from the MSB side),
and not come to the lower side (from the LSB side). Also, '64' of constant C should come
to the lower side,

• In 3.4 and 3.6 of the specification, random number r for OAEP padding is determined by
determining 192-bit random number R first and then taking the upper 128 bits from the
hash result SHA-1(R). The rationale for this is not clear.

• The modulus N(= pdq) is configured with prime numbers p and q that meet the conditions
for 'strong prime'. Though imposing the conditions does not bring about any security
problem, there is an opinion that the conditions are not necessary.

2.3.6.5 Security evaluation

Provable security :

The HIME(R) self-evaluation report [2] describes the security proof that HIME(R) is semantically secure
against adaptive chosen-ciphertext attacks (IND-CCA2) in the random oracle model. However, some
parts of the security proof have problems. External evaluators also point out this fact.

Problems regarding the security proof in the self-evaluation report are as follows:
• Probability evaluation in the lemma 2.1 of self-evaluation report has a problem and

inequality (2) is incorrect. With respect to the primitive of HIME(R), it is not considered
that four plaintexts correspond to one ciphertext. Further, an event s ≠ s' (s' is s' used in
the query to the encryption oracle; y'=(s'||t')2 mod N, and s is s used in the ciphertext
y=(s||t) 2 mod N attacked by the HIME(R) attacker) is used to derive expression (2). But
the reason for this event is not clear.

• It is difficult to understand the derivation of running time of the decryption oracle simulator,
because this is not clearly explained.

• The simulator for hash oracles G and H should reply the same answer for the same query.
Therefore, the list of past queries should be checked first in response to a query, but this is
not described.

2.3 Evaluation of Individual Cryptographic Techniques 79

• For target ciphertext y, if s that satisfies y=(s||t)2 mod N is queried to the H oracle, the
integer factoring machine M with modulus N immediately stops, and s is not recorded in
the query list of the H oracle. On the other hand, the success probability of machine M is
evaluated with the event where s is recorded in the query list of the H oracle, which will
cause discrepancies in discussions unless description of the machine M operation is
corrected.

• The symbol * to be returned when the decryption oracle fails simulation is not explained.
Additionally, there are several incorrect descriptions.

• Several external evaluators said that proof in the self-evaluation report was hard to read.

On the other hand, an evaluator originally configured the proof that HIME(R) is IND-CCA2 in the
random oracle model. Also, other evaluators anticipated that the proof in the self-evaluation report can
be corrected and that HIME(R) has provable security.

The evaluator who originally configured the proof of security offered the following two results:

1. According to the proving method in the self-evaluation report, the evaluator corrected the
lemma 2.1 in question. Further, the evaluator corrected the evaluation expression for the
success probability and for the execution time between IND-CCA2 attacker and modulus N
integer factoring, which will finally be obtained on the assumption that the other parts are
correct.

2. By applying the proving technique [6] used by Shoup for proving RSA-OAEP+, the security
proof was re-structured. Further, configuration of the decryption oracle simulator was
changed to the one that more positively uses the Coppersmith algorithm [3], and the execution
time of modulus N integer factoring machine was improved. As a result, the oracle simulator
was changed from the old type requiring qGqH times of HIME(R) encryption steps to qDqH
times of Coppersmith algorithm execution steps.

However, the proof of security provided by the evaluator was presented in the external evaluation report
for the first time. Therefore, it should be noted that the security proof has not been well scrutinized by
many researchers. This is because why we were not able to decide that HIME(R) had provable security
as of September 2002.

Recommendable parameter size :

In the self-evaluation report, the size of modulus is obtained, where integer factoring calculation volumes
for the RSA type integer (pq type) and for the pdq type integer are equal. Out of the elliptic curve
method and the number field sieve method as an integer factoring algorithm, the calculation volume using
the algorithm that requires less calculation volume under the specified parameter size, was evaluated.
As a result, for the HIME(R) modulus, 1344 bits, 2304 bits, and 4032 bits are recommended when d=2,
and 1536 bits, 3072 bits, and 4928 bits are recommended when d=3, corresponding to 1024 bits, 2048 bits,
and 4096 bits, respectively, for the RSA modulus. These recommended modulus sizes are considered to
be appropriate.

If the HIME(R) modulus is the p2q type (d=2), the modulus size corresponding to RSA 4096 bits is
reduced to 4032 bits. This is a recommended size calculated from the viewpoint of implementation in
the case where 1 word is 32 bits. In general, this does not mean that the p2q type can reserve the same
security level with a smaller size than that of the pq type, when the integer is larger than 4096 bits.

80 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.3.6.6 Comparison with similar schemes

Characteristics of HIME(R) were compared with those of similar integer factoring-based schemes
belonging to the category of confidentiality. The schemes compared were RSA-OAEP [5],
RSA-OAEP+ [6], Rabin-SAEP [8], and Rabin-SAEP+ [8].

In the table shown below, k is the modulus size, qG, qH, qD are the numbers of queries to hash oracle G,
hash oracle H, and decryption oracle D. Encryption, decryption, plaintext length, and ciphertext length
were compared using parameters that have the security level of RSA 1024 bits. For the encryption and
decryption processes, 1024-bit multiplication was assumed as "mul" and conversion into the number of
times of multiplication was made for estimation. The base problem is the one on which security of each
scheme is based. Fact(p2q) means p2q type integer factoring, while RSA(pq,e) means the RSA problem
with a public key N(=pq), e.

Scheme Base
problem

Reduction
efficiency Encryption Decryption Plaintext

length
Ciphertext

length

HIME(R) Fact(p2q) qD qH × O(k3) 1.7mul 275 mul 1087bit 1344bit

RSA-OAEP RSA(pq,e) 2qG qH × O(k3) 17mul 385mul 767bit 1024bit

RSA-OAEP+ RSA(pq,e) qG qH × O(k3) 17mul 385mul 767bit 1024bit

Rabin-SAEP Fact(pq) qG qH × O(k3) 1mul 385mul 256bit 1024bit

Rabin-SAEP+ Fact(pq) qH × O(k3) 1mul 385mul 256bit 1024bit

• From the viewpoint of reduction efficiency for the base problem, Rabin-SAEP+ was best

and the others are nearly equal. However, this can be said on the assumed that the
provable security of HIME(R) has been well recognized.

• The encryption times are nearly equal. Regarding the decryption time, HIME(R) is
shortest.

• Regarding the plaintext size, HIME(R) can have the largest size, but Rabin-SAEP and
Rabin-SAEP+ have the smallest size. However, the difference between HIME(R) and
RSA-OAEP (or RSA-OAEP+) is due to the modulus size difference, which is not
considered to be substantial.

• Regarding the ciphertext size, HIME(R)'s size is largest and least efficient.

As mentioned above, HIME(R) is superior in some factors but inferior in another factor. It is not
considered that HIME(R) is remarkably superior to other similar schemes.

References

[1] Hitachi, Ltd., "Cryptographic Technique Specification: HIME(R) Cryptography", 2002

CRYPTREC Submission
http://www.sdl.hitachi.co.jp/crypto/hime/index-j.html

[2] Hitachi, Ltd. "Self-evaluation Report: HIME(R) Cryptography", 2002 CRYPTREC
Submission
http://www.sdl.hitachi.co.jp/crypto/hime/index-j.html

2.3 Evaluation of Individual Cryptographic Techniques 81

[3] D.Coppersmith, "Finding a Small Root of a Univariate Modular Equation", Advances in
Cryptology – EUROCRYPT '96, Lecture Notes in Computer Science 1070, Springer-Verlag,
pp.155–165, 1996.

[4] D.Coppersmith, "Modifications to the Number Field Sieve", Journal of Cryptology, Vol.6,
No.3, pp.169-180, 1993.

[5] M.Bellare and P.Rogaway, "Optimal Asymmetric Encryption – How to Encrypt with RSA",
Advances in Cryptology – EUROCRYPT '94, Lecture Notes in Computer Science 950,
Springer-Verlag, pp.92–111, 1995.

[6] V.Shoup, "OAEP Reconsidered", Advances in Cryptology – CRYPTO2001, Lecture Notes in
Computer Science 2139, Springer-Verlag, pp.239–259, 2001.

[7] E.Fujisaki, T.Okamoto, D.Pointcheval, and J.Stern, "RSA-OAEP is Secure under the RSA
Assumption", Advances in Cryptology – CRYPTO2001, Lecture Notes in Computer Science
2139, Springer-Verlag, pp.260–274, 2001.

[8] D.Boneh, "Simplified OAEP for the RSA and Rabin Functions", Advances in Cryptology –
CRYPTO2001, Lecture Notes in Computer Science 2139, Springer- Verlag, pp.275–291, 2001.

[9] T.Takagi, "Fast RSA-type Cryptosystem Modulo pkq", Advances in Cryptology – CRYPTO'98,
Lecture Notes in Computer Science 1462, Springer-Verlag, pp.318– 326, 19981.

2.3.7 ECDH

2.3.7.1 Cryptographic technique evaluated

• SEC 1: Elliptic Curve Cryptography (September 20, 2000, Version 1.0)[1]

2.3.7.2 Technical overview

ECDH is a public key cryptosystem established by SECG (Standards for Efficient Cryptography Group),
and is a key agreement scheme using an elliptic curve. This cryptographic technique was submitted to
2000 CRYPTREC as ECDHS, but it was renamed to ECDH and submitted in 2001. These schemes are
identical.

2.3.7.3 Technical specifications

Summary of the specifications of ECDH are as follows. For details, see the specifications.

Elliptic curve parameters (i) (p, a, b, G, n, h) or (ii) (m, f(x), a, b, G, n, h):

(i) Parameters consisting of elliptic curve E: y2=x3+ax+b (a,b ∈ Fp) on a prime field Fp, a base
point G ∈ E(Fp) with prime order n, and h=#E(Fp)/n.

(ii) Parameters consisting of an elliptic curve E: y2+xy=x3+ax2+b(a,b ∈ F2m) on the field F2m
defined by m-th degree irreducible polynomial f(x) on F2, a base point G ∈ E(F2m) with prime
order n, and h=#E(F2m)/n.

KDF: Key Derivation Function

Initial setting:

1. Users U and V determine key derivation function (KDF) and elliptic curve parameters
((p,a,b,G,n,h) or (m,f(x),a,b,G,n,h).

82 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2. Users U and V respectively generate private keys dU and dV and public keys QU and QV
belonging to the above elliptic curve parameters.

• User U: Selects an integer dU ∈ [1,n-1] at random and calculates QU=dUG.
• User V: Selects an integer dV ∈ [1,n-1] at random and calculates QV=dVG.

Key agreement: Users U and V generate shared key information K as described below.
• User U: Calculates x- coordinate Z = x(dUQV) of dUQV and obtains K=KDF(Z).
• User V: Calculates x-coordinate Z = x(dVQU) of dVQU and obtains K = KDF(Z).

2.3.7.4 Security evaluation

The security of ECDH depends on elliptic curve discrete logarithm problem. Several attacks against the
elliptic curve discrete logarithm are known. For ECDH, explicit elliptic curve parameters of various
sizes, to which those known attacks cannot be applied, are given in the SEC 2 document. (Note that these
parameters are just recommended, not to exclude out the use of other elliptic curve parameters.) SEC 2
parameters include elliptic curves selected at random in a verifiable form and a special type of elliptic
curves, called Koblitz curve (see 2.3.2.4 "Security of Koblitz curve"). Koblitz curves are included
because of the effectiveness and the maturity. However, since they are in a limited class, attention
should be paid to the possibility that attacks specific to that class may emerge. (see 2.3.2.4 "Security of
Koblitz curve").

ECDH is a Diffie-Hellman key agreement scheme using an elliptic curve and is one of the most basic key
agreement schemes. Regarding passive attacks, no major problems have been pointed out. However,
ECDH is not secure enough against active attacks. Attention should be paid to at least the following two
points:

• To prevent attacks by an intermediate party, connection between the public key and user
should be guaranteed by using electronic signatures or other means.

• As long as users use the same public key, shared key information is identical. When
ECDH is used for a session key agreement (on the assumption of updates), the public key
exchanged must be a temporary one.

Some full evaluators proposed key agreement schemes using ECDH primitive in combination with
electronic signature, which has provable security against active attackers, and enables forward-secrecy
[2].

References

[1] Certicom Research, standards for efficient cryptography group (SECG), September 20, 2000.

Version 1.0.
http://www.secg.org/secg_docs.htm

[2] 2000 ECDHS Detailed evaluation Report, evaluators #2, #3

2.3 Evaluation of Individual Cryptographic Techniques 83

2.3.8 DH

2.3.8.1 Cryptographic techniques evaluated

• The basic scheme presented in "New directions in cryptography" by W. Diffie and M.E.

Hellman [1] was evaluated.
• CRYPTREC designated the following for reference for the specifications:

ANSI X9.42-2001, "Public Key Cryptography for Financial Services Industry:
Agreement of Symmetric Keys Using Discrete Logarithm Cryptography" [2]

2.3.8.2 Technical overview

DH, proposed by W. Diffie and M.E. Hellman in 1976, is a public key cryptosystem to achieve key
agreement function.

2.3.8.3 Technical specifications

Only common basic processing (parts sharing secret information) is described here. The reference
document defines six schemes based on the processing; dhStatc, dhEphem, dhOneFlow, dhHybrid1,
dhHybrid2, and dhHybridOneFlow. In these schemes, the key to be shared finally is generated by the
key derivation function (KDF). In the document, two KDFs are defined and one of them is selected for
practical use. Therefore, 12 key agreement methods in total are defined in this document using a
combination of 6 schemes and 2 KDFs. For details, see the reference document. When determining a
method to be used, the method that will not deteriorate the security in the operational environment must
be selected, based on the description of security evaluation. Also refer to Appendix E.3 of the reference
document, which describes the guidelines for selection. Pay attention to the fact that the adequacy
verification process described in the document is required for each parameter.

Setting parameters common to systems

Input: L,m,n Security parameters

 L=256 n, m ≥ 160 for an integer n that is 4 or larger

Output: (p,q,g) Parameters common to systems

Processing steps:

1. Generate a prime number p that satisfies 2(L-1)<p<2L and a prime number q that is a divisor of
p-1 and satisfies 2(m-1)<q<2m.

2. Select g ∈ Z*p as the primitive element of order q.

84 Chapter 2 Evaluation of Public-key Cryptographic Techniques

User's initial settings

Input: (p,q,g) Parameters common to systems

Output: x User's private key (integer)

 y User's public key (y ∈ Z*p)

Processing steps:

1. Randomly generate an integer x that is equal to or smaller than 1, and equal to or greater than
q-1.

2. Calculate y=gx mod p.

Secret information sharing processing

The user U starting secret information sharing must perform the following process. The user V, the
other party, must perform similar process (swap U and V).

Input: (p,q,g) Parameters common to systems

 xU Private key (integer) of user U

 yV Public key (yV ∈ Z*p) of user V

Output: "Failure" or Z

Processing steps:
1. Calculate Z= yV XU mod p.
2. Output "Failure" if Z=1. Otherwise, output Z.

2.3.8.4 Security evaluation
a) The schemes described in the previous section have a very simple basic form. Since there are

many protocol variations in the Diffie-Hellman method, evaluation of individual protocols is
required. (Examples of protocols actually used: RFC2631, ISO 11770-3, Oakley, PGP) The targets
of evaluation are basic schemes only.

b) If only passive attacks are assumed, the basic part of a secret sharing protocol is reduced to the
Diffie-Hellman problem. In the sense that the shared secret information cannot be distinguished
from random bit strings, it is reduced to the Decisional Diffie-Hellman problem by limiting the
range or other means.

c) In the scheme where shared secret information is used as a session key, there are various factors that
affect the security. The number of combinations of these factors is enormous, so it is difficult to
evaluate the security for every combination. The following are some examples of the factors to be
taken into consideration.
1) Whether pair of keys is static or ephemeral
2) Whether the correspondence between public key and entity is guaranteed or not (nocert/cert).

Moreover, whether it is guaranteed that the entity has a corresponding private key (strongcert).
3) Whether public key is signed or not when it is exchanged (unsigned/signed).

d) In the scheme where shared secret is used as a session key, the use in the form described in the
previous section may lead to problems described in e). Therefore, it is required at least to "provide
a means to secure the correspondence between the public key and the entity, and if used as a session
key, the public key to be exchanged should be ephemeral."

2.3 Evaluation of Individual Cryptographic Techniques 85

e) The following are examples of combinations in question and specific attacks:
1) When both users' keys are static
 Fixed-session-key attack: Since the session key is static, the use in counter mode reveals the

secret if the same Vernam pad is used for each session.
2) When the correspondence between private key and public key is not guaranteed (not strongcert)
 Unknown key-share attacks: The attacker pretends as if he/she is communicating by disguising

that user's public key is his/her public key, thus invading each user.
3) Others
 Captured session key attacks: When at least either one is a static key, once the session key is

revealed, the same session key will be used continuously afterwards.
 Key-translate attacks: In the case of nocert/unsigned, multiplying the key by α allows sharing of

different keys.
 Reveal attacks: If secret coin (confidential information) is revealed during public WS operation,

other secret information is affected (lack of forward secrecy).
 Attacks intrinsic 2-flow AKE (Authenticated Key-Exchange protocols): When there are only two

flows and the second flow is independent of the first, this will cause problems that there is no
forward secrecy in the strong-corruption model or no A -to-B/B-to-A authentication, etc.

f) Making improvements, for example, by using signatures for the public key can solve some of
problems.

References

[1] W. Diffie and M. E. Hellman, "New directions in cryptography", IEEE Trans. Information

Theory, vol. IT-22, pp.644-654, 1976.
[2] ANSI X9.42-2001, "Public Key Cryptography for the Financial Services Industry: Agreement

of Symmetric Keys Using Discrete Logarithm Cryptography", American National Standards
Institute, 2001.

2.3.9 PSEC-KEM

2.3.9.1 Cryptographic technique evaluated

• NTT Information Sharing Platform Laboratories, "PSEC-KEM Specifications" (May 14,

2002) [4]

2.3.9.2 Technical overview

PSEC-KEM is a key encapsulation mechanism (KEM) based on an elliptic curve discrete logarithm
problem. KEM can be used as a component of hybrid encryption that is a means to create a public-key
cryptosystem for confidentiality. The hybrid encryption has been studied based on the algorithm [5]
proposed by Mr. Victor Shoup at ISO/IEC JTC1/SC27/WG2, and consists of a combination of the
following:

• KEM with a public-key cryptosystem based provable security
• Data Encapsulation Mechanism (DEM) with a symmetric-key cryptosystem based provable

security

86 Chapter 2 Evaluation of Public-key Cryptographic Techniques

We call the hybrid encryption as KEM-DEM cryptosystems. If KEM and DEM fulfill their provable
security defined by each, the provable security for KEM-DEM cryptosystems is ensured. Therefore,
KEM-DEM cryptosystems gather attention as a method with provable security, that is highly independent
(flexible) between public key cryptosystem and symmetric key cryptosystem.

When using PSEC-KEM, CRYPTREC recommends that the elliptic curve parameters should be selected
using the elliptic curve parameter selection method specified by SECG*11 (Standards for Efficient
Cryptography Group). On selection of the elliptic curve parameters, see 2.5.3.

In 2001, PSEC-KEM was submitted to CRYPTREC 2001 (key exchange category) as the revision of
PSEC-2 submitted to CRYPTREC 2000 (public key cryptosystems for confidentiality category). The
Public-Key Cryptography Subcommittee decided to treat PSEC-KEM as a new submission.

2.3.9.3 Technical specifications

Specifications (overview) of PSEC-KEM are as follows. For details, refer to its specification document.

PSEC-KEM consists of a key generation algorithm G, an encryption algorithm E, and a decryption
algorithm D, which are described below.

Key generation algorithm G

First, key generation algorithm G determines an elliptic curve E and the base point P using the elliptic
curve parameter selection method SEC 1 specified in SECG. Then, public key PK and secret key SK are
generated by the following process:

1. Generate a random number s ∈ {0, ... ,p-1}, where p is the order of base point P.

2. Calculate W=sP.

3. Select a proper key derivation function KDF. The KDF can generate a hash function value
with an arbitrary length. The PSEC-KEM specifications recommends to use MGF (Mask
Generation Function) [5] as KDF based on a hash function SHA-1.

4. Select a proper bit length hLen.

5. Output public key PK =(E,W,KDF,hLen).

6. Output secret key SK =(s,PK).

The PSEC-KEM specification recommends that the p's bit length be 160 and hLen be 160.

Encryption algorithm E

The encryption algorithm E inputs PK and outputs ciphertext C and keyLen-bit shared key K.

1. Generate a hLen-bit random number r.

2. Generate a (pLen+128+keyLen)-bit G = MGF(032||r), where 032 is a bit string representing
32-bit 0.

3. Assuming G=t||K, divide G into (pLen+128)-bit t and keyLen-bit K.

4. Calculate α =t mod p.

5. Calculate Q=αW,C1=αP.

*11 http://www.secg.org/

2.3 Evaluation of Individual Cryptographic Techniques 87

6. Generate hLen-bit H=MGF(132 || C1||Q), where 132 is a bit string representing 32-bit 1.

7. Generate hLen-bit C2=r⊕ H.

8. Output ciphertext C=(C1, C2) and shared key K.

The PSEC-KEM specification recommends that the keyLen's bit length be 256.

Decryption algorithm D

The decryption algorithm D inputs SK and ciphertext C, and outputs keyLen-bit shared key K (or
"invalid").

1. Divide ciphertext C into C=(C1, C2).

2. Calculate Q = sC1

3. Generate hLen-bit H=MGF(132 || C1||Q), where 132 is a bit string representing 32-bit 1.

4. Generate hLen-bit C2= r⊕H.

5. Generate (pLen+128+keyLen)-bit G = MGF(032||r), where 032 is a bit string representing 32-bit 0.

6. Assuming G=t||k, divide G into (pLen+128)-bit t and keyLen-bit K.

7. Calculateα=t mod p.

8. Verify whether C1=αP stands.

9. If C1=αP, output shared key K. (Otherwise, output "invalid".)

2.3.9.4 Security evaluationε

Definition of KEM security

Definition of IND-CCA2 (semantic security against adaptive chosen-ciphertext attacks) of KEM is
slightly different from the definition of IND-CCA2 of a public-key cryptosystem. IND-CCA2 of KEM
is defined as follows:

"When ciphertext C and bit string K of KEM are given, any attacker A (in polynomial time) cannot
identify whether bit string K is the correct shared key (Key) obtained by KEM or a random key at a
significant probability by using the decryption oracle."

The above definition means that attackers using the decryption oracle cannot decode any part of the
shared-key information from the ciphertext in polynomial time.

Security evaluation of PSEC-KEM

PSEC-KEM has the provable security of IND-CCA2 as KEM described above on the assumption of the
difficulty of EC-CDH in the random oracle model.

Theorem 10: Assume an attacker in IND-CCA2 against PSEC-KEM as A. Assume the success
probability of A as ε, attack time as t, and the numbers of inquiries to the decryption oracle, random
oracle G and random oracle H as qD, qG, and qH, respectively. The EC-CDH problem can be solved
with the success probability ε' and time t' that satisfy the following expression:

88 Chapter 2 Evaluation of Public-key Cryptographic Techniques

hLen
GDDG qq

q
qq

2
)21)(3(

)21(2
'

128

128

+
−

++
−

+
≥

−

−

εε

t' ≤ t + qH × (T + O (1))

where, T is the calculation time for multiplication on the elliptic curve twice.

Under the assumption of the random oracle model, this theorem indicates that, if an attacker breaking
IND-CCA2 of PSEC-KEM exists, the attacker can calculate EC-CDH. Alternatively, this theory is
proven by assuming an attacker breaking IND-CCA2 of PSEC-KEM, configuring a polynomial time
algorithm that actually calculates the EC-CDH problem, and obtaining the success probability.

2.3.9.5 Overview of KEM

Hybrid encryption for confidentiality using KEM

By combining KEM with DEM separately defined, a hybrid cryptosystem for confidentiality called
KEM-DEM cryptosystem, that has the provable security of IND-CCA2 is configured. On KEM-DEM
cryptosystem, both sender and receiver first share a session key on a public key cryptosystem basis
through KEM. On the other hand, DEM consists of a symmetric key cryptosystem (SYM) and a
message authentication code generator (MAC) to ensure the integrity of messages. The sender encrypts
a plaintext using the session key at SYM, and generates the message authentication code of the plaintext
at MAC, and then combines them and sends as a ciphertext. The receiver divides the ciphertext into
encrypted plaintext and the message authentication code. Then, the receiver decrypts the former at SYM
to obtain a deciphertext. Moreover, the receiver generates the message authentication code of the
deciphertext at MAC, compares it with the message authentication code sent from the sender, and outputs
the deciphertext if both match.

KEM-DEM cryptosystem is more efficiently than other methods with IND-CCA2 security to enable to
encrypt a long plaintext. Moreover, KEM-DEM cryptosystem has high flexibility by independently
configuring KEM and DEM that satisfy provable security.

Informal definitions on the provable security of KEM-DEM cryptosystem are as follows:
• KEM: When ciphertext C and bit string K of KEM are given, any attacker A (in polynomial

time) cannot identify whether bit string K is the correct shared key (Key) obtained by KEM
or a random key at a significant probability even if using the decryption oracle.

• SYM: When a ciphertext corresponding to one of the two messages selected by attacker A
is obtained, it cannot be identified which message is the original message from the
ciphertext at a significant probability.

• MAC: One-time message authentication code generating function using a disposable key.

What should be recommended as DEM (i.e. SYM and MAC) is presented to the next standardization step
[6]. So, this is a future issue.

Recently, a paper [2] on the security of KEM-DEM cryptosystem was presented at NESSIE. The paper
points out that the KEM-DEM cryptosysytem has the possibility of a security concern if a special
situation where DEM depends on KEM is assumed. The paper redefines the security conditions
required for DEM.

2.3 Evaluation of Individual Cryptographic Techniques 89

Other applications using KEM

In Reference [3], it is suggested that the session key shared in KEM can also be used for key delivery,
authentication or key agreement other than confidentiality. However, a model for proving the security
proof in cryptographic schemes other than confidentially is not defined yet.

Submitted KEM schemes

• ACE-KEM:
For the security of ACE-KEM, reduction to EC-DDH is proven under the assumption of
the universal one-way hash function.

• ECIES-KEM:
For the security of ECIES-KEM, reduction to EC-gap-DH is proven in the random oracle
model.

• PSEC-KEM:
For the security of PSEC-KEM, reduction to EC-CDH is proven in the random oracle
model.

• RSA-KEM:
For the security of RSA-KEM, reduction to RSA-one-way is proven in the random oracle
model.

Compared with the above KEM schemes, it cannot be said which is the best because the relations
between models and the security of reduction problems have not been solved. Regarding the operation
time, ECIES-KEM and PSEC-KEM are faster than the other schemes.

2.3.9.6 Conclusion

PSEC-KEM has provable security as KEM, and is efficient when configuring a KEM-DEM cryptosystem
in combination with DEM that has provable security defined separately.

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, "Relations Among Notions of Security

for Public-Key Encryption Schemes," Proc. of Crypto '98, Springer- Verlag, LNCS 1462,
pp.26-45 (1998).

[2] Louis Granboulan, "RSA hybrid encryption schemes,"
https://www.cosic.esat.kuleuven.ac.be/nessie/reports/phase2/rsaenc-pub.pdf.

[3] B. Kaliski, "Key Encapsulation: An Emerging Paradigm for Public-key Cryptography,"
RSA-COnference-2002-Japan (2002.5.29-30) Conference Note, 2002.

[4] NTT Information Sharing Platform Laboratories, "PSEC-KEM Specification" (May 14, 2002),
submitted to CRYPTREC
http://info.isl.ntt.co.jp/psec/index-j.html

[5] RSA Laboratories, "pkcs#1 V2.1: RSA encryption Standard," June 14, 2002.
[6] Victor Shoup: "A Proposal for an ISO Standard for Public Key Encryption,"

http://shoup.net/papers/iso-2.pdf.

90 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.4 Evaluation of the Difficulty of Number-Theoretic Problems

2.4.1 Integer Factoring Problem

Detailed evaluation was conducted in 2001 on the current status of the integer factoring problem. This
was to give a common evaluation criteria for the cryptographic schemes and their underlying primitives
of which security depends on the difficulty of factoring rational integers. Based on these evaluation
results, the most powerful integer factoring algorithms at present, and the size of composite number
deemed secure practically, and its prospects are summarized in this section. Some issues that may affect
the difficulty of the problem are mentioned at the end.

2.4.1.1 Powerful Algorithms

To consider the integer factoring problem focusing on the evaluation of cryptographic primitives, a
composite number to be factored is assumed as n = prq (p, q: prime numbers, p<q, r≥1). If r=1, the
composite number becomes a number used in RSA, etc.

There are some known algorithms that are used to solve the integer factoring problem. They are
classified into two categories depending on the major factors that determine function for execution time.
One category includes algorithms whose execution time is determined depending on |p|, the size of the
minimum prime factor of n, and the other includes algorithms whose execution time depends only on |n|,
the size of n. The fastest algorithm in the former category is the elliptic curve method (ECM)[9], and
the fastest algorithm in the latter is the general number field sieve method (GNFS)[10]. Both of them
require subexponential time. For GNFS, however, a scheme (circuit-based NFS) that aims speedup by
making the hardware execute a part of the algorithm (final stage processing called linear algebra), was
proposed [3]. Based on this idea, a method has been developed, which improves dedicated hardware
and optimizes GNFS on the assumption of the use of the hardware [12]. Specifically, the following
table summarizes these algorithms:

Integer factoring algorithms

Elliptic curve method (ECM) General number field sieve method (GNFS)

Input
n

(n= prq, p<q, r ≥ 1)

Runni
ng

time

O (exp(2
2)(log)logloglog(nppc eee ⋅))

(Function of |p| mainly, c = 1.414)

O (exp(c(loge n) 1/3 (loge loge n) 2/3))
(Function of |n| , c = 1.901 (Reference [7]).

However, evaluated as c=1.868 in circuit-based
NFS (Reference [12])

Practi
cal

execu
tion

condit
ions

|p| ≤ θe
(θe = 183 as of 2002)

|n| ≤ θg
(θg = 524 as of 2002)

2.4 Evaluation of the Difficulty of Number-Theoretic Problems 91

"Practical execution conditions" in the above table is the conditions where integer factoring can be
performed within a practical time when the algorithm and the currently available computing resources are
used. Since it is defined by an ambiguous term "practical", and available computing resources are not
restricted, θe and θg are naturally non-standardized uncertain values. However, it is not very unnatural
to determine them according to successful examples of integer factoring. In this sense, it was considered
that θe = 183 (Reference [14]), and θg = 524 (Reference [2]) as of 2002.*12 Prospect of θe and θg is
described later. Regarding GNFS (circuit-based NFS) using dedicated hardware, summary of Reference
[12] is described later.

For ECM and GNFS, studies for improving the execution time while retaining the algorithm's basic
strategy are ongoing (for example, [15] for ECM, and, [3] and [12] for GNFS on assumption that [7]
and dedicated hardware are used). Because of this, it is necessary to note that both algorithms were
current as of 2002.

Additionally, the lattice factoring method (LFM)[4] is an algorithm specialized for n = prq type composite
numbers. If |p| = |q| and r is approximately log2p, the execution time of this algorithm reaches the
polynomial time of |n|. (This means that the composite number can easily be factored.) However, if r is
a small constant (for example, r = 1, 2 or 3), the execution time requires an exponential time, which is
much slower than the execution time of ECM or GNFS.

2.4.1.2 Secure size of composite number

The "secure size of composite number at a certain point of time" means a presumed size of a composite
number n that cannot be practically factored at that time, even if a fastest algorithm and computing
resource that can factor n of the size and type are provided.

As is seen in the above description on powerful factoring algorithms, in order to secure a composite
number n = prq (p <q, r ≥ 1), all of the following conditions ((1), (2) and (3)) must be satisfied.

(1) r is a small constant.
(2) |p| >> θe
(3) |n| >> θg

The purposes of conditions (1) to (3) are to avoid attacks by LFM, to avoid attacks by ECM, and to avoid
attacks by GNFS, respectively.

However, θe and θg are not standardized. Even if they are standardized, if unnecessarily large values are
set for |p| and |n|, this will produce bad side effects on the performance of the scheme (for example, time
for encryption, decryption, signature generation, and signature verification). Therefore, it is necessary to
assess the practically secure range of |p| and |n|, referring to values θe and θg

In the detailed evaluations conducted in 2001, four out of five evaluators accepted the argument that if |p|
= |q|, both of the following (a) and (b) stood as of 2001. (One evaluator did not clearly state specific
ranges that were suppose to be secure.)

(a) As of 2001, n = pq was supposed to be secure if |p| = |q| and |n| ≥ 1024.
(b) As of 2001, n = p2q was supposed to b e secure if |p| = |q| and |n| ≥ 1024.

*12 According to a notice on the Internet dated April 1, 2003, an n=pq type composite number of n= 530 (decimal 160

digits) was factored by CNFS. F. Bahr, J. Franke, T. Kleinjung, M. Lochter, and M. Bohm, “RSA-160”.
http://www.loria.fr/”zimmerma/records/rsa160

92 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Note that some important supplementary comments were given on the margin in detail. Intuitively, it
can be said that the difference between the size that determines practical execution conditions of the
algorithm (θe and θg) and the actual size (|p| and |n|) relates the margin. The reason for taking the margin
into consideration is that, when the margin is small, if the algorithm or available computing resource is
drastically improved, θe and θg increase and factoring may possibly occur with original p and n. For
example, if the margin against attacks by ECM is considered with n = pq and n = p2q (|n| = 1024 in both
cases), the size of the minimum prime factor |p| will differ, and it is clear that the margin is smaller in the
case of n = p2q than the case of n = pq.

In conjunction with the discussion of the margin, estimating future values of θe and θg is important in
studying the lifetime of the security of each scheme based on the integer factoring problem. Though
such estimate is not easy, Reference [5] derived an estimating expression to tell whether factoring of a
composite number with what size will be possible in what year, based on the Moore's law and by
extrapolating the composite number size factored in the past into the future. According to the expression,
for n = pq and n = p2q, when |n| = 1024 and |p| = |q|, computing the minimum prime factor of the former
(512 bits) using ECM will become practical in around 2048, and computing the minimum prime factor of
the latter (342 bits) using ECM will become practical in around 2027. For |n| = 1024 regardless of the
type, computing n using GNFS will become practical around 2018. Therefore, under the assumption
that "forecasting in Reference [5] is correct", if |n| is set to be 1024, a lower-limit value, in (a) and (b)
above, the n will work as a composite number that cannot be practically factored for over 10 years from
2002, even though yearly decrease of the margin is unavoidable.

On the other hand, Reference [13] presented the lower limit of |n| recommended at that time (year).
While Reference [5] indicates |n| that was estimated to be factored at that time, Reference [13] presents a
recommended lower limit by estimating the margin to be secured at that time. Consequently, the value
of Reference [13] is naturally larger than that of Reference [5]. Note that Reference [13] conducted
forecasting under the assumption of a slightly expanded version of the Moore's law.

2.4.1.3 Supplementary Explanation

Generally, existing algorithms have possibility of being improved. Therefore, the fastest algorithms; the
elliptic curve method (ECM) and the general number field sieve method (GNFS), may become faster.
Particularly regarding implementation of GNFS using dedicated hardware, not only hardware
implementation of the GNFS linear algebra part [3, 12] but also hardware implementation of the sieve
part [18, 20, 8] are presented. Feasibility of such realistic implementations is closely associated with the
changes in the hardware cost and performance due to the recent advance of semiconductor technologies.
Therefore, it is also necessary to continuously watch not only theoretic fields but also overall information
technologies. However, the major opinion is that threats of factoring by dedicated hardware was not
imminent as of 2002 with regard to |n|=1024 [12, 17]. On the other hand, the lattice factoring method
(LFM) is capable of factoring in a polynomial time depending on the type of composite number, and in
view of the fact that it is not long since it was devised, its potential is relatively large. It must be noted
that, as in the discussion on the margin, the aging degradation of the margin is unavoidable. In
consideration of these mentioned above, validity of the assertions (a) and (b) should be continuously
monitored.

2.4 Evaluation of the Difficulty of Number-Theoretic Problems 93

Several matters that may dominate the difficulty of the integer factoring problem are shown below.
• Quantum computers implemented with the Shor's algorithm [21] can solve the integer

factoring problem efficiently. If such a computer reaches a level accepting large size
inputs, the integer factoring problem finishes its role at least as a cryptographic primitive.
As of 2002, a 4-bit composite number, 15 (=3×5) was factored on a quantum computer with
the Shor's algorithm [22].

• Attention should also be paid to efficient algorithms for number-theoretic problems that
have relation with the integer factoring problem with respect to some reducibility. For
example, the problem of factoring n = prq (r > 1) reduces to the squarefree part problem in
polynomial time. The squarefree part problem is a problem that on input n , outputs {u, v}
such that n = u2v and v is squarefree, where v is said to be squarefree if v does not have any
factors of type a2 (a > 1). If an efficient algorithm for this is discovered, factoring n = prq
(r > 1) will be solved efficiently. However, it is not known that factoring n = pq (r = 1)
reduces to the squarefree part problem.
In 2002, a deterministic polynomial-time algorithm for the primality testing was discovered
[1]. If the integer factoring problem can be solved in deterministic polynomial time, the
primality can also be tested in deterministic polynomial time. However, the converse is
not known to hold. Therefore, the result of Reference [1] does not directly affect the
difficulty of the integer factoring problem.

• In the structural complexity theory, if a dramatic result concerning the inclusion relations
among computational complexity classes is proven, difficulties of many number-theoretic
problems including the integer factoring problem may be affected dramatically.
Languages that are equivalent to the integer factoring problem with respect to the
polynomial-time Turing reducibility are in NP ∩ co-NP.

• The size that can practically be factored is affected by when the Moore's law will break
down. It is considered that the life of the Moore's law has extended to 2005 or further.
However, if the law breaks down, threats caused by the speedup of single-unit CPUs will be
mitigated, and the actually factorable size may be limited. In such a case, however, threats
due to factoring by massively distributed computing executed by a huge number of CPUs,
will still remain.

2.4.1.4 Optimization of number field sieve method by dedicated hardware

This section introduces the summary of Reference [12].

The security of many public-key cryptographic primitives whose security is based on the difficulty of the
integer factoring problem is evaluated based on the running time of the general number field sieve
method (GNFS). Recently, methods of using dedicated hardware were proposed to run GNFS more
efficiently (see [3, 12]). Although References [11, 16, 18] have also proposed idea to use dedicated
hardware for integer factoring, [3] claims its superiority to those preceding studies.

The heavy computation part in GNFS is divided into "relation collection step" and "matrix step". In [3],
approach to dedicated hardware for both steps is proposed. Particularly for the matrix step, a specific
improvement method using a certain sorting algorithm is described. In [3], applicability of a routing
algorithm to the matrix step is also mentioned. Then, in [12], specific dedicated hardware based on
routing for this step was proposed.

94 Chapter 2 Evaluation of Public-key Cryptographic Techniques

In [3] and [12], effectiveness of the use of dedicated hardware for the matrix calculation step was
estimated under the measure "throughput cost" (construction cost × run time) required for GNFS. As
claimed in [12], it is appropriate to asymptotically estimate that the throughput cost for factoring 1.17n-bit
composite numbers by the standard GNFS is equivalent to the throughput cost for factoring n-bit
composite numbers by the circuit-based GNFS.

Although it may be necessary to discuss more on using the throughput cost as a measure, the estimation
results show that the approaches in [3] and [12] are reasonable.

In [12], they propose a method to realize more compact hardware than the dedicated hardware in [3], and
claim that the matrix step for a 1024-bit composite number can be performed within a few hours if the
dedicated hardware of approx. US$5,000 (except for the cost of mask) is used. However, they noted
that the evaluation described above was based on an "optimistic" assumption. In other words, the size of
the sparse matrix ("small matrix") assumed for the estimate is the value obtained when the asymptotic
throughput cost function is optimized. Caring about this point is necessary when considering the actual
GNFS for 1024-bit composite numbers.

Furthermore, in [12], the matrix size ("large matrix") for 1024-bit composite numbers was estimated
using the standard asymptotic function for the actual matrix size in [6] that was successful in factoring a
512-bit composite number by GNFS. The actual throughput cost was also estimated in this way.
Presently, since the relation collection step throughout GNFS is a bottleneck, these evaluated values seem
to be the significant criteria (for details, see [12]).

Of course, technical difficulties still exist for realization of dedicated hardware described in [12].
Compared with quantum computers, feasibility of this dedicated hardware seems to be higher at present.

In [12], it is mentioned that the security of 1024-bit RSA relies exclusively on the hardness of the relation
collection step in GNFS, and that the 1024-bit RSA is still secure at that point of time.

As a related study, [8] was presented.

References

[1] M. Agrawal, N. Kayal, N. Saxena, "PRIMES is in P," August 2002.

http://www.cse.iitk.ac.in/news/primality.pdf
[2] F. Bahr, J. Franke, T. Kleinjung, "Factorization of 158-digit cofactor of 2953+1," January 21,

2002.
http://www.crypto-world.com/announcements/c158.txt

[3] D.J. Bernstein, "Circuits for integer factorization: a proposal," preprint, available at
http://cr.yp.to/papers.html#nfscircuit

[4] D. Boneh, G. Durfee, N. Howgrave-Graham, "Factoring N = prq for large r," Proc. Crypto'99,
LNCS 1666, Springer-Verlag, pp.326–337, 1999.

[5] R. P. Brent, "Recent progress and prospects for integer factorisation algorithms," Proc.
COCOON 2000, LNCS 1858, Springer-Verlag, pp.3–22, 2000.

[6] S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, P.L. Montgometry, B. Murphy, H.J.J. te Riele,
et.al., "Factorization of a 512-bit RSA modulus", Proc. Eurocrypt 2000, LNCS 1807,
Springer-Verlag, pp.1–17, 2000.

[7] D. Coppersmith, "Modifications to the number field sieve," J. Cryptology, vol.6, pp.169–180,
1993.

2.4 Evaluation of the Difficulty of Number-Theoretic Problems 95

[8] W. Geiselmann, R. Steinwandt, "A Dedicated Sieving Hardware," to appear in Proc. PKC
2003.

[9] H. W. Lenstra, Jr., "Factoring integers with elliptic curves," Annals of Mathematics, vol.126,
pp.649–673, 1987.

[10] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard, "The number field sieve," Proc.
22nd STOC, pp.564–572, 1990.

[11] A.K. Lenstra, A. Shamir, "Analysis and optimization of the TWINKLE factoring device," Proc.
Eurocrypt 2000, LNCS 1807, Springer-Verlag, pp.35–52, 2000.

[12] A.K. Lenstra, A. Shamir, J. Tomlinson, E. Tromer, "Analysis of Bernstein's Factorization
Circuit," Proc. Asiacrypt 2002, LNCS 2501, Springer-Verlag, pp.1– 26, 2002.

[13] A. K. Lenstra, E. Verheul, "Selecting cryptographic key sizes," Proc. PKC 2000, LNCS 1751,
Springer-Verlag, pp.446–465, 2000.

[14] The ECMNET Project
http://www.loria.fr/~zimmerma/records/ecmnet.html

[15] E. Okamoto, R. Peralta, "Faster factoring of integers of a special form," IEICE Trans.
Fundamentals, vol.E79-A, pp.489–493, 1996.

[16] C. Pomerance, J. W. Smith, R. Tuler, "A pipeline architecture for factoring large integers with
the quadratic sieve algorithm," SIAM Journal on Computing, vol.17, pp.387–403, 1988.

[17] RSA Security Inc, "Has the RSA algorithm been compromised as a result of Bernstein's
Paper?" April 8, 2002.
http://www.rsasecurity.com/rsalabs/technotes/bernstein.html

[18] A. Shamir, "Factoring large numbers with the TWINKLE device," Cryptographic Hardware
and Embedded Systems (CHES '99), LNCS 1717, Springer- Verlag, pp.2–12, 1999.

[19] A. Shamir, "Fatoring large numbers with the TWIRL device," presented at Asiacrypt 2002
Rump Session, December 3, 2002.

[20] A. Shamir, E. Tromer, "Factoring large numbers with the TWIRL device (preliminary draft),"
Preliminary draft available at http://www.wisdom.weizmann. ac.il/~tromer/

[21] P. W. Shor, "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on
a Quantum Computer," SIAM J. Computing, vol.26, no.5, pp.1484–1509, 1997.

[22] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang,
"Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic
resonance," Nature, Vol.414, pp.883–887, 20/27 December 2001.

2.4.2 Discrete logarithm problem

CRYPTREC conducted full evaluation on the current situation of the discrete logarithm problem
(hereafter abbreviated to DLP) in order to conduct detailed evaluations of cryptographic schemes whose
primitives' security is based on the difficulty of DLP of a finite group. Based on the evaluation results,
typical attacking algorithms, key size that is considered to be practically secure, and its prospects are
summarized in this section. The matters that may affect the difficulty of the problem itself are described
at the end of this section.

2.4.2.1 Definition of the discrete logarithm problem

Let G be a finite group. When G's element g, and u= gx (x ∈ Z) are given, the discrete logarithm
problem (DLP) is defined as a problem to find the value of x. When used in a cryptographic application,
DLP often takes a multiplicative group of a finite field or a group of rational points on an elliptic curve
defined over a finite field as G. Elliptic curve discrete logarithm problem (ECDLP) is discussed in the
next section. This section mainly discusses the DLP of the multiplicative group of a finite field.

96 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.4.2.2 Attacks

The methods of attacking DLP are classified into two groups: one is the general method applicable to
general finite fields, and the other is the index calculus method [7] using the properties of a finite field
multiplicative group. The following tables show the summary of known attacks of each group and their
computational complexity. The computational complexity of the general method is exponential time
order of group order bit length, while that of the index calculus method is subexponential time order.
Therefore, the speed of the index calculus method is higher than that of the general method.

General method

If N is the order of a group, the computational complexity of the general method depends on N. In the
methods listed in the following table, the Pollard's method can be parallelized. So if m units of PCs are
used, the computation volume required for solving DLP can be estimated as mN /2/π per unit [8].
See the next section for the record of breaking ECDLP.

Name of attack Computation volume Reference

Exhaustive search method O (N)

Pohlig-Hellman method Reduced to DLP on prime order subgroups [9]

Baby-Step/Giant-Step method O (N) [11]

Pollard's method 2/Nπ [10]

Index calculus method

The index calculus method is classified into two types. The one is the number field sieve method
applicable to the multiplicative group of a prime field, and the other is the function field sieve method
applicable to the multiplicative group of an extension field with a small characteristic. The number field
sieve method is further classified into the special number field sieve method and the general number field
sieve method. In 2002, it was reported that the Coppersmith method was used to break DLP in F2607 [3].
The table below shows the summary of the computation volume of each method and the record of
breaking DLP as of 2002.

q in the table indicates the order of a finite field, and Lq[a,b] indicates Lq[a,b] = eb(log q)a(log log q)1-a
.

Name of attack Computation volume Record of break Reference

General number field sieve
method Lq[1/3,c+o(1)],c=(64/9) 1/3 =1.9229... 120 digits [4, 12]

Special number field sieve
method Lq[1/3,c+o(1)],c=1.5262... 129 digits [15, 12]

Function field sieve
method Lq[1/3,c+o(1)],c=(32/9) 1/3 F2521=157 digits [5, 1]

Coppersmith method Lq[1/3,c+o(1)],c ≈ 1.4 F2607=183 digits [13, 14]

2.4 Evaluation of the Difficulty of Number-Theoretic Problems 97

2.4.2.3 Secure key size

When adopting cryptographic primitives whose security is based on the difficulty of DLP, the key size
must be large enough to make it impractical to solve DLP. When considering the secure key size to be
used over a long period of time, it is necessary to take various factors into consideration, such as the
development of computers and DLP solving algorithms. The following are two well-known
"predictions" that are often referred to and their concepts.

Brent's prediction equation [2]

This is an equation used to predict the year when an integer factoring problem of certain digits will be
solved. It is based on the existing record of solving the integer factoring problem. The year Y when
the integer factoring problem of decimal D digits will be solved can be predicted as:

Y = 13.24D1/3 + 1928.6

There is a report that the time required for solving the prime field DLP corresponds to that for solving the
integer (which has more 20 bits) factoring problem. Based on this report, the equation to predict the
year Y when D-digit prime field DLP will be solved is as follows:

Y = 13.24 (D + 6)1/3 + 1928.6

The year Y can be predicted as follows when the number of bits is 1024, 2048, or 4096.

In the case of the multiplicative group of a finite field of characteristic 2, it is recommended to use a
larger bit length because the break record shows that the problem including larger digits than the prime
field has been solved.

Year Bit length

2019 1024

2042 2048

2070 4096

Lenstra-Verheul Table [6]

Lenstra-Verheul table (hereafter abbreviated to LV) indicates the key length required for obtaining the
strength equivalent to that of DES in 1982 in the given year. Note that whereas Brent's prediction
equation presents the key length that can be solved in that year, LV presents a key length with a
considerably large margin that is considered to be secure in that year.

98 Chapter 2 Evaluation of Public-key Cryptographic Techniques

For the index calculus method that is the fastest algorithm against DLP attacks, the bit length of the base
field should be considered. For schemes such as DSA that use relatively small order subgroups, it
should also be checked that general attacks against subgroups are less efficient than the index calculus
method. For schemes that use subgroup DLP, it is necessary to allow not only the bit length of the base
field but also the order of the subgroup to be larger than the value shown in the table. The table below
shows the values of every 10 years excerpted from the LV table.

Year Bit length Order of the group

2002 1028 127

2010 1369 138

2020 1881 151

2030 2493 165

2040 3214 179

2050 4047 193

2.4.2.4 Others

The following are the factors that may affect the difficulty of DLP.
• When quantum computers reach the practical operation level, DLP will be solved

efficiently, thereby terminating the role of DLP as a cryptographic primitive.
• It should be noted that the above prediction would greatly be changed, if a DLP solving

algorithm that is more efficient than the index calculus method should be found due to
occurrence of some mathematical breakthrough.

References

[1] L. Adleman, "The function field sieve," In ANTS I(1994), LNCS 877, pp.108–121,

Springer-Verlag, 1994.
[2] R. P. Brent, "Recent progress and prospects for integer factorization algorithms," Proc.

COCOON 2000, LNCS 1858, pp.3–22, Springer-Verlag, 2000.
[3] D. Coppersmith, "Fast evaluation of logarithms in fields of characteristic two," IEEE Trans. on

Inform. Theory, IT-30, pp.587–594, 1984.
[4] A. Joux and R. Lercier, Discrete logarithms in GF(p), Announcement on the NMBRTHRY

Mailing List, 17. April 2001.
[5] A. Joux and R. Lercier, Discrete logarithms in GF(2n), Announcement on the NMBRTHRY

Mailing List, 25. September 2001.
[6] A. K. Lenstra, E. Verheul, "Selecting cryptographic key sizes," Proc. PKC 2000, LNCS 1751,

pp.446–465, Springer-Verlag, 2000.
http://www.cryptosavvy.com/table.htm
[7] K. McCurley, "The discrete logarithm problem, Cryptography and Computational Number

Theory," Proc. Symp. Appl. Math, AMS Lecture Notes, 42, pp.49–74, 1990.
[8] P. van Oorschot and M. Wiener, "Parallel collision search with applications to hash functions

and discrete logarithms," 2nd ACM Conference on Computer and Communications Security,
pp.210–218, ACM Press, 1994.

2.4 Evaluation of the Difficulty of Number-Theoretic Problems 99

[9] S. Pohlig and M. Hellman, "An improved algorithm for computing logarithms over GF(p) and
its cryptographic significance," IEEE Trans. on Inform. Theory, IT-24, pp.106–110, 1978.

[10] J. Pollard, "Monte Carlo methods for index computations mod p," Math. Comp., 32,
pp.918–924, 1978.

[11] D. Shanks, "Class number, a theory of factorization and genera," In Proc. Symp. Pure Math. 20,
AMS, Providence, R.I., pp.415–440, 1971.

[12] O. Schirokauer, "Discrete logarithms and local units," Phil. Trans. R. Soc. London A 345,
pp.409–423, 1993.

[13] E. Thom'e, "Computation of discrete logarithms in GF(2607)," In Proc. ASIACRYPT 2001,
LNCS 2248, pp. 107–124, 2001.

[14] E. Thom'e, Discrete Logarithms in GF(2607).
 http://www.lix.polytechnique.fr/Labo/Emmanuel.Thome/announcement/ announcement.html
[15] D. Weber and T. Denny, "The solution of mccurleys discrete logarithm challenge," In

Advances in Cryptology - Crypto '98, LNCS 1462, pp. 458–471, 1998.

2.4.3 Elliptic curve discrete logarithm problem

2.4.3.1 Definition

Let K = Fq be a finite field of order q that is k-th degree extension of a prime field with characteristic p (q
= pk). An elliptic curve E on K is a nonsingular plane curve defined by the following form of equation

Y2 + a 1XY + a 3Y = X3 + a2X2 + a4X + a6

with ai in K.

The set E(K) of rational points on elliptic curve E constitutes a group. Let P ∈ E(K) be a rational point
of order N and Q be an element of a cyclic group generated by P.

Elliptic curve discrete logarithm problem (ECDLP)

Find the integer n ∈ [0,N-1] satisfying Q = nP for given E, Fq, P, N and Q.

The above E, Fq, P, and N are called elliptic curve parameters in elliptic curve cryptosystems. The point
P is called base point.

2.4.3.2 Attacks

Attacks against ECDLP are divided into the following two categories. The one is a general method that
does not use the characteristics of an elliptic curve itself, and the other is a special method that uses the
characteristics of an elliptic curve. Tables below show known general and special attacks respectively,
with the conditions to avoid those attacks."→ DLP on xxx" of the item "computation amount/reduction"
in the tables indicates that ECDLP is reduced to DLP on group xxx.

100 Chapter 2 Evaluation of Public-key Cryptographic Techniques

General methods

Name of attack Computation amount/reduction Conditions for avoidance Reference

Exhaustive search O (N) Make N large enough

Pohlig-Hellman method → DLP on a prime order subgroup Make N be almost a prime
number (Note 1) [18]

Baby-Step/Giant-Step method O(N) Bit length of N ≥ 160 (Note 2)

Pollard method 2/Nπ (Note 3) Bit length of N ≥ 160 (Note 2) [2]

Note 1: Almost a prime number N ' means that N is the product of a prime number of almost thesame

size as N and a small integer (such as 1, 2 and 4).
Note 2: It is considered that Baby-Step/Giant-Step method and Pollard method are impracticable if the

bit length of N is 160 or larger as of 2002.
Note 3: Pollard method is a "Las Vegas" type algorithm, and its evaluation of computation amount is

the statistical estimate of the number of additions on an elliptic curve required. The Pollard
method can be parallelized, so if m units of computers are used, the computation amount per
unit can be estimated as mN /2/π [3].

Special methods

Suppose N is almost a prime number, and let its maximum prime factor be l.

Name of attack Computation amount/reduction Conditions for avoidance Reference

Automorphism method
When automorphism of order m is used, the

Pollard method becomes m times faster.
(Note 1) [4, 5]

Weil/Tate Pairing method → DLP on the multiplicative group of
extension field Fqs

N does not divide qs-1
(1 ≤ s ≤30)

[6, 7]

Anomalous curve method → DLP on the additive group of the prime
field Fq l is not equal to p [8, 9, 10]

Weil descent method → DLP on a hyperelliptic curve
p = 2, k: prime
or p is not 2 (Note 2)

[11]

Note 1: It is noted that the automrophism method can use only some special automorphisms such as

that of Koblitz curves. The automorphism method reduces the computation amount of
ECDLP by at most 5 bits for 163-bits elliptic curves. See 2.3.2 ECDSA for Koblitz curves.

Note 2: Diem [12] recently suggested that even in the case of odd characteristic, when k = [Fq : Fp] =
5, 7, the Weil descent method may be applied. When using OEF (Optimal Extension Field),
care must be taken.

2.4 Evaluation of the Difficulty of Number-Theoretic Problems 101

2.4.3.3 Experimental Result

Certicom has sponsored ECC challenge to promote research to break ECDLP since 1997.

Escott et. al. [13] solved ECCp-97 that is one of the objectives of ECC challenge by using the parallelized
Pollard method. ECCp-97 is an elliptic curve of 97-bit order on the prime field. It is reported that, to
solve ECCp-97, more than 1200 computers were used to perform 2 × 1014 times additions on the elliptic
curve for the period of 53 days.

Recently, Monico et. al. broke ECCp-109 [14]. About 10,000 people from 247 teams participated in this
challenge. It is reported that approximately 3.6 × 1016 points on an elliptic curve (approximately 6.8 ×
107 "distinguished points" among them) were calculated in 549 days.

Harley et. al. [9] solved ECC2K-108 that is one of the objectives of ECC challenge by using the
parallelized Pollard method assisted by the automorphism method. ECC2K-108 is a Koblitz curve of
108-bit order with characteristic 2. It was reported that, to solve ECC2K-108, approximately 9,500
computers were used to perform 2.3 × 1015 times additions on the elliptic curve for the period of 4
months.

2.4.3.4 Secure size of group order

As of 2002, elliptic curve discrete logarithm problem was considered to be secure enough if the order of a
group (more exactly the order of the base point) includes a prime factor of 160 bits or more, except for the
special elliptic curves listed in the special method. In order to estimate the secure size of group order at
a certain time in the future, it is required to assess the actual computation amount to execute breaking
algorithms, and the increase of the maximum executable computation amount by utilizing the Internet and
etc resources, and advance of breaking algorithms. It is difficult to calculate the precise numbers of
those. The estimate by Lenstra and Verheul [16] is listed below for reference.

Secure size of group order estimate by Lenstra and Verheul [15]

Year Bit length of group order (no progress) Bit length of group order (with progress)

2002 135 139

2010 146 160

2020 161 188

2030 176 215

2040 191 244

2050 206 272

The above table shows the bit length of the group order to allow the ECDLP to have strength in the
relevant year that is equivalent to DES in 1982. The values shown as the "bit length of group order (no
progress)" are the ones estimated on the assumption that breaking algorithms themselves will not progress,
while the values shown as the "bit length of group order (with progress)" are the ones estimated on the
assumption that breaking algorithms will progress at a speed that computation amount required to solve
the ECDLP will be reduced to a half in 18 months.

102 Chapter 2 Evaluation of Public-key Cryptographic Techniques

References

[1] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over GF(p) and

its cryptographic significance, IEEE Trans. on Infor. Th., 24, 106-110,1978.
[2] J. Pollard, Monte Carlo methods for index computations mod p, Math. Comp., 32, 918-924,

1978.
[3] P. van Oorschot and M. Wiener, Parallel collision search with applications to hash functions

and discrete logarithms, 2nd ACM Conference on Computer and Communications Security,
210-218, ACM Press 1994.

[4] R. Gallant, R. Lambert and S. Vanstone, Improving the parallelized Pollard lambda search on
binary anomalous curves, Math. Comp., 69, 1699-1705, 2000.

[5] M. J. Wiener and R. J. Zuccherato, Faster attacks on elliptic curve cryptosystems, Selected
Areas in Cryptography - SAC 1999, Springer-Verlag LNCS 1556, 190- 200, 1999.

[6] A. Menezes, T. Okamoto and S. Vansone, Reducing elliptic curve logarithms to logarithms in
finite fields, IEEE Trans. on Infor. Th., 39, 1639-1646, 1993.

[7] G. Frey and H. -G. Rück, A remark concerning m-divisibility and the discrete logarithm in the
divisor class group of curves, Mathematics of Computation, 62, 865-874, 1994.

[8] P. N. Smart, The discrete logarithm problem on elliptic curves of trace one, J. Cryptology 12,
193-196, 1999.

[9] T. Satoh and K. Araki, Fermat Quotients and the Polynomial Time Discrete Log Algorithm for
Anomalous Elliptic Curves, COMMENTARII MATHEMATICI UNIVERSITATIS SANCTI
PAULI, vol. 47, No. 1, 81-92, 1998.

[10] I. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of an elliptic
curves in characteristic p, Math. Comp. 67, 353-356, 1998.

[11] P. Gaudry, F. Hess and N. Smart, Constructive and Destructive Facets of Weil Descent on
Elliptic Curves, Journal of Cryptology, Vol.15, No.1, pp19-46, 2002.

[12] C. Diem, The GHS-attack in odd characteristic, preprint, 2001. Available at
http://www.exp-math.uni-essen.de/~diem/english.html

[13] A. Escott, J. Sager, A. Selkirk and D. Tsapakidis, Attacking elliptic curve cryptosystems using
the parallel Pollard rho method, CryptoBytes - The Technical Newsletter of RSA Laboratories,
volume 4, number 2, Winter 1999, 15-19. Also available at http://www.rsasecurity.com

[14] Chris Monico et. al, ECCp-109 : The ECCp-109 Challenge is Solved! http:
//www.nd.edu/~cmonico/eccp109/solved.html

[15] R. Harley, Elliptic Curve Discrete Logarithms: ECC2K-108. http://cristal.
inria.fr/~harley/ecdl7/

[16] A. K. Lenstra, E. Verheul, Selecting cryptographic key sizes, Proc. PKC 2000, LNCS 1751,
Springer-Verlag, pp.446–465, 2000.

[17] Wiener, M.J., Zuccherato,R.J., Faster attacks on elliptic curve cryptosystems, Proc. SAC1998,
LNCS 1556, Springer-Verlag, pp.190–200, 1999.

2.5 Selection of Parameters Relating to Public-key Cryptographic Techniques 103

2.5 Selection of Parameters Relating to Public-key Cryptographic
Techniques

2.5.1 Cryptographic techniques relating to the integer factoring problem

2.5.1.1 RSA parameter selection

The security of cryptographic techniques using the RSA algorithm is closely associated with the security
of the RSA encryption basic operation (RSA verification basic operation) and decryption basic operation
(signature basic operation), which are RSAEP (RSAVP) and RSADP (RSASP) (see RSA primitive in
2.3.4.3). Many researchers have studied the security of RSAEP/RSADP (RSASP/RSAVP) and pointed
out that improper use of RSA is very dangerous.

Major attacks against RSAEP/RSADP (RSASP/RSAVP) are described below.

Key pair generation

The RSA public key is a pair (N, e) of product N of two different odd prime numbers p and q with
approximately same sizes generated at random and integer e (public exponent) that between 3 and N-1
that satisfies GCD(e,p –1)=GCD(e,q -1)=1.

The RSA secret key is a pair (N, d) of product N of two different odd prime numbers p and q with
approximately same sizes generated at random like the RSA public key and positive integer e (secret
exponent) that is smaller than N that satisfies ed = 1(mod LCM(p-1, q-1)) where, e is a corresponding
public exponent.

Presently, CRYPTREC does not specify a particular method that generates prime numbers at random but
there are methods such as described in [1] or Annex A in [8].

In the standard PKCS #1 v2.1 [9], a key pair generation method, called multi-prime RAS, is contained.
However, it was excluded from the submission of the CRYPTREC documents (RSA-OAEP, RSA-PSS)
from RSA Security Inc. and was not evaluated by CRYPTEC. The RSA key pair generation method
designated by CRYPTREC is only the one using a product of two different prime numbers.

Fact 11: Let (N, e) be an RSA public key. Given the private key d, one can efficiently factor the
modulus N = pq. Conversely, given the factorization of N, one can efficiently recover d.

For demonstration of this fact, refer to [2]. Since sharing N by multiple users is not secure, users must
not share N.

Inverse operation of RSAEP

Generally, the only method to solve this problem that is known at present is the method using integer
factoring. For the difficulty of integer factoring, see 2.4.1. CRYPTREC understands that the size of N
that is 1024 bits or larger was considered to be secure as of 2001.

D.Boneh and R.Venkatesan [5] indicated that obtaining the inverse operation of RSAEP is not equivalent
to integer factoring of N for small public exponents. Obtaining the inverse operation of RSAEP without
a help of integer factoring is still an open problem.

104 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Small secret exponent d

Theorem 12 (M. Wiener): Let N = pq with q < p < 2q. Let d < 4/1

3
1 N .

Given (N; e) with ed = 1 mod (p−1)(q−1), an attacker can efficiently recover d.

For demonstration, refer to [2].

D. Boneh and G. Durfee [3] indicated that d might be efficiently solved from (N; e) if d < N0.292 for
individual implementation of RSAEP/RSADP.

Therefore, d should not be limited to a small value from the viewpoint of calculation efficiency.

Coppersmith's theorem

The Coppersmith's theorem is cited below that plays the most basic role in the attacks described later [6].

Theorem 13 (D. Coppersmith): Let p(x) be a polynomial of degree δ in one variable modulus an integer
N of unknown factorization. Let X be the bound on the desired solution x0. If

εδ −< /1

2
1 NX ,

then in time polynomial in (logN; δ; 1/ε), we can find all integers x0 with p(x0) = 0 (mod N) and x0 < X

Broadcast communication

If applying the Coppersmith's theorem uses a very simple padding technique, sending the same ciphertext
to multiple users may result in decrypting a plaintext.

Theorem 14 (J. Håstad): Let N1, ...,Nk be a pairwise relatively prime integers, and set Nmin = mini(Ni).
Let gi ∈ ZNi

 [x] be k polynomials of maximum degree d. Suppose there exists a unique M < Nmin
satisfying

gi(M) = 0 mod Nifor∀i = 1, ... ,k (2.5)

Under the assumption that k > d, one can efficiently find M given (Ni, gi)k
i=1.

For demonstration, refer to [2].

Therefore, in RSAES-PKCS1-v1 5 particularly, it is necessary to generate a random string PS
independently in each encryption process against this attack, in the EME-PKCS1-v1 5 encoding
technique (see Fig. 2.4).

Small public exponent e

When public exponent e is small, a plaintext may be decoded if there is any correlation represented by a
known polynomial between ciphertexts encrypted by the same RSA secret key [7].

Therefore, in RSAES-PKCS1-v1 5 particularly, it is necessary to generate a random string PS
independently in each encryption process against this attack, in the EME-PKCS1-v1 5 encoding
technique (see Fig. 2.4).

2.5 Selection of Parameters Relating to Public-key Cryptographic Techniques 105

Further, if public exponent e is small and the most part of a plaintext is known, applying the
Coppersmith's theorem may result in decoding a plaintext [6]. Similarly, if public exponent e is small
and a random string has been padded to a plaintext, a plain ext may be decoded from two ciphertexts [6].

Theorem 15: Let (N; e) be a public RSA key where N is n-bits long. Set m = n/e2. Let M ∈ Z*
N be a

message of length at most n - m bits. Define M1 = 2mM + r1 and M2 = 2M + r2, where r1 and r2 are
distinct integers with 0 ≤ r1, r2 < 2m. If an attacker is given (N, e) and the encryptions C1,C2 of M1,M2
(but is not given r1 or r2), he can efficiently recover M.

For demonstration, refer to [2].

Therefore, in RSAES-PKCS1-v1 5 particularly, public exponent e should be sufficiently large against this
attack.

Leak of partial information

 Partial information on factors p; q

If the least significant log2 n/4 bits of p (or q) or the most significant log2 n/4 bits of p (or q) are given,
integer factoring of N can be efficiently performed [6]. Therefore, p and q must be totally protected.

 Partial information on secret exponent d

In the RSA algorithm, upper-half bits of d are leaked if e is very small [2]. It is still hard to determine
the other bits. However, if the least significant log2 n/4 bits of secret exponent d are given and e< n ,
all bits of d can be rebuilt [4]. Therefore, it is very important to protect the remaining bits of secret
exponent d.

References

[1] ANSI X9.80, "Prime Number Generation, Primality Testing, and Primality Certificates",

American National Standard for Financial Services, 2001.
[2] D. Boneh, "Twenty years of attacks on the RSA cryptosystem", Notice of the AMS, volume 46

no 2, 1999.
[3] D. Boneh and G. Durfee, "Cryptanalysis of RSA with Private Key d Less than N0:2992", In J.

Stern editor, Advances in Cryptology - Eurocrypt '99, Lecture Notes in Computer Science,
volume 1533, pp1-11, Springer Verlag 1999.

[4] D. Boneh, G. Durfee and Y. Frankel, "An attack on RSA given a fraction of the private key
bits", In K. Ohta and D. Pei editors, Advances in Cryptology - Asiacrypt '98, Lecture Notes in
Computer Science, volume 1514, pp25-34, Springer Verlag 1998.

[5] D. Boneh and R. Venkatesan, "Breaking RSA may not be equivalent to factoring", In N.
Nyberg editor, Advances in Cryptology - Eurocrypt '98, Lecture Notes in Computer Science,
volume 1403, pp59-71, Springer Verlag 1998.

[6] D. Coppersmith, "Small Solutions to Polynomial Equations, and Low Exponent RSA
Vulnerabilities", Journal of Cryptology, 10:233-260, 1997.

[7] D. Coppersmith, M. Franklin, J. Patarin and M. Reiter, "Low-Exponent RSA with Related
Messages", In U. Maurer editor, Advances in Cryptology - Eurocrypt '96, Lecture Notes in
Computer Science, volume 1070, pp1-9, Springer Verlag 1996.

[8] "IEEE Std 1363-2000 IEEE Standard Specifications for Public Key Cryptography",
[9] "PKCS #1 v2.1: RSA Cryptography Standard", RSA Laboratories, June 14, 2002, available at

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

106 Chapter 2 Evaluation of Public-key Cryptographic Techniques

2.5.2 Cryptographic techniques relating to the discrete logarithm problem

Cryptographic techniques relating to the discrete logarithm problem are DSA, a signature technique, and
DH, a key agreement method. For parameter selection, the ranges specified in individual specifications
should be observed. For generation of prime numbers or random numbers, the generation methods and
adequacy verification methods described in the specifications should be used.

2.5.3 Cryptographic techniques relating to the elliptic curve discrete logarithm
problem

2.5.3.1 Elliptic curve parameters selection

It is known that, for elliptic curve cryptosystems using a special elliptic curve class, there are efficient
attacks using its specialty. When selecting an elliptic curve to be used for encryption, it should be
confirmed that such attacks are not applicable.

There are two approaches for elliptic curve parameters selection; the random selection approach and the
approach using special parameters.

The random selection approach arbitrarily selects coefficients of a curve and checks if the curve is subject
to existing attacks. It is necessary to repeat order counting until a proper curve that is not subject to
existing attacks is found. The SEA (Schoof-Elkies-Atkin) method [26, 3, 17] have been generally used
for order counting. In case of characteristic 2, the p-adic method [21], arithmetic-geometric mean
method [9], and so on have been proposed, and researches on improvement and speedup are rapidly
progressing [23, 27, 4, 5, 24, 10].
As approaches using special-class elliptic curve parameters, there are CM (Complex Multiplication)
method [1, 16, 12], Koblitz curve method[11], super-singular curve method [15], anomalous curve
method [13] and so on. Among them, efficient attacks [14, 25, 20, 22] have been found against the
super-singular curve and anomalous curve, which are therefore not in use currently.

The CM method predetermines an order that is not subject to existing attacks and then configures a curve
having the order. In the sense that this method can only be used for discriminants with a relatively small
class number, the class of these curves are limited. However, since attacks using this property have not
been found, it is not directly meant that a small class number is vulnerable. Though it is expected that
the CM method would generate a curve faster than the random selection method, the difference seems not
so large.

Efficient attacks had not been found regarding the super-singular curve and anomalous curve when they
were introduced. Afterward, effective attacks such as embedding into the multiplicative group [14] and
embedding into the additive group [25, 20, 22] were found. Currently, these curves should not be used
in elliptic curve cryptosystems. Therefore, if a curve is generated at random, it should be ensured that
the curve is not one of these curves.

The Koblitz curve [11] was introduced for speedup of scalar multiplication, but speedup of attacks is also
possible [28]. At present, attacks to this curve are not fatal. As possibility of discovering an efficient
attack against a special-class elliptic curve is far larger than the possibility of discovering an efficient
attack against all elliptic curves, care should be taken.

2.5 Selection of Parameters Relating to Public-key Cryptographic Techniques 107

Domain parameters validity check

The domain parameters validity check method specified in the Elliptic Curve Cryptography Standard
Specification SEC 1 [19] is described below. The purpose of validity check is to verify that the
parameters are correct and that efficient attacks are not applicable.

This check method should be used when originally generating parameters or when using parameters given
by another party.

The parameters are categorized into two cases: the case with a large odd prime characteristic p and the
case with characteristic 2, depending on the type of the finite field used. The check methods in
respective cases are almost the same. The differences are described below.

1. Case with characteristic p

Assume that the domain parameters are (p,a,b,G,n,h), where p is the characteristic, a, b are the
coefficients of the curve y2=x3+ax+b, G=(xG,yG) is the base point on the curve, n is the order of the
base point, and h is the cofactor.

(1) Checking key length
Check that p is an odd prime whose bit length log2 p is either 160, 192, 224, 256, 384, or
521. It is ensured that the security strength is sufficient. *13

(2) Checking curve coefficients and base point coordinates range
Check that a, b, xG, and yG are integers that satisfy the following:

0≤a,b,xG,yG≤ p-1

 It is ensured that the curve coefficients and base point coordinates are within the correct range.

(3) Checking coefficients relation
Check the following:

4a3+27b2 ≠ 0(modp)

 It is ensured that the curve is non-singular.

(4) Checking base point coordinates
Check the following:

y2
G=x3

G+axG+b(modp)

 It is ensured that the base point is on the curve.

(5) Checking if the order is a prime
Check that n is a prime number. If n is a composite number, the security strength is degraded
by the Pohlig-Hellman attack [18].

(6) Checking cofactor
Check the following:

h ≤ 4, h = () 



 + np /1

2

*13 In the specification of SEC1 [19], 112 and 128 are also permitted as the bit length of p. However, they are not

recommendable from the perspective of security strength.

108 Chapter 2 Evaluation of Public-key Cryptographic Techniques

 As h becomes larger, n becomes smaller and the security strength is degraded. It is ensured
that the h is small enough and correct.

(7) Checking the order
Check the following:

nG = O

 It is ensured that the order is correct.

(8) Checking various countermeasures against attacks
Checking the following:

PB ≠ 1 mod n for 1 ≤ ∀B < 20, nh ≠ p

 If one of these conditions is not satisfied, either MOV attack [14], FR attack [6], or SSSA
attack [25, 20, 22] is efficiently applicable.

2. In the case of characteristic 2

Assume that the domain parameters are (m,f(x),a,b,G,n,h), where m is the extension degree, f(x) is
an irreducible binary polynomial of degree m in F2[x], a and b∈ F2

m are coefficients of the curve
y2+xy=x3+ax2 + b over F2

m, G=(xG,yG) is the base point, n is the order of the base point, and h is the
cofactor.

(1) Checking key length
Check that m is either 163, 193, 233, 239, 283, 409, or 571. It is ensured that the security
strength is sufficient. *14

 When m is a composite number, Weil descent attack [7] may be efficiently applied.
Therefore, composite numbers are excluded.

(2) Checking irreducible binary polynomial
Check that f(x) is an irreducible binary polynomial of degree m in F2[x] that is given in
advance.

(3) Checking curve coefficients and base point coordinates range
Check that a, b, xG, and yG are polynomials of degree less than or equal to m–1 in F2[x].

 It is ensured that the curve coefficients and base point coordinates are within the correct range.

(4) Checking coefficients relation

Check b ≠ 0 in F2m

 It is ensured that the curve is non-singular.

(5) Checking base point coordinates
Check the following:

y2
G+xGyG=x3

G+ax2
G+b in F2m

 It is ensured that the base point is on the curve.

*14 In the specification of SEC1 [19], 113 and 131 are also permitted as m values. However, they are not recommendable

from the perspective of security strength.

2.5 Selection of Parameters Relating to Public-key Cryptographic Techniques 109

(6) Checking if the order is a prime
Check that n is a prime number. If n is a composite number, the security strength is degraded
by the Pohlig-Hellman attack [18].

(7) Checking cofactor
Check the following:

h≤4, h = 












 + nm /12

2

 As h becomes larger, n becomes smaller and the security strength is degraded. It is ensured
that the h is small enough and correct.

(8) Checking the order
Check the following:

nG=O

 It is ensured that the order is correct.

(9) Checking various countermeasures against attacks
Check the following:

2mB ≠ 1 mod n for 1≤∀B<20, nh ≠ 2m

 If one of these conditions is not satisfied, either MOV attack [14], FR attack [6], or SSSA
attack [25, 20, 22] is efficiently applicable.

Assurance of curve randomness

SEC 1[1] uses an approach [2] that ensures the coefficients of the curve have been selected at random by
associating the output value (obtained from a seed S by using SHA-1) with curve coefficients a and b.
By putting S in the parameters, it is ensured that both coefficients a and b are not intentionally selected.

Security of Koblitz curve

The Koblitz curve is defined over a characteristic 2 finite field by the following expression. It is also
called "anomalous binary curve (ABC curve)."

y2+xy = x3+ax2+1 (a∈{0,1})

This curve is a curve defined over F2
mand its coeffients are in F2. As one of the features of the Koblitz

curve, scalar multiplication of points can be calculated at a high speed by using the Frobenius map. On
prime field Fp, curves that allow high-speed calculation of endomorphism also exist. SEC 1 calls these
curves "Koblitz curves" also.

As a specific attack against the Koblitz curve, Wiener-Zuccherato [28] and Gallant-Lambert-Vanstone [8]
indicate an approach that slightly speeds up the ρ method parallel collision search in the discrete
logarithm problem on the Koblitz curve.

This approach uses high-speed point calculation as a feature of the Koblitz curve. For the Koblitz curve
over F2

m, the discrete logarithm can be obtained m2 times higher. Specifically, when m is 160,
calculating the discrete logarithm takes approximately 276steps. Compared with general elliptic curves,
the speed is faster about 16 times. However, this is not a big improvement in complexity.

110 Chapter 2 Evaluation of Public-key Cryptographic Techniques

Currently, specific attacks have not been found except for the speedup approach of the ρ method.
However, the class of Koblitz curves is very much limited. Attention should be paid to the possibility
that some class-specific attacks may be found.

For the elliptic curve discrete logarithm problem, see 2.4.3, also.

References

[1] A.O.L. Atkin, F. Morain, Elliptic curves and primality proving, Math. Comp., 61, 29–67, 1993.

[2] ANSI X9.62-1998, Public Key Cryptography for the Financial Services Industry: the Elliptic
Curve Digital Signature Algorithm(ECDSA), American Bankers Association, 1999.

[3] N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues,
Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math.,
7, 21-76, Providence, RI: AMS, 1998.

[4] Fouquet, M., Gaudry, P., Harley, R., An extension of Satoh's algorithm and its implementation,
J. Ramanujan Math. Soc. 15 (2000) 281-318.

[5] Fouquet, M., Gaudry, P., Harley, R., Finding secure curves with the Satoh-FGH algorithm and
an early-abort strategy, Advances in Cryptology - Eurocrypt 2001 (Innsbruck, Austria, May
2001), Lect. Notes in Comput. Sci., 2045, 14-29, ed. Pfitzmann, B., Berlin, Heidelberg
Springer Verlag, 2001.

[6] G. Frey and H. -G. Rück, A remark concerning m-divisibility and the discrete logarithm in the
divisor class group of curves, Mathematics of Computation, 62, 865-874, 1994.

[7] P. Gaudry, F. Hess and N. Smart, Constructive and Destructive Facets of Weil Descent on
Elliptic Curves, Journal of Cryptology, Vol.15, No.1, pp19-46, 2002.

[8] R.Gallant, R.Lambert and S.Vanstone, "Faster Point Multiplication on Elliptic Curves with
Efficient Endomorphisms", Advances in Cryptology – CRYPTO2001, Lecture Notes in
Computer Science 2139, Springer-Verlag, pp.190–200, 2001.

[9] R. Harley, Counting points with the arithmetic-geometric mean (joint work with J.-F. Mestre
and P. Gaudry), Eurocrypt 2001, Rump session, 2001.

[10] Kim, H., Park, J., Cheon, J., Park, J., Kim, J., Hahn, S., Fast elliptic curve point counting using
Gaussian normal basis, Algorithmic number theory (Sydney, Australia, July 2002), Lect. Notes
in Cimput. Sci., 2369, 292-307, ed. Fieker, C.,Kohel, D., Berlin: Springer, 2002.

[11] N. Koblitz, CM-curves with good cryptographic properties, Advances in
cryptology—CRYPTO '91 (Santa Barbara, CA, 1991), Lecture Notes in Comput. Sci., 576,
279-287, Berlin: Springer-Verlag, 1992.

[12] G.-J. Lay, H.G. Zimmer, Constructing elliptic curves with given group order over large finite
fields, In ANTS-1, Algorithmic Number Theory, 250–263, Springer-Verlag, LNCS 877, 1994.

[13] B. Mazur, Rational points of Abelian varieties with values in towers of number fields. Invent.
Math. 18 (1972) 183-266.

[14] A. Menezes, T. Okamoto and S. Vansone, Reducing elliptic curve logarithms to logarithms in
finite fields, IEEE Trans. on Infor. Th., 39, 1639-1646, 1993.

2.5 Selection of Parameters Relating to Public-key Cryptographic Techniques 111

[15] A. Menezes and S. Vansone, The Implementation of Elliptic Curve Cryptosystems, Proc. of
AUSCRYPT '90, LNCS 453, 2–13, 1990.

[16] F. Morain, Building cyclic elliptic curves modulus large primes, In Advances in Cryptology,
EUROCRYPT91, 328–336, Springer-Verlag, LNCS 547, 1991.

[17] V. Müller, Ein Algorithmus zur Bestimmung der Punktanzahl elliptischer Kurven über
endlichen Körpern der Charakteristik grösser drei, (1995) Dissertation der Universität des
Saarlandes.

[18] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over GF(p) and
its cryptographic significance, IEEE Trans. on Infor. Th., 24, 106-110, 1978.

[19] Standards for Efficient Cryptography, "SEC 1:Elliptic Curve Cryptography", Certicom
Research, Ver.1.0, September 2000.

[20] P. N. Smart, The discrete logarithm problem on elliptic curves of trace one, J. Cryptology 12,
193-196, 1999.

[21] T. Satoh, The canonical lift of an ordinary elliptic curve over a finite field and its point
counting, in J. Ramanujan Math. Soc. 15, 247-270, 2000.

[22] T. Satoh and K. Araki, Fermat Quotients and the Polynomial Time Discrete Log Algorithm for
Anomalous Elliptic Curves, COMMENTARII MATHEMATICI UNIVERSITATIS SANCTI
PAULI, vol. 47, No. 1, 81-92, 1998.

[23] T. Satoh, B. Skjernaa, Y. Taguchi, Fast Computation of Canonical Lifts of Elliptic curves and
its Application to Point Counting, (2001) preprint.

[24] B. Skjernaa, Satoh's algorithm in characteristic 2, Math. Comp. 72 (2003), 477-487.

[25] I. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points of an elliptic
curves in characteristic p, Math. Comp. 67, 353-356, 1998.

[26] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p. Math.
Comp. 44 (1985) 483-494.

[27] Vercauteren, F., Preneel, B., Vandewalle, J., A memory efficient version of Satoh's algorithm,
Advances in Cryptology - Eurocrypt 2001, Lect. Notes in Comput. Sci., 2045, 1-13, ed.
Pfitzmann, B., Berlin, Heidelberg: Springer Verlag, 2001.

[28] M. J. Wiener and R. J. Zuccherato, "Faster attacks on elliptic curve cryptosystems", Selected
Areas in Cryptography, Lecture Notes in Computer Science 1556, pp.190–200, 1999.

112 Chapter 2 Evaluation of Public-key Cryptographic Techniques

 113

Chapter 3

Evaluation of symmetric-key cryptographic techniques

3.1 Evaluation method

3.1.1 Evaluation method of symmetric-key ciphers

The most important measure of ciphers is security. The security of cryptography is classified into two
categories: the security based on the amount of information (information-theoretic security), and the
security based on computational complexity (computational security). Unconditional security is a theory
formulated by Shannon. This is the security allows no deciphering no matter what computer resources
may be used, in terms of the amount of information volume. To guarantee unconditional security,
however, the number of secret key-bits must be larger than the volume of plaintext to be enciphered,
which is not practical. Therefore, the security of symmetric-key cipher is assured not by the volume of
information but by its complex computations for the attack. In computational security, cryptanalysis is
practically impossible even with the best attack algorithm and fastest computer. The computational
security can also be expressed as the degree of difficulty of estimating a secret key. However, there is
no absolute method of evaluating the computational security at present.

Consequently, security is evaluated comprehensively by actually carrying out attacks, thereby assessing
the resources required (such as the amounts of computations, data and memory). The attacking methods
are classified as follows:

• Exhaustive key search
• Shortcut method

Depending on the available information conditions, the attacking methods are classified as follows.
• Ciphertext only attack

The statistical information of plaintext and ciphertexts can be used.
• Known plaintext attack

Plaintexts corresponding to respective ciphertexts can be used. Attackers carry out attacks
by using pairs of plaintext and ciphertext obtained by some means.

• Chosen-plaintext attack
Plaintexts freely selected by attackers, and corresponding ciphertexts can be used.
The difference from the known plaintext attack is that the attackers of the chosen-plaintext
attack can control the target cryptosystem and then select and use pairs of plaintext and
ciphertext that would facilitate the attack.

The difficulty of attacks depends on the information available. The latter condition is the more
advantageous the situation for the attacker.

114 Chapter 3 Evaluation of symmetric-key cryptographic techniques

It is generally claimed that any cipher that can be breaked by known plaintext attack is not secure. On
the other hand, if attackers have unlimited computational power, a secret key can be found by an
exhaustive key search without fail. Therefore, it is judged that an attack (known plaintext attack or
chosen-plaintext attack), where the plaintexts corresponding to the sufficient amounts of ciphertexts are
known, could be scientifically successful if the cost required for the attack is less than that of an
exhaustive key search. To be more specific, if an attack method and attacking a cipher that uses a k-bit
secret key is found at the cost of less than 2k, then that cipher is not secure (scientifically).

� Exhaustive key search

The exhaustive search method is a technique of searching for the secret key exhaustively using pairs or
one set (or several sets) of plaintexts. The secret key will be obtained by 2k computations, when the
number of bits of the secret key is k. DES has a user key with an effective key length of 56-bit. When
DES was adopted as FIPS, there was a view that an exhaustive key search with a 56-bit user key length
was practically impossible. However, in a DES cryptanalysis contest called DES challenge III, which
was held in January 1999, exhaustive key search was accomplished in around 22 hours. It shows that it is
practical to perform such a search for a 56-bit key nowadays. In the Secret-Key Challenge (RC5
cryptanalysis contest started in 1997), the 64-bit exhaustive key search took about 4 years. Success of
this cryptanalysis was announced on September 26, 2002. In consideration of the above and the high
speed progress of computer processing capabilities, it is estimated that the computation time of around
2464, required for a 64-bit key, can be easily handled at present. Considering all of the above, long-term
use of the cipher which has shorter key bit length than 64 is not recommended.

Furthermore, if the rate of future progress of computer processing speed can be expected to double per
years, and if improvements in the attack algorithm and periods required for system exchange are taken
into account, the cipher which needs more than 2100 computations for the attack is desirable to ensure
security for about 10 years. The number of secret key bits of the latest symmetric-key cryptography
including AES is 128 bits or more. Also in CRYPTREC, it is judged that security is ensured at more
than 2128 computations for the attack, which is equivalent to the number of secret key bits of 128 bits or
more.

� Short cut method

The shortcut method is a technique that increases the attack efficiency so as to derive a secret key (or
practical secret key) using fewer computations than 2k, based on the analysis of the encryption algorithm.
That is, to find a drawback inherent in the encryption algorithm, and figure out an attack algorithm
requiring less complex computations than the exhaustive search. The object of this method is to
evaluate the strength of ciphers and even a chosen plaintext attack, which is an attack conditions
advantageous to an attacker, is allowed. In the condition, the plaintext chosen arbitrarily and the
ciphertext corresponding to it are usable for the attack. In other words, the attacker can control an
encryption device to be attacked and can choose a plaintext/ciphertext pair favorable for decryption. If a
cipher can be attacked by a short cut method with less complexity than 2k, it may not mean the necessity
for the immediate prohibition of its use, however, long-term use of such cipher is not recommended.

Attacks in short cut method are divided into the following two classes: general attacks that can be applied
to all ciphers in a certain category, and attacks that are specifically intended for certain ciphers.
Symmetric-key ciphers include 64-bit block ciphers, 128-bit block ciphers, and stream ciphers. Section
3.2.1 describes the security evaluation of 64-bit block ciphers, 3.2.2 describes that of 128-bit block
ciphers, and 3.2.3 describes that of stream ciphers.

CRYPTREC concludes the cipher to be secure which needs 2128 or more (in other words, an exhaustive
key search for a secret key) computational complexity for its attack by the best cryptanalysis method.

3.1 Evaluation method 115

3.1.1.1 Block ciphers

The strength of block ciphers against the following general attacks was evaluated.
• Differential attack
• Linear attack
• Higher order differential attack

In addition, avalanche effect was assessed to evaluate the statistical characteristics of the output.

� Differential cryptanalysis /Linear cryptanalysis

The differential cryptanalysis was proposed by Biham and Shamir in 1990. It was proposed as an attack
against DES, but it can be generally applied to any block ciphers as a whole. This attack is a chosen
plaintext attack that utilizes a correlation between the chosen difference of plaintext pairs and the
difference of corresponding ciphertext pairs. Like a differential attack, the linear attack is the technique
of attacking DES proposed by Matsui of Mitsubishi Electric Corporation in 1993. It is also a general
attack applicable to block ciphers. This attack is a known plaintext attack that utilizes a correlation
between XORed value of specific input bits and that of specific output bits.

Resistance against these attacks is provided by the maximum differential probability and maximum linear
probability. If this probability is small enough, a cipher is judged to be secure. However, since it is difficult
to calculate the true value of the maximum differential/linear probability, the maximum differential/linear
characteristic probability may be used instead. These can be found by using the following procedure.

• Find the upper bound of the characteristic probability by evaluating each component
• Determine the upper bound of maximum characteristic probability of the cipher through

computer search

� Provable security against differential cryptanalysis/linear cryptanalysis

In some cases, the security against differential/linear attacks may be shown in terms of the provable
security according to ciphers. Nyberg proved mathematically in 1992 that with regard to a block cipher
with Feistel structure, when the maximum differential probability of round function is p, and the number
of rounds is 3 or more, the maximum differential probability of the cipher as a whole is 2p2

 or less. She
then gave the same kind of index to the linear cryptanalysis also, and integrated them into one as the
provable security against the differential/linear cryptanalysis. Matsui, Aoki, and others then developed
it into a more sophisticated argument. It is the argument that can mathematically prove a specific kind
of security, but note that it is proves only for the security against differential and linear cryptanalysis.

� Higher order differential attack

The concept of higher order differential was proposed by Lai in 1994, and in 1997, Knudsen and Jacobsen
used it in an attack against KN cipher that is a model block cipher to show provable security against
differential and linear cryptanalysis. It is a chosen plaintext attack applicable when the higher order
differential value of the output becomes a constant that does not rely on the fixed value of the plaintext or
the expanded key. Since the algebraic degree of KN cipher is low, it was proved that the cipher is
vulnerable to attacks by higher order differential attack.

The effect of the attack depends on the differential order used, and the lower the order is, the smaller the
cost is. On the other hand, the algebraic degree of the output depends on which bits of the plaintext are
used as variables for the higher order differential the lowest order required for the attack depends on how
they are selected. However, the optimal selection method has not been found yet. In the case of N-bit
input/output cipher, even if all the input bits are selected as variables, the algebraic degree of the output
does not exceed N. In general, however, it is judged that when the formal algebraic degree of the output
block exceeds N, it is secure against the higher order differential attack.

116 Chapter 3 Evaluation of symmetric-key cryptographic techniques

� Avalanche effect evaluation

In avalanche effect evaluation, the frequency of output differences for each output bit position is assessed
when a specific difference is given to the input. The behavior of each output bit can be known by the
evaluation. In this evaluation, the encryption algorithm is handled as a black box, and by the evaluated
quantity, a unified comparison that is not affected by the difference of structure can be made.

Evaluations were conducted on the following functions of each cipher.
• Round function
• Data randomization part
• Key schedule part
• Entire encryption process including the key schedule part

<Evaluation items>

The following items were evaluated in the avalanche effect evaluations:
• AVA (frequency of difference):

The difference between a frequency at which the output difference becomes 1 and that
becomes 0. In the evaluation, input difference ∆X and key difference ∆K whose
Hamming weights m = 1 and 2 are specified.

• AVD (Diffusion of differences)
The mean value of the Hamming weight of output differences

• CC (Correlation coefficients in the difference)
Correlation coefficients at i-th bit and j-th bit of output difference

• UKV (Effective key bits)
The number of key bits whose AVA meet the relative standard when the key difference of
Hamming weight 1 is given.

<Statistical evaluation procedures>

Resultant indexes mentioned above are viewed on the basis of the following criteria.
• It is regarded that there is no statistical bias if the worst deviation rate of AVA is lower

than the relative standard value.
• The closer AVD is to n/2, the smaller the statistical bias is (n: output data length).
• The closer absolute value of CC is 0, the higher its degree of independence is.
• The closer UKV is to the key length, the better.

3.1.1.2 Stream cipher

The stream cipher generally uses the output from pseudorandom number generator as its key sequence,
and its seed is used as a secret key. To evaluate the statistical characteristics of the output sequence, the
following items listed in FIPS PUB 140-2 were tested.

• Long periodicity
• Linear complexity
• Equal 0/1 frequency
• Monobit test
• Poker test
• Runs test
• Long runs test

3.1 Evaluation method 117

Since the result of these tests shows only the statistical characteristics, even if the result of such statistical
characteristics evaluation is good, it cannot be judged that the cipher is secure. The resistance against
general attacks such as Divide-and-Conquer attack and Correlation attack was also evaluated as in the
case of block ciphers.

3.1.2 Software implementation evaluation

In addition to the security of ciphers, it is necessary to take their implementability into consideration by
assuming the actual. Through, the requirement for the implementation of ciphers in e-Government is not
clear at present. In evaluating the software implementation properties, the following three environments
were assumed: a PC environment that is considered to be popular at the time of evaluation, a server
environment that is considered to have most widely spread at present, and a high-end environment that
realizes high performance. Since all the cryptographic techniques submitted for evaluation assume the
general PC environment, all the submitted techniques were evaluated from this perspective.

The server and high-end environment were left to the applicants' own choices for evaluation in deference
to the design concept of each cipher. Furthermore, in a low-spec environment (smart card environment)
such as 8-bit CPU, evaluation was carried out for a part of 128-bit block ciphers on Z80 simulator.

The evaluation of software was not carried out with regard to the hash function and the pseudorandom
number generator.

In actual evaluation, the programs implemented by the applicants were used and measurements were
made in the presence of committee members. The same platforms and measurement programs were
used for evaluations, thus ensuring the conditions as fair as possible. Values different from those listed
in this report may appear in other documents, which result from the difference of measurement programs
and measurement environments. Even if the same platform and measurement programs are used, the
evaluation results are influenced greatly by the combination of operating systems and resident programs.
Therefore, it should be CRYPTREC noted that those values cannot always be achieved. This evaluation
of software implementation was made to compare the encryption speed of the (submitted) ciphers.

Table 3.1 shows the platform environments used.

118 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.1 The environments used for software implementation evaluation

PC environment

CPU
OS
Memory capacity
Compiler

Pentium III (650 MHz)
Windows98 SE
64MB
Visual C++ Ver6.0 SP3

Server environment

CPU
OS
Memory capacity
Compiler

Ultra SPARC IIi (400 MHz)
Solaris 7
256MB
Forte C 6

High-end environment

CPU
OS
Memory capacity
Compiler

Alpha 21264 (463 MHz)
Tru64 UNIX V5.1
512MB
DEC C

Smart card environment

CPU
Descriptive language
Remarks

Z80 (5 MHz)
Assembly
Run Z80 simulator with specified patches on a PC environment

� Block cipher evaluation

In each measurement other than the smart card environment, the following two parts were measured:
• Data randomization part
• Key schedule part + Data randomization part

In the smart card environment, measurements were made for the key schedule part + data randomization
part.

The data randomization part was measured by counting the number of cycles of the CPU (the number of
computations not dependent on the operating frequency of the CPU) required for encrypting a 64-bit
plaintext to a ciphertext in the case of a 64-bit block cipher. In the case of a 128-bit block cipher, a
128-bit plaintext is encrypted into 128-bit ciphertext. After a key was set, encryption (ciphertext) of
1MB plaintext (ciphertext) was made and measurements were taken. Therefore, the number of
computations for key setup (Key schedule part) can be negligible. Encryption (decryption) of 1MB text
was made 128 times in one measurement, and the fastest value and the average value were taken.
Measurements were taken three times.

The key schedule part and data randomization part was measured by counting the number of clocks
required from key set up until the end of the encryption (decryption) of one block (64 bits or 128 bits).
Other measurement condition was the same as that for the data randomization part. Note, however, that
the result obtained by subtracting the value of the data randomization part from this value cannot always
represent the speed of the key schedule part itself due to the difference of implementation in the
respective program.

3.1 Evaluation method 119

In an smart card implementations, the sizes of memories such as ROM and RAM are also important..
Therefore, the memory sizes were measured in addition to the measurement of the processing time.

� Stream cipher evaluation

In the software implementation evaluation for a stream cipher, the following two measurements were
conducted in the PC environment:

• Encryption/decryption processing speed
• Key set up processing time

In the measurement of the encryption/decryption processing speed, the number of CPU clocks required
for encryption (decryption) is counted. In one measurement, 128 times of encryption (decryption) of 1MB
were measured, and then the fastest and the average values were extracted. Measurement was
performed 3 times. The volume of calculation required for a key setup can be disregarded as in the case of
block ciphers.

The key setup processing time was measured by counting the number of clocks required from key set up
until the end of encryption (decryption) of 128 bit data. By one measurement, 128 times of encryption
(decryption) were conducted and the fastest and average values were extracted. Measurements were
conducted three times.

3.1.3 Hardware implementation evaluation

The target device of circuitry is roughly divided into the two categories of as ASIC (Application Specific
Integrated Circuit) and FPGA (Field Programmable Gate Array). In the case of ASIC implementation,
the performance depends greatly on a semiconductor process or a library even if the same circuitry data is
used. In addition, big manufacturing costs and a long manufacturing period are required for a check of
the system operation. Therefore, the simulation result on CAD has to be used. On the other hand, on
FPGA, the performance of each algorithm can be evaluated using the same IC, thereby allowing the
system operation to be checked within a short period.

In the hardware implementation evaluation performed in 2000, hardware implementation of a
symmetric-key cipher was evaluated in order to check the validity of self-evaluation reports.

In the hardware implementation evaluation performed in 2002, the implementation of each
symmetric-key cipher algorithm was actually made on the FPGA for a system operation check to confirm
whether third-parties can perform proper implementations with reference only to the application
documents (algorithm specifications and test vector).

The evaluation was performed with 12 kinds of symmetric key cryptographic algorithms. We used
Xilinx XC2V6000 as a target FPGA because it allows large-scale circuit implementation among the
available ones at the time (June 2002). We also used an evaluation environment available in the market,
with FPGA installed. An outline of the evaluation environment is shown in Table 3.2, and an outline of
FPGA is shown in Table 3.3.

The circuit descriptive language XST Verilog was used in the design, ModelSim XE 5.5e was used in the
simulation, and logic composition used ISE Foundation4.2i.

120 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.2 FPGA development environment used for hardware implementation evaluation

Card size 106 mm × 312 mm (PCI Full size)

Logic scale 12.3M System gate (Maker nominal value)

For PCI XCV 300 × 1
Loading FPGA

For insides XCV2V6000 × 2

2.14 Gbit SDRAM memory (SODIMM slot × 2)

256 Mbit SDRAM memory (256 Mbits × 1) Lading RAM

5.3 Mbit FPGA Built-in ultra high-speed memory

Table 3.3 Outline of FPGA used for evaluation

Target device Xilinx XC2V6000

Logic cell 76,032

System gate 6M

CLB

8,448 (33,792 slices)
 (67,854 LUTs)
 (1,081,344 bits distributed RAM)
 (67,584 FFs)

18 × 18 - bit multiplier 144

18 Kbit Block RAM 144 (2,592 Kbits)

CLB: Configuration Logic Block. 1 CLB= 4 slices = 128-bit distributed RAM
LUT: Look-Up Table. Functional block that implements a combinatorial logic.
FF: Flip-Flop.

� Block cipher evaluation procedures

We basically made a circuit for one round of the round function for data randomization and applied loop
architecture to use the circuit repeatedly for specified numbers of round. Moreover, a key schedule part
adopted on-the-fly architecture (architecture which carries out parallel execution of expanded key
generation and encryption processing) if it is possible. The other points to be noted are as follows.

• Only the data randomized part and key schedule part for an encryption function is
implemented, and there is no decryption function.

• There are some algorithms that have the architecture to share a data randomized part (or a
portion of it) and a key schedule part (or a portion of it). This implementation however,
both of the above are formed independently.

• S-box, serving as a main component of block ciphers, is a look-up table implementation
having the basic relation of input and output described therein.

• In a 128-bit cipher, only 128 bits of key length were supported.

3.2 Overview of evaluation results 121

The main object of this implementation is a system operation check. Therefore, it is formed with no
special circuit scale reduction or improvement in operation speed that takes into consideration the
characteristics of each algorithm, but instead has a straightforward architecture. This is not necessarily
an optimal implementation and an impartial comparative evaluation of the circuit implementation
efficiency of each algorithm cannot be conducted. Therefore, the relative comparison with Triple DES
and also the numerical value of a circuit scale and operation speed shall not be disclosed. However, a 33
MHz operation is confirmed in either cipher algorithm under the above FPGA development environment.

The number of cycles of an individual cipher required for the encryption of 1 block shown in the table of
the Hardware implementation evaluation section is based on actual measurement, and the circuit using the
hardware macro multiplier carried in the FPGA cannot be run by 1 round / cycle. Therefore, the number
of cycles is increased, and it is not necessarily equals to the number of rounds of the cipher..

� Stream cipher evaluation procedure

In hardware implementation evaluation of stream ciphers, circuit coding was made via Verilog-HDL
using the C language program on the FPGA by Altera Corporation, and simulation was performed.
Since stream ciphers are implemented on the circuit in many cases, preference was given to the option at
the time of logic synthesis put priority on the processing speed.

3.2 Overview of evaluation results

3.2.1 64-bit block ciphers

Four types of block ciphers, CIPHERUNICORN-E, Hierocrypt-L1, MISTY1, and Triple DES - were
evaluated. The ciphers submitted for evaluation in 2000 were CIPHERUNICORN-E, Hierocrypt-L1
and MISTY1, and Triple DES was added for evaluation in 2000 as a cipher considered to be evaluated.
The overview of evaluation is shown below:

� Characteristics

The organization that proposed the technique, the year it was announced, its structural characteristics, and
the characteristics such as the operations used in the data randomization part were listed. For those
techniques that use variable parameters such as number of rounds, the values recommended by the
proposing organizations were listed.

� Security

Security is discussed from the following three viewpoints: resistance to differential/linear cryptanalysis,
resistance to algebraic and other attacks, and avalanche effect characteristics.

• In resistance to differential/linear cryptanalysis, the maximum differential/linear probability
or the maximum differential/linear characteristic probability is indicated as the index of
strength against differential/linear cryptanalysis.

• In resistance to algebraic and other attacks, resistances to algebraic methods such as higher
order differential attack, interpolation attack, and SQUARE attack, as well as the resistance to
other attacks such as related-key attack and mod n attack, are described. The evaluation
of higher order differential attack and interpolation attack is a method to search for basic
weakness of a cipher from the algebraic point of view. If the number of rounds is large,
an attack based on this method rarely causes problems. However, the weakness revealed
by those attacks may affect the ultimate cipher strength, if other attacks can be combined
with them.

122 Chapter 3 Evaluation of symmetric-key cryptographic techniques

• Avalanche effect evaluation statistically captures how data is shuffled in each cipher, and
although it does not directly lead to cryptanalysis in most instances, it provides a clue to
search for weaknesses of the partial function of a cipher.

� Software implementation evaluation

This is evaluation was conducted in 2000. A cipher must be evaluated not only from the security aspects
but also from the implementation aspects by assuming the actual usage conditions. Although the
requirements for implementation of ciphers in e-Government have not been made clear yet, our software
implementation evaluation was performed assuming the following three environments: a PC environment
(mandatory) that was considered to be popular at the time of evaluation, a server environment (optional)
that is currently most widely used, and a high-end environment (optional) that has achieved high
performance. Measurements were conducted in two parts: data randomization and key schedule + data
randomization.

� Hardware implementation evaluation

In the hardware implementation evaluation of FS 2002, the implementation check of each algorithm was
conducted in an FPGA environment for the purpose of confirming that the hardware implementation by
third parties is possible from the information on "application documents (algorithm specifications and test
vector)" only.

The main object of this implementation is a system operation check. Therefore, it is formed as a
straightforward architecture with no special circuit scale reduction or improvement in operation speed in
consideration of the characteristics of each algorithm. This is not necessarily an optimal implementation
and an impartial comparative evaluation of the circuit implementation efficiency of each algorithm cannot
be conducted based on the results. Therefore, the relative comparison with Triple DES and also the
numerical value of a circuit scale and operation speed shall not be disclosed. However, a 33 MHz
operation is confirmed in either cipher algorithm under the above FPGA development environment. For
the outline of the FPGA implementation environment, see "3.1.3 hardware implementation evaluation".

� Overall evaluation

Table 3.4 shows the overall evaluation results of security and implementation.

Table 3.4 Evaluation results of 64-bit block ciphers (1/2)

Characteristics

· NEC (1998)
· Feistel structure, 16 rounds. The round function is complex. Round function consists of a

main stream and a temporary key-generation part to enhance the security enhancement.
Four types of 8×8 S-boxes, based on inverse operations on GF(28) and has resistance
against differential/linear cryptanalysis.

· Table look up, addition, XOR, AND, and shift operation are used.
· Designed with a round function structure to make significant correlation invisible from

cipher-evaluation systems.

Overall evaluation

CIPHERUNICORN
-E

No security problem has so far been found. Belongs to a group with slow processing speed.

3.2 Overview of evaluation results 123

Table 3.4 Evaluation results of 64-bit block ciphers (2/2)

Characteristics

· Toshiba (2000)
· Recursive SPN structure, six rounds. Each round consists of two parallel XS-functions

and a P-layer. XS-function has a structure in which a P-layer is sandwiched between four
parallel S-boxes of two layers. One type of 8×8 S-box based on power multiplication
operations on GF(28) and has resistance against differential/linear cryptanalysis.

· Table look up, XOR, and AND operations are used.
· Achieves both security and computational efficiency using a recursive SPN structure. For

the design of the P-layer, the lower bound of the number of active S-boxes is guaranteed by
the coding theory.

Overall evaluation

Hierocrypt-L1

No security problem has so far been found. Belongs to a group with fast processing speed.

Characteristics

· Mitsubishi (1996)
· Feistel structure, eight rounds. FL-function is inserted for every two rounds. A modified

Feistel structure is recursively used in the internal structure of the round function. Two
types (7×7 and 9×9) of S-boxes, based on power multiplication operations on the extension
field, and have resistance against differential/linear cryptanalysis. Low algebraic degree in
consideration for hardware implementation.

· Table look up, XOR, AND, and OR.
· Provable security against differential/linear cryptanalysis. The origin of the KASUMI

cipher for the next -generation mobile phones.

Overall evaluation

MISTY1

No security problem has so far been found. Belongs to a group with fast processing speed.

Characteristics

· IBM (1979)
· Combination cipher that repeats DES three times. DES was standardized as FIPS in 1977.

DES has a Feistel structure with 16 rounds. Eight types of 6x4 S-boxes, selected from
randomly configured S-boxes using a certain evaluation standard.

· Table look up, XOR, and cyclic shift operation are used.
· Hardware-oriented design. DES is a historic cipher that has been in use for more than 25

years, and is a root of modern ciphers. However, it will be eliminated from FIPS PUB
46-3 in 2004. (The use of triple DES as FIPS PUB 46-4 will continue from 2004 onward.)
In the future, DES is expected to be succeeded by AES (FIPS PUB 197).

Overall evaluation

Triple DES
(3-Key)

There seem no problem on security as far as it is guaranteed by FIPS or the like.

124 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.2.1.1 General review of security evaluation results

� Resistance against differential/linear attacks

Resistance against differential/linear attacks can be expressed by the maximum differential/linear
probability. MISTY1 and Hierocrypt-L1 guarantee security in terms of this probability. MISTY1
shows the probability 2-56 or lower with three rounds, which is considered secure enough against
differential/linear cryptanalysis. Hierocrypt-L1 guarantees the probability 2-48 or lower with two rounds.
This guarantee is called provable security against differential/linear cryptanalysis.

Because it is difficult to determine the true value of the maximum differential/linear probability,
maximum differential/linear characteristic probability is used as a corresponding index. The following
methods are used for evaluating the maximum characteristic probability:

• Determines the upper bound of characteristic probability based on the maximum
differential/linear probability of the components

• Determines maximum characteristic probability through computer searches

Hierocrypt-L1 and CIPHERUNICORN-E are considered to offer the upper bound of characteristic
probability. The former has been shown not to exceed a differential/linear characteristic probability 2-90
in two rounds.

CIPHERUNICORN-E cannot be analyzed easily due to the complex structure of its round function. In
the self-evaluation report, differential/linear characteristic probability is estimated by using a simplified
round function. The validity of this simplification was checked and the adequate estimating methods
were studied this year. It resulted in evaluations of the round function different from those described in
the self-evaluation report. However, it was concluded that the specified 16-round CIPHERUNICORN-E
has sufficient security against differential/linear cryptanalysis.

The technique that regards it as the proof of security to show the characteristic probability of a 64-bit
block cipher being 2-64 or lower is called practical security against differential/linear cryptanalysis. As is
shown above, the resistance against differential/linear cryptanalysis of these 64-bit block ciphers are
academically guaranteed.

� Resistance against algebraic and other attacks

Resistance against higher order differential attack is given as an algebraic degree of the encryption
function. However, this degree and the number vary depending on how input variables are chosen and
how the output variables to be focused on are selected. It is computationally impossible to find the
minimum value from all possible choice of variables. CRYPTREC focused on the components of the
encryption function, evaluated the nominal algebraic degree of cipher based on the algebraic degree of the
components. Also we performed the following two evaluations choosing any single S-box input as the
variable.

• Resistance against higher order differential attack of eighth order or lower, with a single
S-box input used as the variable

• Resistance against higher order differential attack based on the bijective nature of the S-box
(resistance against SQUARE attack)

As a result, it was verified that all of the ciphers had resistance against these attacks at the proposed
number of rounds.

3.2 Overview of evaluation results 125

Hierocrypt-L1 and MISTY1 can be broken to a larger number of rounds by higher order differential
attack than differential/linear cryptanalysis. Using 237 plaintext pairs and 2117 computations with 32nd
order higher order differential attack (32nd order SQUARE attack), Hierocrypt-L1 can be broken to 3.5
rounds. MISTY1 can be broken to five rounds using 222 plaintext pairs and 233 computations. A
modified MISTY1 without FL-function can be broken to six rounds using 211 plaintext pairs and 293
computations with 7th order higher order differential attack.

Resistance against interpolation attack (or linear sum attack, which is a generalized form of interpolation
attack) is given as the number of unknown interpolation coefficients, when the encryption function is
expressed as an interpolation polynomial. However, this number varies depending on how input
variables are chosen and how the output variables to be focused on are selected. It is impossible to
exhaust all possibilities because of the massive number of computations needed. CRYPTREC divided
plaintext input into eight small blocks in 8-bit units (64-bit block cipher), and evaluated resistance against
linear sum attacks when these small blocks were expressed as polynomial basis of a Galois field GF(28).
No attacking method that is more efficient than the exhaustive key search has been discovered for any of
the ciphers.

Triple DES (3-key) can be theoretically broken with 256 chosen plaintexts and 2108.2 computations, using a
meet-in-the middle attack that utilizes on Triple DES's being a combination cipher, it is considered secure
for all practical purposes.

No security problems of any of the ciphers have so far been reported from a practical viewpoint for other
attacks such as chi-square attack, impossible differential cryptanalysis, boomerang attack, mod n attack,
and non-surjective attack

� Avalanche effect evaluation

The evaluation was made in 2000. All algorithms satisfied the expected values in terms of the overall
encryption that includes key schedule part. However, for the key schedule part alone, parts that do not
satisfy the expected values were detected in Hierocrypt-L1 and MISTY1. Also, for the round function
alone, parts that do not satisfy the expected values were detected in Hierocrypt-L1 and MISTY1.

Table 3.5 64 Avalanche effect evaluation results of 64-bit block ciphers

CIPHERUNICORN
-E

In the data randomization part, no characteristics could be seen in the randomization in the
fourth round and beyond. No characteristics could be seen in the key schedule part. No
characteristics could be seen in the round function.

Hierocrypt-L1 In the data randomization part, no characteristics could be seen in the randomization in the
second round and beyond. In the key schedule part, there was a major relationship between a
secret key and an expanded key. Some indexes deviated from the expected values in a
round function.

MISTY1 In the data randomization part, no characteristics could be seen in the randomization in the
fourth round and beyond. In the key schedule part, there was a major relationship between a
secret key and an expanded key. Some indexes deviated from the expected values in a round
function.

126 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.2.1.2 Software implementation evaluation

The evaluation was made in 2000. The values listed are the result of evaluation of 2000.

� Data randomization part processing speed

A key was set for plaintext (ciphertext) of 1MB and the processing time per 1 block (64 bits) of
encryption (decryption) was measured. Although [clocks/block] was measured, we converted it to
processing speed [Mbps] for ease of understanding. A larger value means faster speed. Because the
execution environment affect the measured value significantly, the value might not always be realized.
Furthermore, in some cases, the measured value varied only with the little change (to be described later)
that did not alter the gist of the measurement program. Therefore, it is risky to make a final decision
solely based on the values in the tables. The values on the second line in each cell (if present) indicate
the measured values obtained after the alteration of measurement program by the applicant. A large
memory area was allocated to the measurement program to provide the same condition to all ciphers
under evaluation. "Alteration" in this case means that the memory area was optimized for the cipher.
Concerning the alteration, taking the following two points into account, we decided to include both values
in this report.

• Condition was as close as possible to the actual implementation.
• The reason why memory area size affects speed is unknown.

1. PC environment

From these results, it can be concluded that in the PC environment, if Triple DES is used as a reference,
CIPHERUNICORN-E belongs to a slow group, and the rest belong to a sufficiently fast group.
Although there was some speed difference between encryption and decryption in some ciphers, these
differences were too insignificant to cause an implementation problem. Also, because there is no
significant deviation between the average and the fastest value in any of the ciphers, the ciphers under
evaluation can be expected to operate stably in the PC environment.

2. Server environment

The results show that CPU specification improvements do not directly contribute to the improvement of
encryption speed, in some cases. For Hierocrypt-L1, the values obtained after the alteration of
measurement program by the applicant are shown in the second line in the corresponding cell.
Enhancing the efficiency of memory allocation improved the speed by about 10%.

There were slight speed differences between encryption and decryption in some ciphers, these differences
were too insignificant to cause implementation problems. Also, since there is no significant deviation
between the average and maximum speed values in any of the ciphers, stable operation in the server
environment can be expected.

Although other ciphers not listed in the table can also be implemented in this environment, they may not
suit the design philosophy, and therefore the evaluation on this environment was an option to respect
applicant's intentions.

3. High-end environment

Alpha 21264 is a 64-bit CPU and has a giant primary cache. If general-purpose CPUs evolve into such a
structure in the future, reference to the result may help to grasp the tendency among the submitted
ciphers.

Note that the evaluation on high-end environment was also an option by each applicant.

3.2 Overview of evaluation results 127

Table 3.6 PC environment [Pentium III (650 MHz)]

Processing speed [Mbps]

Encryption Decryption 64-bit block ciphers

Maximum (average) Maximum (average)

CIPHERUNICORN-E 29.0 (28.9) 29.3 (29.2)

Hierocrypt-L1 209.0 (207.0) 203.9 (202.2)

MISTY1 195.3 (193.8) 200.0 (197.8)

Triple DES 48.7 (48.6) 48.7 (48.6)

Table 3.7 Server environment [UltraSPARC IIi (400 MHz)]

Processing speed [Mbps]

Encryption Decryption 64-bit block ciphers

Maximum (average) Maximum (average)

CIPHERUNICORN-E 17.5 (17.4) 17.5 (17.4)

Hierocrypt-L1

67.7
77.1

(67.4)
(76.2)

51.2
84.2

(50.8)
(83.2)

Table 3.8 High-end environment [Alpha 21264 (463 MHz)]

Processing speed [Mbps]

Encryption Decryption 64-bit block ciphers

Maximum (average) Maximum (average)

CIPHERUNICORN-E 18.8 (18.7) 18.9 (18.8)

Hierocrypt-L1
141.1
165.5

(138.7)
(162.8)

141.1
165.5

(139.8)
(162.8)

MISTY1 139.1 (138.0) 143.8 (142.5)

� Key schedule part + Data randomization part

The processing time from key set up until end of encryption (decryption) of 1-block data (64 bits) was
measured. Although the number of clock cycles was used as the measured value, we converted it to µ
sec for ease of understanding. A smaller value means faster speed. Because the execution
environment affects the measured value significantly, the value might not always be realized.
Furthermore, in some cases, the measured value varied only with the little change (to be described later)
that did not alter the gist of the measurement program. Therefore, it is risky to make a final decision
solely based on the values in the tables. The value listed at the bottom of each measured value column
applies in the case of alteration of the measurement program by an applicant. The large memory area
was allocated to the measurement program to provide the same condition to all ciphers under evaluation.
"Alteration" in this case means that the memory area was optimized for the cipher. Concerning the
alteration, taking the following two points into account, we decided to include both values in this report.

• Condition was as close as possible to the actual implementation.
• The reason why memory area size affects speed is unknown.

128 Chapter 3 Evaluation of symmetric-key cryptographic techniques

These values can be used for reference when using a block cipher for authentication, for example.

In that case, it is desirable that the processing is completed in several µ sec.

The above results indicate that the evaluated ciphers are expected to have practical applicability in such
implementation environments.

Software implementation performance is being improved daily thanks to the efforts of the applicants
toward the development. It is expected that processing speeds faster than those listed in this report have
been achieved. We recommend you to contact each applicant for the latest situation.

Table 3.9 PC environment [Pentium III (650 MHz)]

Processing speed [µ sec]

Encryption Decryption 64-bit block ciphers

Maximum (average) Maximum (average)

CIPHERUNICORN-E 3.72 (3.73) 3.70 (3.72)

Hierocrypt-L1 0.58 (0.58) 0.95 (0.95)

MISTY1 0.55 (0.55) 0.54 (0.54)

Triple DES 3.02 (3.03) 3.03 (3.04)

Table 3.10 Server environment [UltraSPARC IIi (400 MHz)]

Processing speed [µ sec]

Encryption Decryption 64-bit block ciphers

Maximum (average) Maximum (average)

CIPHERUNICORN-E 7.21 (7.23) 7.34 (7.36)

Hierocrypt-L1
1.80
1.54

(1.80)
(1.55)

3.01
2.53

(3.04)
(2.58)

Table 3.11 High-end environment [Alpha 21264 (463 MHz)]

64-bit block ciphers [µ sec]

Encryption Decryption 64-bit block ciphers

Maximum (average) Maximum (average)

CIPHERUNICORN-E 5.14 (5.16) 5.66 (5.69)

Hierocrypt-L1
0.84
0.83

(0.85)
(0.84)

1.35
1.33

(1.41)
(1.40)

MISTY1 0.72 (0.73) 0.68 (0.73)

3.2 Overview of evaluation results 129

3.2.1.3 Security margin and speed

With the same cipher, increasing the number of rounds qualitatively enhances security and reduces the
encryption speed. Theoretical break means that a cipher can be attacked with the computational
complexity that is smaller than the exhaustive key search and with a plaintext required for attack that is
less than the total number of plaintexts. For each cipher, the ratio between the number of rounds that
can be theoretically broken and the actual number of rounds is indicated as a security margin, and the
speed measurement obtained in the evaluation is expressed as a relative speed versus Triple DES. This
is summarized in Table 3.12. Note that the speed indicated is the average of the fastest speeds for
encryption and decryption.

Table 3.12 Security margin and processing speed ratio for 64-bit block ciphers [Pentium III]

 Security margin = Number of
rounds/number of rounds that can be break

Processing speed ratio
(data randomization part)

Processing speed ratio
(including key schedule part)

UNI-E 16 / -* 0.60 0.82

HC=L1 6 / 3.5 4.25 3.97

MISTY1 8 / 5 4.07 5.57

Triple DES 48 / 48 1.00 1.00

* For CIPHERUNICORN-E, the number of rounds that can be theoretically broken is not yet known.

3.2.2 128-bit block ciphers

The seven evaluated ciphers are AES (Rijndael), Camellia, CIPHERUNICORN-A, Hierocrypt-3, RC6
BlockCipher*1, and SC2000. The six ciphers from Camellia to SC2000 were submitted for evaluation,
and AES were added as a cipher considered to be evaluated in 2001. The overview of the evaluation is
shown below.

� Characteristics

The organization that proposed the technique, the year it was announced, its structural characteristics, and
the characteristics such as the operations used in the data randomization part were listed. For those
techniques that use variable parameters such as number of rounds, the values recommended by the
proposing organizations were listed.

� Security

Security is discussed from the following three viewpoints: resistance to differential/linear cryptanalysis,
resistance to algebraic and other attacks, and avalanche effect characteristics.

• In resistance to differential/linear cryptanalysis, the maximum differential/linear probability
or the maximum differential/linear characteristic probability is indicated as the index of
strength against differential/linear cryptanalysis.

*1 With a note dated October 16, 2002 from RSA Security Japan Ltd., the CRYPTREC secretariat received information

indicating that it would no longer perform RC6 promotion activities hereafter due to intellectual property right issues.

130 Chapter 3 Evaluation of symmetric-key cryptographic techniques

• In resistance to algebraic and other attacks, resistances to algebraic methods such as higher
order differential attack, interpolation attack, and SQUARE attack, as well as the resistance to
other attacks such as related-key attack and mod n attacks are described. The evaluation
of higher order differential attack and interpolation attack is a method to search for basic
weakness of a cipher from the algebraic point of view. If the number of rounds is large,
an attack based on this method rarely causes problems. However, the weakness revealed
by those attacks may affect the ultimate cipher strength, if other attacks can be combined
with them.

• Avalanche effect evaluation statistically captures how data is shuffled in each cipher, and
although it does not directly lead to cryptanalysis in most instances, it provides a clue to
search for weaknesses of the partial function of a cipher.

� Software implementation evaluation

These evaluations excluding the smart card environment were conducted in 2000. A cipher must be
evaluated not only from the security aspects but also from implementation aspects by assuming the actual
usage conditions. Although the requirements for implementation of ciphers in e-Government have not
been made clear yet, our software implementation evaluation was performed assuming the following
three environments: a PC environment (mandatory) that was considered to be popular at the time of
evaluation, a server environment (optional) that is currently most widely used, and a high-end
environment (optional) that has achieved high performance. Measurements were taken in two parts:
data randomization and key schedule + data randomization. For evaluation in the smart card
environment, we measured the processing time of the key schedule part + data randomization part of
some algorithms for the smart card environment evaluation.

� Hardware implementation evaluation

Implementation was actually made on FPGA for an operation check during the hardware implementation
evaluation performed in 2002 to confirm "whether the third-parties can perform proper implementations
with reference only to the application documents (algorithm specifications and test vector)."

The main object of this implementation is a system operation check. Therefore, it is formed as a
straightforward architecture with no special circuit scale reduction or improvement in operation speed in
consideration of the characteristics of each algorithm. This is not necessarily an optimal implementation
and an impartial comparative evaluation of the circuit implementation efficiency of each algorithm cannot
be conducted. Therefore, the relative comparison with Triple DES but also the numerical value of a
circuit scale and an operation speed shall not be disclosed. However, a 33 MHz operation is confirmed
in either cipher algorithm under the above FPGA development environment. For the outline of the
FPGA implementation environment, see "3.1.3 hardware implementation evaluation".

3.2 Overview of evaluation results 131

� Overall evaluation

Tables 3.13 show the overall evaluation results of security and implementation.

Table 3.13 Evaluation results of 128-bit block ciphers (1/2)

Characteristics

· NIST (2000)
· SPN structure, 10 rounds (128-bit key), 12 rounds (192-bit key), 14 rounds (256-bit key).

One type of 8×8 S-box, designed based on inverse number operations on GF(28) and has
resistance against differential/linear attacks. A diffusion layer P has a structure of
byte-by-byte permutation (ShiftRow) and diffusion in 4 bytes (MixColumn) by byte
processing.

· Table lookup, EXOR, and AND are used.
· Next generation of Square ciphers. The active S-box theory is used to evaluate the

p-layer design. The design of the P-layer was evaluated based on the concept of the
number of active S-boxes.

Overall evaluation

AES (Rijndael)

No security problem has so far been found. Belongs to a group with fast processing
speed.

Characteristics

· NTT, Mitsubishi (2000)
· Feistel structure, 18 rounds (128-bit key), 24 rounds (192/256-bit key), FL/FL-1-function

is inserted for every sixth round. Expanded keys XOR as the initial and final
processing. The round function has 8 S-boxes and a P-layer of byte-unit operations.
One type of 8×8 S-box, designed based on power multiplication operations on GF(28)
and has resistance against differential/linear cryptanalysis.

· Table look up, XOR, AND, OR, and cyclic shift operation are used.
· The design of the P-layer was evaluated based on the concept of the number of active

S-boxes.

Overall evaluation

Camellia

No security problem has so far been found. Belongs to a group with fast processing
speed.

Characteristics

· NEC (2000)
· Feistel structure, 16 rounds. The round function F is complex. Consists of a main

stream and a temporary key-generation part to be expected to enhance security. The
round function uses S-box as the basic component and consists of T- and A-functions.
Four types of 8×8 S-boxes, based on power multiplication operations on GF(28) and has
resistance against differential/linear cryptanalysis.

· Table look up, addition, multiplication, XOR, AND, and cyclic shift operation are used.
· Designed with a round function structure to make significant correlation invisible from

the cipher-evaluation system.

Overall evaluation

CIPHERUNICORN
-A

No security problem has so far been found. Belongs to a group with slow processing
speed.

132 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.13 Evaluation results of 128-bit block ciphers (2/2)

Characteristics

· Toshiba (2000)
· Recursive SPN structure, six rounds (128-bit key), seven rounds (192-bit key), and eight

rounds (256-bit key). Each round consists of two parallel XS-functions and a P-layer.
XS-function has a structure in which a P-layer is sandwiched between four parallel
S-boxes of two layers. One type of 8×8 S-box based on power multiplication
operations on GF(28) and has resistance against differential/linear cryptanalysis.

· Table look up, XOR, and AND are used.
· Has a structure similar to that of Hierocrypt-L1. The design of the P-layer was

evaluated based on the concept of the number of active S-boxes.

Overall evaluation

Hierocrypt-3

No security problem has so far been found. Belongs to a group with fast processing
speed.

Characteristics

· RSA Security (1998)
· Modified Feistel structure consisting of four 32-bit blocks, 20 rounds. The round

function F has a simple structure with 32-bit input and (32+5)-bit output. Two blocks
are affected by XOR and data-dependent cyclic shift operation.

· F-function consists of multiplication, addition, and cyclic shift operation.
· All operations are done in 32-bit words, i.e., the structure assumes a 32-bit CPU.

Variable parameter structure that allows the selection of word length, number of rounds,
and key length. Inherits the design concept of RC5.

Overall evaluation

RC6

No security problem has so far been found. Although RC6 provides the fastest encryption
speed on Pentium III, software-processing speed greatly depends on the platform. With a
note dated October 16, 2002 from RSA Security Japan Ltd., the CRYPTREC secretariat
received information indicating that it would no longer perform RC6 promotion activities
hereafter due to intellectual property right issues.

Characteristics

· Fujitsu (2000)
· Combination of Feistel structure and SPN structure. Number of rounds in the data

randomization part is 19 rounds (128-bit key) and 22 rounds (192/256-bit key). Uses
4x4 S-box in the SPN structure, and 5x5 and 6x6 S-boxes in the Feistel structure.
S-boxes are based on power multiplication operations on an extension field and has
resistance against differential/linear cryptanalysis.

· Table look up, XOR, and AND are used.
· Bitslice method, which is a high-speed implementation method, can be applied to the

SPN structure. The design of the P-layer was evaluated based on the concept of the
number of active S-boxes.

Overall evaluation

SC2000

No security problem has so far been found. Belongs to a group with fast processing
speed.

3.2 Overview of evaluation results 133

3.2.2.1 General review of security evaluation results

� Resistance against differential/linear attacks

Resistance against differential/linear attacks can be expressed by the maximum differential/linear
probability. AES and Hierocrypt-3 use this probability to evaluate their security. A probability of 2-96
or less is guaranteed in 4 rounds and 2 rounds respectively. However, there are no ciphers among the
candidate for evaluation secured by such a small probability that can provide the required security for a
128-bit block cipher.

Because it is difficult to determine the true value of the maximum differential/linear probability,
maximum differential/linear characteristic probability is used as a corresponding index. The following
methods are used for evaluating the maximum characteristic probability:

• Determines the upper bound of characteristic probability based on the maximum
differential/linear probability of the components

• Determines the maximum characteristic probability through computer searches

For Camellia, Hierocrypt-3, AES and SEED, the upper bound of characteristic probability is indicated
using the evaluation based on the concept of the number of active S-boxes. It has been shown that
Camellia, excluding the FL/ FL-1-function, does not exceed a differential/linear characteristic probability
of 2-132 in 12 rounds, and Hierocrypt-3 and AES do not exceed a differential/linear characteristic
probability of 2-150 in 2 rounds and 4 rounds respectively. The maximum differential characteristic
probability of SEED is estimated to be 2-192 in 13 rounds. Multiple paths are not considered against
linear cryptanalysis, but linear characteristics with the probability of 2-128 or larger in 6 rounds or over
have not been found.

Round function F of CIPHERUNICORN-A is complex in structure, so it is difficult to analyze it. In the
self-evaluation report, 15-round differential characteristic probability of 2-140 and the upper bound of
15-round linear characteristic probability of 2-140.14 are indicted with truncated vector search against
simplified round function mF. In 2001, the simplification was investigated and an adequate method of
estimation was searched for. The evaluation of simplified round function mF revealed that it was not
strong enough to validate the security of CIPHERUNICORN-A. The existence of weak keys was also
revealed although it was not serious enough to jeopardize the security. Further detailed evaluation with
a simplified round function was successfully advanced in FS 2002 also. Therefore, it was concluded
that the specified 16-round CIPHERUNICORN-A has sufficient security against differential/linear
attacks.

Although its structure is simple, RC6 is based on 32-bit word processing, and thus precise evaluation is
difficult. However, the evaluation of its predecessor, RC5, and the research related to the AES
application, have shown a 14-round maximum differential characteristic probability of 2-140 and an
18-round maximum linear characteristic probability of 2-155.

A truncated vector search for SC2000 has shown that 15-round maximum characteristic probability
does not exceed 2-134 for differential and 2-142 for linear. Furthermore, 11-round differential
characteristic probability of 2-117, which is the same differential characteristic mentioned above, has been
found by the submitter, reinforcing the reliability of the analytical result described above.

The technique that regards it as the proof of security that the characteristic probabilities of 128-bit block
ciphers is 2-128 or lower is called the practical security against differential/linear cryptanalysis. All of the
ciphers currently have values lower than this value, thus guaranteeing academically resistance against
differential/linear cryptanalysis.

134 Chapter 3 Evaluation of symmetric-key cryptographic techniques

� Resistance against algebraic and other attacks

Resistance against higher order differential attack and interpolation attack was evaluated in the same way
as the 64-bit block ciphers.

No attack methods more effective than an exhaustive key search have been found for all of the
cryptographic algorithms. Hierocrypt-3 and AES can be attacked to a higher number of rounds than
differential/linear cryptanalysis by applying higher order differential attack. Using an attack method that
is based on a 32nd order higher order differential attack (32nd order SQUARE attack), Hierocrypt-3 can be
broken to three out of six rounds for a 128-bit key and to 3.5 rounds out of eight (or 10) rounds for a
192-bit (or 256-bit) key. By applying a SQUARE attack (32nd order higher order differential attack) and
using a partial sum method, AES can also be broken more effectively with an exhaustive key search, to
seven rounds out of 10 for a 128-bit key, to eight rounds out of 12 for a 192-bit key, and to eight rounds
out of 14 for a 256-bit key. These attacks against AES require 2128-2119 plaintext pairs, which is nearly
equal to the 2128 plaintext pairs that can be generated in a 128-bit block cipher.

Camellia can be broken to 11 out of 24 rounds for a 256-bit key by applying higher order differential
attack with chosen ciphertext mode. A modified Camellia without FL-function can be broken to 8 out of
18 rounds for a 128-bit key, and 11 out of 24 rounds for a 256-bit key by a higher order differential
attack.

A chi-square attack also has been effective against RC6. Using this attack, RC6 can be broken more
effectively than with an exhaustive key search, to 12 rounds out of 20 for a 128-bit key, to 14 rounds out
of 20 for a 192-bit key, and to 15 rounds out of 20 for a 256-bit key.

Furthermore, we examined resistance to impossible differential cryptanalysis, boomerang attack, mod n
attack, and non-bijective attack, but found so far that none of evaluated ciphers has security problems in
practice.

� Avalanche effect evaluation

The evaluation was made in 2000. All algorithms satisfied the expected values in terms of the overall
encryption that includes key schedule part. However, for the key schedule part alone, parts that do not
satisfy the expected values were detected in Camellia, Hierocrypt-3, and SC2000. Also, for the round
function alone, parts that do not satisfy the expected values were detected in Camellia, Hierocrypt-3, RC6,
and SC2000.

3.2 Overview of evaluation results 135

Table 3.15 Avalanche effect evaluation results of 128-bit block ciphers

Camellia In the data randomization part, no characteristics could be seen in the randomization in the
fourth round and beyond. Characteristics in the key schedule part depends on the secret
key length. Some indexes of the round function deviated from the expected values.

CIPHERUNICORN
-A

In the data randomization part, no characteristics could be seen in the randomization in the
third round and beyond. No characteristics could be seen in the key schedule part. No
characteristics could be seen in the round function.

Hierocrypt-3 In the data randomization part, no characteristics could be seen in the randomization in the
second round and beyond. In the key schedule part, there was a major relationship between
a secret key and an expanded key. Some indexes of the round function deviated from the
expected values.

RC6 In the data randomization part, no characteristics could be seen in the randomization in the
fourth round and beyond. No characteristics could be seen in the key schedule part. Some
indexes of the round function deviated from the expected values.

SC2000 In the data randomization part, no characteristics could be seen in the randomization in the
fourth round and beyond. In the key schedule part, characteristics could be seen when the
secret key was 192 bits and 256 bits. Some indexes of the round function deviated from the
expected values.

3.2.2.2 Overview of software implementation evaluation

This evaluation on PC, server, and high-end environment was conducted in 2000, and for the smart card
environment was conducted in 2001.

� Data randomization processing speed

A key was set up for plaintext (ciphertext) of 1MB and the processing time per 1 block (128 bits) of
encryption (decryption) was measured. Although [clocks/block] was measured, we converted it to
(processing speed)[Mbps] for ease of understanding. A larger value means faster speed. Because the
measured value is affected greatly by the execution environment, the value might not always be realized.
Furthermore, in some cases, the measured value varied with the change (to be described later) that was
not big enough to alter the gist of the measurement program. Therefore, it is risky to make a final
decision solely based on the values in the tables. The values on the second line in the measurement
value columns (if present) indicate the measurement values obtained after the alteration of measurement
program by the applicant. A large memory area was allocated to the measurement program to provide
the same condition to all ciphers under evaluation. "Alteration" in this case means that an ample
memory area was optimized for the cipher. Concerning the alteration, taking the following two points
into account, we decided to include both values in this report.

• Condition was as close as possible to the actual implementation.
• The reason why memory area size affects speed is unkn own

1. PC environment

Triple DES measurement values are included at the bottom of table for a comparison.

The results indicate that, in the PC environment, all of the ciphers except for CIPHERUNICORN-A
belong to a sufficiently fast group compared to Triple DES. Although there was some speed difference
between encryption and decryption in some ciphers, these differences were too insignificant to cause an
implementation problem. Also, because there is no significant deviation between the average and the
fastest value in any of the ciphers, these ciphers under evaluation can be expected to operate stably in the
PC environment.

136 Chapter 3 Evaluation of symmetric-key cryptographic techniques

2. Server environment

The results show that CPU specification improvements do not directly contribute to the improvement of
encryption speed, in some cases. For example, RC6, which is the fastest in the PC environment, instead
belongs to a slow group in the server environment. For Hierocrypt-3 and SC2000, the values obtained
after the applicant altered the measurement program are shown in the second line in the
measurement-value column. More efficient memory allocation improved speed by about 10%.

There was a speed difference between encryption and decryption in Hierocrypt-3. This may be caused
by the fact that decryption processing is not sufficiently optimized because of an asymmetric
encryption/decryption structure.

Note that the evaluation on server environment was an option by each applicant. Although other ciphers
not listed in the table can also be implemented in this environment, they may not suit the design
philosophy, and therefore the evaluation on this environment was an option to respect applicant's
intentions.

3. High-end environment

Because the time between proposal and implementation was short for some ciphers, a conclusion should
not be reached based on these results alone. However, the results so far indicate that the performance of
a cipher depends on the implementation environment. For example, SC2000 is the fastest in the server
environment, while Camellia is the fastest in the high-end environment.

Alpha21264 is a 64-bit CPU and has a giant primary cache. If general-purpose CPUs evolve into such a
structure in the future, reference to the result may help to grasp the tendency among the submitted ciphers.
Note that the high-end environment was also an option by each applicant.

Table 3.16 PC environment [(Pentium III (650 MHz))

Processing speed [Mbps]

Encryption Decryption 128-bit block ciphers

Maximum (average) Maximum (average)

Camellia 255.2 (254.4) 255.2 (254.2)

CIPHERUNICORN-A 53.0 (52.9) 52.9 (52.7)

Hierocrypt-3 205.9 (204.9) 195.3 (194.4)

RC6 322.5 (320.4) 317.6 (313.6)

SC2000 214.4 (212.6) 203.9 (202.6)

Triple DES (64-bit ciphers) 48.7 (48.6) 48.7 (48.6)

3.2 Overview of evaluation results 137

Table 3.17 Server environment [UltraSPARC IIi (400 MHz)]

Processing speed [Mbps]

Encryption Decryption 128-bit block ciphers

Maximum (average) Maximum (average)

Camellia 144.2 (142.9) 144.2 (143.3)

CIPHERUNICORN-A 22.5 (22.4) 22.2 (22.0)

Hierocrypt-3
100.4
108.7

(92.3)
(108.2)

67.6
83.7

(62.1)
(83.1)

RC6 25.0 (24.5) 25.3 (24.7)

SC2000
165.2
186.2

(163.4)
(184.2)

165.7
181.6

(164.1)
(179.0)

Table 3.18 High-end environment [Alpha 21264 (463 MHz)]

Processing speed [Mbps]

Encryption Decryption 128-bit block ciphers

Maximum (average) Maximum (average)

Camellia 210.2 (205.3) 210.2 (205.6)

CIPHERUNICORN-A 32.4 (32.2) 33.5 (33.3)

Hierocrypt-3
141.1
148.5

(139.9)
(145.9)

138.8
153.5

(137.9)
(150.7)

SC2000
205.1
226.2

(200.0)
(214.5)

210.2
215.5

(203.9)
(205.1)

� Key schedule part + Data randomization processing time

The processing time from key set up until end of encryption (decryption) of 1-block data (64 bits) was
measured. Although [clocks] was used as the measured value, we converted it to µ sec for ease of
understanding. A smaller value means faster speed. Because the execution environment affects the
measured value significantly, the value might not always be realized. Furthermore, in some cases, the
measured value varied only with the little change (to be described later) that did not alter the gist of the
measurement program. Therefore, it is risky to make a final decision solely based on the values in the
tables. The value listed at the bottom of each measurement value column applies in the case of
alteration of the measurement program by an applicant. The large memory area was allocated to the
measurement program to provide the same condition to all ciphers under evaluation. "Alteration" in this
case means that the memory area was optimized for the cipher.

Concerning the alteration, taking the following two points into account, we decided to include both values
in this report.

• Condition was as close as possible to the actual implementation.
• The reason why memory area size affects speed is unknown.

These values can be used for reference when using a block cipher for authentication, for example. In
that case, it is desirable that the processing be completed in several µ sec.

138 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.19 PC environment [(Pentium III (650 MHz))

Processing speed [µ sec]

Encryption Decryption 128-bit block ciphers

Maximum (average) Maximum (average)

Camellia 0.72 (0.75) 0.73 (0.76)

CIPHERUNICORN-A 7.36 (7.42) 7.38 (7.42)

Hierocrypt-3 1.12 (1.12) 2.07 (2.09)

RC6 2.51 (2.53) 2.51 (2.52)

SC2000 1.23 (1.24) 1.26 (1.26)

Triple DES 64-bit ciphers) 3.02 (3.03) 3.03 (3.04)

Table 3.20 Server environment [UltraSPARC IIi (400 MHz)]

Processing speed [µ sec]

Encryption Decryption 128-bit block ciphers

Maximum (average) Maximum (average)

Camellia 1.01 (1.02) 1.01 (1.02)

CIPHERUNICORN-A 19.92 (20.40) 22.01 (22.57)

Hierocrypt-3
2.06
1.90

(2.07)
(2.06)

6.68
6.53

(6.71)
(6.57)

RC6 10.19 (10.28) 10.05 (10.14)

SC2000 1.56 (1.57) 1.55 (1.56)

Table 3.21 High-end environment [Alpha 21264 (463 MHz)]

Processing speed [µ sec]

Encryption Decryption 128-bit block ciphers

Maximum (average) Maximum (average)

Camellia 0.97 (0.98) 0.94 (0.95)

CIPHERUNICORN-A 9.96 (9.99) 10.95 (11.01)

Hierocrypt-3
1.46
1.44

(1.47)
(1.45)

2.44
2.44

(2.47)
(2.47)

SC2000 1.24 (1.25) 1.27 (1.28)

Software implementation performance is being improved daily thanks to the efforts of the applicants
toward the development. It is expected that processing speeds faster than those listed in this report have
been achieved. We recommend you to contact each applicant for the latest situation.

3.2 Overview of evaluation results 139

� Software implementation evaluation in smart cards, etc.

In a low-end type smart card, the number of implementation codes and RAM size used at the time of
execution often become a bottleneck. The amount of ROM and RAM used was measured in addition to
the processing time of encryption/decryption per 1 block (128 bit data) using a 128-bit secret key. An
actual smart card-working environment was assumed, aiming at an implementation that preferably puts
priority on a moderately smaller size (about 64 bytes) RAM rather than faster processing speed.

The measured value of processing time [clocks] was converted into processing time [msec] for ease of
understanding. A smaller value means faster speed. Code size measured is divided into three portions,
such as codes only for encryption, codes only for decryption, and codes that are used in both encryption
and decryption.

Table 3.22 Smart card environment [Z80 simulator (5 MHz)]

128-bit block cipher Codes Code size
[Bytes]

RAM size
[Bytes]

Stack
[Bytes]

Processing time
[msec]

Encryption 1,023 48 12 7.12
Decryption 1,042 48 12 7.51 Camellia

Both encryption
and decryption 1,268 − − −

Encryption 1,268 73 8 9.98
Decryption 2,577 73 8 14.36 Hierocrypt-3

Both encryption
and decryption 3,662 − − −

Encryption 2,192 64 6 18.77
Decryption 2,192 64 6 18.86 SC2000

Both encryption
and decryption 2,350 − − −

Encryption − − − 7.14

Decryption − − − 10.42 AES
(Reference*1)

Both encryption
and decryption 1,221 63 − −

*1 (Source) Sano, Ohkuma, Shimizu, Motoyama and Kawamura, proceedings of "Efficient Implementation of Hiercrypt",
2nd NESSIE Workshop

3.2.2.3 Security margin and speed

With the same cipher, increasing the number of rounds qualitatively enhances security and reduces the
encryption speed. Theoretical break means that a cipher can be attacked with the computational
complexity that is smaller than the exhaustive key search and with a plaintext required for attack that is
less than the total number of plaintexts. Three specifications - 128, 192, and 256-bit key length - have
been proposed for 128-bit block ciphers. In Table 3.23, the ratio between the number of rounds that can
be theoretically broken in 256-bit key specification and the actual number of rounds is indicated as a
security margin, and the speed measurement obtained in the evaluation is expressed as a relative speed
versus Triple DES. Note that the speed indicated is the average of the fastest speed of encryption and
decryption of 128-bit key specification. The processing speed of Triple DES of 128-bit data was
calculated by the following equation using the measurement values. It is used as a reference for the
comparison of processing speed among 128-bit block ciphers.

140 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Data randomization part processing time
(128bits)

= Data randomization part processing time (64 bits)×2

Processing time including key schedule part
(128bits)

= Processing time including key schedule part (64 bits)
+ Data randomization part processing time (64 bits)

Table 3.23 Security margin and processing speed ratio for 128-bit block ciphers [Pentium III]

Security margin =

Number of rounds/number
of rounds that can be attack

Attack methods
Processing speed

ratio
(data randomization

part)

Processing speed
ratio

(including key schedule
part)

AES

14 / 18
14 / 9

SQUARE attack
Related key attack

2.15

1.23 *1

Camellia
(with FL) 24 / 10 Higher order differential

attack 5.24 6.00

UNI-A 16 / − Undetermined *2 1.02 0.59

Hierocrypt-3 8 / 3.5 SQUARE attack 4.12 2.73

RC6 20 / 15 Chi-square attack 6.57 1.73

SC2000 22 / 13 Differential attack 4.29 3.49

(Triple DES) 48 / 48 Match-in-the-middle
attack 1 1

*1 Reference value: Pentium III, 600 MHz, C. Reference literature: Lawrence E. Bassham, "Efficiency Testing of ANSI
C Implementations of Round 2 Candidate Algorithms for the Advanced Encryption Standard," AES3 Conference, Section
5.1, Table 6 (128 Blocks).

*2 For CIPHERUNICORN-A, the number of rounds that can be theoretically attack is not yet known.

3.2.3 Stream ciphers

Three types of stream ciphers were evaluated, namely MUGI, MULTI-S01 and RC4. The ciphers
submitted for evaluation are MUGI and MULTI-S01. RC4 was added for evaluation in 2001. Table
3.24 shows overall evaluation results of security and implementation.

Table 3.24 Evaluation results of stream ciphers (1/2)

Characteristics

Hitachi (2001)
Same structure as the pseudo-random-numbers generator PANAMA proposed by Daemen
and Clapp in 1998. It uses a 128-bit secret key and 128-bit (publicized value) initial vectors
as parameters. Adopt a design policy to use well-evaluated components and structure for the
ease of security evaluation. The S-box and permutation matrix of AES is used as
components.

Overall evaluation

MUGI

No security problems have been found so far. Belongs to a group with fast software
processing speed.

3.2 Overview of evaluation results 141

Table 3.24 Evaluation results of stream ciphers (2/2)

Characteristics

Hitachi (2000)
The pseudo-random number generator creates a key stream from a secret key K (256 bits).
Messages are encrypted using this key stream. This is feature to achieve message secrecy as
well as message authentication at the same time. This system is configured using a
pseudo-random number generator PANAMA and cipher utilization mode section.

Overall evaluation

MULTI-S01

No security problems have been found so far. Belongs to a group with fast software
processing speed.

Characteristics

RSA Security (1987)
RC4 is an unpublished algorithm. Therefore, at CRYPTREC, the security evaluation was
conducted using the algorithm described in reference [2] (p.255) as RC4.
The core technique of RC4 is the use of a pseudo-random number generator that is specified
in the 2n state table determined by n and n-bit word length. This is generator produces
pseudo-random numbers from the state table contents that are constantly replaced. One of
the roles of the secret key is to determine the initial state in the state table.

Overall evaluation

RC4

There are no practical attack methods in RC4 and Arcfour of standard specifications when
the word length n = 8 and the number of states = 256. However, it is reported that RC4 and
Arcfour are not necessarily secure, depending on the initial state generated by the secret key.
Therefore, when using RC4, attention should be paid to the protocols that specify the initial
state. No defects regarding security have been reported at present in the use of
SSL3.0/TLS1.0. However, a 40-bit secret key can be used for SSL/TLS. On the other
hand, CRYPTREC does not consider using a 40-bit secret key to be secure.

3.2.3.1 General review of security evaluation results

� MUGI

The following security evaluations were conducted for MUGI:
• resistance to differential/linear attacks
• resistance to linear masking analyzing method
• resistance to XL attack
• Verification of statistical characteristics

Some evaluators pointed out that there were basic design problems with MUGI. Though sufficient
evaluations have not been conducted for the latest attacks all evaluators agree that there are no attacks that
can derive secret keys with computations less than 2128. At this time, no fatal defects have been found is
the security of MUGI.

The design method of pseudo-random-numbers generation is similar to PANAMA. Therefore, a
comparison examination with other stream ciphers (MULTI-S01, PANAMA) was conducted. The results
indicated that MUGI is designed to ensure that existing block cipher analysis methods are more easily
applicable than PANAMA. This can be an important advantage in evaluating the design of ciphers.

142 Chapter 3 Evaluation of symmetric-key cryptographic techniques

� MULTI-S01

The following security evaluation was mainly conducted for MULTI-S01.

Evaluation 1 [Verification of the security of MULTI-S01]

The encryption/decryption part of MULTI-S01 has a structure similar to the operation modes of a block
cipher. Security of the encryption/decryption part of MULTI-S01 was verified using a security
evaluation method for the operation as seen in the Modes of Operation Workshop sponsored by NIST.

Evaluation 2 [Verification of the security of pseudorandom number generator PANAMA]

The security of MULTI-S01 is largely attributable to PANAMA. However, its security has not been
verified sufficiently. Security of PANAMA was verified by applying various attack methods proposed
against pseudo-random number generators for encryption,.

Evaluation 3 [Verification of the statistical characteristics of pseudorandom number generator
PANAMA]

It is hard to say that the randomness of PANAMA has been sufficiently verified. In 2001, the required
minimum evaluation of random numbers for encryption listed in FIPS-140 was conducted. On the other
hand, NIST SP 800-21 describes further detailed evaluation methods of random numbers for encryption.
Statistical characteristics were verified by adopting these methods for PANAMA.

< Evaluation results >

The following points have been clarified by the above-mentioned evaluation results:
• The security of MULTI-S01 can be reduced to PANAMA.
• No particular defects were detected by verification of random number of PANAMA.
• No fatal problems have been found with the security of PANAMA.

� RC4

The following security evaluations were conducted for RC4:
• Resistance to an attack using statistical output deviation.
• Resistance to an attack that estimates the initial state from the Random number series.
• Security when RC4 is used with SSL/TLS.
• Conclusion of a known security evaluation such as RC4 analysis in WEP.

Practical decryption methods have not been submitted for RC4 and Arcfour of standard specifications, i.e.
word length n = 8 and up to now the number of states = 256. However, it is reported that RC4 and
Arcfour are not necessarily secure depending on the initial state generated by the secret key. Therefore,
when using RC4, attention should be paid to protocols that specify the initial state. No defects regarding
the security of SSL3.0/TLS1.0 have been reported at present.

3.2.3.2 Overview of Software implementation evaluation

This evaluation was conducted in 2000. Measurement was performed in a PC environment only.

� Encryption/decryption processing speed

Although [clocks/128bits] was used as the measurement unit, we converted it into processing speed
[Mbps] for ease of understanding. A larger value means faster speed. Because the measurement value
is significantly affected by the execution environment, the desired value might not be always obtained.
There may also be measurement program errors and errors caused by the conversion above.

3.2 Overview of evaluation results 143

Furthermore, in some cases, there was only a little change in the measurement value (to be described
later), which that did not alter the gist of the measurement program. Therefore, it is risky to make a final
determination solely based on the values in the tables. The values on the second line in each column (if
present) indicate the measurement value obtained after the measurement program was altered by
applicants. A large memory area was allocated to the measurement program in order to provide the
same conditions to all ciphers under evaluation. "Alteration" in this case means that a larger memory
area was optimized for each cipher. The following two points were taken into consideration for
alterations, and we decided to include both values in this report:

• Conditions were as close as possible to the actual implementation situation.
• The reason why memory area size affects speed is unknown.

Triple DES measurement values are included at the bottom of the table for a comparison. Triple DES is
a 64-bit block cipher. From this result, it can be said that when Triple DES is set as a comparison target,
both MUGI and MULTI-S01 belong to a group with fast software processing speed. There is slight
difference in speed between encryption and decryption. However no security problems have been found
in implementation so far.

� Key set up processing time

The key set up time was measured when data to be encrypted (decrypted) was set to 128 bits. The
measurement value of processing time, [clocks/key] was converted into processing time [µsec/key] for
ease of understanding. A smaller value means faster speed. Because the measurement value is
significantly affected by the execution environment, the desired value might not be always obtained.
There may also be measurement program errors and errors caused by the conversion above. Furthermore,
in some cases, there was only a little change in the measurement value (to be described later), which did
not alter the gist of the measurement program. Therefore, it is risky to make a final determination solely
based on the values in the tables. The values on the second line in each column (if present) indicate the
measurement value obtained after the measurement program was altered by applicants. A large memory
area was allocated to the measurement program in order to provide the same conditions to all ciphers
under evaluation. "Alteration" in this case means that a larger memory area was optimized for each
cipher. The following two points were taken into consideration for alterations, and we decided to
include both values in this report:

Table 3.25 PC environment [Pentium III (650 MHz)]

Processing speed [Mbps]

Encryption Decryption Stream ciphers

Maximum (average) Maximum (average)

MUGI
523.7
524.8

(420.4)
(516.5)

518.7
522.4

(410.3)
(515.1)

MULTI-S01
347.5
349.8

(283.5)
(346.5)

366.3
368.8

(294.9)
(364.5)

Triple DES (64-bit ciphers) 48.7 (48.6) 48.7 (48.6)

• Conditions were as close as possible to the actual implementation situation.
• The reason why memory area size affects the speed is unknown.

144 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.26 PC environment [Pentium III (650 MHz)]

Processing speed [Mbps]

Encryption Decryption Stream ciphers

Maximum (average) Maximum (average)

MUGI
35.96
29.31

(78.08)
(66.64)

31.33
37.82

(43.20)
(50.20)

MULTI-S01
8.69
8.51

(32.10)
(32.51)

8.76
8.36

(15.19)
(13.52)

Triple DES (64-bit ciphers) 3.02 (3.03) 3.03 (3.04)

Software implementation performance is being improved day by day thanks to the development efforts of
applicants. Processing speeds higher than those listed in this report may have been achieved as a result
of there efforts. We recommend that you contact each applicant for the latest situation.

� Hardware implementation evaluation

During the hardware implementation evaluation of FS 2002, the implementation check of each algorithm
was checked in an FPGA environment to confirm that hardware implementation by third parties is
possible from the information on "application documents (algorithm specifications and test vector)" only.

The main object of this implementation is an operation check. Therefore, it is formed as a straight
forward architecture with no special circuit scale reduction or improvement in operation speed in
consideration of the characteristics of each algorithm. This is not necessarily as optimal implementation
and an impartial comparative evaluation of the circuit implementation efficiency of each algorithm cannot
be conducted. Therefore, the relative comparison with Triple DES and also the numerical value of a
circuit scale and operation speed shall not be disclosed. However, a 33 MHz operation is confirmed in
either cipher algorithm under the above FPGA development environment.

The table below indicates the evaluation results of the number of Data Randomize Clocks.

Table 3.27 Hardware Implementation Evaluation Result for Stream Ciphers

Stream ciphers The number of Data Randomize
Clock The number of Total Clock

MUGI 6 104

MULTI-S01 70 140

For the outline of the FPGA implementation environment, see "3.1.3 hardware implementation
evaluation".

3.3 Evaluation of individual ciphers 145

3.3 Evaluation of individual ciphers

3.3.1 CIPHERUNICORN-E

3.3.1.1 Technical overview

CIPHERUNICORN-E is a 64-bit block cipher with a block length of 64 bits and a key length of 128 bits,
which was developed by NEC Corporation in 1998 [1].

The basic structure of the cipher is a 16-round Feistel cipher. The major characteristic of this cipher is
its use of an extremely complex round function that consists of a main stream and a temporary key
generation mechanism. This function is intended to enhance security by making a subkey search of the
round function difficult. Unlike the design philosophies behind many ciphers, the main design
philosophy of CIPHERUNICORN-E is to design a round function, of which a significant correlation
cannot be found out, by using a cipher strength evaluation system [2] that performs the elementary
statistics value evaluation by regarding the round function as a black box. As a result, it is reported, by
the designer, that no bias of the data shuffling has been detected in any of the items in the elementary
statistics value evaluation of the round function. According to the applicant, CIPHERUNICORN-E can
be implemented in both software and hardware, and it has been designed to be able to perform high-speed
processing, using a 32-bit processor in particular.

3.3.1.2 Technical specifications

CIPHERUNICORN-E is a 64-bit block cipher with a block length of 64 bits, a key length of 128 bits, and
has a 16-round Feistel structure. An L-function is inserted for every two rounds. For key scheduling, a
2,624-bit subkey is generated by shuffling the secret key.

� Data randomization part

The round function is a 32-bit input/output function that uses subkeys (function keys and seed keys) of 32
bits × 4 (a total of 128 bits), and consists of S-boxes, 32-bit arithmetic additions, and shift operations.
Note that this function is not a bijective function. Inside the function, 32-bit input data is branched into
the main stream and temporary key generation. The function keys and the seed keys are input into the
main stream and the temporary key generation, respectively. Furthermore, the temporary key generated
in the temporary key generation from the input data and the seed keys is inserted into the main stream,
and ultimately 32-bit output data is generated. A part of the main stream is a data-dependent function
according to the value of the temporary key. The L-function, which is an auxiliary function, is a 64-bit
input/output function that uses two 64-bit subkeys (total of 128 bits). It is a key-dependent linear
transformation function that is configured as the logical product of bit units.

� Key schedule part

The key schedule part has a Feistel structure that uses an ST-function as the round functions, and outputs
either two or four 32-bit subkeys from each ST-function while shuffling the secret key. The ST-function
uses the same T-functions as the round function.

� Design philosophy

Differential cryptanalysis and linear cryptanalysis estimate key information using the shuffling bias in the
round function. Therefore, under the philosophy of building a round function in which shuffling bias
cannot be detected, the round function that satisfies the following conditions has been designed by using the
cipher strength evaluation system that performs evaluation by regarding the round function as a black box.

146 Chapter 3 Evaluation of symmetric-key cryptographic techniques

• There must not be any relationship between an input bit and an output bit with a high
probability.

• There must not be any relationship between output bits with a high probability.
• There must not be any relationship between an input-bit change and an output-bit change

with a high probability.
• There must not be any relationship between a key-bit change and an output-bit change with

a high probability.
• There must not be any output bit that becomes 0 or 1 with a high probability.

3.3.1.3 Others

CIPHERUNICORN-A is a 128-bit block cipher designed in the same way by using the cipher strength
evaluation system.

Public registration of ISO/IEC 9979 compatible algorithms is being performed for standardization.

3.3.1.4 Evaluation results

� General review

The configuration of the round function of CIPHERUNICORN-E is very complex, and therefore it is
difficult to accurately evaluate and analyze its security against cryptanalysis techniques, including
differential cryptanalysis and linear cryptanalysis. Consequently, it was concluded in CRYPTREC
Report 2000 that CIPHERUNICORN-E required further continuous evaluation. In CRYPTREC Report
2001, the security evaluation was continuously conducted based on the following viewpoints:

• Security against differential cryptanalysis from the viewpoint of differential characteristic
probability

• Security against linear cryptanalysis from the viewpoint of linear characteristic probability
• Security against other cryptanalysis

In CRYPTREC Report 2000, it is indicated that with a round function model simplified based on
generally adequate consideration (mF-function), the upper bound of the maximum differential probability
is lower that 2-64 in 12 rounds or over. With regard to linear characteristic probability, it is also indicated
that with the simplified model round function (mF*-function), the upper bound becomes 2-70.72 in 8
rounds, which is lower than 2-64. In 2001, with regard to differential characteristic probability and linear
characteristic probability, four evaluators (teams) evaluated the round function and overall algorithm
according to methods which each evaluator considered to be adequate. The evaluations revealed that the
upper bound value was sufficiently lower than 2-64 in the number of rounds smaller than 16 that is the
specified number of rounds. These values were calculated according to the modified round function
obtained by approximating the round function of CIPHERUNICORN-E in some way. However, since
almost the same security evaluation results were obtained despite that many evaluators used different
approximation methods, it is expected that CIPHERUNICORN-E has the security against differential
cryptanalysis and linear cryptanalysis equivalent to or higher than the evaluation results obtained this
time.

With regard to cryptanalysis other than those listed above, no problem has so far been found as is shown
in CRYPTREC Report 2000.

Taking the above results together, no specific problems with the security of CIPHERUNICORN-E have
been found so far, as shown in CRYPTREC Report 2000.

3.3 Evaluation of individual ciphers 147

� Elementary statistics value evaluation

It was verified that the cipher output becomes indistinguishable from a random number in at least the fifth
round. Additionally, favorable results have been obtained for all items in the elementary statistics value
evaluation of the round function, which indicates excellent elementary statistical properties of
randomness. The applicant states that the round function was designed so that a shuffling bias cannot be
detected. However, note that this does not mean that a round function thus designed has nearly the same
characteristics as a random function.

� Security evaluation for every theoretical cryptanalysis

Security against differential cryptanalysis: If the configuration of the round function is complex and
difficult to evaluate directly, a cipher model with the simplified round function can be conceived based on
appropriate assumptions, and security can be discussed on this model. This is because it is generally
expected that the original cipher have security equivalent to or higher than that of a model with the round
function simplified on appropriate assumptions.

In CRYPTREC Report 2000, security evaluation was conducted with a model using an mF-function,
which has the round function simplified based on appropriate considerations, in such ways as (1)
replacing arithmetic addition with XOR, and (2) replacing the Y-function with a process that aggregates
input bits to the upper 1 byte of the 32-bit data. As a result, it was revealed that the upper bound of the
maximum differential characteristic probability was lower than 2-64 in at least 12 rounds or over.

In CRYPTREC Report 2001, four evaluators (teams) conducted evaluations, and the following results
were obtained.
Evaluator 1: He indicated that the upper bound of the maximum differential characteristic probability of

the round function was 2-21 and that the upper bound of the maximum differential
characteristic probability of 13 rounds was 2-126. This means that the specified 16-round
CIPHERUNICORN-E cannot be broken by differential cryptanalysis.

Evaluator 2: He indicated that although the upper bound of the maximum differential characteristic
probability of the round function was 2-12 that was the same as the value on the
self-evaluation report, the upper bound of overall algorithm was 2-72. However, he
reached the same conclusion as evaluator 1 that the specified 16-round
CIPHERUNICORN-E cannot be broken by differential cryptanalysis.

Evaluator 3: He indicated that the upper bound of the maximum differential characteristic probability of
the round function was 2-14, which means that the upper bound of the maximum differential
characteristic probability of 15 rounds is 2-98. He concluded that the specified 16-round
CIPHERUNICORN-E cannot be broken by differential cryptanalysis.

Evaluator 4: He indicated that the upper bound of the maximum differential characteristic probability of
the round function was 2-16, and that if the number of rounds is 10 or more, it is below 2-64.
He reached the same conclusion that the specified 16-round CIPHERUNICORN-E cannot
be broken by differential cryptanalysis.

Judging from the above evaluation results, with regard to any of the different approximation models, the
upper bound can be far below 2-64 in the number of rounds smaller than 16 that is the specified number of
rounds. Therefore it can be concluded that CIPHERUNICORN-E is expected to be secure against
differential cryptanalysis.

148 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Security against linear cryptanalysis: CRYPTREC Report 2000 indicates that the upper bound of the
maximum linear characteristic probability of the round function is 2-17.68 in a model with simplified round
function (mF*-function), and that the upper bound becomes 2-70.72 in 8 rounds, which is lower than 2-64.
The self-evaluation report indicates that in the model with simplified round function (mF-function), the
upper bound of the maximum linear characteristic probability of the round function is 2-63.90.

Four evaluators (teams) conducted evaluation in 2001, and the following results were obtained.
Evaluator 1: He indicated that the upper bound of the maximum linear characteristic probability of the

round function was 2-24.64, and that the upper bound of the maximum differential
characteristic probability of 13 rounds was 2-147.84. This means that the specified 16-round
CIPHERUNICORN- E cannot be broken by linear cryptanalysis.

Evaluator 2: He indicated that the upper bound of the maximum linear characteristic probability of the
round function was 2-62 using the mF-function. He reached the same conclusion that the
specified 16-round CIPHERUNICORN-E cannot be broken by linear cryptanalysis.

Evaluator 3: He indicated that the upper bound of the maximum linear characteristic probability of the
round function was 2-27.3 using the mF-function, which means that the upper bound of the
maximum linear characteristic probability of 15 rounds is 2-191.2. As a result, he concluded
that the specified 16-round CIPHERUNICORN-E cannot be broken by linear cryptanalysis.

Evaluator 4: He indicated that the upper bound of the maximum linear characteristic probability of the
round function was 2-16, and that in 10 rounds or over, it becomes less than 2-64. He
reached the same conclusion that the specified 16-round CIPHERUNICORN-E is secure
against linear cryptanalysis.

Judging from the above evaluation results, with regard to any of the different approximation models, the
upper bound can be far below 2-64 in the number of rounds smaller than 16 that is the specified number of
rounds. Therefore it can be concluded that CIPHERUNICORN-E is expected to be secure against linear
cryptanalysis.

Security against higher order differential attack and interpolation attack: Security against these
attacks has been adequately evaluated in the self-evaluation report and also in the detailed evaluations no
problems have been found.

Security against key collision attack: Because of the configuration of the key schedule part, no key
collision is expected to occur.

� Existence of weak keys

Depending on the key value, the presence of the L-function prevents the swapping of the left and right
data, which is important in a Feistel cipher, and thus may reduce the effective number of rounds.
Therefore, it is desirable to check before using a secret key that such a weak key is not generated.

3.3 Evaluation of individual ciphers 149

3.3.1.5 Software implementation evaluation results

Software implementation was evaluated in the environments listed below. Tables 3.28 and 3.29 show
the evaluation results.

Table 3.28 CIPHERUNICORN-E Data randomization part speed measurement results

Pentium III (650 MHz)

Language ANSI C + Assembler

Program size 26,232 bytes (including encryption/decryption/key scheduling)

Compiler option "/O2/Oy-" (execution speed) is specified.

 Number of processing clocks [clocks/block]

 Encryption
(Fastest / Average)

Decryption
(Fastest / Average)

First round 1,435 / 1,438 1,424 / 1,426

Second round 1,434 / 1,444 1,422 / 1,425

Third round 1,436 / 1,440 1,422 / 1,425

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 11,848 bytes (including encryption/decryption/key scheduling)

Compiler option "-v -fast" is specified.

 Number of processing clocks [clocks/block]

 Encryption
(Fastest / Average)

Decryption
(Fastest / Average)

First round 1,462 / 1,469 1,462 / 1,468

Second round 1,462 / 1,468 1,462 / 1,468

Third round 1,462 / 1,469 1,462 / 1,468

Alpha 21264 (463 MHz)

Language ANSI C

Program size 13,552 bytes (including encryption/decryption/key scheduling)

Compiler option "-O4" is specified.

 Number of processing clocks [clocks/block]

 Encryption
(Fastest / Average)

Decryption
(Fastest / Average)

First round 1,575 / 1,583 1,566 / 1,579

Second round 1,575 / 1,583 1,568 / 1,582

Third round 1,575 / 1,583 1,568 / 1,580

150 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.29 Key schedule part + data randomization part speed measurement results

Pentium III (650 MHz)

Language ANSI C + Assembler

Program size 13,552 bytes (including encryption/decryption/key scheduling)

Compiler option /O4 is specified.

 Number of processing clocks [clocks/block]

 Encryption
(Fastest / Average)

Decryption
(Fastest / Average)

First round 2,421 / 2,426 2,406 / 2,453

Second round 2,418 / 2,428 2,406 / 2,424

Third round 2,420 / 2,424 2,410 / 2,414

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 11,848 bytes (including encryption/decryption/key scheduling)

Compiler option -v -fast

 Number of processing clocks [clocks/block]

 Encryption
(Fastest / Average)

Decryption
(Fastest / Average)

First round 2,882 / 2,892 2,936 / 2,944

Second round 2,882 / 2,890 2,935 / 2,944

Third round 2,883 / 2,890 2,935 / 2,944

Alpha 21264 (463 MHz)

Language ANSI C

Program size 13,552 bytes (including encryption/decryption/key scheduling)

Compiler option "-O4" is specified.

 Number of processing clocks [clocks/block]

 Encryption
(Fastest / Average)

Decryption
(Fastest / Average)

First round 2,381 / 2,393 2,621 / 2,634

Second round 2,381 / 2,390 2,619 / 2,635

Third round 2,381 / 2,390 2,623 / 2,634

3.3 Evaluation of individual ciphers 151

Applicants have submitted the following self-evaluation reports:

Platform : Pentium III (866 MHz), RAM 256MB

OS and compiler : Windows NT4.0, Visual C++ 6.0 SP5

Language : ANSI C (including In-line assembler)

Key schedule : 993 cycles/key

Encryption : 1,409 cycles/block

Decryption : 1,423 cycles/block

Key schedule + encryption : 2,411 cycles

Key schedule + decryption : 2,402 cycles

3.3.1.6 Hardware implementation evaluation results

The hardware implementation results on FPGA (Table 3.30) are indicated by the architecture shown in
the following block diagram (Fig. 3.1,3.2). In addition, pluralities of multiplication included in the
algorithm are realized by repeated processing on the 18-bit multiplier prepared for FPGA as hard
macroscopic. Therefore, more clocks are required compared with other algorithms.

Table 3.30 CIPHERUNICORN-E hardware implementation evaluation results

Number of clocks 35

Number of Data Randomize Clocks 265

Number of implementation key bits 128

The applicants also reported, the following self-evaluation on ASIC and FPGA implementations.

ASIC process : NEC 0.25 µm CMOS ASIC Design Library

Speed priority implementation : 108.00 Mbps, 1,034.3 Kgates

Scale priority implementation : 39.00 Mbps, 966.2 Kgates

FPGA device : ALTERA EP20K600EBC652-1

Speed priority implementation : 21.76 Mbps, 9,013 cells + 118 ESB

Scale priority implementation : 17.03 Mbps, 6,486 cells + 67 ESB

152 Chapter 3 Evaluation of symmetric-key cryptographic techniques

References

[1] Yukiyasu Tsunoo, Hiroyasu Kubo, Hiroshi Miyauchi, and Katsuhiro Nakamura, Ciphers

whose security has been evaluated by statistical methods, 1998 Ciphers and Information
Security Symposium SCIS '98, 4.2.B, 1998

[2] Yukiyasu Tsunoo, Ryoji Ota, Hiroshi Miyauchi, and Katsuhiro Nakamura, Distributed Cipher
Strength Evaluation Support System, 2000 Ciphers and Information Security Symposium
SCIS2000, A53, 2000.

[3] Toyohiro Tsurumaru, Yasuyuki Sakai, Tooru Sorimachi, Mitsuru Matsui, "Timing Attacks to
64-bit Block Ciphers," SCIS2003, 2D-3, (2003).

Output

Input

T(0)

T(1)

T(2)

Y(3,8,16)

FK

Y(7,9,13)

T(1)

SK

F function circuit

T(0)

●

●
●

Bit (31:28)
Bit (7:0)

Bit (16:8)

Decode circuit 0 1

T(0) T(1) T(2) T(3) K(0) K(1) K(2) K(3)

● ●

● ● ●

●● ● ●

Register

●

: 32- bit Addition

AND AND

AND AND

LKInput

AND

Outpu Outpu

L function

●●● ●

● ●●

T(0) function
Input

S3 S0 S1 S2

Output

●

T(2) function
Input

S1 S2 S3 S0

Output

●

8:1

Input

F
function

Register

LK

FK, SK

L function

●

●

●

●

0 1

F
function

Output

FK, SK

T(3) function
Input

Outpu

S1S0 S2 S3

T(0)

T(3)

T(1) function
Input

S2 S0

Output

●

S3 S1

Figure 3.1 CIPHERUNICORN-E encryption circuit block diagram

3.3 Evaluation of individual ciphers 153

SK{i+1}[0]
FK{i+1}[0]
LK{i}[1]

SK{i+1}[1]
FK{i+1}[1]
LK{i}[0]

Input

T(n+2)

T(n)

T(n+3)

T(n+1)

Outpu

SK{i+1}[0]
FK{i+1}[0]

SK{i}[1]
FK{i}[1]

ST function

● ●

●
●

●

●

●●

●

●

LK
FK, FK
SK, SK

ST(0)

ST(1)

ST(2)

ST(3)

Register

10

Input

Figure 3.2 CIPHERUNICORN-E key generation circuit block diagram

3.3.2 Hierocrypt-L1

3.3.2.1 Technical overview

Hierocrypt-L1 is a block-cipher algorithm that was proposed by Toshiba corporation on September 8,
2000 at the domestic workshop on computer security (CSEC) of the Information Processing Society of
Japan. It consists of a byte-substitution layer (S) in which eight 8-bit S-boxes are arranged in parallel, a
lower linear transformation (MDSL) in which two 4×4 MDS arrays on GF(28) are arranged in parallel, a
higher linear transformation (MDSH) consisting of 2×2 MDS arrays on GF(232), and a key-addition layer
(K). Each round of the round function begins with K, followed by S, MDSL, K, S, and is terminated
with MDSH. The last round begins with K, followed by S, MDSL, K, and S, and is terminated with K.
An encryption process repeats the round function 5 times, and then performs one last round.

Technical points: Achievement of both computation efficiency and security through the use of recursive
SPN

3.3.2.2 Technical specifications

� Input/output/key length
• Input/output length: 64 bits
• Key length: 128 bits
• Number of rounds: 6
• Structure: Recursive SPN

� Design philosophy
• The goal is to design a cipher that is sufficiently strong against major cryptanalyses, that

runs at high speeds on major platforms, and that can be implemented in a small size.
• To achieve both computation efficiency and security, the data randomization part uses a

recursive SPN structure.
• S-box is optimized for resistance against differential/linear cryptanalysis based on a power

multiplication function on a Galois field. Furthermore, application of algebraic attacks is
made difficult by sandwiching the power multiplication function between bit permutation
and affine transformation.

154 Chapter 3 Evaluation of symmetric-key cryptographic techniques

• The diffusion layer is chosen not only so that the lower bound of the active S-boxes is
maximized, but also taking both the security and the implementation efficiency into
consideration.

• The key schedule part is based on a 64-bit Feistel structure, and expanded keys are
generated by combining intermediate outputs. Around-trip structure is adopted, in which
an intermediate key string is reversed in the middle and returns, such that the initial delay
of the on-the-fly subkey generation becomes small during decryption as well.

3.3.2.3 Others

Hierocrypt-L1 has nearly the same structure as Hierocrypt-3, which is a 128-bit block cipher. According
to the implementation method of both of these ciphers, the decryption speed of the data randomization
part alone is slightly slower than the encryption speed.

3.3.2.4 Security evaluation results

At present (March, 2003), the security evaluation results that are known have shown no definite defects
associated with Hierocrypt-L1 security.

The most effective attack method currently known against Hierocrypt-L1 is the SQUARE attack. According
to the report, the best attack based on this can break up to 3.5 rounds (7 layers) out of 6 rounds (12 layers)
[1, 11]. Detailed confirmation results indicate that, by applying Type 1 expansion [3] to Ferguson et
al.'s methods [4], the attack can break up to 3 rounds (6 layers) out of 6 rounds (12 layers) [10]. Further,
detailed evaluation has revealed that by guessing the key for one more round, the attack against up to 3.5
rounds (7 layers) could be faster than the exhaustive search [11]. The number of chosen plaintexts
needed for this attack is 237, and the computational complexity is about 2110 encryption computations.
Since the SQUARE attack and its improvements are particularly effective on block ciphers similar to
Rijndael, this attack method should be observed carefully for the future. At present, however, no attack
methods that threaten the security have been found.

Self-evaluation by designers includes security evaluations that are performed for various cryptanalytic
attacks in addition to the SQUARE attack. Highly reliable evaluations have been made available especially
for differential/linear cryptanalysis, and continually improved proof results have been obtained for
provable securities against those attacks [11, 12, 13, 16]. According to the latest evaluation results (as of
March, 2000), using the technique of Hong et al. [9] based on assumption that the key of each round is
independent and uniform, Hierocrypt-L1 provides provable security against differential/linear attacks.
The maximum differential/linear probabilities do not exceed 2-48 in two or more rounds [16]. It has not
been clarified so far whether or not the maximum differential/linear probabilities can for certain be
smaller than 2-48 in 3 or more rounds. For a 64-bit block cipher, however, the lower bound of the
maximum differential/linear probabilities is 2-64. Its maximum differential/linear characteristics do not
exceed 2-90 in 2 rounds (4 layers) [13]. Therefore, Hierocrypt-L1 is considered to have a strong enough
defense against differential/linear attacks.

In the self-evaluation report, it has been also verified that the truncated-differential attack cannot
distinguish the cipher in 2.5 rounds (5 layers) out of 6 rounds from random permutation.

3.3 Evaluation of individual ciphers 155

The self-evaluation report also presumes that, the possibility of discovering an effective higher order
differential attacks is extremely low. This is became the algebraic degree of the S-box is seven, bit
permutation is performed on the input side of the S-box to complicate the algebraic structure, and finally
the MDS array is used for the diffusion layer, and the number of terms in the polynomial expression is
maximized when the MDS array is combined with the S-box. However, detailed evaluation revealed
that the number of items in the polynomial expression was quite high, but not the maximum value. Also,
new results were announced, including considerations of interpolation attacks [6, 7] and experimental
random number verification results [2], etc. It has been also confirmed that there are some linear
relational expressions between each expanded key [5, 8] is the key-scheduling part.

However, these results do not threaten the Hierocrypt-L1 security immediately. Hierocrypt-L1 design
features such as the SPN structure, S-box, MDSH and MDSL selection are based on cryptographic
research results obtained up to now. Therefore, Hierocrypt-L1 will have no fatal defects.

� Security against side-channel attacks

There is a reported [17] example of a side-channel attack on Hierocrypt-L1 where a timing attack with
special conditions can be used to find all the secret keys. This timing attack uses the difference between
the processing times of hit and miss-hit of the cache memory. The success of this attack depends on the
implementation method and operation environment. Therefore, no fatal defects will occur in the
security of the Hierocrypt-L1 algorithm itself. We believe that providing the proper countermeasures for
an operation environment against side-channel attacks will guarantee adequate security for practical
application. To use Hierocrypt-L1 in an environment where timing attacks that pose a security threat
could occur, careful defensive measures must be taken against such side-channel attacks. A defensive
measure that inhibits measurement of any significant difference in processing time has been proposed.
See Chapter 6 for a general outline of side-channel attacks and details on countermeasures.

3.3.2.5 Software implementation evaluation results

Software implementation was evaluated in the environments listed as follows. Tables 3.31 and 3.32
show the evaluation results.

Note: The values in parentheses were obtained in measurements using UltraSPARC IIi and Alpha 21264
after the applicant had modified the measurement program. Although a large buffer area is
normally allocated to the measurement program to maintain general-purpose characteristics, the
program was modified by the applicant to allocate just the needed buffer area. It has been
verified that no modifications were made to affect the speed evaluation results..

156 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.31 Processing-speed measurement results of Hierocrypt-L1's data-randomizing part

Pentium III (650 MHz)

Language ANSI C + Assembly language (486 instructions)

Program size 52,982 bytes (including encryption/decryption/key scheduling)

Compiler option VC++6.0 speed priority option is used.

 Consumed clockcycles [clocks/block]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 199 / 201 204 / 206

Second round 199 / 201 204 / 206

Third round 200 / 201 204 / 205

UltraSPARC IIi (400 MHz)

Language ANSI C + Assembly language

Program size 24,496 bytes (including encryption/decryption/key scheduling)

Compiler option cc –native –fast –xarch = v9 -xCC

 Consumed clockcycles [clocks/block]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 378 (332) / 380 (336) 500 (304) / 504 (307)

Second round 378 (332) / 380 (336) 500 (304) / 504 (308)

Third round 378 (332) / 380 (336) 500 (304) / 504 (308)

Alpha 21264 (463 MHz)

Language ANSI C

Program size 84,328 bytes (including encryption/decryption/key scheduling)

Compiler option cc -O3

 Consumed clockcycles [clocks/block]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 210 (179) / 214 (182) 210 (179) / 212 (182)

Second round 210 (179) / 214 (182) 210 (179) / 212 (182)

Third round 210 (179) / 213 (182) 210 (179) / 212 (182)

3.3 Evaluation of individual ciphers 157

Table 3.32 Processing-speed measurement results of Hierocrypt-L1's key-scheduling part +
data-randomizing part

Pentium III (650 MHz)

Language ANSI C + Assembly language (486 instructions)

Program size 52,982 bytes (including encryption/decryption/key scheduling)

Compiler option VC++6.0 speed priority option is used.

 Consumed clockcycles [clocks/block]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 374 / 375 616 / 618

Second round 374 / 377 616 / 617

Third round 374 / 375 616 / 618

UltraSPARC IIi (400 MHz)

Language ANSI C + Assembly language

Program size 24,496 bytes (including encryption/decryption/key scheduling)

Compiler option cc –native –fast –xarch = v9 -xCC

 Consumed clockcycles [clocks/block]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 718 (616) / 721 (620) 1,203 (1,014) / 1,215 (1,031)

Second round 718 (616) / 721 (619) 1,203 (1,012) / 1,215 (1,030)

Third round 718 (616) / 721 (620) 1,203 (1,015) / 1,215 (1,031)

Alpha 21264 (463 MHz)

Language ANSI C

Program size 84,328 bytes (including encryption/decryption/key scheduling)

Compiler option cc -O3

 Consumed clockcycles [clocks/block]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 390 (386) / 394 (389) 625 (617) / 654 (648)

Second round 390 (386) / 394 (389) 625 (617) / 653 (648)

Third round 390 (386) / 394 (389) 625 (617) / 653 (648)

158 Chapter 3 Evaluation of symmetric-key cryptographic techniques

The applicant reported the following self-evaluation results:

Platform : Mobile Pentium II (600 MHz), 192 MB

OS and compiler : Windows 2000 SP2, Sun JDK 1.3.1 without JCE

Language : Java

Key schedule (Encryption) : 1,125 cycles/key

Encryption : 1,198 cycles/block

Decryption : 1,249 cycles/block

� Smart card implementation

The applicant reported the following results for the implementation (Z80 simulator and smart card
JT6N55 of a Toshiba product) on and embedded 8-bit processor Z80 (5 MHz). The processing time
includes a required key generation in addition to encryption/decryption.

Implementation

environment Z80 simulator JT6N55

Evaluation criteria ROM
[bytes]

RAM
[bytes]

Stack
[bytes]

Processing
time

[states]

ROM
[bytes]

RAM
[bytes]

Processing
time

[states]

Encryption 2,228 25 16 18,384 2,447 26 19,399

Decryption 3,200 25 16 21,588 - - -

Encryption /
Decryption

Common use
4,196 - - - - - -

3.3.2.6 Hardware implementation evaluation results

The implementation results (Table 3.33) on FPGA are shown in the architecture of in the following block
diagram (Fig. 3.3, 3.4, 3.5).

Table 3.33 Hierocrypt-1 Hardware Implementation Evaluation Result

Number of clocks 15

Number of Data Randomize Clocks 12

Number of implementation key bits 128

The applicants also reported, the following self-evaluation on ASIC and FPGA implementations.

ASIC process : 0.25 µm CMOS ASIC Design Library

Speed priority implementation : 1,081 Mbps, 81.2 Kgates

Scale priority implementation : 135.0 Mbps, 9.9 Kgates

3.3 Evaluation of individual ciphers 159

ASIC process : 0.13 µm CMOS ASIC Design Library

Speed priority implementation : 1,568 Mbps, 54.9 Kgates

FPGA device : ALTERA Max+plus II ver. 9.6

Speed priority implementation : 51.0 Mbps, 11.0 Kcells

Register

MDSH function

AK

Output

K7

K_2～k6_2

K1_1～k6_1

Input

ｍｄｓL function ｍｄｓL function

●

S function

S function

Dummy round
processing

Key input

ρ function

Register

0 1
0

ρ
-1 function

0

Register

●

●

Only K7 has a 64-bit width

Key
generation

1

1

S S S S S S S S

S S S S S S S S

Figure 3.3 Hierocrypt-L1 Encryption Circuit/Key-scheduling Circuit Block Diagram

(Portion enclosed in dotted line on the right)

160 Chapter 3 Evaluation of symmetric-key cryptographic techniques

P

Fσ

Sbox

Sbox

Sbox

Sbox

M5 MB●

●

Constant

Key
Dummy round processing

Fσ

Figure 3.4 Dummy Round Processing/Fσ Function Internal Block Diagram

P

M5 MB●

●

●

●

●

● ● ●

Constant

ρ function

M5MB

Fσ
●

●

●

●

●● ●

●

Constant

p-1 function

●

● p－１

Fσ

Figure 3.5 ρ.ρ-1 Character Function Internal Block Diagram

3.3 Evaluation of individual ciphers 161

References

[1] P. S.L.M. Barreto, V. Rijmen, J. Nakahara Jr., B. Preneel, J. Vandewalle, and H. Y. Kim,

"Improved SQUARE Attacks Against Reduced-Round HIEROCRYPT," Fast Software Encryption,
8th International Workshop, FSE 2001, LNCS 2355, pp.173-182, Springer-Verlag, 2001.

[2] Y. Braziler, "The statistical evaluation of the NESSIE submission Hierocrypt-L1," Public
reports of NESSIE project, NES/DOC/TEC/WP3/022/1, available at http://www.
cosic.esat.kuleuven.ac.be/nessie/reports/.

[3] J. Daemen, L. R. Knudsen, and V. Rijmen, "The block cipher SQUARE," Fast Software
Encryption, 4th International Workshop, FSE '97, LNCS 1267, pp.149-165, 1997.

[4] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting, "Improved
Cryptanalysis of Rijndael," Fast Software Encryption, 7th International Workshop, FSE 2000,
LNCS 1978, pp.213-230, available at http://www.counterpane.com/rijndael.html, 2000.

[5] S. Furuya and V. Rijmen, "Observations on Hierocrypt-3/L1 Key-scheduling Algorithm,"
Proceedings of the second open NESSIE Workshop, 2001.

[6] S. Furuya and K. Sakurai, "On algebraic approximations of block ciphers with the SP
network," Proceedings of 4th Computer Security Symposium (CSS2001), 6B-1, 2001.

[7] S. Furuya and K. Sakurai, "An interpolation attack against block ciphers using Sudan's
Reed-Solomon decoding algorithm," Technical report of IEICE, The Institute of Electronics,
Information and Communication Engineers, COMP2002-22, 2002.

[8] S. Kanamaru, T. Shirai, and J. Abe, "Improved Key Schedule Analysis of Hierocrypt-3/L1,"
Technical report of IEICE, The Institute of Electronics, Information and Communication
Engineers, ISEC2002-91, 2002.

[9] S. Hong, S. Lee, J. Lim, J. Sung, and D. Cheon, "Provable Security against Differential and
Linear Cryptanalysis for the SPN Structures," Fast Software Encryption, 7th International
Workshop, FSE 2000, LNCS 1978, pp.273-283, 2001.

[10] H. Muratani, K. Okuma, F. Sano, M. Motoyama, and S. Kawamura, "Implementation of
Hierocrypt," SIGNotes of Information Processing Society of Japan, CSEC11-9, 2000.

[11] K. Okuma, F. Sano, H. Muratani, M. Motoyama, and S. Kawamura, "On Security of Block
Ciphers Hierocrypt-3 and Hierocrypt-L1," Proceedings of the 2001 Symposium on
Cryptography and Information Security, SCIS2001 11A-4, 2001.

[12] K. Okuma, F. Sano, H. Shimizu, and S. Kawamura, "Notes on the Provable Seurity of Nested
SPN Structure," Proceedings of the 2002 Symposium on Cryptography and Information
Security, SCIS2002 5B-2, 2002.

[13] K. Okuma, H. Shimizu, F. Sano, and S. Kawamura, "Security Assessment of Hierocrypt and
Rijndael against the Differential and Linear Cryptanalysis (Extended Abstract)," IACR's ePrint
archive, 2001/070, available at http://eprint.iacr.org/.

[14] B. Preneel, B. Van Rompay, L. Granboulan, G. Martinet, S. Murphy, R. Shipsey, J. White, M.
Dichtl, P. Serf, M. Schafheutle, E. Biham, O. Dunkelman, M. Ciet, J-J. Quisquater, F. Sica, L.
Knudsen, and H. Raddum, "NESSIE Phase I: Selection of Primitives," NESSIE deliverables,
available at http://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/.

[15] B. Van Rompay, V. Rijmen, and J. Nakahara Jr., "A first report on CS-Cipher, Hierocrypt,
Grand Cru, SAFER++, and SHACAL," Public reports of NESSIE project,
NES/DOC/KUL/WP3/006/1, available at http://www. cosic.esat.kuleuven.ac.be /nessie/reports/.

[16] F. Sano, K. Okuma, H. Shimizu, and S. Kawamura, "On the Security of Nested SPN Cipher
against the Differential and Linear Cryptanalysis," IEICE TRANS. FUNDAMENTALS, Vol.
E86-E, No.1, pp.37-46, 2003.

[17] T. Tsurumaru, Y. Sakai, T. Sorimachi, M. Matsui, "Timing Attacks on 64-bit Block Ciphers,"
The 2003 Symposium on Cryptography and Information Security, SCIS2003, 2D-3, 2003.

162 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.3.3 MISTY1

3.3.3.1 Technical overview

MISTY1 is a symmetric-key block cipher with a block length of 64 bits and an encryption key length of
128 bits. It was developed by Mitsubishi Electric Corporation in 1996 [11, 12]. MISTY1 uses a
Feistel structure and key-dependent linear transformation, and the internal function of the Feistel structure
uses a function that recursively combines a modified Feistel structure. It has been shown that this
structure gives MISTY1 provable security against differential and linear cryptanalysis [9, 10]. MISTY1
can be implemented in a wide range of cipher applications, from 8-bit processors for smart cards to 64-bit
RISC processors. One notable characteristic of MISTY1 is that, with a processor having a particularly
large number of registers , it can achieve high-speed processing using software and a Bitslice
implementation method (68 cycles/block with the Alpha processor) [13, 14, 15, 16, 17]. Another
characteristic is that MISTY1 can be implemented in hardware using an extremely small size of 10 K
gates or fewer [1, 2]. It has been five years since this cipher was announced, and there is great deal of
solid evidence supporting it.

3.3.3.2 Technical specifications

� Overall structure

• A block cipher with a block length of 64 bits and an encryption key length of 128 bits.
• Uses a Feistel structure and key-dependent linear transformation (FL-function), and the

internal function of the Feistel structure uses a function that recursively combines a
modified Feistel structure.

• The number of rounds can be varied but must be a multiple of four; the recommended
number of rounds is eight.

� Design philosophy

• Security must be backed by a numerical basis. Especially, using a theory on provable
security against differential and linear cryptanalysis, which are powerful general-purpose
attacking methods of block ciphers, a large and secure cipher has been designed from small
and secure functions, based on a recursive structure.

• Practical performance must be achievable using software, regardless of processor type.
To create a cipher that can be used in as many applications as possible, instructions that can
achieve high-speed processing only on particular processors were not used. Instead, only
basic instructions that can achieve appropriate high speed and small size using any
processor were used. Furthermore, the working memory size has been designed to be
small, with implementation in smart cards in mind.

• Sufficiently high speed must be achievable using hardware. Arithmetic operations were
not used because they sometimes lead to speed degradation, and the entire algorithm
consists of logical operations and table look up only. The table has been designed to be
optimized using hardware.

3.3.3.3 Others

One year before the announcement of MISTY1, its developers showed a theory related to the modified
Feistel structure to be used in MISTY1 and its security, along with multiple specific examples of block
ciphers that use this structure. Although these ciphers have no names, one of these, described as
Algorithm 1, is considered to be the basis for MISTY1 [9, 10]. A 64-bit block cipher, MISTY2, which
processes provable security against differential and linear cryptanalysis similar to MISTY1, has also been
announced [11,12].

3.3 Evaluation of individual ciphers 163

MISTY1 has been standardized in ISO/IEC 9979 algorithm public registration, RFC 2994 (informational),
ISO/IEC 18033-3 (Committee Draft), and NESSIE (2nd phase). Also, KASUMI was developed mainly
by 3GPP as an algorithm by customizing MISTY1 for mobile phones. KASUMI was adopted in March
2000 as a core of the secrecy and completeness algorithm for next-generation mobile phones (W-CDMA)
[26].

3.3.3.4 Result of security evaluation

� Evaluation result

It has been theoretically proven that MISTY1's data randomization part achieves a maximum average
differential/linear probability of 2-56 or less in three rounds, and therefore MISTY1 can be considered
sufficiently secure against differential and linear cryptanalysis. Furthermore, the analysis results of a
detailed evaluation indicate that both the data randomization part and the key schedule part are secure
against conventional attacks.

� Security against data randomization part

When analysis were performed on linear cryptanalysis, truncated differential cryptanalysis, chi-square
attack, partitioning attacks, higher order differential attack, interpolation attacks, impossible differential
cryptanalysis, mod n attack, non-bijective attack, and Ludy-Rackoff flow randomness, none of these
attacks was effective against MISTY1 with the standard specification. Note that although the
recommended number of rounds for MISTY1 is eight, it has been reported that, if the number of rounds is
five or fewer (six or fewer if the FL-function is omitted), some of the expanded keys can be revealed.
This can be done using an improved higher order differential attack [21, 22, 23, 20] with a number of
computations smaller than that required in an exhaustive key search. It is also reported that part of the
expanded keys of 5-round MISTY1 (with FL-function) has been derived in one hour as a result of the
cryptanalysis experiment using a computer [5] (see Table 3.34). In addition, the experiment results
against impossible differential cryptanalysis [8], integral cryptanalysis (SQUARE attacks) [7, 6], and
multivariable interpolative polynomial attacks [19, 5] have been reported. But all these are the
analytical results for the attacks to MISTY1 with non-standard specifications, e.g., with a smaller number
of rounds. At present, there are no known results which may effect the security of MISTY1 of standard
specifications.

� Security against key schedule part

When the key schedule part was analyzed using the exhaustive key search, weak keys/semi-weak keys,
related key attacks, and slide attack, none of attack method was found to threaten the security of the entire
cipher, though the effectiveness of some of the methods cannot be denied.

Eight key variables K1, K2, ..., K8 obtained from partitioning 128 bits into 16-bit units, were arranged
according to different orders for individual rounds and used for the key schedule part of MISTY1.
Therefore, if K1 = K2 = ... = K8 holds true for these 16-bit values, the expanded keys in all rounds become
the same. Because of this characteristic, out of all 2128 secret keys, 216 secret keys that satisfy K1 = K2
= ... = K8 may become weak keys against slide attack in a cipher that is obtained by removing the
FL-function from MISTY1. However, because it is difficult to apply this attack to a cipher that include
the FL-function, and because the number of keys that are considered weak keys is extremely small
compared to the whole, such an attack should not be considered a threat to MISTY1's security.

164 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.34 Number of rounds attacked and number of computations needed for attack

 MISTY1 MISTY1 excluding FL-function

Number of
rounds Data volume Number of computations Data volume Number of computations

4 rounds 28.4 285 24 27.2

5 rounds 222 233 210.5 217

6 rounds − − 212 293

7 rounds − − 239 2129

� Security against side channel attack

It is reported that a side channel attack against MISTY1 utilizing the time difference between hit and hit
miss of the cache memory was carried out under some special condition as a kind of timing attack to find
out the secret keys [25].

Since these attack methods depend on the working environments or implementation schemes,
countermeasures are possible. Therefore, the MISTRY1 algorithm security itself is not exposed to
defects and if suitable measures are taken against side channel attacks under the use environment, the
security is considered to be adequate. Therefore, when MISTY1 is uses in an environment threatened by
this kind of timing attack, a careful defense measure against such attacks is desired. The defense
measure also should prevent a significant processing time lag from being measured. See Chapter 6 for a
general outline of the side channel attack and details of the handling methods.

3.3.3.5 Software Implementation Evaluation

Software implementation was evaluated in the environments listed as follows. Tables 3.35 and 3.36
show the evaluation results.

Although there was an increase or decrease in the maximum five clocks between encryption and
decryption processing speeds, their values were basically the same.

An applicant reported the following self-evaluation.

Platform : Pentium III (800 MHz)

OS and compiler : Windows98

Language : Assembler

Key schedule : 230 cycles/key

Encryption : 207 cycles/block

Key schedule (Bitslice implementation) : 46 cycles/key

Encryption (Bitslice implementation) : 169 cycles/block

3.3 Evaluation of individual ciphers 165

Platform : Alpha 21264 (667 MHz)

OS and compiler : UNIX

Language : Assembler

Key schedule : 200 cycles/key

Encryption : 197 cycles/block

Key schedule (Bitslice implementation) : 17 cycles/key

Encryption (Bitslice implementation) : 71 cycles/block

Table 3.35 Processing speed measurement results of MISTY1's data randomization part

Pentium III (650 MHz)

Language Assembler

Program size 21,353 bytes (including encryption/decryption/key scheduling)

Compiler option

 Number of processing clocks [clocks/block]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 213 / 215 208 / 210

Second round 213 / 215 208 / 210

Third round 213 / 214 209 / 211

Alpha 21264 (463 MHz)

Language Assembler

Program size 15,632 bytes (including encryption/decryption/key scheduling)

Compiler option

 Number of processing clocks [clocks/block]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 203 / 205 206 / 208

Second round 203 / 206 206 / 208

Third round 203 / 205 206 / 208

166 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.36 Processing speed measurement results of MISTY1's key schedule part +
data randomization part

Pentium III (650 MHz)

Language Assembler

Program size 17,681 bytes (including encryption/decryption/key scheduling)

Compiler option

 Number of processing clocks [clocks]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 357 / 358 350 / 351

Second round 357 / 358 350 / 351

Third round 357 / 358 350 / 351

Alpha 21264 (463 MHz)

Language Assembler

Program size 10,088 bytes (including encryption/decryption/key scheduling)

Compiler option

 Number of processing clocks [clocks]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 334 / 338 337 / 340

Second round 337 / 338 337 / 340

Third round 334 / 338 337 / 340

� Smart card implementation

As an indication of processing performance on embedded 16- and 8-bit microcomputers, the applicant has
reported implementation results on the M16C (20 MHz) and H8/300 (3.57 MHz) [17]. Implementation
results on the 8-bit processor Z80 (5 MHz) have been also reported by Sano et al [18].

Processors Encryption
[cycles/block]

Key schedule
[cycles/key]

ROM used
[bytes]

RAM used
[bytes]

M16C 1,877 743 3,400 64

H8/300 6,018 1,240 1,900 43

Z80 25,486 (including key schedule) 1,598 44

3.3 Evaluation of individual ciphers 167

3.3.3.6 Hardware implementation evaluation results

Implementation results on FPGA (Table 3.37) are shown in the architecture of the following block
diagram (Fig. 3.6,3.7). In this implementation, a latch is inserted in the middle to comply with the
specification of an evaluation substrate. Therefore, there is a greater number of Data Randomize Clocks
than in the implementation in the block diagram.

Table 3.37 MISTY1 Hardware Implementation Evaluation Result

Number of clocks 1

Number of Data Randomize Clocks 16

Number of implementation key bits 128

An applicant has also reported a self-evaluation on an ASIC and FPGA implementation. All the
encryption/decryption processing parts and key schedule parts are contained in a processing circuit. In
addition to this, [1, 2] and [3, 4]have been announced as examples of ASIC and FPGA implementation
respectively.

ASIC process : Mitsubishi Electric 0.18 µm CMOS ASIC Design Library

Speed priority implementation : 2,800.9 Mbps, 71.11 Kgates

Scale priority implementation : 70.2 Mbps, 5.39 Kgates

 :

FPGA device : Xilinx XCV1000EBG560-8

Speed priority implementation : 455.8 Mbps, 3,593 units

Scale priority implementation : 250.9 Mbps, 1,462 units

Pipeline implementation : 13,330.6 Mbps, 6,432 units

FPGA device : Xilinx Vertex 1000E

Speed priority implementation : 497.0 Mbps, 3,770 slices

Scale priority implementation : 281.5 Mbps, 1,372 slices

168 Chapter 3 Evaluation of symmetric-key cryptographic techniques

●

Input

KLj
ｊ=2,4,6,8,10

FO function

FO function

Register

Output

0 1

FL function FL

●

●

●

KLi
ｉ=1,3,5,7,9

Kii, KOi
ｉ=1,3,5,7

Kij, KOｊ

j=2,4,6,
8

Figure 3.6 MISTY1 encryption circuit block diagram

FI

Input

KI
FI KI FI

KI
FI

KI KI
FI FI KI

Key register

Kii, KOi
i=1,3,5,7

Kij, KOj
j=2,4,6,8

KLi
i=1,3,5,7,

KLj
j=2,4,6,8,

●● ● ● ● ● ● ●

16：4

●

FI
KI

FI
KI

Figure 3.7 MISTY1 key generation circuit block diagram

3.3 Evaluation of individual ciphers 169

References

[1] T. Ichikawa, J. Kato, and M. Matsui, "A method of implementing secret key cipher MISTY1 in

hardware," Proceedings of SCIS98, SCIS98-9.1.A, 1998.
[2] T. Ichikawa, T. Sorimachi, and M. Matsui, "Considerations Related to Hardware Design of

Secret Key Ciphers, "SCIS97-9.D, 1997.
[3] T. Ichikawa, T. Sorimachi, T. Kasuya and M. Matsui, "On Hardware Implementation of Block

Ciphers Proposed at the NESSIE Project Phase I (1)," Proceedings of SCIS2002,
SCIS2002-12C-3, 2002.

[4] T. Ichikawa, T. Sorimachi, and T. Kasuya, "Hardware Implementation evaluation of Block
Ciphers using FPGA," Proceedings of SCIS2003, SCIS2003-12D-3, 2003.

[5] Y. Hatano, H. Tanaka, and T. Kaneko, "Higher Order Differential Attack of MISTY1,"
Proceedings of SCIS2002, SCIS2002-13A-5, 2002.

[6] I. Kim, Y. Yeom, and H. Kim, "Square Attacks on the Reduced-Round MISTY1," Proceedings
of SCIS2002, SCIS2002-13A-2, 2002.

[7] L. Knudsen and D. Wagner, "Integral Cryptanalysis," Pre-proceedings of the International
workshop of Fast Software Encryption 2002, Lecture Notes in Computer Science 2365,
Springer Verlag, pp.112 127, 2002.

[8] U. Kuehn, "Improved cryptanalysis of MISTY1," Proceedings of the International workshop of
Fast Software Encryption 2002, pp.61 75, Lecture Notes in Computer Science 2365, Springer
Verlag, 2002.

[9] M. Matsui, T. Ichikawa, T. Sorimachi, T. Tokita, and A. Yamagishi, "New Structure of Block
Ciphers with Provable Security against Differential and Linear Cryptanalysis," Proceedings of
SCIS 1996 SCIS96-4C, 1996.

[10] M. Matsui, "New Structure of Block Ciphers with Provable Security against Di erential and
Linear Cryptanalysis," Proceedings of the 3rd international workshop of Fast Software
Encryp-tion, Lecture Notes in Computer Science 1039, pp.205 218, Springer Verlag, 1996.

[11] M. Matsui, "Block Cipher Algorithm MISTY," Shingaku Giho ISEC96-11, 1996.
[12] M. Matsui, "New Block Encryption Algorithm MISTY," Proceedings of the 4-thinternational

workshop of fast software encryption, Lecture Notes in Computer Science 1267, Springer
Ver-lag, pp.54 68, 1997.

[13] J. Nakajima and M. Matsui, "Fast Software Implementation of MISTY (I)," Shingaku Giho
ISEC97-12, 1997.

[14] J. Nakajima and M. Matsui, "Fast Software Implementation of MISTY (II)," Proceedings of
SCIS 98, SCIS98-9.1.B, 1998.

[15] J. Nakajima and M. Matsui, "Fast Software Implementation of MISTY1 on Alpha Processors,"
IEICE Trans. Funcationals, Vol E82-A, No.1 January 1999.

[16] J. Nakajima and M. Matsui, "Fast Software Implementation of MISTY (III)," Shingaku Giho
ISEC2000-81, 2000.

[17] J. Nakajima and M. Matsui, "Optimal Software Implementation of Symmetric- Key Cipher
MISTY1," Proceedings of SCIS 2001, 13A-3, 2001.

[18] F. Sano, M. Koike, S. Kawamura, and M. Shiba, "Performance Evaluation of AES Finalists on
the High-End Smart Card," 3rd AES Conference, New York, 2000.

[19] K. Shibutani, A. Kobayashi, T. Shimoyama, and S. Tsuji, "Polynomial Representation of the
Inner Function of MISTY1 and its Application to Cryptanalysis," Proceedings of SCIS2002,
SCIS2002-10A-3, 2002.

[20] M. Shirota, N. Sugio, Y. Hatano, H. Tanaka, and T. Kaneko, "A Consideration related to the
application of upper one-round elimination," Proceedings of SCIS 2003 6D-3,
pp.457-462.2003.

170 Chapter 3 Evaluation of symmetric-key cryptographic techniques

[21] H. Tanaka, M. Hisamatsu, and T. Kaneko, "Higher Order Di erential Attack of MISTY1
with-out FL functions," JWIS '98, ISEC98-66, pp.143 150, 1998.

[22] H. Tanaka, S. Ishii, and T. Kaneko, "A Consideration about Strength Evaluation of KASUMI
and MISTY," Proceedings of SCIS2001 12A-1, pp.647-652, 2001.

[23] H. Tanaka and T. Kaneko, "6-Round MISTY1 Attack without FL Functions," Shingaku Giho
ISEC2002-41, 2002.

[24] H.Tanaka, N. Sugio, and T. Kaneko, "Investigation of Attacks on Block Ciphers with
Consideration for Key Schedule", Proceedings of SCIS 2003 5D-3, pp.363-368.2003.

[25] T. Tsunoo, E. Tsujihara, K. Minematsu, and H. Miyauchi, "Cryptanalysis of Block Ciphers
Implemented on Computers with Cache," ISITA, Xi'an, PRC, October 7-11, 2002.

[26] 3GPP, KASUMI, ETSI/SAGE Speci cation, 1999.
(http://www.etsi.org/dvbandca/3GPP/3gppspecs.htm)

3.3.4 Triple DES

3.3.4.1 Technical overview

Triple DES [14] was proposed by Tuchman of IBM in 1979. This is a combination cipher of DES (Data
Encryption Standard), which is a symmetric-key block cipher authorized as Federal Information
Processing Standards Publications (FIPS PUB) compliant cipher in 1977 [12]. Triple DES enhances
cipher strength by repeating the DES three times. At present, Triple DES is defined with seven modes
of operation as Triple Data Encryption Algorithm (TDEA) in U.S. American National Standards
Institute (ANSI) X9.52 and its incorporation into FIPS (FIPS46-3) has done [1, 12].

3.3.4.2 Technical specifications

Since Triple DES has such a structure that DES, a Feistel type of cipher, is repeated three times, it can be
classified into the same category of symmetric-key block cipher of 64-bit block length as DES.
Assuming that a plaintext is P, a ciphertext is C, a key is K, and encryption and decryption using the key
K are EK and DK, the encryption and decryption processes can be expressed as follows, respectively:

Encryption C = EK3 (DK2 (EK1 (P)))

Decryption P = DK1 (EK2 (DK3 (C)))

Where, depending on how to combine the keys K1, K2 and K3, any of three options is selected [1]:

(1) K1, K2 and K3 are independent.
(2) K1 and K2 are independent, and K1 = K3
(3) K1 = K2 = K3

Specifically, in the option (3), the use of three same keys ensures compatibility with "Single DES".
Generally, the option (1) is referred to as "3-key Triple DES" and the option (2) as "2-key Triple DES".
Since the key length of DES is 56 bits, the lengths of the keys in the options (1) - (3) are 168 bits, 112 bits,
and 56 bits, respectively.

The Triple DES mode of operation includes seven operation modes defined in ANSI X 9.52: the four
operation modes (TECB, TCBC, TCFB, and TOFB) extended based on 64-bit block cipher modes (ECB,
CBC, CFB, and OFB) defined in ISO 8372, and others (TCBC-I, TCFB-P, and TOFB-I) [1].

3.3 Evaluation of individual ciphers 171

3.3.4.3 Others

� Circumstances

Initially, there was fear that the key length of DES, 56 bits, was too short to ensure the security against
exhaustive key search [16]. To resolve this problem, an attempt that key length was extended using
cascade-connected DESs resulted in Triple DES. To avoid meet-in-the-middle attacks [4], DES was
repeated three times but not two times. Actually, after 20 years when DES was proposed, DES was
successfully broken for the first time at DES Challenge-I in 1997, hosted by RSA Laboratories, and was
broken in about 22 hours at DES Challenge-III [17]. In U.S.A., Triple DES has been incorporated into
FIPS and it is expected that not only the U.S. Government agencies but also the general DES users are
increasingly migrating to Triple DES.

� Security of DES in SSL/TLS

With respect to SSL [13]/TLS [6], three types of DES: 40-bit key (Single) DES, 56-bit key (Single) DES,
and 168-bit key Triple DES (3-key Triple DES) are used to conceal data. Note that the 40-bit key
(Single) DES was developed based on the 56-bit key (Single) DES by reducing the key length. Both of
them use the CBC mode for block cipher operation.

First, it cannot be said that Single DES is sufficiently secure at present against an exhaustive key search,
as described later. For this reason a 40-bit key (Single) DES and 56-bit key (Single) DES should not be
used for SSL/TLS from the standpoint of security.

Second, in selecting triple DES for bulk encryption in SSL/TLS, special care should be taken when 232 or
more blocks are encrypted with the same session keys. Since Triple DES is used in the CBC mode for
SSL/TLS there is a higher possibility that one bit of plaintext information may be deduced from the
ciphertext by a ciphertext matching attack when 232 or more blocks are encrypted with the same session
keys. This problem can be avoided by properly updating the session keys before encrypting 232 blocks,
because 232 blocks of 64-bit block length is around 32G bytes.

As described later, a 168-bit key (3-key) Triple DES can be theoretically broken using 256 pairs of chosen
plaintexts and ciphertexts. For this reason, special attention should be paid when 256 or more blocks are
encrypted with the same session keys. Note that this kind of attack requires a large amount of complex
computations (2108 .2 computational complexity) and 256 blocks of 64-bit block length is 512 PB, a huge
volume of data. Thus, this kind of attack threat may be ignored.

� Standardization-related information

In addition to FIPS PUB 46-3, Triple DES is also defined in ANSI X9.52-1998, ANSI X9.65 (Working
Draft), ISO/IEC 18033-3 (Committee Draft), and RFC 2246: SSL 3.0/TLS 1.0 (Proposed Standard).
NIST announced standardization information concerning (Triple) DES in November 2002. According
to this announcement, the existing FIPS PUB 46-3 was gone to be abolished and revised to FIPS PUB
46-4 in 2004. In FIPS PUB 46-4, the (Single) DES with key length of 56 bits or less will be formally
eliminated from the U.S. Federal Standard ciphers, and thus it is strongly recommended that the 3-key
Triple DES be adopted for future use of the DES.

172 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.3.4.4 Security evaluation results

� General comment

The main results from security evaluation on Triple DES (1) 3-key triple DES, (2) 2-key Triple DES, and
(3) Single DES) are shown in Table 3.38. It has been reported that Single DES can be efficiently broken
(in the meaning of theoretical) compared with the exhaustive key search by differential cryptanalysis and
linear cryptanalysis which are typical short cut methods. 256 computational complexity required to break
Single DES by exhaustive key search could be broken in about 22 hours at DES Challenge-III [17] and it
is permissibly considered that it could be practically broken. Although 2-key and 3-key Triple DES may
be secure against differential cryptanalysis and linear cryptanalysis which are typical short cut methods, it
has been reported that they can be more efficiently broken by the meet-in-the-middle attack, which is
aware that they were combination of ciphers, than by exhaustive key search (in the meaning of
theoretical). In particular, 2-key Triple DES can be theoretically broken in 257 computational
complexity (with 256 chosen plaintexts). Thus, it is permissibly said that 2-key Triple DES can be
practically broken because the number of calculation complexity is two times that of the exhaustive key
search. On the other hand, 3-key Triple DES can be theoretically broken in about 2108.2 computational
complexity (with 256 chosen plaintexts). It, however, may be considered that 3-key Triple DES will be
practically secure for the time being from the standpoint of current performance ofcomputers. Therefore,
it is concluded that 3-key Triple DES can be used in e-Government applications with no problem for the
time being.

� Security against Brute Force Method

It is considered that Triple DES (2-key Triple DES and 3-key Triple DES) is secure enough against the
exhaust key search at present. It has been reported that 56-bit key (Single) DES was successfully broken
for the first time at DES Challenge-I in 1997, hosted by RSA Laboratories, and was broken in about 22
hours at DES Challenge-III in 1999 [17]. Thus, at present, it is permissibly considered that DES is
secure no longer. On the other hand, it has been pointed out that, under a certain condition, the security
level is not effectively enhanced regardless of extension in the key length because Triple DES is a
combination of ciphers. As a typical example, with respect to the chosen plaintext attack proposed by
Merkle and Hellman, a large amount of computational complexity can be reduced compared to that by
exhaustive key search; the number of computational complexity can be reduced to 257 for 2-key Triple
DES (2112 by exhaustive key search) and 2112 for 3-key Triple DES (2168 by exhaustive key search) [11].
Note that 255 chosen plaintexts are needed in this attack with 50 % of success probability and 4.03 × 1010
Gbits of external storage is required for storing pairs of plaintexts and keys. Besides, it is difficult to
obtain necessary information via telecommunications lines. Thus, at present, this attack has lower
possibility of giving a threat [8]. Lucks proposed the improved attack, in which the number of
computational complexity by chosen plaintext attack proposed by Merkle and Hellman is reduced, and
reported that 3-key Triple DES could be broken in approximately 2108 computational complexity [9].
Note that this Lucks' attack may also contribute less to attack of Triple DES because of its requirement of
a large amount of computational complexity and storage. Oorschot and Wiener proposed known
plaintext attack against 2-key Triple DES, which is extended from chosen plaintext attacks proposed by
Merkle and Hellman. According to them, 2-key Triple DES can be broken in 2120-log2N computational
complexity if 120-N bit of storage for the number of known plaintexts N is installed [15]. Note that it is
predicted that it will take several decades until the attack method gives a practical threat [9].

3.3 Evaluation of individual ciphers 173

Table 3.38 Major security evaluation results of Triple DES
(computational complexity required for attack*1)

 Single DES Triple DES (2-key) Triple DES (3-key)

• Brute Force Method

Exhaustive key search 256 2112 2168

Merkle-Hellman
Meet-in-the-middle attack

[Attack by Lucks]

−

257

(Chosen plaintexts 256)
[−]

2112

(Chosen plaintexts 256)

[2108.2]

Oorshot-Wiener
Known plaintext attack

−

2120-log2N
Known plaintexts N

−

• Short Cut Method

Differential attack

237

(Chosen plaintexts 247)

Maximum differential
characteristics probability

2-162.3 or less *2

(Same as left)

Linear attack

242

(Chosen plaintexts 243)

Maximum linear
characteristics probability

2-134.7 or less *3

(Same as left)

Related-key attack *4 − −
256 - 272

(Chosen plaintext 1)
(Chosen key pair 1)

*1 Number of Triple DES (or DES) encryptions or decryptions required for attack.
*2 Assuming that Triple DES is 48-round DES, the upper limit obtained from the maximum differential characteristics

probability 2-54.1 of 16-round DES.
*3 Assuming that Triple DES is 48-round DES, the upper limit obtained from the maximum linear characteristics probability

2-44.9 of 16-round DES.
*4 It is considered that related-key attacks may practically give no threats because the conditions under which an attack can

be established are stringently restricted.

� Security against Brute Force Methods

It is considered that Triple DES (2-key Triple DES and 3-key Triple DES) is secure enough against the
exhaust key search at present. It has been reported that 56-bit key (Single) DES was successfully broken
for the first time at DES Challenge-I in 1997, hosted by RSA Laboratories, and was broken in about 22
hours at DES Challenge-III in 1999[17]. Thus, at present, it is permissibly considered that DES is
secure no longer. On the other hand, it has been pointed out that, under a certain condition, the security
level is not effectively enhanced regardless of extension in the key length because Triple DES is a
combination of ciphers.

As a typical example, with respect to the chosen plaintext attack proposed by Merkle and Hellman, a
large amount of computational complexity can be reduced compared to that by exhaustive key search; the
number of computational complexity can be reduced to 257 for 2-key Triple DES (2112 by exhaustive key
search) and 2112 for 3-key Triple DES (2168 by exhaustive key search)[11]. Note that 255 chosen
plaintexts are needed in this attack with 50% of success probability and 4.03 x 1010 Gbits of external
storage is required for storing pairs of plaintexts and keys. Besides, it is difficult to obtain necessary
information via telecommunications lines. Thus, at present, this attack has lower possibility of giving a
threat [8]. Lucks proposed the improved attack, in which the number of computational complexity by
chosen plaintext attack proposed by Merkle and Hellman is reduced, and reported that 3-key Triple DES

174 Chapter 3 Evaluation of symmetric-key cryptographic techniques

could be broken in approximately 2108 computational complexity [9]. Note that this Luck’s attack may
also contribute less to attack of Triple DES because of its requirement of a large amount of computational
complexity and storage.

Oorschot and Wiener proposed known plaintext attack against 2-key Triple DES, which is extended from
chosen plaintext attacks proposed by Merkle and Hellman. According to them, 2-key Triple DES can be
broken in 2120-log2N computational complexity if 120-N bits of storage for the number of known plaintexts
N is installed [15]. Note that it is predicted that it will take several decades until the attack method gives
a practical threat [9].

� Security against Short Cut Methods

Typical short cut methods are differential cryptanalysis and linear cryptanalysis. It is pointed out that
the DES can be broken by differential cryptanalysis with 237 computational complexity using 247 chosen
plaintexts [3]. By linear cryptanalysis, the DES can be broken by differential cryptanalysis with 242
computational complexity using 243 known plaintexts [10]. For this reason, assuming that the Triple
DES is a 48-round DES, the maximum differential characteristics probability and maximum linear
characteristics probability of the Triple DES estimated from those of the DES (2-54.1 and 2-44.9 with 16
rounds, respectively), which have been already obtained, are considerably small. This means that since
a huge amount of chosen/known plaintexts are required to make successful attacks, the candidate keys
cannot be effectively identified even if all of 264 pairs of plaintexts and ciphertexts are created for 64-bit
block ciphers. It has been reported that 3-key Triple DES can be broken by related-key attacks with less
computational complexity than those for chosen-plaintext attacks proposed by Merkle and Hellman [7].
Concretely, using one pair of chosen plaintext and ciphertext, and one key pair between which a certain
relationship is established, DES can be broken with about 256 to 272 computational complexity. Note
that this kind of attack cannot be applied to 2-key Triple DES, and the environment which the attacks can
target is very limited, resulting in less probability of threats.

� Security against side channel attack methods

A DPA attack (which is a side channel attack) on DES has been announced. In this DPA attack , the
entire spectrum of secret keys can be found by using the difference in power consumption involved in the
encryption processing of different messages under some kind of special condition [18]. Using this
technique, all secret keys of Triple DES can be exposed by the DPA attack. (refer to Chapter 6 for
details).

There is also report that a side channel attack against Triple DES utilizing the time difference between hit
and hit miss of the cache memory was carried out under some special condition as a kind of timing attack
to find out the entire spectrum of secret keys [19].

Sins this attack method depends on working environments or implementation schemes, countermeasures
are possible. Therefore, the Triple DES algorithm security itself is not exposed to fatal defects and if
suitable measures are taken against side channel attacks under the use environment, security is guaranteed.
Therefore, when Triple DES is used in an environment threatened by this kind of timing attack, a careful
defense measure against such a side channel attack is desired. The defense measure also should prevent
a significant power consumption and processing time lag from being measured. See Chapter 6 for a
general outline of the side channel attack and details of the countermeasures.

3.3 Evaluation of individual ciphers 175

3.3.4.5 Software Implementation Evaluation

Evaluation results of the Triple DES software implementations in CRYPTREC 2000 are shown in Tables
3.39 and 3.40. As known from these tables, processing speed of the Triple DES's data randomization
part achieves up to 854 cycles/block in PC environment (Pentium III). Afterwards, it has been reported
that it was improved up to 763 cycles/block in the almost same PC environment (Pentium III) as that in
CRYPTREC 2000 by taking various speed-up techniques at SCIS2002 in 2002 [2].

Table 3.39 Processing speed measurement results of Triple DES's data randomization part

Pentium III (650 MHz)

Language Assembler

Program size 44,385 bytes (including encryption/decryption/key scheduling)

Compiler option

 Number of processing clocks [clocks/ block]

 Encryption
(Fastest / Average)

Decryption
(Fastest / Average)

First round 854 / 856 854 / 856

Second round 854 / 857 854 / 856

Third round 854 / 856 854 / 857

Table 3.40 Processing speed measurement results of

Triple DES's key schedule part + data randomization part

Pentium III (650 MHz)

Language Assembler

Program size 44,679 bytes (including encryption/decryption/key scheduling)

Compiler option

 Number of processing clocks [clocks]

 Encryption
(Fastest / Average)

Decryption
(Fastest / Average)

First round 1,963 / 1,967 1,971 / 1,975

Second round 1,967 / 1,971 1,971 / 1,975

Third round 1,963 / 1,967 1,971 / 1,975

176 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.3.4.6 Hardware implementation evaluation results

Implementation results on FPGA (Table 3.41) are shown in the architecture of in the following block
diagram (Fig. 3.8,3.9).

Table 3.41 HW implementation evaluation result of Triple DES

Number of clocks 1

Number of Data Randomize Clocks 48

Number of implementation key bits 128

Implementation results reported by ASIC indicate the hardware implementation evaluation of Triple DES
[5,20]. The evaluation results are shown below.

ASIC process : Mitsubishi Electric 0.35 µm CMOS ASIC Design Library

Speed priority implementation : 407.4 Mbps, 148.1 Kgates
 (encryption & decryption part: 124.9 Kgates/key schedule part:
 23.2Kgates)

ASIC process : 0.18 µm CMOS ASIC Design Library

Speed priority implementation : 646.5 Mbps, 13.7 Kgates

Scale priority implementation : 170.3 Mbps, 5.7 Kgates

ASIC process : 0.13 µm CMOS ASIC Design Library

Speed priority implementation : 1,066.7 Mbps, 17.0 Kgates

Scale priority implementation : 334.2 Mbps, 5.5 Kgates

3.3 Evaluation of individual ciphers 177

Register

32

E

S1 S2 S3 S4 S5 S6 S7 S8

P

IP_Inv

Input

Output

F function

 Sbox

0 1

●

 0 1

●

●

Expanded key

 0 1

IP

●

Figure 3.8 Triple DES encryption circuit block diagram

Register

Key

5 : 1

●

Permutated choice 2

<<<1 <<<1 <<<2 <<<2 >>>1 >>>1 >>>2 >>>2

Expanded key output

Permutated choice 1

Figure 3.9 Triple DES key generation circuit block diagram

178 Chapter 3 Evaluation of symmetric-key cryptographic techniques

References
[1] American National Standards Institute, "Triple Data Encryption Algorithm Modes of

Operation," (X9.52-1998), 1998.
[2] K. Aoki, "Implementation optimization of Triple DES on Pentium III," 2002 Cipher and

Information Security Symposium, SCIS2002, 12C-2, 2002.
[3] E. Biham and A. Shamir, "Differential cryptanalysis of the full 16-round DES," In Advances in

Cryptology - Proceedings of CRYPTO92, Vol. 740 of LNCS, pp. 487-496. Springer-Verlag,
1993.

[4] W. Diffie and M. E. Hellman, "Exhaustive cryptanalysis of the NBS data encryption standard,
Computer, Vol. 10, No. 6, pp. 74-84, June 1977.

[5] T. Ichikawa, T. Kasuya, and M. Matsui, "Hardware evaluation of the AES finalists," In The
Third AES Candidate Conference, pp. 279-285, the National Institute of Standards and
Technology, Gaithersburg, MD, April 13-14, 2000.

[6] IETF, "The TLS Protocol Version 1.0," RFC2246, 1999. http://www.ietf.org/rfc/rfc2246.txt.
[7] J. Kelsey, B. Schneier, and D. Wagner, "Key-schedule cryptanalysis of IDEA, G-DES, GOST,

SAFER, and triple DES," In Advances in Cryptology - CRYPTO96, Vol. 1109 of LNCS, pp.
237-251. Springer-Verlag, 1996.

[8] K. Kusuda and T. Matsumoto, "A Strength Evaluation of the Data Encryption Standard," No.
97-E-5 in IMES Discussion Paper. Institute for Monetary and Economic Studies, Bank of
Japan, 1997.

[9] S. Lucks, "Attacking triple DES," In proceedings of Fast Software Encryption '98, Vol. 1372
of LNCS, pp. 239-253, 1998.

[10] M. Matsui, "Linear cryptanalysis method for DES cipher," In Advances in Cryptology -
Proceedings of EUROCRYPTO '93, Vol. 765 of LNCS, pp. 386-397. Springer-Verlag, 1994.

[11] R. C. Merkle and M. Hellman, "On the security of multiple encryption," Communications of
the ACM, Vol. 24, No. 7, pp. 465-467, 1981.

[12] National Institute of Standards and Technology, "Data Encryption Standard (Federal
Information Processing Standards Publication 46-3)," 1999.

[13] Netscape Communications, "SSL 3.0 SPECIFICATION," 1996.
http://home.netscape.com/eng/ssl3/draft302.txt.

[14] W. Tuchman, "Hellman presents no shortcut solutions to DES," IEEE Spectrum, Vol. 16, No. 7,
pp. 40-41, 1979.

[15] P. C. van Oorschot and M. J. Wiener, "A known plaintext attack on two-key triple encryption,"
In Advances in Cryptology - Proceedings of EUROCRYPTO '90, Vol. 473 of LNCS, pp.
318-325. Springer-Verlag, 1990.

[16] Taniguchi, Ota and Okubo, "Recent standardization trend around Triple DES," Financial
Studies, Vol. 18 Supplement, No. 1, Institute for Monetary and Economic Studies, Bank of
Japan, 1999.

[17] Une and Ota, "Present situation and challenges around symmetric-key ciphers - migration to
AES from DES," Financial Studies, Vol. 18, No. 2, Institute for Monetary and Economic
Studies, Bank of Japan, 1999.

[18] P. Kocher, J. Jaffe and B. Jun," Differential Power Analysis," In Proceedings of Advances in
Cryptology - CRYPTO '99, Springer-Verlag, 1999, pp. 388-397.

[19] Tsurumaru, Sakai, Sorimachi, and Matsui, "Timing attack to a 64-bit block cipher," 2003
Cipher and Information Security Symposium, SCIS2003, 2D-3, 2003.

[20] Sato and Morioka, "Timing attack to a 64-bit block cipher, "Hardware Performance
comparison of AES/Camellia/Triple-DES," 2003 Cipher and Information Security Symposium,
SCIS2003, 12D-1, 2003.

3.3 Evaluation of individual ciphers 179

3.3.5 Advanced Encryption Standard (AES)

3.3.5.1 Technical overview

AES is basically a symmetric block cipher Rijndael that was proposed for the AES (Advanced Encryption
Standard) in 1998 by J. Daemen (Proton World International) and V. Rijmen (Katholieke Universiteit
Leuven) [1]. It can use 128, 192 or 256 bits for both block length and key length. After the public
discussion on AES activity, Rijndael was selected as the AES winner in October 2000 by the NIST
(National Institute of Standards and Technology) [2] and was established in FIPS-197 AES (Federal
Information Processing Standard-197) as AES (Advanced Encryption Standard) in November 2001.
Rijndael has variable parameters, i.e., block length, key length and number of iterative rounds. But they
are specified as AES in FIPS.

3.3.5.2 Technical specifications

The main design principles behind AES are (1) sufficient resistance to known attacks, (2) ability to be
implemented in various types of platform, and (3) a simple algorithm structure that enables security
evaluation easily. AES has an SPN structure, and data blocks are processed by 8-bit S-box array in the
round function. The number of rounds in the algorithm depends on the block length and key length.
For 128-bit block length, the number of rounds is 10, 12, and 14 for key length of 128, 192, and 256 bits,
respectively. The round function consists of three types of transformation layers. One is a linear
transformation (byte shift and matrix operation.), second is a non-linear transformation by S-boxes
(substitution), and the third is an expanded key addition layers (XOR with expanded keys). The key
schedule part generates (r + 1) expanded keys (where r is the number of rounds) with the same length as
the block length. The linear transformation and substitution in the data randomization part are also used
for key schedule part.

3.3.5.3 Others

Rijndael can be considered to be a successor to ciphers called SHARK [3] and SQUARE [4], which include
the designers of Rijndael as originators.

In addition to FIPS PUB 197, AES Standardization-related information is defined in ISO/IEC 18033-3
(Committee Draft), RFC 3268: AES Ciphersuites for TLS (Proposed Standard), RFC 3394: Advanced
Encryption Standard (AES) Key Wrap Algorithm (Informational), IETF S/MIME (Internet Draft), IETF
IP sec (Internet Draft), NESSIE, WAP/WTLS 1.0, TV-Anytime Forum Specification S-7.

3.3.5.4 Security evaluation results

The major evaluation results from published reports on the security of the 128-bit block cipher AES can
be summarized as follows:

• No attack method has been found that can break full round AES as specified with 128, 192,
or 256-bit keys.

• When 128-bit keys are used, attack methods have been found that can break reduced round
(7) out of full round (10).

• When 192-bit keys are used, an attack method has been found that can break reduced round
(7) out of full round (12).

• When 256-bit keys are used, attack methods have been found that can break reduced round
(9) out of full round (14).

Based on these results, NIST has reported in its AES Report that Rijndael has an adequate security
margin in terms of security [2] and specified it as FIPS. Additional discussions of these issues follow.

180 Chapter 3 Evaluation of symmetric-key cryptographic techniques

(1) Self-evaluation report by the designers at the time of an AES proposal
In their AES proposal, the designers of Rijndael stated that they had evaluated Rijndael against
differential cryptanalysis, linear cryptanalysis, truncated differential cryptanalysis, SQUARE attack,
interpolation attack, weak key attack, and related-key attack, and that an attack method that is more
efficient than an exhaustive key search did not exist for any combination of block length and key
length [1]. Specifically, the designers claim that Rijndael is sufficiently secure against differential
cryptanalysis and linear cryptanalysis because no path that exceeds a probability of 2150 in differential
characteristic probability or linear characteristic probability for Rijndael with four rounds. Against
truncated differentials, they state that an attack method that is more efficient than an exhaustive key
search does not exist for Rijndael with six or more rounds. Furthermore, they show that a SQUARE
attack can be applied to Rijndael with four, five, or six rounds, and state that an attack method that is
mo re efficient than an exhaustive key search does not exist for Rijndael with seven or more rounds
[4]. They also state that other attack methods, such as interpolation attack, weak key attack, and
related-key attack, are difficult to apply to Rijndael.

(2) Security evaluation results following the AES proposal
Since Rijndael was proposed for AES, many researchers have reported the results of their research on
Rijndael's security. Some of the major results are described as follows.

• It has been reported that, by applying a collision attack to Rijndael with 192-bit keys and
256-bit keys, up to seven rounds can be broken using 232 chosen plaintexts [5].

• It has been reported that, by applying a SQUARE attack to Rijndael with 192-bit keys and
256-bit keys, seven rounds can be broken using 232 chosen plaintexts [6].].

• An attack method has been reported that applies an improved SQUARE attack to Rijndael
with 128- and 256-bit keys, to break up to seven and eight rounds, respectively [7].
However, the number of chosen plaintexts required for this cryptanalysis is 2128-2119, which
almost equals to all of plaintexts.

• It has been reported that up to nine rounds of Rijndael with 256-bit keys can be broken
using a related-key attack [7].

As explained previously, although many security evaluations related to Rijndael have been taking place in
the public domain, no attack method has yet been found that can break the full-specification Rijndael.
Based on these published evaluation reports, NIST reports that Rijndael has reached an adequate security
margin in terms of security [2].

Various security research efforts are being continued in cipher-related societies. A paper suggests a
capable attack with one or two plaintexts [19]. This paper discusses on not only AES but also Camellia,
and it is rather safe-side evaluation for the user (i.e. optimistic evaluation for the attacker) compared to
the above-mentioned research reports. At present, we believe that these ciphers have no security
problems. However, continuous monitoring is needed to the progress of cipher research activities in the
future.

� Security against side channel attack methods

It is reported that, power analysis attacks based on the power consumption during encryption process are
carried out as a side channel attack on AES under special condition to find out the entire bits of secret
keys [20]. Similarly, a timing attack utilizing the processing time lag is carried out to find out entire bits
of secret keys [21].

Also reported is a timing attack that uses the time difference between hit and miss-hit miss on the cache
memory under some special condition to find out entire bits of secret keys [22].

3.3 Evaluation of individual ciphers 181

These attack methods totally depend on the working environments and implementation schemes, and
countermeasures are possible without difficulty. Therefore, these attacks do not indicate the fatal defect
in the AES algorithm itself, and if suitable measures are taken against side channel attacks the security
will be guaranteed. When the encryption algorithm is to be used in such an environment threatened by
this kind of attack, a careful counter measures are desired. See Chapter 6 for a general outline of the
side channel attack and details of the countermeasures.

3.3.5.5 Software implementation evaluation results

The results of software implementation of Rijndael under several evaluation environments (CPU,
language, etc.) have been reported [2]. Note that the key setup time that appears in the following
evaluation results does not include encryption or decryption time.

Table 3.42 Number of Encrypted and Decrypted Clocks of 64-bit Processor [cycles/block]

F G H I

Key length Encryption Decryption Encryption Decryption Encryption Encryption

128-bit keys 168 168 125 126 490 293

Table 3.43 Number of Key Setup Clocks of 64-bit Processor [cycles/key]

 F G

Key length Encryption Encryption

128-bit keys 239 148

F: Hewlett-Packard PA-RISC, ASM. Source: Ref. [14], Appendix A.
G: Hewlett-Packard IA-64, C. Source: Ref. [14], Appendix A, Ref. [15].
H: Compaq Alpha 21164A 500 MHz, C. Source: Ref. [13], Table 1.
I: Compaq Alpha 21164, C. Ref. [16], Table 1.

Table 3.44 Number of Encrypted and Decrypted Clocks of 32-bit Processor [cycles/block]

 A B C D E

Key length Encryption Encryption Decryption Encryption Decryption Encryption Decryption Encryption

128-bit keys 237 1,276 1,276 805 784 362 358 7,770

192-bit keys − − − 981 955 428 421 −

256-bit keys − − − 1,155 1,121 503 492 −

182 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.45 Number of Key Setup Clocks of 32-bit Processor [cycles/key]

 B C D

Key length Encryption Decryption Encryption Decryption Encryption Decryption

128-bit keys 17,742 18,886 1,289 1,724 215 1,334

192-bit keys − − 2,000 2,553 215 1,591

256-bit keys − − 2,591 3,255 288 1,913

A: Intel Pentium II, C. Source: Ref. [10], Table 1.
B: Linux/GCC-2.7.2.2/Pentium 133 MHz MMX, C. Source: Ref. [11], Table 3.
C: Intel Pentium III 600 MHz, C. Ref. [8], 5.1, Table 6 (128 blocks)
D: Intel Pentium II/III, C. Source: Ref. [12], Table 1.
E: Ultra SPARC-I, W/JDK1.2, JIT, Java. Ref. [13], Table 2.

Table 3.46 Number of Clocks Processed by 32-bit Processor

 J K

Key length Key setup
cycles/key

Encryption
cycles/block

Key setup + encryption
cycles

128-bit keys 10,318 9,464 25,494

J: Motorola 6805 CPU Core, C. Ref.[17], Table 3.
K: Z80 CPU+coprocessor. Ref.[18], Table 8.

3.3.5.6 Hardware implementation evaluation results

Implementation results on FPGA are shown in the architecture of the following block diagram (Fig. 3.10,
3.11).

Table 3.47 AES Hardware Implementation Evaluation Result

Number of clocks 10

Number of Data Randomize Clocks 11

Number of implementation key bits 128

3.3 Evaluation of individual ciphers 183

Input

ShiftRow

MixColumns

Output

Key

Registe

S S S S S S S S S S S S S S S S

●

●

0 1

0 1

Input： ab･･･op(128bit) Key： ab･･･

ShiftRows

a b c d
e f g h
i j k l

m n o p

a b c d
f g h e
k l i j
p m n o

a'
e'
ｉ'
m'

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

a
f
k
p

MixColumn

･････

a' b' c' d'
e' f' g' h'
I' j' k' l'

m' n' o' p'

=

Figure 3.10 AES encryption circuit block diagram

Register Register Register Register

<<<8

SS SS0 1

●

●
●

●

● ●

●

Input Rcon i

K4 K3 K2 K1

0 1 0 1 0 1

Figure 3.11 AES key generation circuit block diagram

Many examples are also reported for the Rijindael hardware implementation evaluation together with
ASIC and FPGA [2,9,23,25]. One of the examples is shown below.

ASIC process : Mitsubishi Electric 0.35 µm CMOS ASIC Design Library

Throughput priority implementation : 1,950.03 Mbps, 612.8 Kgates
(Encryption & Decryption parts:518.5 Kgates/key
schedule part: 93.7 Kgates)

ASIC process : 0.18 µm CMOS ASIC Design Library

184 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Throughput priority implementation : 2,245.6 Mbps, 33.9 Kgates

Circuit-size priority implementation : 235.2 Mbps, 5.3 Kgates

ASIC process : 0.13 µm CMOS ASIC Design Library

Throughput priority implementation : 3,459.5 Mbps, 36.9 Kgates

Circuit-size priority implementation : 311.1 Mbps, 5.4 Kgates

FPGA process : Xilinx Vertex 3200E

Throughput priority implementation : 591.7 Mbps, 31,239 slices

Circuit-size priority implementation : 512.6 Mbps, 4,052 slices

Some interesting implementation example is reported [24], in which shared hardware architecture with
Camellia is used.. The processing performance of this example is as follows:

ASIC process : 0.13 µm CMOS ASIC Design Library

Throughput priority implementation : (AES+Camellia) 24.7 Kgates
(AES) 794.1 Mbps, (Camellia) 1,118.9 Mbps

Circuit-size priority implementation : (AES+Camellia) 16.3 Kgates
(AES) 458.8 Mbps, (Camellia) 646.6 Mbps

References

[1] J. Daemen and V. Rijmen, AES proposal: Rijndael, AES algorithm submission, September 3,

1999, http://nist.gov/aes (AES home page).
[2] J. Nechvatal, et al., "Report on the Development of the Advanced Encryption Standard (AES),"

National Institute of Standards and Technology, October 2, 2000.
http://csrc.nist.gov/encryption/aes/

[3] V. Rijmen, et al., "The Cipher SHARK," 3rd Fast Software Encryption, LNCS 1039, pp.
99-112, Springer-Verlag, 1996.

[4] J. Daemen, L. Knudsen and V. Rijmen, "The Block Cipher SQUARE," 4th Fast Software
Encryption, FSE97, LNCS 1267, pp. 28-40, Springer-Verlag, 1997.

[5] H. Gilbert and M. Miner, "A collision attack on 7 rounds of Rijndael," in the Third AES
Candidate Conference, printed by the National Institute of Standards and Technology, April
13-14, 2000, pp. 230-241.

[6] S. Lucks, "Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Kets," in the Third
AES Candidate Conference, printed by the National Institute of Standards and Technology,
MD, April 13-14, 2000, pp. 215-229.

[7] N. Ferguson, et al., "Improved Cryptanalysis of Rijndael," in the Proceedings of the Fast
Software Encryption Workshop 2000, April 10-12, 2000.

[8] L. Bassham, "Efficiency Testing of ANSI C Implementation of Round 2 Candidate Algorithms
for the Advanced Encryption Standard," in the Third AES Candidate Conference, printed by
the National Institute of Standards and Technology, Gaithersburg, MD, April 13-14, 2000, pp.
136-148.

[9] T. Ichikawa, T. Kasuya, and M. Matsui, "Hardware Evaluation of the AES Finalists," in the
Third AES Candidate Conference, printed by the National Institute of Standards and
Technology, Gaithersburg, MD, April 13-14, 2000, pp. 279-285.

3.3 Evaluation of individual ciphers 185

[10] K. Aoki and H. Lipmaa, "Fast Implementation of AES Candidates," in the Third AES
Candidate Conference, printed by the National Institute of Standards and Technology,
Gaithersburg, MD, April 13-14, 2000, pp. 106-120.

[11] E. Biham, "A Note on Comparing the AES Candidates," in the Second AES Candidate
Conference, printed by the National Institute of Standards and Technology, Gaithersburg, MD,
March 22-23, 1999, pp. 85-92.

[12] B. Gladman, "AES Second Round Implementation Experience," AES Round2 public comment,
May 15, 2000.

[13] O. Baudron, et al., "Report on the AES Candidates," in the Second AES Candidate Conference,
printed by the National Institute of Standards and Technology, Gaithersburg, MD, March
22-23, 1999, pp. 53-67.

[14] J. Worley, et al., "AES Finalists on PA-RISC and IA-64: Implementations & Performance," in
the Third AES Candidate Conference, printed by the National Institute of Standards and
Technology, Gaithersburg, MD, April 13-14, 2000, pp. 57-74.

[15] J. Worley, Email comments, AES Round2 public comment, May 15, 2000, available at AES
home page.

[16] R. Weiss and N. Binkert, "A Comparison of AES Candidates on the Alpha 21264," in the Third
AES Candidate Conference, printed by the National Institute of Standards and Technology,
Gaithersburg, MD, April 13-14, 2000, pp.75-81.

[17] G. Keating, "Performance analysis of AES candidates on the 6805 CPU," AES Round 2 public
comment, April 15, 1999, available at AES home page.

[18] F. Sano, et al., "Performance Evaluation of AES Finalists on the High-End Smart Card," in the
Third AES Candidate Conference, printed by the National Institute of Standards and
Technology, Gaithersburg, MD, April 13-14, 2000, pp. 82-89.

[19] N. T. Courtois and J. Pierprzyk, "Cryptanalysis of Block Ciphers with Overdefined Systems of
Equations," http://eprint.iacr.org/2002/044/.

[20] S. Chari, C. Jutla, J. R. Rao, P. Rohatgi, "A Cautionary Note Regarding Evaluation of AES
Candidates on Smart-Cards," in The Second AES Candidate Conference, printed by the
National Institute of Standards and Technology, Gaithersburg, MD, March 22-23, 1999.

[21] F. Koeune, J. J. Quisquater, "A timing attack against Rijndael," UCL Crypto Group Technical
Report CG-1999/1, 1999

[22] Yukiyasu Tsunoo, Hiroyasu Kubo, Maki Shigeri, Etsuko Tsujihara, Hiroshi Miyauchi, "Timing
Attacks to AES Using Cache Delay in the S-box," SCIS2003, 3D-1, 2003

[23] Sato, Morioka, "Hardware performance comparison of AES/Camellia/Triple-DES," SCIS 2003,
12D-2, 2003.

[24] Sato, Morioka, "Shared hardware architecture of AES and Camellia," SCIS 2003, 12D-2, 2003.
[25] Sorimachi, Ichikawa, and Kasuya, "Hardware implementation evaluation of block ciphers

using FPGA," SCIS 2003, 12D-3, 2003.

186 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.3.6 Camellia

3.3.6.1 Technical overview

Camellia is a 128-bit block symmetric cipher jointly developed by NTT and Mitsubishi Electric
Corporation. It was announced in 2000 at an academic conference [3]. Three key lengths (128, 192,
and 256 bits) are available. Camellia's basic structure is an 18-round (128-bit key length) or 24-round
(192/256-bit key length) Feistel type structure. FL/FL-1 -functions are inserted in every six rounds, thus
breaking structural uniformity. Camellia has been designed with a focus on balancing security and
implementation, and aims to achieve efficient implementation in both software and hardware
implementation in particular. Camellia belongs to the fastest and smallest group in the world at present
in terms of encryption/decryption speed and gate size. Because Camellia also has a simple key schedule
structure, its keys can be changed quickly. It can be used in a wide range of applications, from
high-speed encrypted communication to smart cards which do not have many computation resources.

3.3.6.2 Technical specifications

The basic components of the round function consist of S-boxes and EXOR, while the components of the
FL/FL-1-functions consists of logical OR, logical AND, EXOR, and rotation. Arithmetic operations are
not used at all. As a result, long critical paths have been eliminated, and compact circuit size has been
achieved. The function for generating expanded keys has been designed to enable on-the-fly subkey
generation.

� Data randomization part

In case of 128-bit key: The data randomization part consists of an 18-round Feistel structure and
FL/FL-1 -functions. The F-function, which is a 64-bit output in the Feistel structure, is synthesized from
the S-function and P-function, which are also 64-bit outputs. The S-function consists of four 8-bit
input/output S-boxes. The P-function consists of eight 8-bit linear images executed in parallel. Two
layers of FL/FL-1 -functions are provided and inserted immediately following the sixth and twelfth rounds.
FL/FL-1 -functions, which are 64-bit outputs, use logical OR, logical AND, 1-bit cycle shift, and EXOR.
The difference between MISTY and Camellia in terms of FL/FL-1 -functions is an introduction of the
1-bit cycle shift. Initial and final EXORs are performed immediately before the round and immediately
following the last round, respectively. In the key schedule part, 26 64-bit expanded keys are generated
from a 128-bit secret key K. (A part of the procedure for generating expanded keys is the same as that
used in the data randomization part.)

In the data randomization part, an EXOR between a plaintext and two joined expanded keys is computed,
and the result is halved. Then, the following operations are executed for r = 1 through 18. (Note that r =
6 and 12 are excluded.)

Lr =Rr-1 ⊕ F (Lr-1, kr)

Rr = Lr-1

When r = 6 or 12, FL/FL-1-functions are also used. This is inserted so as not to be a regular repetition
structure. Finally, EXORing with two expanded keys is performed.

In case of 192- and 256-bit keys: The data randomization part consists of a 24-round Feistel structure
and FL/FL-1 -functions. Three layers of FL/FL-1 -functions are provided and inserted immediately
following the sixth, twelfth, and eighteenth rounds. EXORing with an expanded key is performed
immediately before the first round and immediately after the last round.

3.3 Evaluation of individual ciphers 187

� Decryption function

Decryption of the Camellia cipher is performed in the same manner as encryption, by reversing the order
of the expanded keys.

� Key schedule part

The key schedule part uses two 128-bit data and four 64-bit data. Using these values, two 128-bit data,
Ka and Kb, are generated. Note that Kb is used only with a 192- or 256-bit key. An expanded key is
either the left or right half of the value obtained by circularly shifting an intermediate key. The key
schedule part has simple structure and shares part of the encryption process. Expanded keys can also be
dynamically generated, and are generated at about the same efficiency for both encryption and decryption.
The amount of memory used for expanded key generation is also small (approximately 32 bytes of RAM
for a 128-bit key, and approximately 64 bytes of RAM for 192/256-bit key).

� Security design

Camellia's security has been designed to ensure sufficient resistance against differential cryptanalysis,
linear cryptanalysis, and truncated differential cryptanalysis, which are considered the primary attack
methods, based on estimated upper bounds of the maximum average differential characteristic probability
and the maximum average linear characteristic probability. Resistance to other attacks, such as higher
order differential attacks, interpolation attacks, related-key attacks, impossible differential cryptanalysis,
and side attacks, has also been taken into account at the design stage.

3.3.6.3 Others

The Camellia cipher [3] has been developed and designed based on several cryptographic techniques,
including NTT's proprietary cryptographic technique E2 [1] and Mitsubishi Electric Corporation's
proprietary cryptographic technique MISTY[2]. For example, the design rationale for the round
function (F-function) and the linear transformation function (P-function) is based on the design rationale
for the F-function and the P-function of E2. The design rationale for the FL/FL-1 -functions is based on
the design rationale for the FL-function of MISTY. The major change in cipher design is that
implementation performance on PCs, smart cards, and hardware has been improved.

As for related standardization, descriptions are made in ISO/IEC 18033-3 (Committee Draft), NESSIE,
IETF RFC (Internet Draft), IETF TLS (Internet Draft), IETF S/MIME (Internet Draft), TV-Anytime
Forum Specification S-7.

3.3.6.4 Result of security evaluation

Neither the results of the screening evaluation nor the detailed evaluation have identified any serious
security problem with this cryptographic technique. Especially against differential and linear
cryptanalysis, the actual number of rounds that can be attacked is expected to be about seven or eight.
Therefore, Camellia can satisfy security requirements in a practical sense. Note that, by a truncated
differential path search, some effective characteristics applied to attack a 7-round variant Camellia cipher
without the auxiliary functions FL/FL-1 have shown [4].

In addition, the security has been continuously considered, and more precise evaluations have been
progressed along with advancement of the attack methods. As a result, attack of about 10-round
Camellia cipher is achievable (for example, 11-round Camellia cipher can be breaked by combination of
higher order differential attack and chosen-ciphertext attack [10]) without particular security problems [9,
6, 7, 8, 13, 11, 10]. Summary of the detailed evaluation results is as follows:

188 Chapter 3 Evaluation of symmetric-key cryptographic techniques

• In a 5-round variant Camellia without the auxiliary functions FL/FL-1 , it is sometimes
possible to narrow down 1 byte of an expanded key in the fifth round to a single one, using
two chosen plaintexts and an analysis based on a byte polynomial.

• Because Camellia uses a bijective round function, it should be possible to estimate a key
for a 6-round variant Camellia cipher without the auxiliary functions FL/FL-1, using a
smaller number of computations than exhaustive key search.

• With a boomerang attack, which uses two differentials, it should be possible to use a
smaller number of computations than an exhaustive key search in order to find the key for
an eight-round variant Camellia cipher without auxiliary functions FL/FL-1. The
boomerang attack is considered to be the most effective analysis method for Camellia.

• In the key schedule part, the case that 1 byte of unknown secret key can be computed from
5 bytes of a secret key and 6 bytes of an intermediate key exists.

• No security problem has also been discovered from truncated differential and linear
cryptanalysis, higher order differential attack, impossible differential cryptanalysis,
interpolation attack, linear sum attacks, and slide attack, along with differential
cryptanalysis and linear cryptanalysis.

� Security against side-channel attack

As a kind of side channel attack against Camellia, a timing attack utilizing time difference between hit
and hit miss of the cache memory was carried out under some kind of special condition, to thereby derive
entire secret keys [12].

This attack is a method that depends on the working environments or implementation schemes, and
countermeasures will be possible. Therefore, fatal defects are not brought to the security of the
algorithm of MISTRY1 itself, but if the suitable measures against the side channel attack under working
environments are taken, it is considered that practically sufficient security is guaranteed. Therefore,
when using MISTY1 in environment with the threat over this kind of timing attack, adopting a defense
measure over such a side channel attack is desired with carefulness. The defense measure includes
preventing a significant power consumption and processing time lag from being measured. For
reference of a general outline of the side channel attack and the details of the countermeasures see
Chapter 6.

3.3.6.5 Software implementation evaluation results

Under the following environment, software implementation evaluation was carried out. Evaluation
results are shown in Table 3.48 and Table 3.49.

Also, the following self-evaluation is reported from an applicant.

Platform : Pentium III (1GHz), 512MB

OS and compiler : Windows 2000, IBM Java Compiler 1.2.2, Java VM 1.2.2

Language : Java

Key schedule : 9,091 cycles/key

Encryption : 793 cycles/block

3.3 Evaluation of individual ciphers 189

Table 3.48 Data randomization part processing speed measurement results of Camellia

Pentium III (650 MHz)

Language: Assembler

Program size 29,285 bytes (including encryption/decryption/key scheduling)

Compiler option /G6/ML/O2/Ob2/Og/Oi/Ot/Ox/Oy/Gr/I

 Number of processing clocks [clocks/block]

 Encryption
(Maximum /average)

Decryption
(Maximum /average)

First round 326 / 327 326 / 328

Second round 326 / 327 326 / 327

Third round 326 / 327 326 / 327

UltraSPARC IIi (400 MHz)

Language Assembler

Program size 15,240 bytes (including encryption/decryption/key scheduling)

Compiler option -fast -xtarget = ultra -xarch = v9a

 Number of processing clocks [clocks/block]

 Encryption
(Maximum /average)

Decryption
(Maximum /average)

First round 355 / 360 355 / 357

Second round 355 / 358 355 / 358

Third round 355 / 357 355 / 357

Alpha 21264 (463 MHz)

Language Assembler

Program size 31,552 bytes (including encryption/decryption/key scheduling)

Compiler option -O -arch ev6

 Number of processing clocks [clocks/block]

 Encryption
(Maximum /average)

Decryption
(Maximum /average)

First round 282 / 288 282 / 288

Second round 282 / 289 282 / 288

Third round 282 / 288 282 / 289

190 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.49 Key schedule part of Camellia + data rand0mization part processing speed measurement
results

Pentium III (650 MHz)

Language: Assembler

Program size
20,110 bytes (including encryption/key scheduling)
20,236 bytes (including decryption/key scheduling)

Compiler option /G6/ML/O2/Ob2/Og/Oi/Ot/Ox/Oy/Gr/I

 Number of processing clocks [clocks]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 467 / 487 474 / 493

Second round 467 / 487 474 / 494

Third round 467 / 487 474 / 493

UltraSPARC IIi (400 MHz)

Language Assembler

Program size 23,992 bytes (including encryption/decryption/key scheduling)

Compiler option -fast -xcrossfile -xtarget = ultra -xarch = v9a

 Number of processing clocks [clocks]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 403 / 408 403 / 407

Second round 403 / 407 403 / 407

Third round 403 / 408 403 / 408

Alpha 21264 (463 MHz)

Language Assembler

Program size 25,792 bytes (including encryption/decryption/key scheduling)

Compiler option -O -arch ev6

 Number of processing clocks [clocks]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 448 / 454 435 / 439

Second round 448 / 454 435 / 439

Third round 448 / 455 435 / 439

3.3 Evaluation of individual ciphers 191

� Smart card implementation

Smart card implementations based on the Z80 were evaluated. Table 3.50 indicates the processing speed
measurement results of the key schedule part + data randomization part when 128-bit keys are used.

Table 3.50 Processing speed measurement results of
Camellia's key schedule part + data randomization part on Z80

 ROM [bytes] RAM [bytes] Stack [bytes] Processing time [states]

Encryption 1,023 48 12 35,951

Decryption 1,042 48 12 37,553

For encryption and decryption 1,268 − − −

The following table indicates results provided by an applicant for a measurement that used 128-bit keys.

Processor Encryption Key schedule ROM RAM

 [cycles/block] [cycles/key] [bytes] [bytes]

8051 10,217 (Including key schedule) 990 32

Z80 28,382 5,146 1,698 62

H8/3113 4,100 2,380 − 208

MC68HC705B16 9,900 7,500 − 208

MC68HC908AB32 8,430 5,679 − 208

M32Rx/D 1,236 642 8,684 44

3.3.6.6 Hardware implementation evaluation results

Implementation results on FPGA (Table 3.51) will be shown in the architecture shown in the following
block diagram (Fig. 3.12,3.14,3.15,3.13).

Table 3.51 Camellia Hardware Implementation Evaluation Resul

Number of clocks 1

Number of Data Randomize Clocks 20

Number of implementation key bits 128

192 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Input

F関数

FL function FL-1 function

F function

k1～

kw1,kw2

kw3,kw4

kl2,kl4kl1,kl3

Register

●

●

●

1 20

Output

Figure 3.12 Camellia encryption circuit block diagram

Key K_L input

F function

F function

F function

F function

Expanded key output

Σ１

Expanded key generation part

K_A

kw1 kw2 kw3 kw4

Σ２

Σ３

Σ４

●

●

●

●

●

●

Figure 3.13 Camellia key generation circuit block diagram

3.3 Evaluation of individual ciphers 193

Input

ｓ1 ｓ2 ｓ3 ｓ4 ｓ2 ｓ3 ｓ4 ｓ1

ki

Output

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 3.14 F-function internal block diagram

AND <<<　1

OR

Input

Output

AND <<<　1

OR

Input

Output

Kl iR

●

●

Kl iL

Kl iR

Kl iL

●

●

FL function

FL-1 function

Figure 3.15 FL/FL-1 function internal block diagram

194 Chapter 3 Evaluation of symmetric-key cryptographic techniques

In addition, the following self-evaluation on ASIC and FPGA implementation is reported from an
applicant. The processing circuit includes all of the encryption/decryption processing part and key
schedule part (128-bit key).

ASIC process : Mitsubishi Electric 0.18 µm CMOS ASIC Design Library

Speed priority implementation : 3,200 Mbps, 355.1 Kgates

Scale priority implementation 177.7 Mbps, 8.1 Kgates

FPGA DEVICE : Xilinx XC4000XL

Scale priority implementation : 77.3 Mbps, 1,296 CLBs

FPGA DEVICE : Xilinx VertexE

Speed priority implementation : 401.9 Mbps, 9,426 slices

Scale priority implementation : 227.4 Mbps, 1,780 slices

Pipeline implementation : 6,750.0 Mbps, 9,692 slices

Recently, the examination related to an implementation technology about Camellia has been made, and
the improvement in the circuit scale and the processing performance is found [5, 14, 16].

ASIC process : 0.18 µm CMOS ASIC Design Library

Speed priority implementation : 1.422.2 Mbps, 31.1 Kgates

Scale priority implementation 204.6 Mbps, 6.3 Kgates

ASIC process : 0.13 µm CMOS ASIC Design Library

Speed priority implementation : 2,154.9 Mbps, 29.8 Kgates

Scale priority implementation 325.8 Mbps, 6.5 Kgates

FPGA process : Xilinx Vertex 3200E

Speed priority implementation : 369.0 Mbps, 8,957 slices

Scale priority implementation 223.7 Mbps, 1,678 slices

In addition, as an interesting implementation example, shared hardware architecture with Camellia which
is a cipher made from the almost same component as AES is disclosed [15]. The processing
performance by this implementation example is as follows:

ASIC process : 0.13 µm CMOS ASIC Design Library

Speed priority implementation : (AES+Camellia) 24.7 Kgates
(Camellia) 1,118.9 Mbps, (AES) 794.1 Mbps

Scale priority implementation (AES+Camellia) 16.3 Kgates
(Camellia) 646.6 Mbps, (AES) 458.8 Mbps

3.3 Evaluation of individual ciphers 195

References

[1] M. Kanda, S. Moriai, K. Aoki, H. Ueda, M. Ohkubo, Y. Takashima, K. Ota, and T. Matsumoto,

"A New 128-bit Block Cipher E2," Technical Report ISEC98-12, IEICE, 1998.
[2] M. Matsui, "New Block Encryption Algorithm MISTY," In E. Biham, editor, Fast Software

Encryption - 4th International Workshop, FSE97, Vol. 1267, LNCS, pp. 54-68, 1997.
[3] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, "Camellia:

A 128-Bit Block Cipher Suitable for Multiple Platforms," Seventh Annual Workshop on
Selected Areas in Cryptography, SAC2000, pp. 41-54, 2000. (Japanese version: "128-Bit
Block Cipher Camellia," Technical Report, ISEC2000-6, IEICE, May 2000.

[4] Shibuya, Shimoyama, and Tsujii, "Truncated Linear Attack to Byte-Oriented Ciphers,"
SCIS2001, Jan. 2001, pp. 591-596.

[5] Sato, Morioka, and Cho, "Compact hardware architecture of 128-bit block cipher Camellia,"
SCIS2002, pp. 595-598, Jan. 2002.

[6] Y. Yeom, S. Park, and I. Kim, "On the Security of CAMELLIA against the Square Attack,
FSE2002, Feb. 2002.

[7] T. Shirai, S. Kanamaru, and G. Abe, "Improved Upper Bound of Differential and Linear
Characteristic Probability for Camellia," FSE2002, Feb. 2002.

[8] Takeda and Kaneko, "A study on controlled higher order differential cryptanalysis against
Camellia," SCIS2002, pp. 915-919, Jan. 2002.

[9] T. Kawabata and T. Kaneko, "A Study on Higher Order Differential Attack of Camellia," 2nd
NESSIE Workshop, Sept. 2001.

[10] Hatano, Sekine, and Kaneko, "Higher Order Differential Attack of Camellia," Technical
Report, ISEC2002-2, pp. 5-12, IEICE, May 2002.

[11] T. Shirai, "Differential, Linear, Boomerang and Rectangle Cryptanalysis of Reduced-Round
Camellia," 3rd NESSIE Workshop, Nov. 2002.

[12] Tsunoo, Suzaki, Saitoh, Kawabata, and Miyauchi, "Timing attack to Camellia using S-box
cache delay," SCIS2003, pp. 179-184, Jan. 2003.

[13] Y. Yeom, S. Park, and I. Kim, "A Study of Integral Type Cryptanalysis on Camellia,"
SCIS2003, pp. 453-456, Jan. 2003.

[14] Sato and Morioka, "Hardware performance comparison of AES/Camellia/Triple- DES," SCIS
2003, 12D-2, 2003.

[15] Sato and Morioka, "Shared hardware architecture of AES and Camellia," SCIS 2003, 12D-2,
2003.

[16] Sorimachi, Ichikawa, and Kasuya, "Hardware implementation evaluation of block ciphers
using FPGA," SCIS 2003, 12-D-3, 2003.

196 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.3.7 CIPHERUNICORN-A

3.3.7.1 Technical overview

CIPHERUNICORN-A is a 128-bit block cipher with a block length of 128 bits and key length of 128,
192, and 256 bits, which was developed by NEC Corporation in 2000 [1]. The basic structure of the
cipher is a 16-round Feistel cipher.

The major characteristic of this cipher is its use of an extremely complex round function that consists of a
main stream and a temporary key generation mechanism. This function is intended to enhance security
by making a subkey search of the round function difficult. Unlike the design philosophies of many
ciphers, the main design philosophy behind CIPHERUNICORN-A is to design a round function, of which
a significant correlation cannot be found out, by using a cipher strength evaluation system [2] that
performs the elementary statistics value evaluation by regarding the round function as a black box.

According to the applicant, no bias of the data shuffling has been detected in any of the items in the
elementary statistics value evaluation of the round function. They stated that they designed this cipher
so that it can be processed at high speed on a 32-bit processor in the implementation aspect.

3.3.7.2 Technical specifications

CIPHERUNICORN-A is a 128-bit block cipher with a block length of 128 bits, key length of 128, 192
and 256 bits, and has a 16-round Feistel structure. It has an interface identical to that of AES. Its key
schedule part generates 2304-bit subkeys (7232-bit subkeys) by shuffling the secret key.

� Round function (data randomization part)

• The round function is a 64-bit input/output function that uses four 32-bit subkeys (two
function keys and two seed keys), and consists of combinations of four S-boxes
(T-functions), 32-bit arithmetic additions, 32-bit constant arithmetic multiplications and
rotation (A3-function).

• This is not a bijective function.
• 64-bit input data is branched into the main stream and temporary key generation; the

function keys are input into the main stream and the seed keys are input into the temporary
key generation.

• The temporary key is generated in the temporary key generation from the input data and the
seed keys.

• The generated temporary key is inserted into the main stream, and ultimately 64-bit output
data is generated. A part of the composition of the main stream is a data-dependent
function according to the value of the temporary key.

� Key schedule part

• The key schedule part has a Feistel structure that uses an MT-function as the round
function, and it outputs a 32-bit intermediate key from each MT-function.

• The MT-function is composed of a combination of the same T0-function in the round
function and 32-bit constant arithmetic multiplication.

• After generation of 72 intermediate keys, these intermediate keys are re-ordered and used
as subkeys in each round.

3.3 Evaluation of individual ciphers 197

� Design philosophy

Differential cryptanalysis and linear cryptanalysis estimate key information (subkeys) using the data
shuffling bias in the round function. Therefore, the substantial design philosophy of
CIPHERUNICORN-A is to produce a structure that does not permit detection of data shuffling bias in the
round function. The round function is designed so as to satisfy the following conditions with the cipher
strength evaluation system that performs evaluation by regarding the round function as a black box.

• There must not be any relationship between an input bit and an output bit with a high
probability.

• There must not be any relationship between output bits with a high probability.
• There must not be any relationship between an input-bit change and an output-bit change

with a high probability.
• There must not be any relationship between a key-bit change and an output-bit change with

a high probability.
• There must not be any output bit that becomes 0 or 1 with a high probability.

3.3.7.3 Others

CIPHERRUNICORN-E, which is a 64-bit block cipher, has been designed in the same way with the
cipher strength evaluation system.

3.3.7.4 Security evaluation results

� General comment

The configuration of CIPHERUNICORN-A round function is very complex, and therefore it is difficult to
accurately evaluate and analyze its security against cryptanalysis techniques, including differential
cryptanalysis and linear cryptanalysis. Therefore, based on the overall evaluation of CRYPTREC
Report 2000 that continuous evaluation of CIPHERUNICORN-A is needed, three-round elimination
attack against CIPHERUNICORN-A was assumed, and security evaluation was continuously conducted
in the year 2001, from the viewpoint of whether sufficient security is provided in 13 rounds against
differential cryptanalysis and linear cryptanalysis.

CRYPTREC Report 2000 indicates that, with a model that uses an mF-function in which the
configuration of the round function has been simplified based on generally appropriate considerations, the
upper bound of the maximum differential characteristic probability is less than 2-128 in 15 rounds and over,
and the upper bound of the maximum linear characteristic probability is less than 2-128 in 14 rounds and
over. Furthermore, in 2001, the applicant and four evaluators (teams) conducted evaluation of the round
function and the entire cipher based on the technique, which they considered appropriate. It was
estimated as a result that the upper bound of the maximum differential characteristic probability of 13
rounds is 2-100 or less and the upper bound of the maximum linear characteristic probability of 13 rounds
is around 2-128, except for some evaluations. All of these evaluation results were calculated based on
modified round functions, to which approximations of some kind was applied, and not the round function
itself of CIPHERUNICORN-A. However, since almost identical security evaluation results were
obtained by multiple evaluators even if they used approximations by different techniques, it can be
expected that the security of CIPHERUNICORN-A against differential cryptanalysis and linear
cryptanalysis is at least equivalent to the evaluation results estimated at the present time. Therefore,
although it is not theoretically proven that it has the resistance against differential cryptanalysis and linear
cryptanalysis, in the case where three-round elimination attack is assumed, it can be estimated that those
attacks are almost impossible in reality.

Furthermore, regarding cryptanalysis other than those stated above, no problems have so far been
discovered in particular, as is indicated in CRYPTREC Report 2000.

198 Chapter 3 Evaluation of symmetric-key cryptographic techniques

In addition, there was a new indication regarding security that at least one weak key, which is considered
to be non trivial, is presented that values of all the subkeys become identical to more significant 32-bits of
the secret key (regardless of the length of the secret key). At the present time, however, it was only
indicated that one out of 2128 secret keys (case of 128-bit secret keys) is a weak key, and it is not true that
indication alone proposes a serious problem in the security.

In 2002, the applicants published new results of security evaluations [3]. According to Reference [3],
the model (mF'-function) that does not approximate a constant multiplication portion is employed instead
of the simplified round function model (mF-function) available for evaluations up to now. This method
shows that 16-round CIPHERUNICORN-A is secure against 3-round elimination attack due to the fact
that the upper limit of the differential and linear characteristic probabilities of 13 rounds is both 2-128 or
less (however, estimated value is included in evaluation of differential characteristic probability. The
applicants pointed out that adequacy of this estimated value should be continuously examined.).

Then, the security evaluation result of having updated the above-described estimated value to the
calculated value obtained by computer experiment was disclosed [6]. Reference [6] shows that the
upper limit of the differential characteristic probabilities of 13 rounds using the computer is also 2-128 or
less. These evaluation results are derived from use of the simplified model (mF'-function) instead of
actual round function as with evaluations up to now.

Taking the results described above together, no major practical problems have been found so far.

� Elementary statistics value evaluation

It can be judged that randomness is satisfactory in general, as satisfactory results were obtained on all the
items of elementary statistics evaluation of the round function. The applicant states that the round
function was designed so that a data shuffling bias cannot be detected. However, this does not mean that
a round function thus designed has nearly the same characteristics as a random function. For example,
although the self-evaluation report states that either the main stream or the temporary key generation is
fully shuffled, other evaluation is indicated that, depending on values of input data and key, the effect of
multiple T-functions cancels to each other at a high probability and sufficient shuffling is not performed
with either the main stream or the temporary key generation.

� Security evaluation against each theoretical cryptanalysis

Security against differential cryptanalysis: If the configuration of the round function is complex and
difficult to evaluate directly, a cipher model can be conceived to simplify the round function based on
appropriate assumptions, and security can be discussed using this model. This is because the security of
the original cipher is generally expected to be at least equivalent to that of a model that has been
simplified based on appropriate assumption.

In CRYPTREC Report 2000, security has been evaluated with a model using an mF-function in which
simplification was made based on appropriate considerations, such as (1) replacing arithmetic addition
with XOR, (2) replacing constant multiplication with a process that aggregates input bits to one more
significant byte of the 32-bit data, and (3) replacing the A3-function with rotation processing in truncated
vector units. It is indicted as a result that the upper bound of the maximum differential characteristic
probability is less than 2-128 in 15 rounds and over.

3.3 Evaluation of individual ciphers 199

The evaluation based on the approximation techniques from different viewpoints was conducted in the
year 2001 as follows:
Evaluator 1: The evaluator re-evaluated the security with a model using an mF-function, and discovered

as a result that approximation processing of constant multiplication was incomplete.
Furthermore, he indicated that when this approximation processing is completely conducted,
the upper bound of the maximum differential characteristic probability of the mF-function
can be indicated only up to 2-7 and the upper bound of the maximum differential
characteristic probability in 13 rounds can be indicated only up to 2-56. However, constant
multiplication is naturally dependent on input data, exerts influence of some kind to the
differential characteristic probability and it can be expected to make contribution to
improvement of security. It should be noted that evaluation of security is conducted here
assuming that the differential characteristic probability is not affected (evaluation that is
disadvantageous to the designer) in the approximation processing of constant
multiplication.

Applicant: Since it was recognized that it is necessary to further examine the reports in detail in
relation to the new self-evaluation of security announced by the applicant at the lump
session of the CRYPTREC Cryptographic Technology Evaluation Workshop, we requested
the applicant to submit an additional report. According to this additional report, the
degree of influence of constant multiplications over the differential characteristic
probability is being experimentally studied (in progress), and it is stated that, with constant
multiplication in such a case that was pointed by evaluator 1, the influence of at least 2-6 is
given to the differential characteristic probability. Furthermore, it is also stated that the
upper bound the maximum differential characteristic probability of the mF-function is 2-13
and the upper bound of the maximum differential characteristic probability of 13 rounds is
2-104. The review of the new evaluation result and the fact that evaluator 4 also estimates
the effect of constant multiplications to be 2-7 were taken into consideration, and the result
was considered to be appropriate.

Evaluator 2: For the model with the round function consisting only of a main stream, security evaluation
was conducted by six-round iterative expression (the maximum differential characteristic
probability 2-56). It is indicated as a result that the upper bound of the maximum
differential characteristic probability of 13 rounds is 2-119.

Evaluator 3: Security evaluation was conducted for the case where the effect of A3-function and
constant multiplication is completely excluded. It is indicated as a result that the upper
bound of the maximum differential characteristic probability of the round function is 2-14.4
and the upper bound of the maximum differential characteristic probability of 13 rounds is
2-115.2.

Evaluator 4: When the (experimentally studied) effects of arithmetic addition of the main stream and of
the A3-function and the effect of constant multiplications of the temporary key generation
are added besides the effect with the T-function, the upper bound of the maximum
differential characteristic probability of the main stream, temporary key generation and
round function is 2-14, 2-7 and 2-21, respectively. Thus, it is indicated that the upper bound
of the maximum differential characteristic probability of 13 rounds is 2-126.

When the results of evaluation indicated above are totally judged, it can be estimated that the upper bound
of the maximum differential characteristic probability of 13 rounds is 2-100 or less in each of security
evaluation with different approximation models. In addition, it can be anticipated that actual
CIPHERUNICORN-A provides at least equivalent security. Therefore, although it is not theoretically
proven that differential cryptanalysis cannot be applied when three-round elimination attack is assumed, it
can be estimated to be practically almost impossible.

200 Chapter 3 Evaluation of symmetric-key cryptographic techniques

In 2002, the applicants published new results of security evaluations [3]. According to Reference [3],
the model (mF'-function) that does not approximate a constant multiplication portion is employed instead
of the simplified round function model (mF-function) available for evaluations up to now. This method
shows that 16-round CIPHERUNICORN-A is secure against 3-round elimination attack due to the fact
that the upper limit of the differential and linear characteristic probabilities of 13 rounds is both 2-128 or
less (however, estimated value is included in evaluation of differential characteristic probability. The
applicants pointed out that adequacy of this estimated value should be continuously examined.). Then,
the security evaluation result of having updated the above-described estimated value to the calculated
value obtained by computer experiment was disclosed [6]. Reference [6] shows that the upper limit of
the differential characteristic probabilities of 13 rounds using the computer is also 2-128 or less.

Security against linear cryptanalysis: Each evaluator conducted evaluation based on a model using
the mF-function at this time.
Evaluator 1: The evaluator indicates that the upper bound of the maximum linear characteristic

probability of the round function is 2-21.37 and the upper bound of the maximum linear
characteristic probability of 13 rounds is 2-128.2.

Evaluator 3: The evaluator indicates that the upper bound of the maximum linear characteristic
probability of the round function is 2-21.68 and the upper bound of the maximum linear
characteristic probability of 13 rounds is 2-130.1.

Evaluator 4: When it is assumed that evaluation of the maximum linear characteristic probability of the
S-boxes by the applicant is correct, the upper bound of the maximum linear characteristic
probability of the round function is 2-13.9 and the upper bound of the maximum linear
characteristic probability of 13 rounds is 2-83.4. The examination conducted by evaluator 4
produced results that conflict with the applicant's evaluation, and he does not deny the
possibility where the upper bound of the linear characteristic probability of the round
function becomes higher than the evaluation of this time. On the other hand, attention
should also be paid to the fact that the influence of the A3-function, constant
multiplications and temporary key generation are hardly taken into consideration. He also
states that the resistance against linear cryptanalysis is stronger than that against differential
cryptanalysis in practice.

When the results of evaluation stated above are totally judged, the resistance against linear cryptanalysis
is stronger than that against differential cryptanalysis, and as concrete evaluation, it can be estimated that
the upper bound of the maximum differential characteristic probability of 13 rounds is around 2-128 or less.
Therefore, it is considered that linear cryptanalysis would be almost impossible when three-round
elimination attacks are assumed.

In fiscal 2002, applicants published new results of security evaluations in a paper [3]. According to
Reference [3], they have used a model (mF'-function) that does not approximate a constant multiplication
portion for their evaluations, instead of the simplified round function model (mF'-function) that was
being used until that time. Their paper indicates that the 16-round CIPHERUNICORN-A is secure
against a three-round elimination attack because the upper limit of the linear characteristic probabilities is
2-128 or less. Like the evaluations performed until now, these results are also derived by using the
simplified model (mF'-function). In other words, the actual round function was not used for the
evaluations.

Security against higher order differential attack, interpolation attack, slide attack, and mod n
attack: No particular problems on these attacks were not found.

3.3 Evaluation of individual ciphers 201

� Security evaluation to key schedule part

Indication of existence of weak key: Take-out of intermediate keys in the key schedule part is
implemented as follows. It is assumed that all the symbols represent 32-bit data and that the input of
128-bit keys is (A, B, C, D), the input of 192-bit keys is (A, B, C, D, E, F) and the input of 256-bit keys is
(A, B, C, D, E, F, G, H.).

Inputs: (A, B, C, D, ..., y)

The following is repeated by the specified number of times.

(A*, B*) ← MT (A, B)
A ← B*, B ← C, C ← D, ..., y ← A*

Intermediate key output at specified place: A

When the input is (A, B, B, B, ..., B) in this key schedule, (B, A) ← MT (A, B) is satisfied, the data being
repeated constantly remains as (A, B, B, B, ..., B) (regardless of how many times it is repeated). In other
words, the intermediate key is A at any specified point, and it is of the state where the key scheduling for
intermediate key generation is not effectively working at all.

As a result of calculation of the input that satisfies these conditions, it was found that (B, A) ← MT (A,
B)is satisfied when A = 0x61db99c8, B = 0x9f3d61c8. In other words, when secret key is (0x61db99c8,
0x9f3d61c8, 0x9f3d61c8, 0x9f3d61c8, ..., 0x9f3d61c8), all the intermediate keys are of value
0x61db99c8 that is the same as that of more significant 32 bits of secret keys. Furthermore, since
subkeys are generated by changing the order only of intermediate keys, it also means that all the subkeys
are of the same value, 0x61db99c8.

When estimation is made from the configuration of the key schedule part of CIPHERUNICORN-A as
collated with the original role of the key schedule part, it seems natural to consider that secret keys of this
type are non trivial weak keys. The presence of weak keys revealed at present is only one kind, and this
is not serious enough to jeopardize the security.

Security against related-key attack: It is considered to be secure against related-key attack from the
configuration of the key schedule part.

3.3.7.5 Software implementation evaluation

Software implementation was evaluated in the environments listed as follows. Tables 3.40 and 3.41
show the evaluation results.

202 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.52 Data randomization part processing speed measurement results of CIPHERUNICORN-A

Pentium III (650 MHz)

Language: ANSI C + Assembler

Program size 3,984 bytes (including encryption/decryption/key scheduling)

Compiler option /O2/Oy- (execution speed) to be designated

 Number of processing clocks [clocks/block]

Encryption

(Fastest / Average)
Decryption

(Fastest / Average)

First round 1,569 / 1,574 1,574 / 1,578

Second round 1,570 / 1,574 1,574 / 1,577

Third round 1,570 / 1,574 1,574 / 1,578

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 5,644 bytes (including encryption/decryption/key scheduling)

Compiler option -v -fast

 Number of processing clocks [clocks/block]

Encryption

(Fastest / Average)
Decryption

(Fastest / Average)

First round 2,273 / 2,282 2,302 / 2,326

Second round 2,273 / 2,282 2,309 / 2,327

Third round 2,273 / 2,282 2,310 / 2,327

Alpha 21264 (463 MHz)

Language ANSI C

Program size 8,472 bytes (including encryption/decryption/key scheduling)

Compiler option -O4

 Number of processing clocks [clocks/block]

Encryption

(Fastest / Average)
Decryption

(Fastest / Average)

First round 1,834 / 1,843 1,769 / 1,782

Second round 1,828 / 1,842 1,769 / 1,782

Third round 1,828 / 1,842 1,769 / 1,782

3.3 Evaluation of individual ciphers 203

Table 3.53 Key schedule part + data randomization part processing speed measurement results of
CIPHERUNICORN-A

Pentium III (650 MHz)

Language: ANSI C + Assembler

Program size 4,306 bytes (including encryption/decryption/key scheduling)

Compiler option /O2/Oy- (execution speed) to be designated

 Number of processing clocks [clocks]

Encryption

(Fastest / Average)
Decryption

(Fastest / Average)

First round 4,788 / 4,822 4,799 / 4,931

Second round 4,788 / 4,814 4,798 / 4,815

Third round 4,787 / 4,830 4,806 / 4,814

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 5,644 bytes (including encryption/decryption/key scheduling)

Compiler option -v -fast

 Number of processing clocks [clocks]

Encryption

(Fastest / Average)
Decryption

(Fastest / Average)

First round 7,970 / 8,160 8,802 / 9,025

Second round 7,961 / 8,164 8,817 / 9,034

Third round 7,900 / 8,161 8,823 / 9,028

Alpha 21264 (463 MHz)

Language ANSI C

Program size 8,552 bytes (including encryption/decryption/key scheduling)

Compiler option -O4

 Number of processing clocks [clocks]

Encryption

(Fastest / Average)
Decryption

(Fastest / Average)

First round 4,610 / 4,623 5,071 / 5,092

Second round 4,610 / 4,628 5,071 / 5,100

Third round 4,610 / 4,624 5,071 / 5,095

For all measurement items in encryption and decryption, including key generation, CIPHERUNICORN-A
belongs to the group of the slowest processing speed among the 128-bit block ciphers applied this time.
Furthermore, on Pentium III, CIPHERUNICORN-A is equivalent to Triple DES for all measurement
items.

204 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Also, the following self-evaluation is reported from an applicant.

Platform

OS and compiler
Language

Pentium III (866 MHz), RAM 256MB
Windows NT4.0, Visual C++ 6.0 SP5
ANSI C (Including in-line assembler)

Measurement items 128-bit key 192-bit key 256-bit key

Key schedule [cycles/key] 3,219 4,032 3,518

Encryption [cycles/block] 1,565 1,565 1,565

Decryption [cycles/block] 1,559 1,559 1,559

Key schedule + encryption [cycles] 4,780 5,593 5,079

Key schedule + decryption [cycles] 4,791 5,604 5,090

3.3.7.6 Hardware implementation evaluation results

The hardware implementation results on FPGA (Table 3.54) is shown in the architecture shown in the
following block diagram (Fig. 3.16, 3.17, 3.18). In addition, pluralities of multiplication included in
algorithm are realized by the repeated processing by the 18-bit multiplier prepared for FPGA as hard
macroscopic. Therefore, more number of clocks is required compared with other algorithm.

Table 3.54 CIPHERUNICORN-A hardware implementation evaluation results

Number of clocks 156

Number of Data Randomize Clocks 126

Number of implementation key bits 128

In addition, the following self-evaluation on ASIC and FPGA implementation is reported from applicants.
In ASIC implementation, only 128-bit key is usable, and in the FPGA implementation, all of the key
length can be chosen.

ASIC process : NEC 0.25 µm CMOS ASIC Design Library

Speed priority implementation : 170.60 Mbps, 325.3 Kgates

Scale priority implementation 86.80 Mbps, 290.4 Kgates

FPGA DEVICE : ALTERA EP20K1500EFC33-1

Speed priority implementation : 44.33 Mbps, 7,072 cells + 66 ESB

3.3 Evaluation of individual ciphers 205

yr

EK

IK2

IK0

IK1

Input

IK3

yl
F

Xl

Xr

Register file
(32bit×55)

IK0～IK6
Fka0～FKa15
Ska0～Ska15
FKb0～FKb15

IK4 IK6IK5 IK7

Output

IK7

Key generation circuitRegister

55：3

0 1

●

●

●
●

●

●

●

: 32-bit addition

: 32-bit subtraction

Figure 3.16 CIPHERUNICORN-A encryption circuit block diagram

fe21464b(h) 7e167289(h)

fe21464b(h)

b

a

3(h)

7e167289(h)
3(h)

Xr

FKb

Xl

Fka

　
A3

-fu
nc

tio
n

T0

7e167289(h

fe21464b(h)

TT1T1T2T2T3T3TkTk

AND

Skb

T0

Ska

T0T0T0T1T1

yl

yr

AND

● ●

●

●

●

●

● ●

●

● ●

● ● ●

●

●

●●

●

: 32-bit : 32-bit

>>2

Figure 3.17 F function internal block diagram

206 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Input

ＭＴ

Output

Register

●

0 1

T0

MT

●

01010101(h

: 32-bit multiplication

Figure 3.18 CIPHERUNICORN-A key generation circuit block diagram

References

[1] Y. Tsunoo, H. Kubo, H.i Miyauchi, and Katsuhiro Nakamura, "128-Bit Block Cipher

CIPHERUNICORN-A," 2000 Ciphers and Information Security Symposium SCIS2000, A18,
Jan. 2000.

[2] Y. Tsunoo, R. Ota, H. Miyauchi, and K. Nakamura, "Distributed Cipher Strength Evaluation
Support System," 2000 Ciphers and Information Security Symposium SCIS2000, A53, Jan.
2000.

[3] Y.Tsunoo, H. Kubo, M. Yamada, T. Suzaki, and H. Miyauchi, "Security against differential
cryptanalysis / linear cryptanalysis of CIPHERUNICORN-A ," Shingaku Giho, ISEC2002-42
(2002-07).

[4] Kazumaro Aoki, Soichi Furuya, Shiho Moriai, "Timing Attacks to CIPHERUNICORN-A
Implementation Using Multiplication Time Difference," SCIS2003, 4D-3, (2003).

[5] Yukiyasu Tsunoo, Tomoyasu Suzaki, Hiroyasu Kubo, Etsuko Tsujihara, Hiroshi Miyauchi,
"Timing Attacks to CIPERUNICORN-E/-A Utilizing Cache Delay in S-box," SCIS2003, 4D-4,
(2003).

[6] Y. Tsunoo, H. Kubo, M. Shige, T. Suzaki, and H. Miyauchi, "Security against differential
cryptanalysis / linear cryptanalysis of CIPHERUNICORN-A (II)," 2003 Ciphers and
Information Security Symposium SCIS2003, 5D-1, 2003.

3.3 Evaluation of individual ciphers 207

3.3.8 Hierocrypt-3

3.3.8.1 Technical overview

Hierocrypt-3 is a block cipher [11] that was proposed by Toshiba in 2000 at the workshop of the
Computer-security Study Group of the Information Processing Society of Japan. It has a block length of
128 bits and supports three key lengths (128, 192, and 256 bits). Hierocrypt-3 has been designed with
the objectives of achieving the security level associated to the key lengths and efficient software/hardware
implementation. It focuses on fast encryption speed in smart cards and middleware in particular.

3.3.8.2 Technical specifications
• The goal is to design a cipher that is sufficiently strong against major cryptanalytic attacks,

that runs at high speeds on major platforms, and that can be implemented in a small size in
hardware implementation.

• To achieve both computational efficiency and cryptographic security, the data-randomizing
part uses a recursive SPN structure.

• The recursive SPN structure is extremely simple, and its elemental functions can be
designed more or less independently while maintaining sufficient security. Additionally,
Hierocrypt-3 can flexibly cope with block-length changes.

• The S-box is optimized for security against differential and linear cryptanalysis based on a
power function on a Galois field. Furthermore, application of algebraic attacks is made
difficult by sandwiching the power function between bit permutation and affine
transformation.

• For the diffusion layer, a large number of active S-boxes with large lower bounds are
generated as candidates using the coding theory, and then these candidates are narrowed
down based on security and implementation efficiency.

• The key-scheduling part is based on a 128-bit Feistel structure, and round keys are
generated by combining intermediate values. A round-trip structure has been adopted in
which the generation function of intermediate keys is reversed in the middle and returns,
such that the initial delay of the on-the fly subkey generation remains short during.

• The number of rounds depends on key length, and is 6, 7, and 8 for key length of 128, 192,
and 256 bits, respectively.

3.3.8.3 Others

Hierocrypt is the name assigned to a family of some block ciphers developed by Toshiba. This family
includes Hierocrypt-3, with a 128-bit block length, and Hierocrypt-L1, with a 64-bit block length. Both
of these ciphers share a common feature in which the data-randomizing part is designed using a recursive
type of SPN structure.

3.3.8.4 Result of security

At present (March, 2003) some security evaluation results have been reported, and any of these results
have shown no definite defects for the security.

208 Chapter 3 Evaluation of symmetric-key cryptographic techniques

In the self-evaluation report by the designer, the security of this cipher against various cryptanalytic
attacks is discussed. The evaluation of differential cryptanalysis and linear cryptanalysis, in particular,
is highly reliable. For the new evaluation techniques [8, 9], security evaluation results have been
continuously updated by means of a newly employed evaluation process or an improved evaluation [15,
14, 18]. According to the latest evaluation results (as of January, 2003), the Hierocrypt-3 provides
provable security against differential/linear cryptanalyses under some assumptions. To be concrete, it is
reported that the upperbounds of the maximum differential/linear probabilities can be 2-96 for two or more
rounds [18]. Therefore, it is considered that the Hierocrypt-3 provides sufficient strength against
differential/linear attacks.

For the SQUARE attack, one of the attacks to which the designers of Hierocrypt-3 pay keenest attention, a
possibility of the attack against variant Hierocrypt-3 reduced to 3.5 rounds is pointed out [1]. This
slightly differs from the initial opinion of the designer that the cipher is secure against SQUARE attacks with
smaller number of rounds (2.5 rounds) than Rijndael (as announced by the designers in SCIS2001).
Hierocrypt-3, however, is specified for use with no less than 6 rounds, and there can be no direct menace
to its security under this specification.

Some linear relations between rond keys are obtained, although it is claimed that "the linear combinations
should be appropriately chosen so that weak keys do not appear, that is, there are no simple relations
between the round keys" (although the meaning of this sentence is somewhat ambiguous) [4, 7].

An avalanche effect indicates the presence of bias in the key schedule part and the round function.
Contrary to a part of the design rationale that proclaims "the number of terms in polynomial expressions
is the maximum when MDS matrices and S-box are combined", it is found as a result of an evaluation
that the number of terms in polynomial expressions is not maximal. Other new results of evaluations
have been announced, including the interpolation attack [5, 6], impossible differential cryptanalysis [10],
and experimental random-number examination [2].

But none of these evaluations threaten the security of Hierocrypt-3 in its specification. Information
covering the evaluation results of security is also available in some documents of the NESSIE project [17,
16]. Because Hirrocrypt-3's elemental technologies, such its SPN structure, S-boxes evaluation, and
MDS, have been designed based on recent cryptographic research results, no obvious or fatal defects are
expected to occur in the future in any of these elements.

Finally, because design rationale and the algorithm are intuitively and theoretically connected to each
other, it is very much unlikely to suppose that the designer has intentionally built in any trapdoor.

3.3.8.5 Software implementation evaluation results

Software implementations were evaluated in the environments listed below. Tables 3.55 and 3.56 show
the evaluation results.

Notes: In the measurements using UltraSPARC Iii and Alpha 21264, the values inside the parentheses
were obtained after the applicant modified the measurement program. Although a massive
buffer area was allocated to the measurement program to maintain general-purpose
characteristics, the applicant modified the program to allocate just enough buffer area. It has
been verified that not modifications were made that would affect the speed-evaluation results.

3.3 Evaluation of individual ciphers 209

Table 3.55 Processing speed measurement results of Hierocrypt-3's Data-randomizing part

Pentium III (650 MHz)

Language: ANSI C + Assembly language (MMX instructions)

Program size 68,832 bytes (including encryption/decryption/key scheduling)

Compiler option VC++6.0 Win32 Release (default)

 Consumed clockcycles [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 404 / 406 426 / 428

Second round 404 / 406 426 / 428

Third round 404 / 406 426 / 428

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 38,936 bytes (including encryption/decryption/key scheduling)

Compiler option
cc -native -fast -xarch = v8plusa -xCC (encryption)

cc -native -fast -xarch = v9 -xCC (decryption)

 Consumed clockcycles [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 511 (471) / 554 (473) 759 (612) / 826 (616)

Second round 510 (471) / 556 (473) 758 (612) / 826 (616)

Third round 510 (471) / 555 (473) 757 (612) / 826 (616)

Alpha 21264 (463 MHz)

Language ANSI C

Program size 58,152 bytes (including encryption/decryption/key scheduling)

Compiler option cc -O3

 Consumed clockcycles [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 420 (399) / 424 (406) 427 (386) / 429 (393)

Second round 420 (399) / 424 (406) 427 (386) / 430 (394)

Third round 420 (399) / 423 (407) 427 (386) / 430 (393)

210 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.56 Processing-speed measurement results of Hierocrypt-3's key-scheduling part +
data-randomizing part

Pentium III (650 MHz)

Language: ANSI C + Assembly language (MMX instructions)

Program size 68,832 bytes (including encryption/decryption/key scheduling)

Compiler option VC++6.0 Win32 Release (default)

 Consumed clockcycles [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 726 / 728 1,345 / 1,358

Second round 726 / 729 1,344 / 1,357

Third round 726 / 728 1,346 / 1,358

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 38,936 bytes (including encryption/decryption/key scheduling)

Compiler option
cc -native -fast -xarch = v8plusa -xCC (encryption)

cc -native -fast -xarch = v9 -xCC (decryption)

 Consumed clockcycles [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 823 (761) / 828 (822) 2,673 (2,612) / 2,684 (2,627)

Second round 823 (761) / 828 (821) 2,671 (2,611) / 2,683 (2,627)

Third round 824 (761) / 828 (823) 2,670 (2,610) / 2,683 (2,627)

Alpha 21264 (463 MHz)

Language ANSI C

Program size 58,152 bytes (including encryption/decryption/key scheduling)

Compiler option cc -O3

 Consumed clockcycles [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 675 (668) / 679 (672) 1,130 (1,130) / 1,142 (1,141)

Second round 675 (668) / 678 (673) 1,130 (1,130) / 1,142 (1, 142)

Third round 675 (668) / 679 (672) 1,130 (1,130) / 1,142 (1, 142)

3.3 Evaluation of individual ciphers 211

Also, the following self-evaluation is reported from an applicant.

Platform : Mobile Pentium II (600 MHz), 192 MB

OS and compiler : Windows 2000 SP2, Sun JDK 1.3.1 without JCE

Language : Java

Key schedule (Encryption) : 2,243 cycles/key

Encryption : 2,814 cycles/block

Decryption : 3,033 cycles/block

� Smart card implementation:

Smart card implementations based on the Z80 were evaluated. Table 3.55 shows processing speed
measurement results of the key schedule part + data randomization part when using 128-bit keys.

Table 3.57 Key schedule part + data randomization part processing time measurement results based

on Z80 of Hierocrypt-3

 ROM [bytes] RAM [bytes] Stack [bytes] Processing time [states]

Encryption 2,577 73 8 49,919

Decryption 3,662 73 8 71,782

Encryption/decryption 4,746 − − −

3.3.8.6 Hardware implementation evaluation results

Implementation results on FPGA (Table 3.58) will be shown in the architecture shown in the following
block diagram (Fig. 3.19,3.20,3.21).

Table 3.58 Hierocrypt-3 hardware implementation evaluation result

Number of clocks 15

Number of Data Randomize Clocks 12

Number of implementation key bits 128

212 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Register

MDSH function

K1_2～k6_2

K1_1～k6_1

Input

mdsL md mdsL md

Output

●
K7

Padding processing

ρ fuction

Register

0 1

ρ-1 function

0　　　　　　　　1

Register

●

●

Dummy round processing

0 1

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

Key generation part

Register

Key input

Figure 3.19 Encryption circuit / roundkey-generation circuit

(Inside of a right-hand side dotted line)block diagram of Hierocrypt-3

3.3 Evaluation of individual ciphers 213

Fσ M5 MB●

●

Constant

Key input

Dummy round

P

Sbox

Sbox

Sbox

Sbox

Fσ function

Padding processing

Figure 3.20 Dummy round processing / Fs function internal block diagram

P

M5 MBFσ ●

●

●

●

●

● ● ●

Constant

ρ function

M5MB

Fσ
●

●

●

●

●● ●

●

Constant

ρ-1 function

●

● P－１

Figure 3.21 ρ ⋅ρ-1 function internal block diagram

214 Chapter 3 Evaluation of symmetric-key cryptographic techniques

The following self-evaluation related to ASIC and FPGA implementation is reported from an applicant.

ASIC process : 0.25 µm CMOS ASIC Design Library

Speed priority implementation : 2,067 Mbps, 143.9 Kgates

Scale priority implementation 135 Mbps, 18.1 Kgates

ASIC process : 0.13 µm CMOS ASIC Design Library

Speed priority implementation : 3,082 Mbps, 111.8 Kgates

FPGA DEVICE : ALTERA Max+plus II ver. 9.6

Speed priority implementation 52.6 Mbps, 22.7 Kcells

Scale priority implementation : 4.1 Mbps, 6.3 Kcells

References

[1] P. S.L.M. Barreto, V. Rijmen, J. Nakahara Jr., B. Preneel, J. Vandewalle, and H. Y. Kim,

"Improved SQUARE Attacks Against Reduced-Round HIEROCRYPT," Fast Software
Encryption, 8th International Workshop, FSE 2001, LNCS 2355, Springer-Verlag, 2001.

[2] Y. Braziler, "The statistical evaluation of the NESSIE submission Hierocrypt-3," Public reports
of NESSIE project, NES/DOC/TEC/WP3/021/1, available at http://www.
cosic.esat.kuleuven.ac.be/nessie/reports/.

[3] Y. Braziler, "The statistical evaluation of the NESSIE submission Hierocrypt-L1," Public
reports of NESSIE project, NES/DOC/TEC/WP3/022/1, available at http://www.
cosic.esat.kuleuven.ac.be/nessie/reports/.

[4] S. Furuya and V. Rijmen, "Observations on Hierocrypt-3/L1 Key-scheduling Algorithm,"
Proceedings of the second open NESSIE Workshop, 2001.

[5] S. Furuya and K. Sakurai, "On algebraic approximations of block ciphers with the SP
network," Proceedings of 4th Computer Security Symposium (CSS2001), 6B-1, 2001.

[6] S. Furuya and K. Sakurai, "An interpolation attack against block ciphers using Sudan's
Reed-Solomon decoding algorithm," Technical report of IEICE, The Institute of Electronics,
Information and Communication Engineers, COMP2002-22, 2002.

[7] S. Kanamaru, T. Shirai, and J. Abe, "Improved Key Schedule Analysis of Hierocrypt-L1/3,"
Technical report of IEICE, The Institute of Electronics, Information and Communication
Engineers, ISEC2002-91, 2002.

[8] L. Keliher, H. Meijer, and S. Tavares, "Improving the Upper Bound on the Maximum Average
Linear Hull Provability for Rijndael," Selected Areas in Cryptography, 8th Annual
International Workshop, SAC 2001 Toronto, LNCS2259, Springer-Verlag, 2001.

[9] L. Keliher, H. Meijer, and S. Tavares, "Dual of New Method for Upper Bounding the
Maximum Average Linear Hull Provability for SPNs," IACR's ePrint archive, 2001/033,
available at http://eprint.iacr.org/.

[10] C. MJ. Kim and K. Kim, "Impossible Differential Cryptanalysis of Hierocrypt-3 Reduced to 3
Rounds," Proceedings of the second open NESSIE Workshop, 2001.

3.3 Evaluation of individual ciphers 215

[11] H. Muratani, K. Okuma, F. Sano, M. Motoyama, and S. Kawamura, "Implementation of
Hierocrypt," SIGNotes of Information Processing Society of Japan, CSEC11-9, 2000.

[12] K. Okuma, H. Muratani, F. Sano, and S. Kawamura, "On the Recursive SPN Structure,"
Technical report of IEICE, The Institute of Electronics, Information and Communication
Engineers, IT99-102, ISEC99-141, SST99-150, 2000.

[13] K. Okuma, H. Muratani, F. Sano, and S. Kawamura, "The Block Cipher Hierocrypt," Selected
Areas in Cryptography, 7th Annual International Workshop, SAC 2000, LNCS 2012,
Springer-Verlag, 2001.

[14] K. Okuma, F. Sano, H. Shimizu, and S. Kawamura, "Notes on the Provable Security of Nested
SPN Structure," Proceedings of the 2002 Symposium on Cryptography and Information
Security, SCIS2002 5B-2, 2002.

[15] K. Okuma, H. Shimizu, F. Sano, and S. Kawamura, "Security Assessment of Hierocrypt and
Rijndael against the Differential and Linear Cryptanalysis (Extended Abstract)," IACR's ePrint
archive, 2001/070, available at http://eprint.iacr.org/.

[16] B. Preneel, B. Van Rompay, L. Granboulan, G. Martinet, S. Murphy, R. Shipsey, J. White, M.
Dichtl, P. Serf, M. Schafheutle, E. Biham, O. Dunkelman, M. Ciet, J-J. Quisquater, F. Sica, L.
Knudsen, and H. Raddum, "NESSIE Phase I: Selection of Primitives," NESSIE deliverables,
available at http://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/.

[17] B. Van Rompay, V. Rijmen, and J. Nakahara Jr., "A first report on CS-Cipher, Hierocrypt,
Grand Cru, SAFER++, and SHACAL," Public reports of NESSIE project,
NES/DOC/KUL/WP3/006/1, available at http://www. cosic.esat.kuleuven.ac.be
/nessie/reports/.

[18] F. Sano, K. Okuma, H. Shimizu, and S. Kawamura, "On the Security of Nested SPN Cipher
against the Differential and Linear Cryptanalysis," IEICE TRANS. FUNDAMENTALS, Vol.
E86-E, No.1, pp.37-46, 2003.

[19] F. Sano, K. Okuma, H. Shimizu, M. Motoyama, and S. Kawamura, "Efficient Implementation
of Hierocrypt," Proceedings of the second open NESSIE Workshop, 2001.

[20] H. Shimizu, F. Sano, M. Motoyama, K. Okuma, and S. Kawamura, "About implementation of
SPN type block ciphers," Technical report of IEICE, The Institute of Electronics, Information
and Communication Engineers, ISEC2001-55, 2001.

[21] T. Kawabata, Y. Tsunoo, T. Saito, E. Tsujihara, and H. Miyauchi, "Timing attack on
Hierocrypt-L1/-3," Proceedings of the 2003 Symposium on Cryptography and Information
Security, SCIS2003 4D-2, 2003.

216 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.3.9 RC6

3.3.9.1 Technical overview

RC6 is a block cipher with variable block length (128 bits for recommendation), which was invented by R.
Rivest et al. in 1998 and has been submitted by RSA security Inc[1]. RC6 inherits the design
philosophy of its predecessor, RC5, and aims to achieve fast and efficient implementation, as well as a
wide range of evaluation, using a simple structure. Specifically, RC6 has data-dependent rotation and
integer addition on round keys to provide security. It also aims to improve security and achieve efficient
encryption by increasing the amount of shuffling for data in each round using multiplication operations in
round functions.

3.3.9.2 Technical specifications

RC6 has wide range of parameters and is precisely expressed as "RC6-w/r/b." The letters w, r, and b
indicate word-bit length, number of rounds, and key-byte length, respectively. RC6 has modified Feistel
structure in which plaintext blocks are divided into four partitions, and has a plaintext block length that is
four times the word-bit length w. In this submission, word-bit length w = 32 bits, key length b = 16, 24,
and 32 bytes, and number of round r = 20 are proposed as recommended values (RC6-32/20/{16,24,32}).
No table is used, and compact software implementation is possible. The main part of RC6 can be
implemented with 176-byte key schedule part and a very small amount of additional memory. When the
word length is 32 bits, all of the operations used in the cryptographic algorithm, i.e., arithmetic
addition/subtraction, EXOR, arithmetic multiplication, and left/right rotation shift, are performed in 32-bit
word units. That is, the algorithm is designed to efficiently use the operation of a 32-bit CPU. The
processing speed of these operations leads to fast implementation.

3.3.9.3 Others

The RC6 was a CRYPTREC submission cipher, but with a letter dated October 16, 2002 from RSA
Security Japan Inc., the CRYPTREC secretariat received the information to indicate that the RC6
promotion activities would not be performed hereafter due to the intellectual property right issues. For
this reason, the CRYPTREC will finish its evaluation by October, 2002.

3.3.9.4 Result of security evaluation

RC6 was evaluated as one of the AES candidate ciphers, and was selected as one of the five finalists to
proceed the further detail evaluation. In the CRYPTREC evaluation, it has not found any problems in
the (proposed version) RC6. Therefore, the RC6 can be considered as one of sufficiently usable ciphers,
in which there should be no attack method in which the number of plaintexts needed for the attack is less
than the total number of plaintexts and the number of computations necessary for the attack is less than
exhaustive key search.

Resistance of RC6 against various attack methods is summarized as follows.

3.3 Evaluation of individual ciphers 217

Through not based on an argument of provable security, RC6's resistance to differential and linear
cryptanalysis has been evaluated for characteristic probabilities based on appropriate consideration in the
self-evaluation document. In an algorithm such as RC6, which uses data-dependent rotation, the
differential path and linear approximation path vary according to the number of shifts, and therefore it is
necessary to consider the sum of characteristic probabilities for each of these paths. This point has been
sufficiently considered. As a result, the number of plaintexts necessary for breaking is less than the total
number of plaintexts with up to 12 rounds for differential cryptanalysis and with up to 16 rounds for
linear cryptanalysis, which means that the required strength is not achieved with these rounds. However,
the needed number for an 18-round variant is more than the total number of plaintexts [2]. In an attack
that uses plural linear approximation expressions, the keys of 18-round RC6 can be guessed by 2126.9
plaintexts and 2192.9 computations if the keys are weak keys that exist at the rate of 2-90 [4].

Only the chi-square attack among higher order differential attacks can break RC6. Chi-square attacks
utilize the chi-square statistical volume. The keys of a 15-round RC6 can be estimated by means of
2^119 chosen plaintexts and 2^215 computations using a 2^138 memory [3]. RC6 is not equipped with
the cipher strength required for the range of these numbers of rounds. The number of plaintexts,
however, would remain an unrealistic environment value over the next 10 years even if communication
speeds and computer performances increased by a factor of 10 every year. Therefore it is unlikely to
become a practical attack. It is necessary to take note of the development of statistical strength
evaluation research, including the weak keys of RC6.

It has been reported that the required strength is reached in nine rounds against higher order differential
attack and in six rounds in avalanche evaluation. Therefore, RC6 can be considered to provide sufficient
strength against the attacks so far.

As described above, RC6 has not achieved the required strength with up to 16 rounds against the
strongest attack currently known. However, because RC6's specified number of rounds is 20 (though
some say this is too small), there should not be any security problems at present.

3.3.9.5 Software implementation evaluation results

Software implementation was evaluated in the following environments. The evaluation results are listed
in Tables 3.59 and 3.60.

Notes: According to the specification of software implementation evaluation, the codes measured on
Pentium III and on UltraSPARC IIi were derived by modifying commercial products for
Microsoft Windows 9X and for SUN Solaris, respectively. The products are based on the
BSAFE-Crypto-C5.1.

RC6's data-processing speed for encryption and decryption on Pentium III is the fastest among the block
ciphers submitted for evaluation. However, in terms of speed that includes expanded key generation,
RC6 is almost the slowest cipher, even when measured on Pentium III. In terms of the speeds on
UltraSPARC IIi, i.e., encryption, decryption, and encryption with expanded key generation, RC6 is
almost the slowest. All of the codes offered by the applicant were commercial-version programs and
were not optimized for our speed measurement. The former is coded in an assembly language and the
latter in the C language.

As for the software implementation evaluation of RC6, various results are reported in each evaluation
environments (CPU, Language, etc)[7].

218 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.59 Processing speed measurement results of RC6's data randomization part

Pentium III (650 MHz)

Language: Assembler

Program size 1,200 bytes (including encryption/decryption/key scheduling)

Compiler option /O2 (Microsoft C Compiler)

 Number of processing clocks [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 258 / 260 262 / 266

Second round 258 / 260 262 / 265

Third round 258 / 259 262 / 265

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 3,940 bytes (including encryption/decryption/key scheduling)

Compiler option xo5 (WS Compiler C/SPARC Optimize 5)

 Number of processing clocks [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 2,048 / 2,088 2,024 / 2,076

Second round 2,047 / 2,088 2,023 / 2,074

Third round 2,048 / 2,089 2,026 / 2,077

3.3 Evaluation of individual ciphers 219

Table 3.60 Processing speed measurement results of RC6 key schedule part + data randomization part

Pentium III (650 MHz)

Language: Assembler

Program size 1,200 bytes (encryption/decryption), 1,500 bytes (key scheduling)

Compiler option /o2 (Microsoft C Compiler)

 Number of processing clocks [clocks]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 1,631 / 1,644 1,633 / 1, 639

Second round 1,630 / 1,645 1,633 / 1, 643

Third round 1,630 / 1,642 1,633 / 1, 640

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 3,940 bytes (encryption/decryption), 2,196 bytes (key scheduling)

Compiler option xo5 (WS Compiler C/SPARC Optimize 5)

 Number of processing clocks [clocks]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 4,078 / 4,111 4,026 / 4,054

Second round 4,078 / 4,111 4,024 / 4,055

Third round 4,075 / 4,112 4,019 / 4,054

� Evaluation of software implementation evaluation in smart cards, etc.

The self-evaluation document describes the following characteristics related to implementation in Java,
smart cards, and DSP, including those implemented by a third party:

Java: Simplicity of cryptographic processing is reflected in code size, performance, and the
amount of dynamic RAM in Java. The various investigations performed in the AES
evaluation process indicate that RC6 has achieved remarkable performance in the Java
environment.

Smart cards: In smart cards using the ARM chip and other high-end processors, RC6 has
demonstrated excellent cryptographic performance.

DSP: Because RC6 does not need a look-up table that uses extra memory, it can attain
sufficient performance in this type of processors.

3.3.9.6 Hardware implementation evaluation results

Some of the implementation examples of ASIC and FPGA are reported as hardware implementation
evaluation of RC6. [7].

220 Chapter 3 Evaluation of symmetric-key cryptographic techniques

References

[1] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, "The RC6 Block Cipher," Algorithm

specification, August 20, 1998. Available at http://www.rsasecurity.com/rsalabs/rc6/.
[2] S. Contini, R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin, "The security of the RC6 Block

Cipher," August 20, 1998. Available at http://www.rsasecurity.com/rsalabs/rc6/.
[3] L. R. Knudsen and W. Meier, "Correlation in RC6 with a reduced number of rounds,"

FSE2000, LNCS 1978, pp. 94-108, 2001.
[4] T. Shimoyama, M. Takenaka, and T. Koshiba, "Multiple Linear Cryptanalysis of a reduced

round RC6," SCIS2002, Proceedings of the 2002 Symposium on Cryptography and
Information Security, pp. 931-936, 2002 (also presented at FSE2002).

[5] A. Elbirt, W. Yip, B. Chetwynd, and C. Parr, "An FPGA implementation and performance
evaluation of the AES block cipher candidate algorithm finalists," Proceedings of 3rd AES
conference, pp. 13-27 (2000).

[6] B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke, "Hardware performance simulations of
Round 2 AES algorithms," Proceedings of 3rd AES conference, pp. 286-304 (2000).

[7] J. Nechvatal, et al., Report on the Development of the Advanced Encryption Standard (AES),
National Institute of Standards and Technology, October 2, 2000. Available at
http://csrc.nist.gov/encryption/aes/round2/r2report.pdf

3.3.10 SC2000

3.3.10.1 Technical overview
• This cipher was developed by researchers at Fujitsu and Science University of Tokyo. It

was announced at an academic society in 2000, and has been proposed by Fujitsu.
SC2000 is a symmetric block cipher with the same interface as AES, a 128-bit data
input/output and a 128/192/256-bit key length.

• The structure of the entire cipher is a new one that involves the superposition of a Feistel
structure and an SPN structure. Using only those components that have been fully
verified and are well known to be secure for various cipher components, such as S-boxes,
this structure enables the security of the entire cipher to be easily verified.

• To achieve fast implementation, a structure to which the latest fast implementation method,
called a bitslice method, can be applied is used as the SPN structure. SC2000 is also
designed to enable fast implementation of non-linear operations depending on the size of
the CPU's primary cache.

• For hardware implementation, SC2000 aims to achieve compactness by using only
non-linear operations and logical operations with 6-bit or smaller inputs/outputs.

• Potential applications include next -generation high-speed secure data communication
between networks, fast encryption of large-capacity databases, and authentication and
secure data communication via smart card.

3.3 Evaluation of individual ciphers 221

3.3.10.2 Technical specifications

� Data randomization part

This component encrypts 32 bits × 4 input plaintext data using an expanded key table created by the key
schedule part, and outputs 32 bits × 4 data as ciphertext. The data randomization part has the I-function,
B-function, and R-function, which use 32 bits × 4 input/output, as internal functions. Of these,
I-function is a function for EXORing keys, while B- and R-functions are for shuffling data. When the
key length is 128 bits, the I-, B-, and R-functions have 14, seven, and 12 rounds, respectively, with the
total number of rounds for the data-shuffling functions (B-function and R-function) being 19. When the
key length is 192 or 256 bits, the I-, B-, and R-functions have 16, eight, and 14 rounds, respectively, with
the total number of rounds for the data-shuffling functions being 22. The individual functions can be
connected in one of two ways, through straight (-) connection in which the output of the function in the
previous round is input as is into to the next round, or through cross (x) connection in which the output of
the function in the previous round is partitioned into two 64-bit data and these two data are swapped
before being input into to the next round. This process is repeated six times (when the key length is 128
bits) or seven times (when the key length is 192, 256bits) by connecting the individual functions as
I-B-I-RxR, then finally the ciphertext is outputted through I-B-I. The number of 32-bit expanded keys
to be used is 56 when the key length is 128 bits and 64 when the key length is 192 or 256 bits.

� Decryption

This function decrypts 32 bits × 4 input ciphertext data using the expanded key table that is input, and
outputs 32 bits × 4 data as decrypted text. The decryption function has the I-function, B-1-function, and
R-function, which use 32 bits × 4 input/output, as its internal functions. Of these, the I- and R-functions
are the same as in the data randomization pats, while the B-1-function is an inverse function of the
B-function. This process is repeated six times (when the key length is 128 bits) or seven times (when
the key length is 192, 256bits) by connecting the individual functions as I-B-1-RxR, then finally the
deciphertext is outputted through I-B-1-I.

� Key schedule part

The key schedule part generates 56 32-bit expanded keys (when the key length is 128 bits) or 64 32-bit
expanded keys (when the key length is 192 or 256 bits) from user keys. The key schedule part consists
of an intermediate key generation function and an expanded key generation function. First, intermediate
keys are generated by expanding 32 bits × 4 user keys into 32 bits × 8 using the intermediate key
generation function, and then the predetermined number of 32-bit expanded keys is generated using the
expanded key generation function.

3.3.10.3 Security evaluation results

� Overview

The following three kinds of analyses were conducted. However, the clear weak point was not
discovered in the proposed composition. Thus any defect on the security of SC2000 now is not found,
however it is thought required to repeat the further analysis from now on. The papers [4, 5, 6] were also
published after January 2001.

222 Chapter 3 Evaluation of symmetric-key cryptographic techniques

� Resistance of the data randomization part to conventional attacks

A design method is known for evaluating the theoretical upper bounds of differential characteristic
probability and linear characteristic deviation to guarantee resistance against differential and linear
cryptanalysis [1]. In SC2000, the approximation expressions that have the significant differential
characteristic probability and linear characteristics deviation used in the security evaluation of DES, etc.,
are searched, and the resistance against these attack methods is demonstrated by showing that there are no
approximation expressions that have significant probability or deviation [2]. To efficiently derive
approximation expressions, a method is used that replaces the search target with the differential
propagation pattern of truncated vector [2].

It has been found that, against differential attacks, the 15-round differential characteristic probability was
2-134 or less when 3-round repetition of -B-RxR- is used. In other words, there are no differential
characteristic approximation expressions that can be used for differential attacks for 15 rounds.

Applying the same techniques using a truncated vector is also possible for linear attacks. It has been
found that the 15-round linear characteristic approximation probability is 2-142 or less when 3-round
repetition is based. In other words, there are no linear characteristic approximation expressions that can
be used for linear attacks.

On the other hand, according to the announcement made by the proposal group in January 2001 [3], as a
result of differential and linear characteristics search based on one-round repetition method, differential
characteristics and linear characteristics were found out with probability 2-33 and with probability 2-34,
respectively. As a result, in the case of 128-bit keys, it was reported that the attacking up to 13 rounds
out of whole 19 rounds was possible. In addition, the proposal group [11] found differential and linear
characteristics based on 6-round repetition method with probabilities of 2-58 and 2-56, respectively, and
reduced the number of plaintexts and memory amounts required for attacks. Even if these differential
and linear characteristics are used, however, the SC2000's characteristic probabilities in 19 rounds are
2-159 and 2-156, respectively, and thus differential and linear attacks are not applicable. On the other hand,
according to the report [7], 11 round differential characteristics have been found with probability of 2-106.
It is known that a part of the SC2000 keys in 13 rounds can be determined by using the differential
characteristics.

Higher order differential attack is effective against a cipher composed of functions with a small algebraic
degree. Because SC2000 uses B- and R-functions with at least the second-order coefficientsin 19
rounds for 128-bits keys, it seems that higher order differential attack cannot be applied to SC2000. The
maximum number of rounds that can be attacked with higher order differential attackand interpolation
attack is eight, using 264 or more plaintext -ciphertext pairs and 2256 or fewer computations. Because the
specified number or rounds for SC2000 is 22, it has been confirmed that SC2000 has no problems with
higher order differential attack and interpolation attack.

Because SC2000's security margin against ordinary differential cryptanalysis is not so large, resistance to
truncated differential cryptanalysis must be evaluated in further detail.

To determine the applicability of chi-square attack and partitioning attacks, we looked for structures that
would cause statistical correlation between plaintext and ciphertext partial information, but found none.
Further investigation should be performed in the future by extensive use of computers.

We examined SC2000's resistance to impossible differential cryptanalysis, boomerang attack, mod n
attack, and non-surjective attack, but found no threatening shortcomings.

3.3 Evaluation of individual ciphers 223

� Security of the key schedule part against conventional attacks

An exhaustive key search is the least effective but reliable cryptanalysis that can be applied to any
symmetric cipher. At the existing technical level, an exhaustive key search of 128 bits or more is
considered unrealistic. As for weak keys, the self-evaluation document discusses whether or not
intermediate key collision exists and the possibility of all intermediate keys matching. The conclusion
of the document is reasonable. During the computation of expanded keys in SC2000, the expanded keys
were being effectively generated from keys without any overlap. A statistical examination of chi-square
characteristics did not reveal any problematic test value.

As explained above, no problematic shortcomings were found in the key schedule part.

�Security against side-channel attacks

It is reported that as a kind of side channel attack against SC2000 utilizing time difference between hit
and hit miss of the cache memory was carried out using the related secret key under some kind of special
condition, to thereby derive entire secret keys [12]. These attacks, which uses a key of special
combination, are methods that depend on the working environments or implementation schemes,
therefore, fatal defects are not brought to the security of the algorithm of the SC2000. For reference of a
general outline of the side channel attack and the details of the protecting methods see Chapter 6.

3.3.10.4 Software implementation evaluation results

An software implementation evaluation was performed in the environment specified below. The
evaluation results are as shown in Tables 3.61 and 3.62.

Note: In the measurements using UltraSPARC IIi and Alpha 21264, the inside the parentheses were
obtained after the applicant modified the measurement program. Although a massive buffer area
was allocated to the measurement program to maintain general-purpose characteristics, the
applicant modified the program to allocate just enough buffer area. It has been verified that no
modifications were made that would affect the speed-evaluation results.

Decryption time is longer by several percent than the encryption time in Pentium III and Alpha 21264,
and is shorter by several percent in UltraSparc IIi. These differences, however, are not significant
enough to cause any problem.

224 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Table 3.61 Processing speed measurement results of SC2000's data randomization part

Pentium III (650 MHz)

Language: ANSI C + Assembler

Program size 21,340 bytes (including encryption/decryption/key scheduling)

Compiler option /G6/O2/ML/W3/GX

 Number of processing clocks [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 389 / 391 408 / 410

Second round 388 / 392 408 / 411

Third round 388 / 391 408 / 411

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 25,548 bytes (including encryption/decryption/key scheduling)

Compiler option -xtarget = ultra2 -x05

 Number of processing clocks [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 310 (275) / 313 (277) 309 (283) / 312 (286)

Second round 310 (276) / 313 (278) 309 (283) / 312 (287)

Third round 310 (276) / 314 (279) 309 (282) / 312 (285)

Alpha 21264 (463 MHz)

Language ANSI C

Program size 39,845 bytes (including encryption/decryption/key scheduling)

Compiler option -fast -arch ev6

 Number of processing clocks [clocks/block]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 289 (262) / 297 (276) 282 (275) / 296 (289)

Second round 289 (262) / 297 (277) 282 (275) / 288 (289)

Third round 289 (262) / 296 (276) 282 (275) / 288 (289)

3.3 Evaluation of individual ciphers 225

Table 3.62 Processing speed measurement results of SC2000's key schedule part + data randomization
part

Pentium III (650 MHz)

Language: ANSI C + Assembler

Program size 23,700 bytes (including encryption/decryption/key scheduling)

Compiler option /G6/O2/ML/W3/GX

 Number of processing clocks [clocks]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 800 / 803 818 / 822

Second round 800 / 803 818 / 821

Third round 800 / 803 818 / 819

UltraSPARC IIi (400 MHz)

Language ANSI C

Program size 22,524 bytes (including encryption/decryption/key scheduling)

Compiler option -xtarget = ultra2 -x05

 Number of processing clocks [clocks]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 623 / 627 618 / 622

Second round 623 / 627 618 / 622

Third round 623 / 627 618 / 622

Alpha 21264 (463 MHz)

Language ANSI C

Program size 39,854 bytes (including encryption/decryption/key scheduling)

Compiler option -fast -arch ev6

 Number of processing clocks [clocks]

Encryption

(Maximum / average)
Decryption

(Maximum / average)

First round 572 / 578 586 / 594

Second round 572 / 578 586 / 595

Third round 572 / 578 586 / 594

226 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Also, the following self-evaluation is reported from an applicant. The implementation method shows
the size of the input bit of S-box. In addition, high implementation of software in Pentium III or Athlon
is reported [8,9,10].

Platform : Mobile Pentium III (1.2GHz), 128MB

OS and compiler : Linux 2.4.18, Intel C Compiler 5.0

Language : C

Iimplementation method : 128-bit key 192-bit key 256-bit key

(16,16) : 270 cycles/block 277 cycles/block 356 cycles/block

(11,10,11) : 349 cycles/block 356 cycles/block 427 cycles/block

(6,10,10,6) : 409 cycles/block 414 cycles/block 483 cycles/block

(6,5,5,5,5,6) : 512 cycles/block 527 cycles/block 519 cycles/block

Platform : Athlon (1.4GHz), 1GB

OS and compiler : Linux 2.4.17, Intel C Compiler 5.0

Language : C

Implementation method : 128-bit key 192-bit key 256-bit key

(16,16) : 362 cycles/block 381 cycles/block 280 cycles/block

(11,10,11) : 319 cycles/block 327 cycles/block 361 cycles/block

(6,10,10,6) : 413 cycles/block 376 cycles/block 404 cycles/block

(6,5,5,5,5,6) : 417 cycles/block 478 cycles/block 427 cycles/block

� Smart card implementation

Smart card implementation evaluation based on Z80 was conducted. Table 3.63 shows key schedule
part + data randomization part processing time measurement results at the time of using a 128-bit key.

Table 3.63 Key schedule part + data randomization part processing time measurement results based

on Z80 of SC2000

 ROM [bytes] RAM [bytes] Stack [bytes] Processing time [states]

Encryption 2,192 64 6 93,833

Decryption 2,192 64 6 94,263

Encryption/decryption 2,350 − − −

3.3 Evaluation of individual ciphers 227

Also, the implementation by the processor for smart card is reported from a designer as follows:

Processor Encryption
[msec/block]

Decryption
[msec/block]

Key schedule
[msec/key]

ROM
[bytes]

RAM
[bytes]

8051 8.113 8.609 21.666 1,597 294

3.3.10.5 hardware implementation evaluation results

Implementation results (Table 3.64) on FPGA is shown in the architecture shown in the following block
diagram (Fig. 3.22,3.23,3.24). In this implementation, the latch is inserted in middle so as to adapt to
the specification of an evaluation substrate. Therefore, the number of Data Randomize Clock is more
increased than the implementation in the block diagram.

Table 3.64 SC2000 Hardware Implementation Evaluation Resul

Number of clocks 17

Number of Data Randomize Clocks 38

Number of implementation key bits 128

Input

Register

K_1

K_2

33333333(h

55555555(h)

0 　 1 0 1

a0

b0

c0

d0

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

a5

b5

c5

d5

a26

b26

c26

d26

a27

b27

c27

d27

a28

b28

c28

d28

a29

b29

c29

d29

a30

b30

c30

d30

a31

b31

c31

d31

・・・

・・・

a0

b0

c0

d0

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4

b4

c4

d4

a5

b5

c5

d5

a26

b26

c26

d26

a27

b27

c27

d27

a28

b28

c28

d28

a29

b29

c29

d29

a30

b30

c30

d30

a31

b31

c31

d31

・・・

●

●

●

●

●

Output

●

T function

T-1 function

S4 S4 S4 S4 S4 S4S4 S4 S4 S4 S4 S4

F function

F function

Figure 3.22 SC2000 encryption circuit block diagram

228 Chapter 3 Evaluation of symmetric-key cryptographic techniques

S6 S5 S5 S5 S5 S6

M function

ANDAND

M function
●

●

S functionS function

S6 S5 S5 S5 S5 S6

●

Figure 3.23 F function internal block diagram

Register

1(d)

S function

M function
2(d)

3(d)

<<<１ <<<１

<<<１

S function S function S function S function

M function M function M function M function

S function

M function

Register Register

0　　 　　1　　　　 　 2 0 1 0 1 0 1 2

ba

c
d

●

●

●

●

K_ K_

M function

S functionS function

M function

8(d)4(d) K[127:96]0(d) K[95:64]

Figure 3.24 Key generation circuit block diagram of SC2000

3.3 Evaluation of individual ciphers 229

An applicant reported the following self-evaluation on ASIC implementation. This implementation is
exclusively for a 128-bit key.

ASIC process : 0.18 µm CMOS ASIC Design Library

Speed priority implementation : 1,422.5 Mbps, 26.4 Kgates

Scale priority implementation : 200.8 Mbps, 8.9 Kgates

References

[1] Document related to the selection/design/evaluation of a symmetric-key block cipher,

Telecommunications Advancement Organization of Japan, 2000.
[2] T. Shimoyama, H. Yanami, K. Yokoyama, M. Takenaka, K. Ito, J. Yajima, N. Torii, and H.

Tanaka, "Symmetric Key Block Cipher SC2000," Shingaku Giho, ISEC2000-72, 2000.
[3] H. Yanami and T. Shimoyama, "Differential/linear search of symmetric-key block cipher,"

SCIS 2001, 12A-2, pp. 653, 2001.
[4] T. Shimoyama, H. Yanami, K. Yokoyama, M. Takenaka, K. Ito, J. Yajima, N. Torii, and H.

Tanaka, "Block Cipher," SC2000, FSE 2001, LNCS Vol. 2365, Springer, pp. 312, 2002.
[5] H. Yanami and T. Shimoyama, "Differential/linear search of SC2000 (II)," Shingaku Giho,

ISEC2001-10, 2001.
[6] J.Yajima, M. Takenaka, T. Koshiba, and N. Torii, "Pseudo-randomness of symmetric-key

block cipher SC2000," Shingaku Giho, ISEC2001-11, 2001.
[7] H. Raddum and L. R. Knudsen, "A Differential Attack on Reduced-Round SC2000," SAC2001,

LNCS Vol. 2259, pp. 190, 2001.
[8] M. Takenaka, Okada, J. Yajima, and N. Torii, "Implementation of symmetric-key block cipher

SC2000," SCIS 2001, 13A-4, pp. 743, 2001.
[9] M. Takenaka, Okada, J. Yajima, and N. Torii, "Implementation of symmetric-key block cipher

SC2000 (II)," SCIS 2002, 9B-4, pp. 605, 2002.
[10] M. Takenaka, N. Torii and O. Dunkelman, "Implementation of symmetric-key block cipher

SC2000 (III)," Shingaku Giho, ISEC2002-39, 2002.
[11] H. Yanami, T. Shimoyama, and O. Dunkelman, "Differential and Linear Cryptanalysis of a

Reduced-Round SC2000," SC2000, FSE2002, LNCS Vol. 2365, pp. 34, 2002.
[12] Aoki, Yamamoto, Ueda, and Moriai, "Cash attack against a 128-bit block cipher," SCIS2003,

2D-4, 2003.

230 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.3.11 MUGI

3.3.11.1 Technical overview

The MUGI is a pseudo-random number generator for stream ciphers that is proposed by Hitachi, and has
128-bit secret keys and 128-bit (published) initial vectors as parameters.

The applicant affirms that MUGI is designed with reference to the PANAMA proposed by Daemen and
Clapp in 1998. The PANAMA is not a linear feedback shift register, which is one of pseudo-random
number generator designs, but is designed on the same principle of block ciphers. Therefore, block
cipher design and evaluation techniques are considered to be easily applicable to the PANAMA. Simple
basic ideas and easiness of designing variations with a similar structure are noted to be characteristics of
the PANAMA. On the other hand, the PANAMA is a unique design incompatible to conventional designs, and
the analysis of its security is difficult. For these reasons, the designer affirms that MUGI is designed to
have a structure similar to that of the PANAMA and to have capabilities permitting easier application of
conventional block cipher analytical techniques and evaluation.

The reusability of existing evaluated cipher techniques is claimed to be a constituent of the design
philosophy. Specifically, MUGI uses the AES components (such as S-boxes) that have been fully
evaluated.

3.3.11.2 Technical specifications

� General structure

The MUGI provides 128-bit secret keys, 128-bit initial vectors, and output unit length n (natural number)
for the input, and outputs n-unit random number sequences. The term "unit" refers to the 64-bit data
block.

� Internal state

Internal state of MUGI consists of two components called state and buffer, respectively. Each unit at the
time t is expressed as follows:

• State a is composed of three units, each being expressed as a0
(t), a1

(t) and a2
(t) from upper

unit.
• Buffer b is composed of 16 units, each being expressed as b0

(t), ..., b15
(t) from upper unit.

These variable processing between the times t and (t + 1) is called "round."

� Overall structure

The ρ function is a state transition function of state a, and has buffer b outputs b4
(t) and b10

(t) as the input.
The F-function is a non-linear function that has internal structure consisting of S-box (used for the AES),
matrix transformation M with the MDS matrix, and byte permutation. The λ function is a state
transition function of buffer b, and a linear function having a0

(t) , a part of state a, as the input.

The U pdate, state transition function of MUGI, is described in combination of the ρ function and λ
function.

(a(t + 1), b(t + 1)) = U pdate(a(t), b(t)) = (p(a(t), b(t)), λ(b(t), a(t)))

Upon completion of initialization, MUGI outputs a2
(t) as a random number matrix Out[t] in round t,

while repeating its entire state transitions.

Out[t] = a2
(t).

3.3 Evaluation of individual ciphers 231

� Design plan

The MUGI is a pseudo-random number generator for stream ciphers in order to enable fast (or
light-weight) implementations in both of the software and hardware platforms. MUGI is designed with
reference to the PANAMA [3] proposed by Daemen and Clapp. The PANAMA can be used for
pseudo-random number generator and cipher module for hash functions. The PANAMA is not a linear
feedback shift register, which is one of major existing pseudo-random number generator designs, but is
designed on the same principle of block ciphers. Therefore, the block cipher design and evaluation
techniques are considered to be easily applicable to the PANAMA. Simple basic ideas and easiness of
designing variations with a similar structure are characteristics of the PANAMA. On the other hand, the
PANAMA is a unique design incompatible to conventional designs, and the analysis of its security has not
conducted sufficiently. For these reasons, MUGI is designed to have a structure similar to that of the
PANAMA and to have capabilities permitting more detailed evaluation of the security.

3.3.11.3 Security evaluation results

� Overview

The screening evaluations in 2001 found no security problems, but further security and implementation
evaluations were considered necessary. Especially in the latter half of 2001, Coppersmith et al.
proposed the analytical techniques called general-purpose linear masking [2]. However, this paper
suggested possibility of attacks to MUGI, but did not provide detailed considerations and practical
analysis methods. In addition, the XL attack [1] was proposed to the AES, and thus the effect of the XL
attack on MUGI that uses the AES S-boxes has also become an issue to be considered. Furthermore,
since it uses built-in random number algorithm PANAMA, comparison with MULTI-S01 and its priority
evaluations were considered necessary. Therefore, in 2002 we asked four evaluators (No.0029, No.1012,
No.1013, No.1014) to conduct further security evaluations including considerations of resistance to the
Coppersmith attack and XL attack, as well as comparison with MULTI-S01.

Some evaluators (No.1012, No.1013) pointed out that there were basic design problems with MUGI. As
for the latest attacks, though sufficient evaluations have not been conducted, all the evaluators consider
that no attacks that derive secret keys with computations less than 2128 have been found. At this time, no
fatal defects have been found with respect to the security of MUGI.

� Security evaluation each for major cryptanalysis

Resistance against differential attack / linear attack: At the SCIS2002 Workshop, the submitter
announced additional self-evaluation [4]. Application of re-synchronized attack using differential/linear
attacks to MUGI was discussed at the workshop, and the differential and linear characteristics of ρ
function are mainly being evaluated. The submitter suggested the necessity of further evaluation to
rigidly evaluate the resistance of MUGI to linear attacks, but has not reached a conclusion that there are
some security problems.

Other evaluators who discussed (No.1013, No.104) the applicability of differential attack or linear attack
also have not succeeded in the attack at present.

232 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Resistance tolinear masking cryptanalysis method: One of the evaluators (No.0029) did detailed
consideration on the applicability of the linear masking cryptanalysis method proposed by D.
Coppersmith to MUGI. In this evaluation, the evaluator adopted a linear approximation expression as
distinguisher for p function (a non-linear part), just as D. Coppersmith did, and analyzed the λ function (a
linear part) regarding it as a linear dynamic system. Based on these conditions, the evaluator derived the
upper bound of the maximum linear characteristic probability through the truncated linear cryptanalysis
method in which 64 bits are put together. In conclusion, considering that the lower limit of the active
S-boxes that can be shown in this evaluation is 23 and that the maximum linear probability is 2-6, the
upper bound of the maximum linear characteristic probability to be shown is 2-138 that is below 2-128.
Therefore, it is concluded that MUGI has sufficient resistance against the attacks proposed by
Coppersmith et al.

Other evaluators (No.1012, No.1013, No.1023) also are studying and discussing how the linear masking
cryptanalysis method can be applied to MUGI, and its tolerance. However, they have not succeeded in
the attack at this point in time.

Resistance to XL attack: One of the evaluators (No.1013) applied the XL attack against the AES
proposed by Courtois et al. to MUGI, and stated its effectiveness. Since the attack efficiency exceeded
2128, the evaluator has not succeeded in the decoding.

� Statistical security evaluation

One of the evaluators (No. 1014) has analyzed the statistical properties of MUGI (as a key stream). The
statistical properties covered by this analysis are the typical, such as cycle, linear complexity, frequency,
binary derivative, and runs distribution. No problems, however, have been found from these evaluation
results.

3.3.11.4 Differences and comparison with other stream ciphers (MULTIS01, PANAMA)

According to security analysis of the applicant, MUGI is designed to ensure that existing block cipher
analysis methods are more easily applicable than the PANAMA. This benefit can be evaluated as important
advantage in evaluating design of ciphers.

3.3.11.5 Software implementation evaluation

In 2002, CRYPTREC conducted software implementation evaluation in the environment below. Tables
3.65 and 3.66 show the evaluation results.

Notes: The values in parentheses are measurement values obtained after the applicant modified the
measurement program. This modification intends to reduce interrupt control during
measurement. It was verified that no modification was made effecting the processing speed
evaluation.

The applicant has reported the following self-evaluation results:

3.3 Evaluation of individual ciphers 233

Table 3.65 Encryption / Decryption (including pseudo-random numbers generation) processing speed
measurement results of MUGI

Pentium III (650 MHz)

Language ANSI C

Compiler option

/nologo /G6 /ML /W3 /GX /O2 /Ob2/D "WIN32"
/D "NDEBUG" /D "_CONSOLE" /D "_MBCS"
/Fp "Release/mugiopt.path" /YX /Fo "Release/"

Fd "Release/" /FD /c"

Number of processing clocks [clocks/128 bits]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 159 (161) / 193 (162) 161 (160) / 200 (161)

Second round 162 (159) / 207 (160) 165 (159) / 217 (161)

Third round 163 (161) / 193 (161) 160 (161) / 191 (163)

Table 3.66 Key setup processing time measurement results of MUGI

Pentium III (650 MHz)

Language ANSI C

Compiler option /G6 /ML /W3 /GX /O2

Number of processing clocks [clocks]

 Encryption
(Maximum / average)

Decryption
(Maximum / average)

First round 23,377 (20,755) / 52,739 (39,367) 20,363 (30,621) / 27,660 (38,154)

Second round 28,388 (31,614) / 50,569 (49,390) 22,700 (24,582) / 25,189 (29,556)

Third round 28,477 (19,052) / 48,942 (41,192) 25,771 (26,797) / 31,388 (30,180)

Platform : Pentium III (800 MHz), 512MB

OS and compiler : Windows 2000, Visual C++ Ver 6.0

Language : ANSI C

Key setup : 15,029 clocks/key

Encryption (including pseudo-random numbers generation)
 : 21.8 clocks/byte

234 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Consideration is made about fast implementation of MUGI and improvement in the processing
performance is checked [5].

Platform : Pentium III (667 MHz), 128MB

OS and compiler : Windows 2000, Visual C++ Ver 6.0

Encryption Key setup : 9,967 clocks/key

Decryption Key setup : 9,187 clocks/key

Encryption (including pseudo-random numbers generation)
 : 6.5 clocks/byte

Decryption (including pseudo-random numbers generation)
 : 6.5 clocks/byte

3.3.11.6 Hardware implementation evaluation

Also, the following self-evaluation on ASIC implementation is reported from an applicant.

ASIC process : Hitachi 0.35µm CMOS ASIC Design Library

Speed priority implementation : 2,922Mbps (encryption),1,095nsec (Initialization), 26.1
Kgates

Scale priority implementation : 676Mbps (encryption), 4,590 nsec (initialization), 18.0
Kgates

References

[1] N. Courtois and J. Pieprzyk, "Cryptanalysis of block ciphers with overdefined systems of

equations," Cryptology ePrint Archive, IACR, 2002/044.
[2] Don Coppersmith, Shai Halevi, and Charanjit Jutla, "Cryptanalysis of stream ciphers with

linear masking," Cryptology ePrint Archive, IACR, 2002/20.
[3] J. Daemen, C. Clapp, "Fast Hashing and Stream Encryption with PANAMA," Fast Software

Encryption, 5th International Workshop, FSE '98, Proceedings, Springer-Verlag, LNCS 1372,
pp. 60-74, 1998.

[4] Watanabe, Furuya, Yoshica, and Takaragi, "Security evaluation on key stream generator
MUGI (1)," 2002 cipher and information security symposium, and proceedings of SCIS2002,
5B-4, 2002.

[5] Yoshida and Furuya, "Considerations related to software fast implementation of
pseudo-random numbers generator," 2003 cipher and information security symposium, and
proceedings of SCIS 2003, 9C-4, 2003.

3.3 Evaluation of individual ciphers 235

3.3.12 MULTI-S01

3.3.12.1 Technical overview

MULTI-S01 is a cryptographic technique proposed in 2000 by Furuya, Watanabe, and Tagkaragi at the
ISEC Research meeting. MULTI-S01 consists of encryption and decryption functions, each of which is
composed of a pseudorandom number generator and a data randomization part. The pseudorandom
number generator generates key streams A, B, and S (in correspondence to the length of the data to be
processed) from the secret key K (256 bits). The encryption process uses message M (n × 64 bits),
redundance code R (64 bits), secret key A (≠ 0, 64 bits), secret key Bi ((n + 2) × 64 bits), and select key S
(64 bits) as inputs, and outputs ciphertext C (n + 2) × 64 bits). The decryption process uses ciphertext C
(64 × n' bits), redundance code R (64 bits), secret key A (A ≠ 0, 64 bits), secret key B (64 ≠ n' bits), and
secret key S (64 bits) as inputs, and outputs an alteration-detection signal or message M (64 × (n' - 2) bits).
In terms of security, the designers of MUTI-S01 have reportedly tried to simultaneously achieve message
secrecy and message authentication, and build a configuration that cannot be realistically attacked (i.e., in
which the output of the pseudorandom number generator, which becomes the target for cryptanalysis,
cannot be uniquely identified). Security is based on the integrity of the pseudorandom number generator.
MULTI-S01 uses PANAMA as its pseudorandom number generator.

3.3.12.2 Technical specifications

In the encryption process, message M, redundancy R (64 bits), and secret key K (256 bits) are input as
byte-string data (M(8)i (i = 1, ..., [m/8]), R(8)i (i = 1, ..., 8), and K(8)i (i = 1, ..., 32), respectively. The
output of the encryption process is ciphertext C. The length of C is 64 × ([m/64] + 2)bits, and C is
output as a byte string. In the corresponding decryption process, ciphertext C (c bits), redundancy R (64
bits), and secret key K (256 bits) are input as byte-string data (C(8)i (i = 1, ..., [c/8])), R(8)i (i = 1, ..., 8),
and K(8)i (i = 1, ..., 32), respectively. The output of the decryption process is either decryption result M'
or an alteration-detection signal, and when a message is to be output, it is output as a byte string. Both
the encryption and decryption process are composed of 64-bit block processes, and the number of blocks
for the entire process is n = [m/64] + 2. The pseudorandom number generator uses K as the input and
outputs A (64 bits), B (64 × (n + 2)bits),and S (64 bits). Therefore, the data randomization part of the
decryption process outputs C using M, R, A, B, and S as inputs, and the data randomization part of the
decryption process outputs either decryption result M' or and alteration-detection signal using C, R, A, B,
and S as inputs. Keys, plaintexts, ciphertexts, redundant data, and initial values are handled as strings in
byte units. These strings are transformed into Big-Endian during the transformation into the 64-bit data
type.

3.3.12.3 Other

One of the technologies that MULTI-S01 uses as the base is a pseudorandom number generator called
PANAMA [5]. PANAMA is a cipher module suggested by J. Daemen and C. Clapp in 1998, and can be
used as method of configuring stream ciphers and hash functions. PANAMA has been proposed as a
pseudorandom number generator that is secure in terms of complexity, and is said to have been designed
based on symmetric cipher technologies, a complexity theory, computer science, algebra, and statistics.
MULTI-S01 uses the pseudorandom number generator function of PANAMA only.

As for standardization, MULTI-S01 is described in ISO/IEC 18033-4 (Committee Draft).

236 Chapter 3 Evaluation of symmetric-key cryptographic techniques

3.3.12.4 Security evaluation results

� Overview

Although strict security evaluation has not yet been performed on MULTI-S01 as a stream cipher in the
academic community, MULTI-S01 is secure for the most part. No operational problems should be
encountered if careful attention is paid to an alteration-detection function and a key-management function
during system design.

MULTI-S01 consists of a pseudorandom number generator and a shuffling function. MULTI-S01
consists of a pseudo-random number generator PANAMA and an encryption/decryption parts. It is
confirmed that MULTI-S01 security may reduce to the properties of PANAMA. On the other hand, no
fatal defects have been found from the results of security analysis and statistical verification for PANAMA.
Documents [1] and [2] were published by designers. Both of them do not explicitly describe evaluation
of MULTI-S01, and discuss proposals and evaluations of the stream cipher schemes or cipher usage
modes. However, both documents describe implementation examples using PANAMA, and thus they seem
to include description of MULTI-S01 evaluation. These documents consider confidentiality and security
of message authentication when using a computationally secure pseudo-random number generator
(document [1]), or a true random number generator (document [2]), and the evaluations are deemed
adequate. Therefore, if the stream cipher PANAMA can be used as a computationally secure
pseudo-random number generator or a true random number generator, it will be helpful to the evaluation
of MULTI-S01 security by replacing PANAMA with the models described in both documents.

Detailed evaluations have been performed on the long-period characteristics, linear complexity, orrelation
values, equal 0/1 frequency, series, and uniformity in relation to the random number characteristics of the
outputs from the pseudorandom number generator, and no particular problem has been reported.
Because the period of the random number series is determined from K and Q, sufficient evaluation has
not been performed. However, this does not actively imply that the random number series has a problem.
Detailed evaluation has been performed on the correlation between the input from the pseudorandom
number generator and the ciphertext output, as well as on the correlation between the message series and
the ciphertext output in relation to the characteristics in the input/output of the shuffling function, and no
particular problem has been reported. Divide-and-conquer attack, correlation attack, linear cryptanalysis,
and differential cryptanalysis were evaluated with MULTI-S01, and no major risk has been reported. It
has been reported that differential cryptanalysis has resulted in a successful attack when the same key is
used for encrypting messages. However, such a problem can be avoided if the keys are strictly
managed.

� Other evaluations

Under the heading "Usage and precaution on random number string number Q," the specification
documents status, "A pseudo-random number that is new (one that has never been generated by the
device) must always be used when encrypting plaintext. This is based on a technical reason related to
security." However, this "technical reason" is not explained. In particular, it is not clear how to
determine whether or not the device generates pseudo-random number. If the "technical reason" means
that the same random number string must not be used in duplicate, that restriction applies to all stream
ciphers in general and is not a problem for the MULTI-S01. The determination method is not clear
because there have not been any reports that show the same random number string will not be generated if
random number string number Q is different. Although the statistical evaluation of MULTI-S01 is not
necessarily sufficient, no result has reported any security problem yet.

3.3 Evaluation of individual ciphers 237

Regarding these security evaluations conducted by CRYPTREC, summary and results of each evaluation
are described below. In the subsequent sections, descriptions that follow the symbol "⋅" are summary of
evaluations by external evaluators, and descriptions that follow " " are the comments of the Committee
members for the descriptions marked with "•"

3.3.12.5 Security evaluation results of MULTI-S01 as a mode of operation

Evaluation is conducted regarding the relation between the method for the use of the PANAMA, which is a
cipher component in the MULTI-S01 system, and security. But, since the MULTI-S01 uses the
pseudo-random number generator function of the PANAMA only, this evaluation does not deal with internal
structure of PANAMA.

� MULTI-S01 specification

• The MULTI-S01 specification describes the method of encrypting a message. But, it does
not clearly describe the method of encrypting multiple messages (Evaluator 2).

 The evaluator 2 proposes a method of encrypting multiple messages. The proposed
method of encryption is a natural extension of the encryption method stated in the
MULTI-S01 specification.

� Definition of MULTI-S01 security

• The definition of security described in the self-evaluation report is an extremely weak
definition as compared with standard definition of security. The self-evaluation report
proves security against "enemy who executes ciphertext only attack by a single ciphertext"
in relation to privacy, and proves security against "known plaintext attack composed of a
pair of single plaintext and ciphertext" in relation to authenticity. In this respect, the
submitter should prove security against "enemy who executes adaptive chosen-plaintext
attack" in relation to both privacy and authenticity (Evaluator 1)

• The definition of security of authenticated encryption of stream cipher is not known in
general. A definition of security appropriate for stream cipher should be given (Evaluator
2).

 Both evaluator 1 and evaluator 2 give definitions of security that should be considered by
the submitter. The definition of security (indistinguishably from random bits) related to
privacy is exactly the same between the evaluator 1 and evaluator 2. Regarding
authenticity, while evaluator 1 allows only one inquiry to verification oracle, evaluator 2
allows multiple inquiries, and the definition is stronger with evaluator 2.

� Security of MULTI-S01

• Evaluator 1 gives a guideline and overview of the proof of MULTI-S01 being able to
satisfy the definition of security proposed by himself. The proof of evaluator 1 is
incompatible and the submitter should compete the proof by himself.

• Evaluator 2 indicates that MULTI-S01 satisfies the definition of security proposed by
himself.

 The security in computational complexity of MULTI-S01 was indicated by evaluator 2.
Furthermore, identical result by the submitter is reported in SCIS2002 [7].

238 Chapter 3 Evaluation of symmetric-key cryptographic techniques

� Method for replacement
• It is possible to generate authenticated encryption of stream cipher identical to that of the

MULTI-S01 by combining Vernam cipher and Carter-Wegman MAC, and this
configuration is structurally simple, the ciphertext is short and messages of arbitrary
lengths can be handled (Evaluator 2)

 Since it is considered that combinations of the Vernam cipher and Carter-Wegman MAC
and the MULTI-S01 have advantages of their own, it is hard to compare them at present.

� Conclusion

 Evaluator 1 and evaluator 2 evaluate the computational security of MULTI-S01 from the
viewpoint of reducing the security of MULTI-S01 to that of PANAMA. The security of
MULTI-S01 was appropriately defined, and as a result of evaluation conducted under the
viewpoint, it was indicated that the security of this cipher might be reduced to that of
PANAMA.

3.3.12.6 Theoretical cipher analysis results of PANAMA

Since security of MULTI-S01 is largely affected by PANAMA, it is necessary to theoretically evaluate
security of PANAMA itself uses as a module. Since it was indicated, as a result of the preceding section,
that security of MULTI-S01 is reduced to that of PANAMA, the result of this section directly affects security
of MULTI-S01. PANAMA is a cipher algorithm proposed by Daemen and Clapp in 1998, and includes
two types, i.e., the hash function and pseudo-random number generator. But, MULTI-S01 uses
pseudo-random number generator only. Therefore, only the security of the pseudo-random number
generator of PANAMA is evaluated here.

The cipher analysis was conducted regarding the following five items:

1. Chosen-IV Collision Attacks (Evaluator 1)

2. Chosen-IV Differential Attacks (Evaluator 1)

3. Chosen-IV Related-Key Attacks (Evaluator 1)

4. An Equivalent Representation (Evaluator 2)

5. Analysis of Simpler Variants of PANAMA (Evaluator 1, Evaluator 2)

Analyses 1 to 3 above assume the case where the attacker can freely select a value of 256 bits of PANAMA
called deviation parameter. This value is considered to be public information input to PANAMA. Secret
key (256 bits) is expressed as K, deviation parameter is expressed as Q, and key stream output from
PANAMA is expressed as PANAMA (K, Q). As a criteria of security evaluation, it can be indicated that
regardless of how the attacker determines Q for all K values, distinction between PANAMA (K, Q) and
binary uniform probability variable is computationally hard. Analysis 4 indicates a certain equivalent
expression of PANAMA and mutually independent factors in it. Analysis 5 is a result of cipher analysis
conducted on a number of simplified versions against PANAMA.

3.3 Evaluation of individual ciphers 239

� Chosen-IV Collision Attacks
• If (Q, Q')(Q ≠ Q'), with which PANAMA (K, Q) = PANAMA (K, Q') is satisfied, is present for a

certain K, it is possible to almost accurately judge, by selecting such Q and Q', whether the
secret key is K or not. As a result of search of the PANAMA structure, however, t was found
that such K does not exist. But, it is not clear in the case where Q has higher bit length,
and it may be present even in the case where Q is 512 bits, for example (Evaluator 1).

 Such K should exist at least when Q can be arbitrarily taken long. Furthermore, when the
results of Rijmen et al. [6] are observed, it can be said that a set of such (Q, Q') can be
realistically found in the state where K is given.

� Chosen-IV Differential Attacks

• When internal condition of the PANAMA immediately after K and Q were pushed (input into
the buffer) is expressed as M, and internal condition of the PANAMA immediately before
output of key stream after completion of blank pull is expressed as M', if an expression
established at a high probability in relation to the differential of Q, M, M' (differential
equation) does exist, calculation of this expression can be used as a means of an attack.
However, no differential equations having high probabilities were found as a result of the
analysis. But, the results of Rijmen et al. indicate that a differential equation of high
probability does exist for the differential of whole input (K, Q) and the differential of M, M'
(Evaluator 1).

� Chosen-IV Related-Key Attacks

• There may be an attack under the assumption that Key Stream PANAMA (K ⊕ ∆K, Q ⊕ ∆Q)
at the time of addition of arbitrary differential value to K and Q can be obtained (Evaluator
1).

 This attack is related to collision attack when Q is 512 bits. Otherwise, it is an attack
under non-realistic circumstances.

� An Equivalent Representation of PANAMA

• k-th (k = 1, ..., 32) bit of j-th (j = 1, ..., 8) word of i-th (i = 0, ..., 31) round of the buffer at
point t is expressed as bi

j,k(t). It is assumed to be a vector representation of each when j
and k are omitted. Identically, k-th bit of j-th (j = 0, ..., 17) word of the state at point t is
expressed as aj, k(t). Since the 25th update of the buffer becomes b j

 25 (t + 1) = b j
24 (t) ⊕

b31
j+2mod8(t), when buffer's update only is observed, the range of influence of changes in bits

can be divided into {b0, b2, b4, b6} and {b1, b3, b5, b7}. Furthermore, since update is in
word unit, change to the k-th bit in a certain round does not affect bits other than k-th bit of
other rounds. Therefore, configuration of the PANAMA can be represented as divided into
the partial structure stated above (Evaluator 2).

 As the buffer can be divided into the partial structure stated above, even when one bit in the
buffer is changed in the push mode, its influence is limited to each partial structure. In the
pull mode, however, since the input to the buffer is dependent on the state, the influence of
one bit in the buffer is exerted over the entire structure.

240 Chapter 3 Evaluation of symmetric-key cryptographic techniques

� Analysis of Simpler Variants of PANAMA

As simpler variants of PANAMA, evaluator 1 indicated the case where blank pulls are omitted, and evaluator
2 indicated PANAMA -S1, PANAMA -S2 and PANAMA-SM. The case where blank pulls are omitted, which is
considered to be most important, as well as the PANAMA -S2 and PANAMA -SM are explained here.

(1) Case where blank pulls are omitted in PANAMA
• When blank pulls are omitted, a8, ..., a16, which are a part of the state, out of the internal

condition after K and Q were pushed, are equivalent to the first 256 bits of the key stream.
But, they are determined without depending on Q. When Q is changed, therefore, it is
satisfactory if discrimination is made by whether the first 256 bits of the key stream change
or not when Q is changed. The same thing may happen when the number of times of
blank pulls is smaller than 33, which is normal. When blank pulls are up to 14 times, it is
possible to make distinction from a uniform probability variable using an input pair having
an appropriate differential vector (Evaluator 1).

 Although this method cannot be very realistic because it is classified in related-key attacks,
it is considered to be effective when the distribution of K has low entropy. It is not clear
whether such an analysis shown here is also effective when blank pulls are implemented 33
times normally.

 MULTI-S01 does not mention whether blank pulls are implemented or not. Reference
Implementation is of no problem because blank pulls are implemented, but when
related-key attacks stated above are considered, it is necessary to clearly indicate that blank
pulls are implemented.

(2) PANAMA -S2
• The PANAMA -S2 is a version using update function called p = σ o π instead of state update

function p =σ o θ o π o γ. For attacking, it becomes possible to calculate the key stream
thereafter by estimating contents of the buffer and state at a certain point when pull is being
performed, under the condition where key stream [aj(t)] , t = 1, ..., n of length n (word
units) is obtained (Evaluator 2).

 The attack algorithm is considered to be logically free of errors, but the calculated value of
the attack algorithm is stated as "Proportional to 265." However, since the number of
variables searched for in the algorithm is 24.7 · 225 = 253, it is considered that "Proportional
to 258" is correct in total.

(3) PANAMA-SM
• With PANAMA -SM, which is most similar to PANAMA, the update function of state is

expressed as p =σ o θ* o π o γ*. The conditions that should be satisfied by θ* and γ* are
indicated in concrete in the report, but the point is, when a*j(t) =θ* o π o γ* (aj(t)), it is
satisfactory if the condition that calculation is feasible with the key stream only for a*2(t),
a*4(t), a*7(t), a*9(t), a*11(t), a*12(t), a*14(t), and a*16(t) is satisfied. With this condition, the
attack algorithm itself can be executed without any differences from PANAMA-S2 (Evaluator
2).

16
j=9

3.3 Evaluation of individual ciphers 241

� Conclusion
• It is not concluded that it is secure against the simplest attacks, and the other two are of

particularly low security. But, it is largely due to shortage of time spent for evaluation
(Evaluator 1).

 The PANAMA -S2 and PANAMA -SM have the same characteristics, which are not possessed by
PANAMA, that a part of results of intermediate calculation in update of the state can be
definitely determined. Since such characteristics themselves make large contribution to
the attack algorithm, it is considered that the attacks shown in the report will not become
direct threats. However, as described in "An Equivalent Representation," they have
characteristics that "the structure of PANAMA can be expressed as divided into 64 partial
structures," thus raising the possibility that attacks using such characteristics do exist.

 With the actual PANAMA, θ o π o γ (aj(t)) does not always have convenient conditions stated
above. Therefore, it cannot be considered that attacks against PANAMA can be made by
slightly modifying this attack algorithm itself (increasing the number of variables to be
searched for, for example).

 Evaluator 2 states as an improvement plan for PANAMA that provisions should be made so as
not to have the characteristics stated above by making update of bj

 25 (t) of the buffer more
complex. This is a reasonable plan, but there is a possibility that it may simultaneously
trigger implementation problems that the parallel processing of update of the buffer cannot
be executed.

3.3.12.7 Statistical examination results related to randomness of PANAMA

Analysis is conducted here regarding statistical characteristics of PANAMA used by MULTI-S01. In other
words, PANAMA was seized black-box-wisely as a pseudo-random number generator, without considering
its internal structure at all, and evaluation was conducted on various statistical characteristics of its output
series to check if sufficient performance is provided as a component of the stream cipher MULTI-S01.
The pseudo-random examination program appended to SP 800-22 of NIST was used as the method for
examination of pseudo-randomness (refer to Section 5.4.2).

It is considered as a result that bias among series of output random numbers caused by input bias is not
observed at all after initial shuffling of 32 times. Further, it is judged that no distinction can be made in
many statistical characters between output series and true random number series of PANAMA generation.

� Pseudo-random number generator PANAMA

Using the secret key K of 256 bits and random number string number Q of 256 bits as input, PANAMA
outputs a pseudo-random number string of arbitrary length. PANAMA has three operation modes indicated
below.

• reset mode: reset of the internal conditions
• push mode: input of secret key K and random number string number Q
• pull mode: initial shuffling and generation of pseudo-random number string

242 Chapter 3 Evaluation of symmetric-key cryptographic techniques

� Random number examination (experiment results)

Two types of tests were conducted to examine characteristics of the cipher algorithm. One is [partial
round test] that permits examination of shuffling process using a part of the cipher algorithms, and the
other is [full round test] that examines pseudo-randomness in the whole cipher algorithms.

[Partial round test]

Partial round test was conducted by regarding PANAMA as a 256-bit block cipher, secret key as key,
random number string as plaintext, and initial shuffling of 32 times as a round. With attention
paid to the fact that handling of key and plaintext (random number string number) is the same as in
PANAMA, key/ciphertext correlation, which observes the correlation with key like
plaintext/ciphertext correlation, was added. In this manner, whether there is any bias among
output series when there is a bias in the secret key or random number string can be evaluated. By
laying the results in the order of rounds, how input keys and random number string numbers are
shuffled can be observed.

[Full round test]

Full round test was conducted in the following procedure:

1. Secret keys generated with random numbers and random number string numbers were input for
PANAMA, and a pseudo-random number string of 314,572,800 bits after initial shuffling was
generated.

2. The pseudo-random number string generated in step 1 above was regarded as 1,048,576 × 300,
and statistical test was conducted with SP 800-22.

3. Steps 1 and 2 above are repeated 128 times, and "examination pass rate" and "distribution" of
SP 800-22 were output.
The reason why step 3 is repeated 128 times here is to improve reliability.

It can be judged from the statistical test results stated above that no defects are found in particular in the
pseudo-randomness of PANAMA.

� Conclusion

Statistical character of the PANAMA was evaluated using SP 800-22. As a result of evaluation of shuffling
property of secret keys and random number string numbers in initial shuffling of PANAMA, it was found
that sufficient shuffling is achieved by initial shuffling of about seven times, for all of bias of data in input
secret keys and random number string numbers, bias of differential, and correlation with input data. It
can be considered that bias among series of output random numbers caused by the bias in the input is not
observed at all with initial shuffling of 32 times, with which pseudo-random number strings of PANAMA
specifications are output because of this reason.

Furthermore, as a result of evaluation of statistical character in the case where a long pseudo-random
number series is output using PANAMA, it can be judged that the subject pseudo-random number series
cannot be distinguished from true random number series in numerous statistical characteristics. It can be
said that the random number examination against PANAMA revealed no defects in particular in relation to
pseudo-randomness of PANAMA.

3.3 Evaluation of individual ciphers 243

3.3.12.8 Software implementation evaluation

In 2002, CRYPTREC conducted re-evaluation of software implementation in the environment below.
Tables 3.67 and 3.68 show the evaluation results.

Notes: The values in parentheses are measurement values obtained after the applicant modified the
measurement program. This modification intends to reduce interrupt control during
measurement. It has been verified that no modification was made effecting the processing
speed evaluations.

Table 3.67 Encryption / Decryption (including pesudo-random numbers generation) processing speed

measurement results of MULTI-S01

Pentium III (650 MHz)

Language Assembler

Compiler option /G6 /ML /W3 /GX /O2

Number of processing clocks [clocks/128 bits]

Encryption (maximum / average) Decryption (maximum / average)

First round 240 (239) / 283 (240) 229 (227) / 269 (229)

Second round 240 (238) / 307 (240) 228 (226) / 285 (227)

Third round 239 (239) / 290 (240) 227 (227) / 293 (228)

Table 3.68 Key setup processing time measurement results of MULTI-S01

Pentium III (650 MHz)

Language Assembler

Compiler option /G6 /ML /W3 /GX /O2

Number of processing clocks [clocks]

Encryption (maximum / average) Decryption (maximum / average)

First round 7,088 (5,632) / 20,511 (20,675) 7,428 (5,433) / 10,258 (8,719)

Second round 6,789 (5,532) / 20,921 (22,073) 8,213 (5,838) / 9,856 (8,378)

Third round 5,649 (5,543) / 21,159 (20,655) 5,696 (7,339) / 9,516 (9,265)

The following self-evaluation results are reported from an applicant.

Platform : Alpha 21164A (600 MHz), 512MB

OS and compiler : UNIX 4.0E, DEC cc

Language : C

Key setup (Including Panama initialization) : 31,737 clocks/key

Encryption (including pseudo-random numbers generation)
 : 17.7 clocks/byte

244 Chapter 3 Evaluation of symmetric-key cryptographic techniques

Decryption (including pseudo-random numbers generation)
 : 18.0 clocks/byte

3.3.12.9 Hardware implementation evaluation

The following self-evaluation about ASIC is reported from an applicant. The processing circuit includes
Panama (61.5 Kgates).

ASIC process : Hitachi 0.35 µm CMOS ASIC Design Library

Speed priority implementation : 9,100 Mbps, 139.5 Kgates

Scale priority implementation : 620 Mbps, 67.8 Kgates

References

[1] S. Furuya, D. Watanabe, Y. Seto, K. Takaragi, "Integrity-Aware Mode of Stream Cipher,"

IEICE TRANS. FUNDAMENTALS, VOL. E85-A, NO.1 JANUARY 2002.
[2] S. Furuya and K. Sakurai, "Single-path Authenticated-encryption Scheme Based on Universal

Hashing," in preproceedings of SAC 2002, Ninth Annual Workshop on selected areas in
cryptography, 2002, to appear in LNCS.

[3] S. Furuya, M. Takahashi, D. Watanabe, and K. Takaragi, "Proposal of symmetric-key cipher
that enables message authentication using pseudo-random number generator," Shingaku Giho,
ISEC2000-8, 2000.

[4] S. Furuya, D. Watanabe, and K. Takaragi, "Consideration of padding and security of
MULTI-S01," Shingaku Giho, ISEC2000-68, 2000.

[5] J. Daemen, C. Clapp.," Fast Hashing and Stream Encryption with PANAMA," Fast Software
Encryption, 5th International Wrokshop, FSE '98, Proceedings, Springer-Verlag, LNCS 1372,
pp. 60-74, 1998.

[6] V. Rijmen, B. Rompay, B. Preneel, J. Vandewalle, "Producing Collisions for PANAMA," Fast
Software Encryption, FSE2001, Revised Papers, Springer-Verlag, LNCS 2355, pp.37-51, 1998.

[7] S. Furuya, "Computational security of MULTI-S01," 2002 cipher and information security
symposium, Proceedings of SCIS2002, 5b-3, 2002.

[8] NIST Special Publication 800-22, "A statistical test suite for random and pseudo-random
number generators for cryptographic applications,"
(http://csrc.nist.gov/rng/SP800-22.pdf, http://csrc.nist.gov/rng/errata2.pdf)

[9] NIST Special Publication 800-22, "NIST Statistical Test Suite,"
(http://csrc.nist.gov/rng/sts-1.4.tar, http://csrc.nist.gov/rng/sts.data.tar)

3.3.13 RC4 and Arcfour

3.3.13.1 Technical overview

RC4 is a stream cipher that can use variable-length secret keys developed by Ron Rivet of RSA Data
Security, Inc. (present RSA Security Inc.) in 1987. Arcfour is also widely known as a stream cipher
capable of mutual communication with RC4.

When the security evaluation of RC4 is conducted, CRYPTREC negotiated with RSA security Inc. in
consideration of the unpublished state of the algorithm. Consequently it is definitely assured that the
algorithm (such as reference [1]) regarded as "alleged RC4" is equivalent to RC4.

3.3 Evaluation of individual ciphers 245

Then, CRYPTREC conducted the security evaluation regarding the algorithm described in reference [1]
as RC4. Hereafter, RC4 refers to the algorithm described in reference [1].

The core technique of RC4 is a pseudo-random number generator that is specified in the 2n state table
determined by n and n-bit word length. The generator generates pseudo-random numbers from the state
table contents, while replacing the contents constantly. A role of the secret key is to determine initial
state in the state table. RC4 is also incorporated in the SSL (Secure Socket Layer) protocol as one of the
encryption algorithms, and also in the WEP (Wired Equivalent Privacy) protocol used in wireless LANs.

3.3.13.2 Technical specifications

RC4 is a stream cipher using a pseudo-random numbers generated from the state table contents, while
replacing the contents of the 2n state table constantly. Generally, RC4 with specification of the state
number 256, when n = 8, is used. Each internal state at this time is determined as S0, S1, S255.
When i = j = 0,

i = (i + 1) mod 256
j = (j + Si) mod 256
swap Si and Sj
t = (Si + Sj) mod 256

are repeated. St at each point is outputted as 1 byte of pseudo-random numbers.

Moreover, the initial state of an internal state is determined by λ-bit key (40 ≤ λ ≤ 256). This key is
divided into a 1-byte block, such as K0, K1, ..., K[λ/8]-1, respectively, and when Sχ= χ (χ = 0, 1, .., 255) and
t = 0, by the following expressions, the initial value is determined. As for SSL3.0/TLS1.0, a 40-bit or
123-bit secret key (λ = 40 or 128) is used.

i = (i + 1) mod 256
j = (j + Si +Kt) mod 256
swap Si and Sj
t = (t + 1) mod [λ/8]

3.3.13.3 Others

As for standardization, RC4 is described in Unpublished Algorithm Registration of ISO/IEC 979 and
RFC 2246: SSL3.0/TLS1.0 (Proposed Standard).

3.3.13.4 Security evaluation results

� Overview

Regarding RC4 and Arcfour of standard specifications, i.e. with specifications of n = 8 word length and
the number of states 256, practical attack methods have not been submitted up to now. However, it is
reported that RC4 and Arcfour are not necessarily secure depending on the initial state generated by the
secret key. Therefore, when using the RC4, attention should be paid to the protocols that specify the
initial state.

With respect to the use of SSL3.0/TLS1.0, no defects regarding the security have been reported at present.
However, RC4 (40) that generates initial state using a 40-bit secret key is not secure, because its key can
be estimated.

246 Chapter 3 Evaluation of symmetric-key cryptographic techniques

� Summary of evaluation

Practical attack methods have not been publicized regarding RC4 that uses 128-bit keys with
specifications of 8-bit word length and 256 states. But some attention should be paid to how to set up
and operate the secret key of RC4.

Especially for usage in WEP, Reference [1and 2] pointed out certain security problems. When the lapse
of time is short, that is, initial shuffling is not sufficient, pseudo-random number output from RC4 has
large correlation with the initial state. WEP uses the keys created in combination of user's secret keys
and initialization vectors (IV) as session keys. Therefore, if session keys have strong correlation with
each other, RC4 output series also has a strong correlation. By using this, 128-bit secret keys can be
estimated. According to the comments of RSA Laboratories Inc. [3, 4], this problem is solved if IV
uses the hash values generated via a hash function such as MD5. Although security research on the use
of RC4 in SSL has been conducted [5], no defects to threaten the security have been reported at present.

In addition, research has been made regarding statistical character of pseudo-random number series
output from RC4 [6]. The result shows that RC4 with small word length has bad statistical character,
and therefore emphasizes the need of 8-bit or more word length. References [7] and [8] discuss
discrimination between true random number series and pseudo-random number series generated by RC4,
and concluded that discrimination is possible with 230-word (byte) output when n = 8. References [6]
and [9] indicated that there are statistical biases in the first and second byte outputs.

There is also research to estimate the initial state from the viewpoint that the secret key determines the
initial state from which pseudo-random number output is determined. According to Reference [10], a
single word pseudo-random number output is created when n = 8, and computations required for updating
the internal state is regarded as a single unit. In this condition, if 100 out of 256 internal state variables
with computations of 230 are known, remaining internal state variables can be estimated. Reference [11]
shows that, if at most 73 internal state variables are known by using the output correlation and the relation
between internal state variables, an internal state that can estimate the remaining internal state variables
with 220 computations exists at an unignorable probability. Further, Reference [12] indicates that, if 57
internal state variables are known, an internal state that can completely estimate the remaining internal
state variables exists.

Reference [13] shows a method for interpolation attacks, which performs equivalent conversion of
internal state variable S(x) of RC4 from Z/256Z addition group to GF(257) multiplication group, and
represents the rewriting rule of the pseudo-random number generator as a polynomial on GF(257). At
present, however, it is considered to be difficult to solve simultaneous equations that are advantageous to
interpolation attacks.

3.3 Evaluation of individual ciphers 247

References

[1] S. Fluhrer, I. Mantin, and A. Shamir, "Weakness in the key scheduling algorithm of RC4,"

Eighth Annual Workshop on Selected Areas in Cryptography," Aug. 2001.
[2] RSA Laboratories Tech. Notes, "RSA Security Response to Weakness in Key Scheduling

Algorithm of RC4," available at http://www.rsasecurity.com/rsalabs /technotes/wep.html, Sep.
2001.

[3] RSA Laboratories Tech. Notes, "WEP Fix using RC4 Fast Packet Keying," available at
http://www.rsasecurity.com/rsalabs/technotes/wep-fix.html, Dec. 2001.

[4] H. Krawczyk, "The order of encryption and authentication for protecting communications (or:
How secure is SSL)," CRYPTO2001, LNCS2139, pp. 310-331, 2001.

[5] I. Mantin and A. Shamir, "A Practical Attack on Broadcast RC4," Proceedings of FSE 2000,
LNCS 2355, pp. 152-154, 2002.

[6] Jovan Dj. Golic, "Linear Statistical Weakness of Alleged RC4 Keystream Generator,"
Proceedings of EUROCRYPT '97, Lecture Notes in Computer Science, Vol. 1233, W. Fumy,
ed., pp. 226-238, 1997.

[7] S. R. Fluhrer and D. A. MeGrew, " Statistical Analysis of Alleged RC4 Keystream Generator,"
Proceedings of FSE 2000, LNCS 1987, pp. 19-30, 2001.

[8] I. Mironov, "(Not So) Random Shuffles of RC4," Proceedings of CRYPTO2002, LNCS 2442,
pp. 304-319, 2002.

[9] L. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege," Analysis methods for
(alleged) RC4," Advances in Cryptology - ASIACRYPT '98, LNCS 1514, Springer-Verlag, pp.
327-341, 1998.

[10] T. Ohigashi, Y. Shiraishi, and M. Morii, "Effective estimation method of internal states of
RC4," Proceedings of 25th Information Theory and Application Symposium (SITA2002), Vol.
2, pp. 607-610, 2002.

[11] T. Ohigashi, Y. Shiraishi, and M. Morii, "An Efficient Internal State Reconstruction Attack of
RC4," proceedings of the 25th information theories and the application symposium
(SITA2002), Vol.2, pp.607-610, 2002.

[12] T. Ohigashi, Y. Shiraishi, and M.Morii, "A Note on Internal State Reconstruction Attack of
RC4, " SCIS2003, 6-D1, pp.447-452, 2003.

[13] T. Shimoyama, "A polynomial representation of RC4 and its application to the Interpolation
attack," SCIS2003, 5D4, pp. 369-374, 2003.

248 Chapter 3 Evaluation of symmetric-key cryptographic techniques

 249

Chapter 4

Hash Function Evaluation

4.1 Evaluation Method and General Evaluation
Hash functions compress a message of arbitrary bit length m into a message digest of constant length n
(hash value). Especially, hash functions that satisfy "onewayness" and "collision resistance" are also
referred to as cryptographic hash functions.

"Onewayness" is a characteristic that prevents an input message from being easily calculated from the
output hash value. "Collision" means that the same hash values are output to two different input
messages. The hash function can never realize 100% collision resistance because it permits a larger
input bit length (m) than the output bit length (n). For this reason, the hash function is considered to
have collision resistance if no collision is detected within a realistic computational complexity.

No new hash function was submitted for the evaluation that took place at this time. Therefore,
CRYPTREC studied papers and other publications and evaluated the security of widely used hash
functions.

� Details of the evaluation

"Onewayness" and "collision resistance", which were the requirements to be satisfied by cryptographic
hash functions, were discussed. In addition, specific evaluation of the above-mentioned hash functions
by new types of attacks, comparison of security to SHA-1 and MD-type hash functions, and the survey of
publications of the cryptanalysis result were conducted.

4.2 Evaluation Results
RIPEMD-160, SHA-1, SHA-256, SHA-384, and SHA-512 is specified as the five hash functions to be
evaluated.

� Overview of security evaluation:

Since there has been no report of an attacking method that might break the practical security of all hash
functions to be evaluated, these hash functions can be considered secure enough to be used in
cryptographic applications. Needless to say, it is necessary to assure the security against collision caused
by an exhaustive key search or by the birthday attack. The result suggested that 160 bits or more are
required for the length of a hash value.

250 Chapter 4 Hash Function Evaluation

In other words, 256-bit or longer hash functions are desirable if such a longer hash value can be adopted.
This might not be true if the hash functions to be used are defined in public-key cipher specifications or if
there is a requirement for interoperability.

Algorithm RIPEMD-160 SHA-1 SHA-256 SHA-384 SHA-512

Maximum allowable length of input
message [bits] < 264 < 264 < 264 < 2128 < 2128

Output hash length [bits] 160 160 256 384 512

Block length for each basic process
unit [bits] 512 512 512 1,024 1,024

Word length for each basic operation
processing [bits] 32 32 32 64 64

The number of processing steps 2 × 80 80 64 80 80

4.3 Evaluation of Individual Cryptographic Techniques

4.3.1 RIPEMD-160

4.3.1.1 Technical overview

RIPEMD-160, a hash function proposed by Dobbertin, Bosselaers, and Preneel, is one of the results of the
Race Integrity Primitive Evaluation (RIPE) project in Europe. It has been included in the International
Standards by the International Organization for Standardizations (ISO)/IEC 10118-3 along with SHA-1
and RIPEMD-128 [1]. RIPEMD-160 outputs a 160-bit hash value corresponding to its input, which is
an arbitrary message padded so that the bit length is a multiple of 512.

4.3.1.2 Technical specifications

RIPEMD-160 has been deigned to improve MD4 and MD5. In addition, like MD4, it has been
structured using 32-bit addition, logical operation, and cyclic-shift instructions as main operations to
achieve fast processing in the 32-bit computer. RIPEMD-160 consists of the three parts: input,
compression, and output. RIPEMD-160 runs two functions with almost the same pattern in parallel to
output a 160-bit hash value from a message of arbitrary length. These two functions are called a right
line and a left line, each consisting of five rounds, that is, 80 steps. For detailed specifications of
RIPEMD-160, refer to [1].

(1) Input

An input message is converted into a 32-bit integer using little-endian ordering and divided into
512-bit blocks. Sixteen 32-bit inputs X[0], ...,X[15] are input to the right and left lines in a given
order.

(2) Compression function

In calculating the compression function, five chaining variables (A, B, C, D, and E) are used.
Besides the initial values for A, B, C, and D, which are the same as in MD5, the initial value for
additional E has been defined. The initial values IV = (h1, h2, h3, h4, h5) for (A, B, C, D, and E) are
shown below.

4.3 Evaluation of Individual Cryptographic Techniques 251

h1 = 0x67452301
h2 = 0xefcdab89
h3 = 0x98badcfe
h4 = 0x10325476
h5 = 0xc3d2e1f0

These initial values are commonly used in both of the right and left lines. In addition, the following
five types of Boolean functions are used in calculating the compressio n function.

f (x, y, z) = x ⊕ y ⊕ z
g (x, y, z) = (x ∧ y) ∨ (x ∧ z)
h (x, y, z) = (x ∧ y) ⊕ z
k (x, y, z) = (x ∧ y) ∨ (y ∧ z)
l (x, y, z) = x ⊕ (y ∨ z)

Where, a symbol ∧ is bitwise AND, ∨ is bitwise OR, ⊕ is bitwise exclusive-OR, and x indicates
bitwise complement of x.
The step functions making up the RIPEMD-160 compression function are listed below. Where, a
subscript R indicates that the variables with it are in the right line while L indicates that the variables
with it are in the left line. RIPEMD-160 runs the steps in the right and left lines in parallel for
hashing. The constants KL[j] and KR[j] used in calculating the step functions are as follows:

KL[j] = 0x00000000, KR[j] = 0x50a28be6, (1 ≤ j ≤16)
KL[j] = 0x5a827999, KR[j] = 0x5c4dd124, (17 ≤ j ≤32)
KL[j] = 0x6ed9eba1, KR[j] = 0x6d703ef3, (33 ≤ j ≤48)
KL[j] = 0x8f1bbcdc, KR[j] = 0x7a6d76e9, (49 ≤ j ≤64)
KL[j] = 0xa953fd4e, KR[j] = 0x00000000, (65 ≤ j ≤80)

The number of bit positions for left cyclic shift sL[j] and sR[j] in the step functions are predefined.
The step functions in PRIEMD-160 are shown below. Note that it is assumed that in this example, a
symbol X<<s indicates the operation, in which a variable X is left cyclic-shifted by s bits.

Round 1 (1 ≤ j ≤ 16)

FFL (AL, BL, CL, DL, EL, X[i], sL[j], KL[j]) :
AL = (AL + f (BL, CL, DL) + X[i] + KL[j])<<sL[j] + EL, CL = CL

<<10
LLR (AR, BR, CR, DR, ER, X[i], sR[j], KR[j]) :

AR = (AR + l (BR, CR, DR) + X[i] + KR[j])<<sR[j] + ER, CR = CR
<<10

Round 2 (17 ≤ j ≤ 32)

GGL (AL, BL, CL, DL, EL, X[i], sL[j], KL[j]) :
AL = (AL + g (BL, CL, DL) + X[i] + KL[j])<<sL[j] + EL, CL = CL

<<10
KKR (AR, BR, CR, DR, ER, X[i], sR[j], KR[j]) :

AR = (AR + k (BR, CR, DR) + X[i] + KR[j])<<sR[j] + ER, CR = CR
<<10

Round 3 (33 ≤ j ≤ 48)

HHL (AL, BL, CL, DL, EL, X[i], sL[j], KL[j]) :
AL = (AL + h (BL, CL, DL) + X[i] + KL[j])<<sL[j] + EL, CL = CL

<<10
HHR (AR, BR, CR, DR, ER, X[i], sR[j], KR[j]) :

AR = (AR + h (BR, CR, DR) + X[i] + KR[j])<<sR[j] + ER, CR = CR
<<10

252 Chapter 4 Hash Function Evaluation

Round 4 (49 ≤ j ≤ 64)

KKL (AL, BL, CL, DL, EL, X[i], sL[j], KL[j]) :
AL = (AL + k (BL, CL, DL) + X[i] + KL[j])<<sL[j] + EL, CL = CL

<<10
GGR (AR, BR, CR, DR, ER, X[i], sR[j], KR[j]) :

AR = (AR + g (BR, CR, DR) + X[i] + KR[j])<<sR[j] + ER, CR = CR
<<10

Round 5

LLL (AL, BL, CL, DL, EL, X[i], sL[j], KL[j]) :
AL = (AL + l (BL, CL, DL) + X[i] + KL[j])<<sL[j] + EL, CL = CL

<<10
FFR (AR, BR, CR, DR, ER, X[i], sR[j], KR[j]) :

AR = (AR + f (BR, CR, DR) + X[i] + KR[j])<<sR[j] + ER, CR = CR
<<10

(3) Output

Basically like MD5, the chaining values obtained in the last step are updated by adding the initial
values IV and then the five variables (A, B, C, D, and E) are concatenated to output a hash value.
Since the two lines are used, they are calculated as follows:

A = h2 + CL + DR
B = h3 + DL + ER
C = h4 + EL + AR
D = h5 + AL + BR
E = h1 + BL + CR

4.3.1.3 Others

It was found that collision could be detected in RIPEMD (submitted to the RIPE project in 1995) by
reducing the processing rounds [3]. Therefore, its revision RIPEMD-160 was proposed [2]. Later, a
more powerful attack method on RIPEMD was discovered [4]. RIPEMD-160 is one of MD4-based hash
functions.

The RIPEMD standardization is described in ISO/IEC 10118-3.

4.3.1.4 Evaluation Results

The security of hash functions can be evaluated mainly from the following two viewpoints: One is the
computational cost required for finding an input corresponding to a given output, that is (1) the cost
required for searching for preimage. The other is the computational cost required for finding different
inputs which hash to the same output, that is (2) the cost required for detecting a collision.
RIPEMD-160 is sufficiently resistant to (1) and (2). Supplementary explanations are given below.

� RIPEMD-160 specific attacks

It has been reported that with respect to RIPEMD, a predecessor of RIPEMD-160, a collision can be
found in 231

 or less computations if the first or last round was omitted [3]. To counter this problem, the
number of rounds has been extended to five in RIPEMD-160, achieving higher independency between the
right and left parallel lines, which in turn, contributes to enhanced security. No attacks jeopardizing
RIPEMD can be applied to RIPEMD-160 and no RIPEMD-160 specific attacks have been reported.

4.3 Evaluation of Individual Cryptographic Techniques 253

� Computational cost searching for input value

At most 2n
 patterns of hash values can be output by a hash function in which the bit length of a hash value

is n. Therefore, the preimage of any given output can be found by preparing 2 n
 inputs which hash to all

the 2 n
 possible outputs. Since n = 160 in RIPEMD-160, 2160

 input patterns are required if this method is
applied. It is considered that 2160

 input patterns are too many to prepare using the existing techniques.

� Computational cost finding any collision

Assuming that the length of a hash value is n bits, if 2n/2 input values have been prepared, a collision can
be found with relatively high possibility. This is known as a Birthday attack, a commonly used
analytical method. The hash values must have a sufficiently long length to avoid this problem. Since n
= 160 in RIPEMD-160, a Birthday attack can be applied if approx. 280

 messages are prepared. It is
considered, however, that the preparation of such many input values is impractical at the present time.

4.3.1.5 Software Implementation Evaluation

CRYPTREC has not evaluated implementation. However, the following evaluation result is konwn [5].

Platform : Celeron (850 MHz)

OS and language : Windows 2000 SP1, C++

Processing performance : 30.725 Mbps

Also, a latest research paper has reported the following results for implementation.

Platform : Pentium III (800 MHz)

OS and language : Windows 98, Visual C++ 6.0 and MASM6.15

Processing performance : 564.4 Mbps

4.3.1.6 Hardware Implementation Evaluation

The throughput and circuit size in hardware implementation have not been evaluated.

References

[1] ISO/IEC 10118-3, Information technology – Security techniqes – Hash-functions – Part3:

Dedicated hash-functions
[2] H. Dobbertin, A. Bosselaers, B. Preneel, RIPEMD-160: A strengthened version of RIPEMD,

Fast Software Encryption – CambridgeWorkshop, LNCS vol.1039, Springer-Verlag, pp.71-82,
1996.

[3] H. Dobbertin, RIPEMD with two-round compress function is not collision-free, Journal of
Cryptology 10 (1): pp51-70, 1997.

[4] C. Debaert, H. Gibert, The RIPEMD-L and RIPEMD-R improved variants of MD4 are not
collision free, Fast Software Encryption, LNCS vol.2355, Springer-Verlag, 2001.

[5] http://www.eskimo.com/~weidai/benchmarks.html
[6] J. Nakajima, and M. Matsui, Performance Analysis and Parallel Implementation of Dedicated

Hash Functions on Pentium III, IEICE Trans. Fundamentals, Vol.E86-A, No.1, pp.54-63, 2003.

254 Chapter 4 Hash Function Evaluation

4.3.2 SHA-1/SHA-256/ SHA-384/ SHA-512

4.3.2.1 Technical overview

In FIPS-180, NIST proposed 160-bit hash functions SHA in 1992 and its revision SHA-1 in 1994 [1].
NIST is based on a design rationale quite similar to SHA-1. However, three types of hash functions are
proposed: 1) 256-bit hash function SHA-256, 2) 384-bit hash function SHA-384, and 3) 512-bit hash
function SHA-512. All of these hash functions have a longer bit length than SHA-1. The four types
including SHA-1 are specified as NIST standard hash functions; Secure Hash Signature Standard (SHS)
(as of August 1, 2002) [2]. Three types of hash functions SHA-256, SHA-384 and SHA-512 were
introduced mainly because the security levels against collision attacks are 2128, 2192 and 2256 bits, required
to make them correspond to recently standardized three types of block ciphers, AES-128, AES-192 and
AES-256.

Characteristics of the above-mentioned four hash functions are summarized in the table below. The
security value represents strength against Birthday attack.

If a longer hash value can be adopted, it is desirable to select 256-bit or longer hash functions. However,
this may not be true if hash functions to be used are specified by the specifications of public-key ciphers.

Algorithm SHA-1 SHA-256 SHA-384 SHA-512

Maximum allowable length of input
message [bits] < 264 < 264 < 2128 < 2128

Output hash length [bits] 160 256 384 512

Block length for each basic process
unit [bits] 512 512 1,024 1,024

Word length for each basic operation
processing [bits] 32 32 64 64

The number of processing steps 80 64 80 80

Security 280 2128 2192 2256

4.3.2.2 SHA-1 technical specifications

SHA-1 was designed in the same way as MD4 and MD5*1. The algorithm of SHA-1 consists of two
phases; (II) preprocessing and (III) hash value calculation, using the functions given in (I) below.

(I) Functions to be used in SHA-1

SHA-1 uses 32-bit words for input and output variables. The following logical functions f0, f1, ..., f79 are
used:
 Ch (x, y, z) = (x ∧ y) ⊕ (¬x ∧ z) 0 ≤ t ≤ 19
 Parity (x, y, z) = x ⊕ y ⊕ z 20 ≤ t ≤39

ft (x, y, z) = Maj (x, y, z) = (x ∧ y) ⊕ (x ∧ y) ⊕ (y ∧ z) 40 ≤ t ≤59
 Parity (x, y, z) = x ⊕ y ⊕ z 60 ≤ t ≤79

where, ∧ and ⊕ represent the AND, XOR for each bit respectively and ¬x is the bit inversion of x.

*1 SHA-1 in FIPS PUB 180-2 is exactly same as SHA-1 specified in FIPS PUB 180-1. However, the operation symbol Sn(x)

used in FIPS PUB 180-1 for leftward cyclic shifting by n bits is changed to ROTLn(x) in FIPS PUB 180-2. For
compatability with the descriptions in SHA-256, SHA-384 and SHA-512, several symbols are changed.

4.3 Evaluation of Individual Cryptographic Techniques 255

(II) SHA-1 preprocessing

(i) Calculate a 512-bit initially padded message from input message M for the message length to be

in multiples of 512 bits as follows:

 M || 1 || 0k || λ

where, λ is the number of bits at the time of the binary expression of message length M and k is
the minimum value satisfying, λ + 1 + k ≡ 448 mod 512.

(ii) Divide the initially padded message into N 512-bit message blocks {M(i)}N
i=1, where each M(i)

consists of 16, 32-bit words:|

M(i) = M0
(i) || M1

(i) || ... M15
(i)

(iii) Set the j–th word Hj

(0) of the initial hash value (0 ≤ j ≤ 4).

H0
(0) = 67452301

H1
(0) = efcdab89

H2
(0) = 98badcfe

H3
(0) = 10325476

H4
(0) = c3d2e1f0

(III) SHA-1 hash value calculation

For M(i) with N message blocks M(1), ... ,M(N), execute the following using the condition 1 ≤ i ≤ N:

(i) Using the SHA-1 message schedule function defined in the formula given below, calculate the

extended message Wt .

 Mt
(i) , 0 ≤ t ≤ 15

 Wt = ROTL1 (Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16), 16 ≤ t ≤ 79

where, ROTLn(x) means leftward cyclic shifting of w-bit word x by n bits.

ROTLn(x) = (x << n) ∨ (x >>(w – n))

(ii) Initialize five buffer variables with the (i-1)-th hash value {Hj

(i-1)}4 i =0.

 a0 = H0
(i-1)

 b0 = H1
(i-1)

 c0 = H2
(i-1)

 d0 = H3
(i-1)

 e0 = H4
(i-1).

256 Chapter 4 Hash Function Evaluation

(iii) Repeat the following arithmetic operations with the condition 0 ≤ t ≤ 79:

 T = ROTL5 (at) + ft (bt, ct, dt) +et + Kt + Wt
 et+1 = dt
 dt+1 = ct
 ct+1 = ROTL30 (bt)
 bt+1 = at
 at+1 = Tt

where, Kt (0 ≤ t ≤ 79) is a 32-bit word constant (see FIPS PUB 180-2) and + means a modulo 232
addition for every unit of 32-bit word.

(iv) Calculate the i-th intermediate hash value using the following:

 H0
(i) = H0

(i-1) + a80
 H1

(i) = H1
(i-1) + b80

 H2
(i) = H2

(i-1) + c80
 H3

(i) = H3
(i-1) + d80

 H4
(i) = H4

(i-1) + e80

Steps (i) to (iv) above are to be repeated N times to get the final 160-bit intermediate hash value,
which is the hash value of message M, as follows:

 H(N) = H0

(N) || H1
(Ni) || H2

(N) || H3
(N) || H4

(N)

The SHA-1 compression function C1(·) can be integrated with a recurrence formula when the 160-bit
intermediate hash value is H(i) = H0

(i)H1
(i)H2

(i)H3
(i)H4

(i) as follows:

H(i) = H(i-1) + C1

M(i)(H(i-1)), 1 ≤ i ≤ N

(IV) SHA-1 hash value exception method of calculation

While saving the use of 80 words W0, W1, ... , W79 in SHA-1 hash value calculation procedures (III), the
SHA-1 hash value can be calculated as shown below*2.

Set MASK = 0000000f. Assume that SHA-1 preprocessing in (III) has been completed.

To process M(i), execute the following steps (i) to (iv) using the condition 1 ≤ i ≤ N.

(i) Using the condition 0 ≤ t ≤ 15

 Wt = Mt

(i)

(ii) Initialize five buffers with the (i-1)-th hash value {Hj
(i-1)}4 i =0 as follows:

 a0 = H0

(i-1)
 b0 = H1

(i-1)
 c0 = H2

(i-1)
 d0 = H3

(i-1)
 e0 = H4

(i-1).

*2 Although the message digest obtained in (III) is equivalent to that in (IV), the memory to be used can be saved but the

computing time is longer in (III).

4.3 Evaluation of Individual Cryptographic Techniques 257

(iii) Repeat the following arithmetic operations with the condition 0 ≤ t ≤ 79:

 s = t ∧ MASK

 if t ≥ 16

Ws = ROTL1(W(s+13)∧MASK ⊕ W(s+8)∧MASK ⊕W(s+2)∧MASK ⊕ Ws)

 T= ROTL5(at) + ft(bt,ct,dt) + et + Kt +Ws
 et+1 = dt
 dt+1 = ct
 ct+1 = ROTL30(bt)
 bt+1 = at

 at+1 = Tt

(iv) i-th intermediate ash value is calculated as follows:

 H0
(i) = H0

(i-1) + a80
 H1

(i) = H1
(i-1) + b80

 H2
(i) = H2

(i-1) + c80
 H3

(i) = H3
(i-1) + d80

 H4
(i) = H4

(i-1) + e80.

Steps (i) to (iv) above are to be repeated N times to obtain the final 160-bit intermediate hash value,
which is a hash value of the message M, as follows:

 H(N) = H0

(N) || H1
(Ni) || H2

(N) || H3
(N) || H4

(N)

4.3.2.3 SHA-256 technical specifications

SHA-256 was designed in the same way as MD4, MD5 and SHA-1. The algorithm of SHA-256 consists
of two phases; (II) preprocessing and (III) hash value calculation,. The functions in (I) below are used.

(I) Functions used in SHA-256

SHA-256 uses the following six logical functions in which 32-bit words are used for input and output
variables:

 Ch(x, y, z) = (x ∧ y) ⊕ (¬ x ∧ z)
 Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)
 Σ0

{256}(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x)
 Σ1

{256}(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x)
 σ0

{256}(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x)
 σ1

{256}(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x)

where, symbols ∧ and ⊕ represent the AND, XOR for each bit respectively, and ¬x is the bit inversion of
x.

Also, ROTRn(x) means right cyclic shifting of the 32-bit word x by n bits and SHRn(x) means right
shifting of x by n bits.

258 Chapter 4 Hash Function Evaluation

(i) Calculate a 512-bit initially padded message from input message M for the message length to be
in multiples of 512 bits as follows:

M || 1 || 0k || λ

where, λ is the number of bits at the time of the binary expression of message M and k is the
minimum value satisfying, λ + 1 + k ≡ 448 mod 512.

(ii) Divide the initially padded message into N, 512-bit message blocks {M(i)}N

i=1, where each M(i)
consists of 16, 32-bit words:

M(i) = M0

(i) || M1
(i) || ... || M15

(i)

(iii) Set the j–th word Hj
(0) of the initial hash value (0 ≤ j ≤ 7):

 H0

(0) = 6a09e667
 H1

(0) = bb67ae85
 H2

(0) = 3c6ef372
 H3

(0) = a54ff53a
 H4

(0) = 510e527f
 H5

(0) = 9b05688c
 H6

(0) = 1f83d9ab
 H7

(0) = 5be0cd19

(III) SHA-256 hash value calculation

For M(i) with N message blocks M(1), ... ;M(N), execute the following using the condition 1 ≤ i ≤ N:

(i) Using the SHA-256 message schedule function defined in the formula below, calculate an

extended message Wt:

 Mt
(i), 0 ≤ t ≤ 15

 Wt =
 σ1

{256}(Wt-2) + Wt-7 + σ0
{256}(Wt-15) + Wt-16, 16 ≤ t ≤ 63

where, + means a modulo 232 addition for every unit of 32-bit word.

(ii) Initialize the buffer variables with the (i-1)-th hash value {Hj

(i-1)}7
j=0:

 a0 = H0

(i-1)
 b0 = H1

(i-1)
 c0 = H2

(i-1)
 d0 = H3

(i-1)
 e0 = H4

(i-1)
 f0 = H5

(i-1)
 g0 = H6

(i-1)
 h0 = H7

(i-1).

4.3 Evaluation of Individual Cryptographic Techniques 259

(iii) Repeat the following arithmetic operations with the condition 0 ≤ t ≤ 63:

 T1 = ht + Σ1
{256}(et) + Ch (et, ft, gt) + Kt

256 + Wt
 T2 = Σ0

{256}(at) + Maj(at, bt, ct)
 ht+1 = gt
 gt+1 = ft
 ft+1 = et
 et+1 = dt + T1t
 dt+1 = ct
 ct+1 = bt
 bt+1 = at
 at+1 = T1t + T2t

where, Kt

256(0 ≤ t ≤ 63) is a 32-bit word constant (see FIPS PUB 180-2).

(iv) Calculate the i-th intermediate hash value with the following:

 H0
(i) = H0

(i-1) + a64
 H1

(i) = H1
(i-1) + b64

 H2
(i) = H2

(i-1) + c64
 H3

(i) = H3
(i-1) + d64

 H4
(i) = H4

(i-1) + e64
 H5

(i) = H5
(i-1) + f64

 H6
(i) = H6

(i-1) + g64
 H7

(i) = H7
(i-1) + h64

Steps (i) to (iv) above are to be repeated N times to get the final 256-bit intermediate hash value,
which is the hash value of message M, as follows:

H(N) = H0

(N) || H1
(N) || H2

(N) || H3
(N) || H4

(N) || H5
(N) || H6

(N) || H7
(i)

The SHA-1 compression function C256() can be integrated with a recurrence formula, when the
256-bit intermediate hash value is H(i) = H0

(i) || H1
(i) || ... || H7

(i) as follows:

H(i) = H(i-1) + C256

M(i)(H(i-1)), 1 ≤ i ≤ N

4.3.2.4 SHA-512 technical specifications

SHA-512 is a SHA-256 hash function but with its word length changed from 32 to 64. The algorithm of
SHA-512 consists of two phases; (II) preprocessing and (III) hash value calculation. The functions in (I)
below are used.

260 Chapter 4 Hash Function Evaluation

(I) Functions used in SHA-384/SHA-512

SHA-512 and SHA-384 use the following functions with 64-bit word input and output variables:

 Ch(x, y, z) = (x ∧ y) ⊕ (¬ x ∧ z)
 Maj(x, y, z) = (x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z)
 Σ0

{512}(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x)
 Σ1

{512}(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x)
 σ0

{512}(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x)
 σ1

{512}(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x)

where, symbols ∧ and ⊕ represent the AND, XOR for each bit respectively and ¬x is the bit inversion of
x. In addition, ROTRn(x) means right cyclic shifting of the 32-bit word x by n bits, and SHRn(x) means
right shifting of x by n bits.

(II) SHA-512 preprocessing

(i) Calculate the initially padded message from input message M for the message length to be in

multiples of 1,024 bits as follows:

M || 1 || 0k || λ

where, λ is the number of bits at the time of the binary expression of message M, and k is the
minimum value satisfying, λ + 1 + k ≡ 896 mod 1024.

(ii) Divide the initially padded message into N, 1,024-bit message blocks {M(i)}N

i=1, where each M(i)
consists of 16, 64-bit words:

 M(i) = M0
(i) || M1

(i) || ... || M15
(i)

(iii) Set the j–th word Hj

(0) of the initial hash value (0 ≤ j ≤ 7):

 H0

(0) = 6a09e667f3bcc908
 H1

(0) = bb67ae8584caa73b
 H2

(0) = 3c6ef372fe94f82b
 H3

(0) = a54ef53a5f1d36f1
 H4

(0) = 510e527fade682d1
 H5

(0) = 9b05688c2b3e6c1f
 H6

(0) = 1f83d9abfb41bd6b
 H7

(0) = 5be0cd19137e2179

4.3 Evaluation of Individual Cryptographic Techniques 261

(III) SHA-1 hash value calculation

For M(i) with N message blocks M(1), ... ,M(N), execute the following using the condition 1 ≤ i ≤ N:

(i) Using the SHA-512 message schedule function defined in the formula given below, calculate the
extended message Wt

 Mt

(i)
 ,

 0≤ t ≤ 15
Wt =

 σ1
{512}(Wt-2) + Wt-7 + σ0

{512} (Wt-15) + Wt-16, 16 ≤ t≤ 79

where, + means a modulo 264 addition for every unit of 64-bit word.

(ii) Initialize eight buffer variables using the (i-1)-th hash value {Hj
(i-1)}7 i =0:

 a0 = H0

(i-1)
 b0 = H1

(i-1)
 c0 = H2

(i-1)
 d0 = H3

(i-1)
 e0 = H4

(i-1)
 f0 = H5

(i-1)
 g0 = H6

(i-1)
 h0 = H7

(i-1).

(iii) Repeat the following arithmetic operations with the condition 0 ≤ t ≤ 79:

 T1t = ht + Σ1
{512}(et) + Ch (et, ft, gt) + Kt

512 + Wt
 T2t = Σ0

{512}(at) + Maj (at, bt, ct)
 ht+1 = gt

 gt+1 = ft
 ft+1 = et

 et+1 = dt +T1
 dt+1 = ct
 ct+1 = bt

bt+1 = at
at+1 = T1 + T2

where, Kt

512 (0 ≤ t ≤ 79) is a 64-bit word constant (refer to FIPS PUB 180-2).

(iv) Calculate the i-th intermediate hash value using the following:

 H0

(i) = H0
(i-1) + a80

 H1
(i) = H1

(i-1) + b80
 H2

(i) = H2
(i-1) + c80

 H3
(i) = H3

(i-1) + d80
 H4

(i) = H4
(i-1) + e80

 H5
(i) = H5

(i-1) + f80
 H6

(i) = H6
(i-1) + g80

 H7
(i) = H7

(i-1) + h80

Steps (i) to (iv) above are to be repeated N times to get the final 512-bit intermediate hash value,
which is the hash value of message M, as follows:

H(N) = H0

(N) || H1
(N) || H2

(N) || H3
(N) || H4

(N) || H5
(N) || H6

(N) || H7
(i)

262 Chapter 4 Hash Function Evaluation

The SHA-512 compression function C512() can be integrated with a recurrence formula when the
512-bit intermediate hash value is H(i) = H0

(i) || H1
(i) || ... || H7

(i) as follows:

H(i) = H(i-1) + C512

M(i)(H(i-1)), 1 ≤ i ≤ N

4.3.2.5 SHA-384 technical specifications

The technical specifications for SHA -384 are almost the same as those for SHA-512 with following two
exceptions:

1. The hash values H(0) are changed from those for SHA-256 and SHA-512 as follows:

 H0

(0) = cbb9d5dc1059ed8
 H1

(0) = 629a292a367cd507
 H2

(0) = 9159015a3070dd17
 H3

(0) = 152fecd8f70e5939
 H4

(0) = 67332667ffc00b31
 H5

(0) = 8eb44a8768581511
 H6

(0) = db0c2e0d64f98fa7
 H7

(0) = 47b5481dbefa4fa4

2. The 384-bit hash value is adopted as the final hash value H(N) which is truncated from the left
side of 512-bit hash value of SHA-512.

H(N) = H0

(N) || H1
(N) || H2N) || H3

(N) || H4
(N) || H5

(N)

is adopted as a hash value H(N) with SHA-384 of message M.

4.3.2.6 Others

SHA-1 standardization is described in ANSI X9.30 (Part 2), ISO/IEC 10118-3, RFC 3174 (Informational)
and RFC2246: SSL3.0/TLS1.0 (Proposed Standard) as well as in FIPS PUB 180-2.

SHA-256, SHA-384 and SHA-512 are described in FIPS PUB 180-2 and NESSIE.

4.3.2.7 SHA-1 security evaluation results

� Overview

As the SHA-1 algorithm indicates, in order to analyze SHA-1, not only the compression function but also
the input message extending section must be analyzed. SHA, the predecessor of SHA -1, has an input
message extending section consisting of XOR operations only. Therefore, collision with the
compression function can be found based on the analysis result. It has been reported, however, that the
attacks against SHA cannot be applied to SHA-1, which uses the 1-bit left cyclic shift operation in the
input message extending section. Since no practical attacks against SHA-1 have been reported so far, it
seems safe to use it for security in cryptographic applications. The security nevertheless must be assured
against exhaustive key searches. Assuming that the length of a hash value is n bits, a sufficiently longer
length must be assigned to the hash values since the Birthday attack can find collision among the hash
values for 2n/2 messages. Because the SHA-1 hash length is l60 bits, collision can be found among 280
hash values. Thus, there is no guarantee that SHA-1 will remain secure in the future.

4.3 Evaluation of Individual Cryptographic Techniques 263

4.3.2.8 SHA-256 security evaluation results

� Overview

It has not been reported that the security of commonly used SHA -1, which outputs 160-bit hash values, is
compromised. In addition, with respect to SHA-256, a modified version of SHA-1, for which an
alteration in design was made in expectation of long-term use and future improvement in computer
performance, the message extension process has been made more complex and any existing attacks
against hash functions may not be applied, although its design criteria are not clear.

Since SHA -256 was proposed only recently, further discussion about its security is needed. Nevertheless,
it can be concluded that SHA-256 is secure so far.

1. Evaluator 1

Overview of the result: The security of SHA -256 was evaluated as follows:
(a) It is difficult to apply Dobbertin [3, 4, 5] and Chabaud-Joux [6] attacks against MD type of

hash functions to SHA -256.
(b) Compared to SHA-1, SHA-256 appears to have less number of iterative rounds and moreover,

it is hard to re-structure the selection criteria of design and the variables only using the
specification with a little formal documentation available. Nevertheless, the greatest advantage
of basic component portion of SHA -256 is that it provides considerably higher strength than
those of the existing hash functions.

(c) The result from the survey about the differential characteristics of the included compression
functions showed that neither possible repetitive characteristics nor the characteristics common
to the compression function at each round were identified.

(d) The modified SHA-256 variant (for more information, refer to (vi)), in which the constants for
numbers of iterative rounds take symmetry values when divided by 2, is insecure.

Thus, any of known attacks cannot be applied to SHA-256 and moreover, attacks, which may
contribute to 2256

 or lower complexity of preimage and second preimage calculations, and usual
Birthday attacks, which may contribute to 2256/2 = 2128 or lower complexity, have not been found.

Detailed description

(a) About three fundamental criteria of security evaluation,
(i) collision resistance,
(ii) preimage resistance*3, one-wayness,
(iii) second preimage resistance*4, and weak collision resistance, were discussed.
The result showed that there was no problem in them.

(b) The differences between SHA-1 and SHA -256 algorithms are described below.
i. In message schedule calculation, an additive operation (+) was used instead of an exclusive

OR operation (⊕) to make the calculations more complex.
This led to:
(i) a higher level of difficulty in analysis because differential patterns cannot by

represented by linear codes,
(ii) strengthened SHA -1 characteristics,
(iii) no rotary invariance in input words, which were found in SHA-0 and SHA -1, and

*3 Difficulty of finding M’’ satisfying h(M)=h(M’’) given message M and its hash value h(M).
*4 Difficulty of finding M’’ satisfying h(M)=h(M’’) given message M and its hash value h(M).

264 Chapter 4 Hash Function Evaluation

(iv) deterioration in the accuracy of the ratio (the total number of rotation in each
compression function calculation) of the lengths between the message schedule and
the working register.

Any specific method for evaluating the security of this kind of deterioration has not been
established. It may lead to deterioration in security of SHA-256.On the other hand, it may
be said that the deterioration ratio were compensated considering improved complexity in
update of SHA -256 working variables and two register variables being modified at each
round.

ii. SHA-256, which uses eight 32-bit registers (at, bt, ct, dt, et, ft, gt, and ht) in calculating the
status register update function, is similar to SHA-0 and SHA-1, which use five 32-bit
registers (at, bt, ct,, dt, and et) with following exceptions.
(i) The round function is made more complex and has powerful and fast diffusivity.

This given means that at each round, both of non-linear functions, e.g., majority
function Maj() and preference function CH(), are applied and two register variables
have been updated.

(ii) The poor uniformity of the status register update functions found in SHA-0 and
SHA-1 is much more deteriorated. This may improve the security of these functions.

iii. Non-linear functions such as majority function Maj() and preference function Ch(), sigma
functions σ0(), σ1(), Σ0(), Σ1(), and a constant Kt have been properly designed.

(c) Existing attacks against hash functions: The results against two searching methods, (i)
Dobbertin collision search and (ii) Chaubaud & Joux collision search by differential attacks,
showed that any of attacks could not be applied because the message extension process was
made more complex, thus revealing that the design modification brought improvement of
security.

(d) Differential attacks: The result on the differential characteristics of compression function
proved that the probability of differential characteristics covering four rounds is 2-8 or less and
that covering all the 64 rounds is 2-8 x 16

 = 2-128. It can be concluded that no differential attacks
can be applied to the compression function because these probabilities of differential
characteristics are as low as the collision probability of 256-bit hash functions.

(e) The result on the repetitive differential attacks made it clear that they cannot be applied to
SHA-256.

(f) With respect to the modified SHA-256, in which extremely symmetric initial hash values and
constants (H0

(0) = H1
(0) = . . . =H7

(0) ∈Ω32) are used and an additive operation (+) has been
changed to an XOR operation (⊕), security is compromised because collision resistance is
eliminated from it. Note that Ω32 indicates a set of symmetric 32-bit words defined as
follows:

Ω32 = {C∈{0,1}32∃c∈{0,1}16,C = c || c (4.1)

2. Evaluator 2

Overview of the result
(a) The SHA-256 and SHA-512 algorithms are different from SHA -1 with respect to the

following:
(i) More complex message processing helps to improve security.
(ii) Since two variables may be updated in one step, it is difficult to apply any existing attacks.

(b) A reference is made to the public comments on Draft FIPS180-2 (Jonsson's and Kelsey's
comments).

(c) At present, no fatal defect or suspected poor security has been found in SHA-256. Since it was
proposed only recently, further discussion about its security is needed.

4.3 Evaluation of Individual Cryptographic Techniques 265

(d) It was verified that the modifications to SHA-1 in design were useful in improving the security
against some attacks.

(e) It is desirable that NIST should make the results on security evaluation of SHA-256, SHA-384
and SHA-512, as well as the reason for modification to SHA-1 open to public, as known from
Jonsson’s comment.

Thus, at present, no fatal defect or suspected poor security has been found in SHA-256. Since
SHA-256 was proposed recently and its in-depth review has not been conducted, further
discussion about its security is needed.

Detailed description:
(a) Four security evaluation criteria: (i) randomness; (ii) Birthday Paradox attack; (iii) collision

resistance; and (iv) onewayness, were discussed and no problem was found in them.
(b) The result on security evaluation from the standpoint of speed-up using parallel processing

showed that there existed no problem. This means that in SHA-256/ SHA-383/ SHA-512 the
design of SHA-1 was modified so that the possibility of deterioration in security due to the
Birthday Paradox attack might be decreased.

(c) The existing attacks against hash functions: Three collision searches , (i) Dobbertin’s collision
search; (ii) collision search by the Chaubaud-Joux differential attack; (iii) the collision search
of modified (1-round) hash functions, were discussed. The result showed that since message
extension was made more complex and no attacks could be applied, the modification in design
was useful in improving security.

(d) It was suggested that, to apply hash functions to message authentication, the construction of
keyed hash function, which was proposed by Bellare, Canetti and Krawczyk, which is efficient
and shows provable security, should be used until the security of Kelsey method for resolving
the extension property problem is demonstrated.

4.3.2.9 SHA-384/SHA-512 security evaluation results

It has not been reported that the security of commonly used SHA -1, which outputs 160-bit hash values, is
compromised. In addition, with respect to SHA-384/SHA-512, modified versions of SHA-1, for which
alterations in design were made in expectation of long-term use and future improvement in computer
performance, the message extension process has been made more complex and any existing attacks
against hash functions may not be applied, although their design criteria are not clear.

Since SHA-384/SHA-512 was proposed only recently, further discussion about its security is needed.
Nevertheless, it can be concluded that SHA-384/SHA-512 are secure so far.

1. Evaluator 1

Overview of the result: The security of SHA-384 and SHA-512 was evaluated as follows:
(a) It is difficult to apply any Dobbertin [3, 4, 5] and Chabaud-Joux [6] attacks against MD type of

hash functions to SHA -384 and SHA -512.
(b) Compared with SHA -1, SHA-384 and SHA-512 appear to have less number of iterative

rounds and moreover, it is hard to re-structure the selection criteria of design and variables
only using the specifications with a little formal documentation available. Nevertheless, the
greatest advantages of basic component portion of SHA-384 and SHA-512 are that they
provide considerably higher strength than the existing hash functions.

(c) The result from survey about differential characteristics of the included compression functions
showed that neither possible differential characteristics nor the characteristics common to the
compression function at each round were identified.

266 Chapter 4 Hash Function Evaluation

(d) The modified SHA-384/ SHA-512 variant (for more information, refer to (vi)), in which the
constants for numbers of iterative rounds take symmetry values when divided by 2, are
insecure.

Thus, any of known attacks cannot be applied to SHA-384 and SHA-512 and moreover, attacks,
which may contribute to 2384

 and 2512or lower complexity of preimage and second preimage
calculations and usual Birthday attacks, which may contribute to 2384/2= 2192

 and 2512/2= 2256
 or lower

complexity, have not been found.

Detailed description:
(a) About three fundamental criteria of security evaluation,

(i) collision resistance,
(ii) preimage resistance, onewayness,
(iii) second preimage resistance, and weak collision resistance, were discussed. The result

showed that they had no problem.
(b) The differences between SHA -1 and SHA-384 and SHA-512 algorithms are described below.

i. In message schedule calculation, an additive operation (+) was used instead of an XOR
operation (⊕) to make the calculations more complex.

 This led to:
(i) a higher level of difficulty in analysis because differential patterns cannot be

represented by linear codes,
(ii) strengthened SHA -1 characteristics,
(iii) no rotary invariance in input words, which was found in SHA-0 and SHA -1 and
(iv) deterioration in the accuracy of the ratio (the total number of rotations in each

compression function calculation) of the lengths between the message schedule and
the working register.

Any specific method for evaluating the security of this kind of deterioration has not been
established. It may lead to deterioration in security of SHA -384 and SHA-512. On the
other hand, it may be said that the deterioration ratio was compensated considering improved
complexity in update of working variables of SHA-384 and SHA-512 and two register
variables being modified at each round.
ii. SHA-384 and SHA-512, which use eight 64-bit registers (at, bt, ct, dt, et, ft, gt and ht) in

calculating the status register update function, is similar to SHA-0 and SHA-1, which use
five 32-bit registers (at, bt, ct, dt and et) with following exceptions:
(i) The round function is made more complex and has powerful and fast diffusivity.

Given this, means that at each round, both of non-linear functions, e.g., majority
function Maj () and preference function CH (), are applied and two register variables
T1 and T2 have been updated.

(ii) The poor uniformity of the status register update function TEMPt found in SHA-0 and
SHA-1 is much more deteriorated. This may improve the security of these functions.

iii. Non-linear functions such as majority function Maj () and preference functions CH (),
sigma function, and a constant Kt have been properly designed.

(c) Existing attacks against hash functions: The result against two searching methods, (i)
Dobbertin collision search and (ii) Chaubaud-Joux collision search by differential attacks,
showed that none of the attacks could be applied because the message extension process was
made more complex, thus revealing that the design modification brought improvement in
security.

4.3 Evaluation of Individual Cryptographic Techniques 267

(d) Differential attacks: Result of the differential characteristics of compression function proved
that the probability of differential characteristics covering four rounds is 2-8 or less and that
covering all the 80 rounds is 2-80×20= 2-160. These characteristic probabilities are not so low
compared with collision probabilities of 512- and 384-bit hash functions, however it may not
be possible that the same low weight characteristics are combined together to form the total
differential characteristics approaching the bounds. Considering the fact that differential
characteristics allow only pseudo-collisions to be detected at the first step while multiple
collisions should actually be detected, it can be concluded that any differential attacks cannot
be applied to the SHA-384 and SHA-512 compression functions.

(e) The result on the repetitive differential attacks made it clear that they cannot be applied to
SHA-384 and SHA-512.

(f) With respect to the modified SHA-512, in which extremely symmetric initial hash values and
constants (H0

(0) = H1
(0) = . . . =H7

(0) ∈Ω32) are used and an additive operation (+) has been
changed to an XOR operation (⊕), security is compromised because collision resistance is
eliminated from it. Note that Ω64 indicates a set of symmetric 64-bit words defined as
follows:

Ω64 = {C∈{0,1}64∃c∈{0,1}32,C = c || c} (4.2)

2. Evaluator 2
Summary of evaluation results: The security of SHA-384 and SHA-512 was evaluated with respect to
the following:

(a) Since SHA-384 is materially similar to SHA-512, the focus is on SHA-512 only.
(b) The same evaluation is conducted based on comments identical to those on SHA-256.

4.3.2.10 Software implementation evaluation

This implementation evaluation is not conducted by CRYPTREC. However, the implementation results
on Pentium III etc. are shown in [8, 9] of the FS 2002 report.

4.3.2.11 Hardware implementation evaluation results

This implementation evaluation is not conducted by CRYPTREC. However, the FPGA implementation
results of SHA-1 and SHA-512 are shown in [7] of the FS 2002 report.

References

[1] SHA-1: National Institute of Standrads and Technology (NIST) FIPS 180-1: Secure Hash

Standard, April 1994.
[2] SHS: National Institute of Standrads and Technology (NIST) FIPS 180-2: Secure Hash

Standard, August 2, 2002.
[3] H. Dobbertin, Cryptanalysis of MD4, Journal of Cryptology, 11-4, Autumn, 1998.
[4] H. Dobbertin, Cryptanalysis of MD5 Compress, Presented at the rump session of Eurocrypt'96,

May 14, 1996.
[5] H. Dobbertin, The status of MD5 after a recent attack, CryptBytes, 2-2, 1996, pp3-6.
[6] F. Chaubaud and A. Joux, Di_erential Collisions in SHA-0, extended abstract, in CRYPTO'98,

LNCS 1462, pp.56–71, 1998.
[7] T. Grembowski, et. al, Comparative Analysis of the Hardware Implementations of Hash

Functions SHA-1 and SHA-512, Information Security, LNCS2433, pp.75-89, 2002.

268 Chapter 4 Hash Function Evaluation

[8] J. Nakajima and M. Matsui, Performance Analysis and Parallel Implementation of Dedicated
Hash Functions, Eurocrypt02, LNCS2332, pp. 167-180.

[9] J. Nakajima and M. Matsui, Performance Analysis and Parallel Implementation of Decicated
Hash Functions on Pentium III, IEICE TRANSACTIONS, Vol.E86-A, No.1, January 2003, pp.
54-63.

 269

Chapter 5

Evaluation of Pseudo-random Number Generators

5.1 Evaluation Method
The pseudo-random number generators described in this chapter generate random numbers that are used
in creating encryption keys or key seeds, which is unlike the key stream generation for stream ciphers.
These generators are required to have characteristics similar to that for generating true random numbers.
They must also provide cryptographic security measures.

In general, the random number generators are classified into random number generators (RNG:
non-deterministic random number generators) and pseudo-random number generators (PRNG:
deterministic random number generators). The former generates random numbers from a certain
physical quantity, such as noise from an electrical circuit or quantum effect of a semiconductor. The
RNG output is used as a random number or as an input to PRNG. The latter, on the other hand,
generates multiple "pseudo-random numbers" for one or more inputs using a seed from the RNG output
(seed function output value).

It is known that the random number sequences of PRNG produce good random values for statistical
verification of "randomness" more frequently than RNG numbers generated from physical sources.
Documentation and other resources have been examined and applied to evaluate the security of
pseudo-random number generation algorithms (PRNGs) used with public-key ciphers.

5.2 General Review of Evaluation Results
Pseudo-random number generation algorithms indicated in the Appendix (Annex) of the following
standards are the evaluation targets. Table 5.1 and Table 5.2 summarize these evaluations.

• PRNG in ANSI X9.42-2001 Annex C.1/C.2
• PRNG in ANSI X9.62-1998 Annex A.4
• PRNG in ANSI X9.63-2001 Annex A.4
• PRNG for DSA in FIPS PUB 186-2 Appendix 3*1
• PRNG for general purpose in FIPS PUB 186-2 (+ change notice 1) Appendix 3.1
• PRNG for FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1/3.2

The e-Government Cryptographic Technique List (draft) is compiled which provides many algorithms.
Three examples are selected from those evaluated algorithms that do not exhibit any specific problem in
practical use.

*1 Same as “PRNG based on SHA-1”, previously mentioned in CRYPTREC Report 2001.

270 Chapter 5 Evaluation of Pseudo-random Number Generators

Although many methods are available in corresponding standards, we have used the best among these
methods as our examples. Therefore, actual algorithm names are used for the examples along with the
name of each standard of the pseudo-random number algorithms in the e-Government Cryptographic
Technique List (draft). To be more specific, when generators with SHA-1 base or Triple DES base
internal function are both defined by one standard, they are indicated as "PRNG based on SHA-1" and
"PRNG based on Triple DES" respectively. Similarly, when generators intended for DSA and for
general purpose are available for generating pseudo-random numbers, they are indicated as "PRNG for
DSA" and "PRNG for general purpose" respectively. For example, "PRNG based on SHA-1 for general
purpose in FIPS 186-2 (+ change notice 1) revised Appendix 3.1" is a pseudo-random number generation
algorithm provided in the standard called "FIPS 186-2 (+ change notice 1) revised Appendix 3.1". This
general-purpose algorithm has a SHA-1 base internal function.

5.3 Evaluation of Individual Cryptographic Techniques

5.3.1 PRNG in ANSI X9.42-2001 Annex C.1

See 5.3.5 for pseudo-random number generator "PRNG in ANSI X9.42-2001 Annex C.1," which was
derived from FIPS PUB 186 Appendix 3.

5.3.2 PRNG in ANSI X9.42-2001 Annex C.2

Among the pseudo-random number generators evaluated by CRYPTREC, the evaluation result of
pseudo-random number generator "PRNG in ANSI X9.42-2001 Annex C.2," which was derived from
ANSI X9.17 Annex C, is described in this section.

5.3.2.1 Technical overview

This pseudo-random number generator is based on Triple DES. The generator inputs time information
and generates random numbers that have arbitrary bit lengths. It complies with ANSI X9.17 Annex C
and is one of the pseudo-random number generators standardized by ANSI, which handles ciphers that
require several random numbers.

5.3.2.2 Technical specifications

The technical specifications are as follows:

Input: 64-bit random number seed V0, Triple DES keys (K1, K2, K3), output bit length L, and date/time
vector DTj (1 ≤ j ≤  )

Output: L-bit random number p

Step 1 Set p as a null string.

Step 2 for j ← 1 to   do

 Ij ← DESK3 (DES (DESK1(DTj)))

 xj ← DESK3 (DES (DESK1(Ij ⊕ Vj-1)))

 Vj ← DESK3 (DES (DESK1(Ij ⊕ xj)))

 p ← p ║ xj

end for

L
64

L
64

-1
K2

-1
K2

-1
K2

5.3 Evaluation of Individual Cryptographic Techniques 271

Step 3 p ←   (left L bits)

Table 5.1: Overview of evaluation results on pseudo-random number generators

Characteristics

Annex C.1: This pseudo-random number generator is one of those derived from FIPS
PUB 186 Appendix 3. It outputs pseudo-random numbers (bit string) that have
arbitrary bit lengths. The generator is based on SHA-1.
Annex C.2: This standardized, pseudo-random number generator is one of those
derived from ANSI X9.17 Annex C. It outputs pseudo-random numbers (bit string) that
have arbitrary bit lengths. The generator uses Triple DES and time information for
generating pseudo-random numbers.

Overall evaluation

ANSI X9.42-2001
Annex C.1/C.2

No major problem has been identified so far in the practical use of Annex C.1 when
parameters are set correctly. See 5.3.1 for correct parameter setting method.
We do not recommend Annex C.2 since it has been found to be vulnerable to the attack
assuming a powerful adversary.

Characteristics

This pseudo-random number generator is one of those derived from FIPS PUB 186
Appendix 3. It outputs multiple pseudo-random numbers between 1 and q-1. The
generator uses one of SHA-1 and DES.

Overall evaluation

ANSI X9.62-1998
Annex A.4

We do not recommend this generator because of the large bias produced in the
pseudo-random number output distribution (same as the one used for an attack on DSA,
which uses the PRNG for DSA in FIPS PUB 186-2 Appendix 3) depending on the
parameter q.

Characteristics

This pseudo-random number generator is one of those derived from FIPS PUB 186
Appendix 3. It outputs multiple pseudo-random numbers between 1 and q-1. The
specification introduces SHA-1- or DES-based algorithm.

Overall evaluation

ANSI X9.63-2001
Annex A.4

We do not recommend this generator because of the large bias produced in the
pseudo-random number output distribution (same as the one used for an attack on DSA,
which uses the PRNG for DSA in FIPS PUB 186-2 Appendix 3) depending on the
parameter q.

Characteristics

This pseudo-random number generator is listed in FIPS PUB 186 Appendix 3 as a PRNG
for DSA. There are many variations, including generators that output a single or
multiple L-bit random numbers. The specification introduces SHA-1- or DES-based
algorithm.

Overall evaluation

FIPS PUB 186-2
Appendix 3

An attack method, which requires the known signature of 222 and computation amount of
264 that have a biased distribution of {0, 1}, has been disclosed. This attack method can
be prevented by restricting the number of times that a specific single key can be used to
less than 2 million times when pseudo-random numbers are used by DSA. We do not
recommend this generator as a generating method for pseudo-random numbers, however,
because a large bias occurs in the random number output. Instead, we recommend
using the version that was updated in accordance with "change notice 1".

p
2-L mod 64

272 Chapter 5 Evaluation of Pseudo-random Number Generators

Characteristics

The specification of the pseudo-random number generator standardized as FIPS PUB
186-2 Appendix 3.1 has been partially modified so that the pseudo-random number
output becomes a bit string so that it can be used also for purposes other than DSA.
This generator specification was updated in accordance with "change notice 1".

Overall evaluation

FIPS PUB 186-2
(+ change notice 1)
Appendix 3.1

No major problems has been identified during practical use so far, as long as the
parameters are set correctly. Note, however, that the methods defined in the
specification include methods that are not always secure. Therefore, when you use this
generator, refer to 5.3.5 and select the appropriate usage.

Characteristics

This pseudo-random number generator was standardized based on FIPS PUB 186-2
Appendix 3.1/3.2. This generator has been updated in accordance with "change notice
1". It was also tweaked for DSA random number generation to decrease the
pseudo-random number output distribution bias that was exploited by an attack on DSA
(see the summary in PRNG for DSA). The specification has been modified further so
that the pseudo-random number output becomes a bit string that can be used for purposes
other than DSA.

Overall evaluation

FIPS PUB 186-2
(+ change notice 1)
revised
Appendix 3.1/3.2

No major problems has been identified during practical use so far, as long as the
parameters are set correctly. Note, however, that the methods defined in the
specification include methods that are not always secure. Therefore, when you use this
generator, refer to 5.3.5 and select the appropriate usage.

Note 1: V should be kept secret.
Note 2: DTj is updated for each j.

5.3.2.3 Investigation results

The investigation results of References [1] and [2] are described below.

 Summary of investigation

It is confirmed that security can be kept if Triple DES is a secure block cipher against direct attacks (i.e.
attacks that distinguish a random number series from true random numbers) when the output series is
much shorter than 64 × 232 bits. If stronger attacks are assumed, however, the following problems can
occur.

• Once the key is known, all of the previous random number outputs can be derived.
• If an attacker can control the time inputs, then random number outputs in the order of 232

blocks can be distinguished from true random numbers.

 Analysis by Kelsey et al

Vulnerability against input-based attacks: If input-based attacks are attempted (i.e., if the auxiliary
input value can be fixed by some method), a pseudo-random number series in the order of 64 × 232 bits
can be distinguished from true random numbers. The reason is given below.

The block ciphers are bijective. Therefore, an output of about 263 blocks (1 block = 64 bits) will form a
single cycle if the auxiliary input value is fixed. Also, each block output is a deterministic effect of the
preceding block. As a result, the same symbol does not appear two or more times within a cycle. In
contrast, since a pair of the same symbol appears in around 232 blocks for true random numbers, one can
distinguish the pseudo-random number output from true random numbers.

5.3 Evaluation of Individual Cryptographic Techniques 273

Vulnerability against state compromise extension attacks: Generally, it should be difficult to
estimate the internal state associated with an output that is far from the time of compromise, even when
this internal state has been compromised.

When a state compromise extension attack is attempted (i.e., when the key K = (k1, k2, k3), which is the
internal state at some point in time, is compromised), the attacker can obtain the intermediate state Vj+1
from the outputs of two continuous blocks xj and xj+1. The attack technique is described in detail below.

The attacker estimates the auxiliary inputs DTj and DTj+1 associated with outputs xj and xj+1. Next, the
attacker obtains candidates V'j+1 and V"j+1 for the intermediate state V j+1 using the following formulas.

V'j+1 :=DK(xj+1) ⊕ DTj+1

V"j+1 :=EK(xj ⊕ DTj)

E K() and D K() in the above formula represent the encryption process and decryption process of Triple
DES using the key K. The value V'j+1 = V"j+1 is the final Vj+1 candidate. Since the entropy (entropy of
DTj+1 in particular, if DTj is known) of the date/time vector (auxiliary input) is not very large, the number
of candidates obtained through this calculation is far smaller than the total number of states 264 of V.

 Analysis by Desai et al

Desai et al formulated pseudo-random number generator under the assumption that Triple DES is a secure
block cipher. They also analyzed various attacks and forward security.

Attack models
Attack models that were examined are summarized in the table below.

 Key State Auxiliary input

Chosen-input attack (CIA) Unknown Known Chosen

Chosen-state attack (CSA) Unknown Chosen Known

Known-key attack (KKA) Known Unknown Known

Security is defined with so-called "indistinguishability."

Forward security
Regarding the previous random number output if the current key and state have been revealed to the
attacker

Weak forward security (WFS): Pseudo-random number outputs are hidden from the attacker
before analyzing. The attacker infers the hidden outputs after getting hold of the secret
information.

Strong forward security (SFS): The attacker already knows the pseudo-random number
outputs before analyzing. The attacker distinguishes known outputs from true random numbers
after getting hold of the secret information.

Result of analysis

CIA CSA KKA WFS SFS

Secure Secure Insecure Insecure Insecure

274 Chapter 5 Evaluation of Pseudo-random Number Generators

Note: "Secure" in the above table holds with short random number outputs. Note that there is a gap of
approximately Ο() with the advantage of PRNG when the output block length is m. (See
Reference [1] for the accurate value.)

References

[1] Anand Desai, Alejandro Hevia, and Yiqun Lisa Yin. A practice-oriented treatment of

pseudorandom number generators. In Lars Ramkilde Knudsen, editor, Advances in Cryptology
- EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 368-383.
Springer-Verlag, Berlin, Heidelberg, New York, 2002.

[2] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptanalytic attacks on
pseudorandom number generators. In Serge Vaudenay, editor, Fast Software Encryption - 5th
International Workshop, FSE '98, volume 1372 of Lecture Notes in Computer Science, pages
168-188, Berlin, Heidelberg, New York, 1998. Springer-Verlag.

5.3.3 PRNG in ANSI X9.62-1998 Annex A.4

See 5.3.5 for pseudo-random number generator PRNG in ANSI X9.62-1998 Annex A.4, which was
derived from FIPS PUB 186 Appendix 3.

5.3.4 PRNG in ANSI X9.63-2001 Annex A.4

See 5.3.5 for pseudo-random number generator PRNG in ANSI X9.63-2001 Annex A.4, which was
derived from FIPS PUB 186 Appendix 3.

5.3.5 PRNG in FIPS PUB 186-2 (+ change notice 1) Appendix & revised
Appendix

Among the pseudo-random number generators evaluated by CRYPTREC, the evaluation results of the
following pseudo-random number generators derived from FIPS PUB 186 Appendix 3 are described in
this section.

• PRNG for DSA in FIPS PUB 186-2 Appendix 3 (See 5.3.6.)
• PRNG for general purpose in FIPS PUB 186-2 (+ change notice 1) Appendix 3.1
• PRNG in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1 & 3.2
• PRNG in ANSI X9.42-2001 Annex C.1
• PRNG in ANSI X9.62-1998 Annex A.4
• PRNG in ANSI X9.63-2001 Annex A.4

m2
264

5.3 Evaluation of Individual Cryptographic Techniques 275

5.3.5.1 Technical overview

FIPS PUB 186*2, which defines Digital Signature Algorithm (DSA), contains examples of a number of
pseudo-random number generators that can generate the random numbers required by DSA. Many of
the pseudo-random number generators based on FIPS PUB 186 Appendix 3 was standardized. These
generators have numerous derivative algorithms, including ones that: a) generate bit strings, b) generate
integers of a specific range, or c) either require or do not require auxiliary inputs. These algorithms
operate using the internal oneway function G, and the specification provides reference building methods
for G function using SHA-1 or DES.

5.3.5.2 Technical specifications

Specifications of evaluated algorithms are provided below. Specifications of the internally called
auxiliary function are provided in a summary at the end of this section. The details of the parameter
conditions slightly vary among the pseudo-random number generators described below. Refer directly
to FIPS PUB 186-1 (+ change notice 1) and ANSI to confirm the conditions.

Specifications of PRNG for DSA in FIPS PUB 186-2 Appendix 3 are described in 5.3.6. Therefore, this
section provides the specifications of PRNG for DSA in FIPS PUB 186-2 Appendixes 3.1 and 3.2 in
accordance with "change notice 1", re-written using symbols given here.

In the following specifications, "IVSHA-1" represents the initial values of H0 || H 1 || H 2 || H 3 || H4 of SHA-1
and "IV " represents a 32-bit cycle shift towards the left.

 PRNG for DSA in FIPS PUB 186-2 Appendix 3.1

Input: 160-bit prime number q, XKEY, and XSEED j (1 ≤ j ≤ m)

Output: m private keys x1, x2, ..., xm

for j ← 1 to m do

(xj, XKEY) ← B (IVSHA-1, XKEY, XSEEDJ, q)

end for

Note 1: For input XKEY, select a new, secret value.

 PRNG for DSA in FIPS PUB 186-2 Appendix 3.2

Input: 160-bit prime number q and XKEY, set of m messages M1, M 2, ..., M m

Output: Random number kj (1 ≤ j ≤ m) for generating a signature.

Step 1 t ← IV

Step 2 for j ← 1 to m do

(kj, XKEY) ← B (t, XKEY, 0, q)

end for

Step 3 Return to Step 2 where t = SHA-1(Mm).

Note 1: For input XKEY, select a secret value.

*2 FIPS PUB 186-2 (+ change notice 1) is the latest version of this specification.

<<<32
SHA-1

<<<32
SHA-1

276 Chapter 5 Evaluation of Pseudo-random Number Generators

 PRNG for general purpose in FIPS PUB 186-2 (+ change notice) Appendix 3.1

PRNG for DSA in FIPS PUB 186-2 Appendix 3.1 performs xj output without mod q. This generator can
be used as a general purpose pseudo-random number generation other than in DSA.

 PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1

Input: 160-bit prime number q, XKEY, and XSEED j (1 ≤ j ≤ m)

Output: m private keys x1, x2, ..., xm

for j ← 1 to m do

(w1, XKEY) ← B (IVSHA-1, XKEY, XSEEDj, 2160)

(w2, XKEY) ← B (IVSHA-1, XKEY, XSEEDj, 2160)

xj ← (w1 ║ w2) mod q

end for

Note 1: For input XKEY, select a new, secret value.

 PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) Appendix 3.2

Input: 160-bit prime number q and XKEY, set of m messages M1, M2, ..., Mm

Output: Random number kj (1 ≤ j ≤ m) for generating a signature.

Step 1 t ← IV

Step 2 for j ← 1 to m do

(w1, XKEY) ← B (t, XKEY, 0, 2160)

(w2, XKEY) ← B (t, XKEY, 0, 2160)

kj ← (w1 ║ w2) mod q

end for

Step 3 Return to Step 2 where t = SHA-1(Mm).

Note 1: For input XKEY, select a new, secret value.

 PRNG for general purpose in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1

PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1 performs xj output without
mod q. This generator can be used as a general purpose pseudo-random number generation other than in
DSA.

 PRNG in ANSI X9.42-2001 Annex C.1

Input: 160-bit prime number q (not used), XKEY, number of output bits L, XSEEDj (1 ≤ j ≤  )
(Sets to all zeros if not specified.)

Output: L-bit random number p

Step 1 Set p as a null string.

<<<32
SHA-1

L
160

5.3 Evaluation of Individual Cryptographic Techniques 277

Step 2 for j ← 1 to   do

(x, XKEY) ← B (IVSHA-1, XKEY, XSEEDj, 2160)

p ← p ║ x

end for

Step 3 p ←   (left L bits)

Note 1: For input XKEY, select a new, secret value.

Note 2: Perform the XSEED and XKEY inputs separately from each other and generate them from
different information sources.

Note 3: Only SHA-1 based G is introduced. The specification may be interpreted that any oneway
function is acceptable for G.

 PRNG in ANSI X9.62-1998 Annex A.4

Input: XKEY, prime number q (f =  ), number of random numbers generated l, XSEEDi,j
(1 ≤ i ≤ l, 1 ≤ j ≤ f)

Output: l random numbers k1, k 2, ..., k1 ∈ [1, q - 1]

 for i ← 1 to l do

for j ← 1 to f do

(xj, XKEY) ← B (IVSHA-1, XKEY, XSEEDi, j, 2160)

end for

ki ← ((x1 ║ x2 ║ ... ║ xf) mod (q - 1)) + 1

end for

Note 1: For input XKEY, select a new, secret value.

Note 2: Perform the XSEED and XKEY inputs separately from each other. XSEED and XKEY must
be generated from different random number sources and must ensure the same security
requirements as XKEY. In other words, they must be unpredictable and protected from
unauthorized disclosure.

Note 3: Only SHA-1 based G is introduced. The specification may be interpreted that any oneway
function is acceptable for G.

 PRNG in ANSI X9.63-2001 Annex A.4

Same as ANSI X9.62-1998 Annex A.4.1. Note, however, that only SHA-1 based G is introduced.

 Auxiliary function: Basic algorithm B

B: {0, 1}160 × {0, 1}b × {0, 1}b × {0, 1}160 → {0, 1}160 × {0, 1}b

(t, XKEY, XSEED, q) → (x, XKEY′)

p
2-L mod 160

log2 q+1
160

L
160

278 Chapter 5 Evaluation of Pseudo-random Number Generators

A definition of the above is given below.

x ← G (t, (XKEY + XSEED) mod 2b) mod q

XKEY′ ← (1 + XKEY + x) mod 2b

The following two methods are defined as a reference implementation method for the one-way function
given below.

G: {0, 1}160 × {0, 1}b → {0, 1}160 ; (t, c) → x (160 ≤ b ≤ 512)

Configuration of SHA-1 based G: G(t, c) is obtained by changing:
• The initial vector of SHA-1 to t
• The message padding method of SHA-1 to 0 padding on the right.

Configuration of DES based G: Subscripts are considered to be mod 5. The least significant 56 bits
are used for the DES key.

Step 1 t0 ║ t1 ║ t2 ║ t3 ║ t4 ← t, c0 ║ c1 ║ c2 ║ c3 ║ c4 ← c
(ti and ci are 32 bits.)

Step 2 xi ← ti ⊕ ci for 0 ≤ i ≤ 4

Step 3 yi, 0 ║ yi, 1← DESci+4║ci+3(xi ║ (xi+1 ⊕ xi+4)) for 0 ≤ i ≤ 4
(yi, j are 32 bits)

Step 4 zi ← yi, 0 ⊕ yi + 2,1 ⊕ yi + 3,0 for 0 ≤ i ≤ 4

Step 5 G(t, c) ← z0 ║ z1 ║ z2 ║ z3 ║ z4

5.3.5.3 Investigation results

The results of investigating References [1], [2], and [3] are described below. There could not be found
between the configuration of the SHA-1 based one-way function G and the general configuration.
Therefore, we do not write the difference between G as based on SHA-1 or other selection.

 Summary of investigation

Table 5.3 summarizes the results of this investigation. The check marks () in the "Conclusion"
columns of each algorithm refer to the security evaluation.

5.3 Evaluation of Individual Cryptographic Techniques 279

Table 5.3: Investigation of Pseudo-random Number Generators Based on FIPS PUB 186 Appendix 3

 Conclusion 1 Conclusion 2 Conclusion 3 Conclusion 4 Conclusion 5 Conclusion 6 Conclusion 7 Conclusion 8

A

B

C

D

E

F

G

H

I

J
K
L

The meanings of the symbols in the above table are as follows.
A: PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1 (SHA-1 based G)
B: PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1 (DES based G)
C: PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.2 (SHA-1 based G)
D: PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.2 (DES based G)
E: PRNG for genenral purpose in FIPS PUB 186-2 (+ change notice 1) Appendix 3.1 (SHA-1 based G)
F: PRNG for genenral purpose in FIPS PUB 186-2 (+ change notice 1) Appendix 3.1 (DES based G)
G: PRNG for genenral purpose in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1

(SHA-1 based G)
H: PRNG for genenral purpose in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1

(DES based G)
I: PRNG in ANSI X9.42-2001 Annex C.1
J: PRNG in ANSI X9.62-1998 Annex A.4 (SHA-1 based G)
K: PRNG in ANSI X9.62-1998 Annex A.4 (DES based G)
L: PRNG in ANSI X9.63-2001 Annex A.4

Conclusion 1: If "[] - log2 q" is small, a significant bias will occur in the random number
outputs. Therefore, this generator is not recommended.

Conclusion 2: If there is no optional input, a random number with a cycle of about 280 will be output.
Therefore, it is preferable to use a pseudo-random number generator with a longer
cycle.

Conclusion 3: If there is no optional input, a random number with a cycle of about 2b/2 will be output.
Therefore, this generator is not recommended when b is less than 256.

Conclusion 4: Performs random number outputs with a cycle of about 2b/2. Therefore, it is preferable
to use a pseudo-random number generator with a longer cycle.

Conclusion 5: Performs random number outputs with a cycle of 280. Therefore, this generator is not
recommended when b is less than 256.

log2 q+1
160

280 Chapter 5 Evaluation of Pseudo-random Number Generators

Conclusion 6: Not enough considerations for attacks combined with an exhaustive key search of DES.
Therefore, it is preferable to use a pseudo-random number generator with more
advanced and secure considerations for such attacks (if such a generator is available).

Conclusion 7: If an attacker can operate the XSEEDi+1 auxiliary input of the next block after
monitoring the output of each block (xi in basic algorithm B mentioned in 5.3.5.2), it is
possible to make xi+1 equal to xi by using a formula mentioned later (5.2). To use this
generator, it is necessary to: a) confirm that the attacker cannot operate the auxiliary
input value, or b) output xi after the XSEEDi+1 auxiliary input has been entered.

Conclusion 8: If " - log2 q " is small and an attacker can operate the XSEEDi+1 auxiliary input
of the next block after monitoring the output of each block (xi in basic algorithm B
mentioned in 5.3.5.2), it is possible to make xi+1 equal to xi by using a formula
mentioned later (5.2). To use this generator, it is necessary to: a) confirm that the
attacker cannot operate the auxiliary input value, or b) output xi after the XSEEDi+1
auxiliary input has been entered.

 Bleichenbacher's attack

According to press release [3], there is a widely known attack using the bias in a DSA random number
generator (PRNG for DSA in FIPS PUB 186-2 Appendix 3) introduced in FIPS PUB 186-2 Appendix 3.
Although the details of this attack are not clear, several documents including Reference [4] mention a bias
in the distribution of r mod q (5.1) where r is a 160-bit random number and q is a 160-bit prime number.

In this investigation, the principle derived from the formula was used to examine whether a bias is
produced in the random number outputs (5.1).

Generated random numbers are not biased because it is just bit strings
• PRNG for general purpose in FIPS PUB 186-2 (+ change notice 1) Appendix 3.1
• PRNG for general purpose in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1
• PRNG in ANSI X9.42-2001 Annex C.1

Note: If "mod q" is applied to a 160-bit or little bit longer random number output to restrict the random
number range to [1, q - 1] for the 160-bit prime number q, a bias similar to PRNG for DSA in
FIPS PUB 186-2 Appendix 3 is produced.

Bias can be ignored
• PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1
• PRNG for DSA in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.2

Note: According to Reference [4], maximum bias is 2-319 in comparison that occrence probability of each
generated random string is q-1.

Bias exists depending on parameters
• PRNG in ANSI X9.62-1998 Annex A.4
• PRNG in ANSI X9.63-2001 Annex A.4

Note: If the q that defines the output random number range [1, q - 1] is a multiple of 160 bits, a bias
similar to PRNG for DSA in FIPS PUB 186-2 Appendix 3 is produced.

[log2 q]+1
160

5.3 Evaluation of Individual Cryptographic Techniques 281

 DES based G

According to Reference [4], it is widely known that the following property violates with the onway
function of G (in the following example, "<<<32" is a cyclic shift in 32-bit towards the left).

 G(t<<<32, c<<<32) = G(t, c) <<<32

(z1, z2, z3, z4, z5) = G((t, t, t, t, t), (c, c, c, c, c)) ⇒ z1 = z2 = z3 = z4 = z5

There is no known attack method at this point in time that would completely destroy the oneway property
of G. Present day computers, however, do have the capacity to perform an exhaustive search of the
block length and effective key length of DES used for non-linear processing of the random number
generation algorithm. Therefore, it is necessary to consider the possibility of deriving the internal state
analyzing a number of exhaustive DES search combinations.

 Analysis by Kelsey et al

Reference [2] discusses the security of pseudo-random generator assuming the adversary has various
ability.

Vulnerability against chosen-input attacks: The output symbol can be fixed by passing the following
XSEEDi auxiliary input to basic algorithm B.

XSEEDi := XSEEDi-1 − xi-1 − 1(mod2b) (5.2)

 Analysis by Desai et al

Desai et al studied various attacks and forward security assuming G is secure oneway function.

Attack models
Attack models that were examined are summarized in the table below.

 Key State Auxiliary input

Known-key attack (KKA) Known Unknown Known

Security is defined with so-called "indistinguishability".

Forward security
Regarding the previous random number output if the current key and state have been revealed to the
attacker

Weak forward security (WFS): Pseudo-random number outputs are hidden from the attacker
before analyzing. The attacker infers the hidden outputs after getting hold of the secret
information.

Strong forward security (SFS): The attacker already knows the pseudo-random number
outputs before analyzing. The attacker distinguishes known outputs from true random numbers
after getting hold of the secret information.

Result of analysis

KKA WFS SFS

Insecure Insecure Insecure

Note: We have examined the abovementioned "key", which is the initial value of XKEY and is
generated by equivalent transformation of the algorithm.

282 Chapter 5 Evaluation of Pseudo-random Number Generators

References

[1] Anand Desai, Alejandro Hevia, and Yiqun Lisa Yin. A practice-oriented treatment of

pseudorandom number generators. In Lars Ramkilde Knudsen, editor, Advances in
Cryptology— EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
368–383.
Springer-Verlag, Berlin, Heidelberg, New York, 2002.

[2] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptanalytic attacks on
pseudorandom number generators. In Serge Vaudenay, editor, Fast Software Encryption — 5th
International Workshop, FSE '98, volume 1372 of Lecture Notes in Computer Science, pages
168–188, Berlin, Heidelberg, New York, 1998. Springer-Verlag.

[3] Scientist discovers significant flaw that would have threatened the integrity of on-line
transactions.
Lucent Technologies Press Release, 2001. (http://www.lucent.com/press/0201/
010205.bla.html).

[4] External evaluator 1. Evaluation report on DSA. IPA Work Delivery, CRYPTREC External
Evaluation Report 1002, 2001.

5.3.6 PRNG for DSA in FIPS PUB 186 Appendix 3

Three algorithms: (1) Digital Signature Algorithm (DSA), (2) RSA digital signature algorithm, and (3)
ECDSA are stipulated in FIPS PUB 186-2 (+ change notice 1*3) as Digital Signature Standard (DSS).
Since the parameters of these algorithms must be random numbers or pseudo-random numbers, their
generation methods are stipulated as Random number Generation for DSA in FIPS 186-2 Appendix 3.
An important "change notice 1" is also attached at the end of this appendix.

5.3.6.1 Technical overview

DSA uses the following parameters.

1. p: Prime number that complies with 2L-1 < p < 2L and L is a multiple of 64, which in turn complies
with 512 < L < 1024.

2. q: Prime factor of p < 1 that complies with 2159 < q < 2160.

3. g: g = h (p-1)/q mod p, where h is an arbitrary integer that complies with h(p-1)/q mod p > 1 and 1 < h
< p - 1.

4. x: An integer that is generated with random numbers or pseudo-random numbers and complies
with
0 < x < q.

5. y: y = gx mod p

6. k: An integer that is generated with random numbers or pseudo-random numbers and complies
with
0 < k < q.

*3 The Change Notice is introduced in 5.3.2

5.3 Evaluation of Individual Cryptographic Techniques 283

p, q and g are public-use parameters that are commonly used in a group. x and y are private and public
keys for personal use. They are normally fixed for a certain period of time. x and k are used only when
a signature is generated. k must be generated for each signature. p and q must be generated using the
method stipulated in FIPS PUB 186-2 Appendix 2 or a secure method recommended by FIPS. x and k
must be generated using the method stipulated in FIPS PUB 186-2 Appendix 3 or a secure method
recommended by FIPS.

A pair of r and s, calculated using the following formula produces the signature for message M.

r = (gk mod p) mod q

s = (k-1 (SHA-1(M) + xr)) mod q

Where k-1 is the inverse element of k with respect to mod q. That is, (kk-1) mod q = 1, 0 < k-1 < q and
SHA-1(M) is the 160-bit output value of Secure Hash Algorithm (SHA) stipulated in FIPS PUB 180-2.

The following three pseudo-random number generating methods are stipulated as recommended by FIPS
PUB 186-2 to generate user private key x or k for each message required by Digital Signature Standard
(DSS) from random numbers or pseudo-random numbers,

(1) The method using an 160-bit one-way function G(t, c)*4 specified in ANSI X9.17 Appendix C
"Financial Institution Key Management (Wholesale)". (t is 160-bit length and c is b-bit length.
When G() is based on SHA-1, 160 ≤ b ≤ 512 holds, while when G() is based on Data Encryption
Algorithm (DEA) (DES is used in ANSI X9.17 Appendix C), b = 160 is fixed.

(2) The method for generating m-types of x specified in FIPS186-2 Appendix 3.1. (The 160-bit
one-way function G(t, c) is based on SHA -1 or DES.)

(3) The method for generating k and r without assuming that m-types of messages to be signed should
be known, which is specified in FIPS186-2 Appendix 3.2. (The 160-bit one-way function G(t, c) is
based on SHA-1 or DES.)

5.3.6.2 Technical specifications

 Technical specifications for generating m-type of x specified in FIPS PUB 186-2 Appendix 3.1.

(1) Select a new secret number ωxkey .

(2) The 512-bit initial value t = H0 ║ H1 ║ H2 ║ H3 ║ H4 for hash function is set as follows:

H0 = 67452301
H1 = EFCDAB89
H2 = 98BADCFE
H3 = 10325476
H4 = C3D2E1F0

The above is the same as following initial hash value of SHS.

(3) Repeat the following steps (3.a) to (3.d) assuming that 0 ≤ j ≤ m-1 holds.

(3.a) Select ωj (user optional).

(3.b) cj = (ωxkey + ωj) mod 2b (160 ≤ b ≤ 512)

*4 Corresponds to FIPS PUB 186-2 Appendixes 3.3 and 3.4.

284 Chapter 5 Evaluation of Pseudo-random Number Generators

(3.c) xj = G(t, cj) mod q

(3.d) ωxkey = (1 + ωxkey + xj) mod 2b

 Technical specifications for generating m-type of r and k specified in FIPS PUB 186-2 Appendix
3.2.

This algorithm provides a method for temporarily calculating k, k-1 and r in advance for m messages.

(1) Select a new secret number ωxkey .

(2) Select

t = EFCDAB89 ║ 98BADCFE ║ 10325476 ║ C3D2E1F0 ║ 67452301.

 The above becomes the following 512-bit initial hash value in SHS after a 32-bit cyclic shift
towards the left.

 H0 ║ H1 ║ H2 ║ H3 ║ H4 = 67452301 ║ EFCDAB89 ║ 98BADCFE ║ 10325476 ║ C3D2E1F0

(3) Repeat the following steps (3.a) to (3.d) assuming that 0 ≤ j ≤ m-1 holds.

(3.a) k = G (t, ωkkey) mod q

(3.b) kj
-1 = k-1 mod q

(3.c) rj = (gk mod p) mod q

(3.d) ωkkey = (1 + ωkkey + k) mod b

(4) Repeat the following steps (4.a) to (4.c) assuming that m messages are M0, M1, ..., Mm-1, and that 0
≤ j≤ m-1 holds.
(4.a) h = SHA-1(Mj), SHA-1(⋅) means the one-way function based on SHA-1.
(4.b) sj = (kj

-1(h + xrj)) mod q.
(4.c) Select (rj, sj) as the signature of Mj .

(5) Set t = h.

(6) Return to step (3)*5.

 Technical specifications for a one-way function G(t, c) based on SHA-1 specified in FIPS PUB
186-2 Appendix 3.3.

Calculate G(t,c) using steps (a) to (e)*6 in Section 6 of the Secure Hash Standard (SHS) technical
specifications (FIPS180-2). Before performing the above steps, use the following procedure to initialize
{Hj} and M1*7.

(i) Assume that

 Hj = tj, (0 ≤ j ≤ 4).

 dividing 160-bit t into 32-bit patterns (t = t0 ║ t1 ║ t2 ║ t3 ║ t4).

*5 Step (3) is used to pre-calculate an amount required for the signature of the next m messages being set up. Step (4) is not

performed until the next m messages have been prepared. Step (3) is executed when steps (4) and (5) have been
completed and the result is saved until the first message of the next m messages is prepared. During the calculation of
ωkkey in step (3), two m-dimensional arrays are required to save r0, ..., rm-1 and k-1

0, ... , k-1
 m-1

*6 Equivalent to Steps (i) to (iv) of the SHA-1 hash value calculation in SHA-1 technical specifications.
*7 In FIPS PUB 186-2 (+ change notice 1), the procedure in Section 8 of FIPS PUB 180-2, which was an alternative to the

procedure in Section 6, has been deleted.

5.3 Evaluation of Individual Cryptographic Techniques 285

(ii) M1 = c ║ 0512-b

 When steps (a) to (e) in Section 6 of the SHS technical specifications have been performed, the
following value of five 160-bit words is obtained in the last stage of step (e).

 H = H0 ║ H1 ║ H2 ║ H3 ║ H4

 This obtained value is G(t,c).

 Technical specifications for a one-way function G(t, c) based on DES specified in FIPS PUB 186-2
Appendix 3.4.

It is assumed that a1, a2, b1 and b2 are 32-bit strings and are the lower 32 bits of b1.

Under conditions

K = b′1 ║ b2
A = a1 ║ a2

a symbol DESK(A) is defined as follows:

DESK(A) = DES(b'1,b2)(a1, a2)

where DESK(A) indicates a ciphertext by the ordinary DES encryption using a 56-bit key K for an 64-bit
block A. Calculate the one-way function G(t, c) for 160-bit t and c by following the steps:

(1) Divide t and c into 32-bit patterns, respectively, as follows:

t =t 1 ║ t 2 ║ t 3 ║ t 4 ║ t 5

c =c 1 ║ c 2 ║ c3 ║ c4 ║ c 5

(2) Calculate the following formula assuming that the condition 1 ≤ i ≤ 5 holds.

xi = ti ⊕ ci

(3) Calculate the following formulae assuming that the condition 1 ≤ i ≤ 5 holds.

b1 = c((i+3) mod 5) +1
b2 = c((i+2) mod 5) +1
a1 = xi
a2 = x(i mod 5)+1 ⊕ x ((i+3) mod 5) +1
yi,1 ║ yi,2 = DES(b'1, b2) (a1, a2)

 Note that yi,1 and y i,2 are 32-bit strings.

(4) Calculate the following formula assuming that the condition 1 ≤ i ≤ 5 holds.

zi = yi,1 ⊕ y((i+1) mod 5) +1,2 ⊕ y((i+2) mod 5) +1,1

(5) A message digest is output as follows:

G (t, c) = z1 ║ z2 ║ z3 ║ z4 ║ z5 ║

286 Chapter 5 Evaluation of Pseudo-random Number Generators

 Changes associated with change notice 1 of DSS (FIPS PUB 186-2)

DSS (FIPS PUB 186-2) defines the DSA used for generation and authentication of digital signatures to be
utilized in applications. DSS also authorizes the use of ANSI X9.31 (Digital Signature using Reversible
Public Key Cryptography for the Financial Services Industry (rDSA)) and ANSI X9.62 (Public Key
Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm
(ECDSA)). Also, a period of transition is stipulated for using the existing DSA.

FIPS PUB 186-2 is used in connection with SHS (FIPS PUB 180-2). It defines the size of prime number
p as the modulus and provides a method for generating the user private key x and secret number k for
each message.

(I) Size of prime number p

Precautions are provided on the continuous use of DSA as stipulated in FIPS PUB 186-2, correction of
the random number generation method defined in FIPS PUB 186-2 Appendix 3 and technical
specifications of a prime number that is used for other than DSA key generation. The following
precautions are the guidelines for using the reversible public-key algorithm in existing systems.

The prime number p (or p of DSA) is defined as a prime number that complies with condition 2L-1 < p <
2L in Section 4 of FIPS PUB 186-2. The range of L is defined as a multiple of 64 that complies with
condition 512 ≤ L ≤ 1024.

"Change notice 1", however, stipulates that the value of L must be equal to 1024 (i.e., 21023 < p < 21024).

When the above change was made, the following bit lengths were also established as the sizes of modulus
n and prime factors p and q of n of RSA and Rabin-Williams algorithms used in existing systems: n:
Minimum 1024 bits, p and q: About half of the bit length of n.

(II) Random number generation

FIPS PUB 186-2 Appendix 3 defines the user private key x and secret number k for each message as
being 0 to 160-bit random numbers, where q is the modulus. An attack method that requires the known
signature of 222 and computation amount of 264, which have a bias distribution of {0, 1} (detected in the
pseudo-random number generation method defined in Appendix 3), has been disclosed recently [1].
This attack method can be blocked by restricting the number of times a specific single key can be used to
less than 2 million for the pseudo-random numbers of FIPS PUB 186-2 or pseudo-random numbers of
revised version of FIPS PUB 186-2. Or, an updated version of the following pseudo-random number
generation methods can be used as an alternate method of FIPS PUB 186-2 Appendix 3. Note that this
change has corrected a bias distribution of {0, 1} without compromising compatibility.

The two algorithms given below use the one-way function G(t,c). Note that t is l60 bits, c is b bits and
G(t,c) is l60 bits. FIPS PUB 186-2 defines two methods for configuring G: a) SHA-1 defined in FIPS
PUB 180-2 (160 ≤ b ≤ 512) and b) DES defined in FIPS PUB 46-3 (b = 160 fixed).

1. Updated version of the m type x calculation method in FIPS PUB 186-2 Appendix 3.1 [FIPS PUB
186-2 (+ change notice 1) revised Appendix 3.1]
x is the private key of a signature user. Use the following method to generate the required
number (m) of x.
(1) Select the secret number ωKEY for a new key seed.

(2) Select

t = 67452301 ║ EFCDAB89 ║ 98BADCFE ║ 10325476 ║ C3D2E1F0.

5.3 Evaluation of Individual Cryptographic Techniques 287

 The above is the same as the following 512-bit initial hash value of SHS.

 H0 ║ H1 ║ H2 ║ H3 ║ H4

(3) Perform steps (3.a) to (3.c) below for a condition of 0 ≤ j ≤ m-1.

(3.a) Select ωXSEEDj (user option).

(3.b) Perform steps (3.b.i) to (3.b.iii) below for a condition of 0 ≤ j ≤ 1.
(3.b.i) c = (ωXKEY + ω XSEEDj) mod 2b
(3.b.ii) wi = G (t, c)
(3.b.iii) ωXKEY = (1 + ωXKEY + ωi) mod 2b

(3.c) xj = (w0 ║ w1) mod q

2. Updated version of the m type x calculation method in FIPS PUB 186-2 Appendix 3.2 [FIPS PUB
186-2 (+ change notice 1) revised Appendix 3.2]

 This algorithm provides a method for temporarily calculating k, k-1 and r in advance for m
messages.

(1) Select the secret initial value for the key seed ωKKEY.

(2) Select

t = EFCDAB89 ║ 98BADCFE ║ 10325476 ║ C3D2E1F0 ║ 67452301

 The above becomes the following 512-bit initial hash value of SHS after a 32-bit cyclic
shift towards the left.

 H0 ║ H1 ║ H2 ║ H3 ║ H4

(3) Perform steps (3.a) to (3.d) below for a condition of 0 ≤ j ≤ m-1.

(3.a) Perform steps (3.a.i) to (3.a.ii) below for a condition of 0 ≤ j ≤ 1.
(3.a.i) wi = G (t, ωKKEY)
(3.a.ii) ωKKEY = (1 + ωKKEY + ωi) mod 2b

(3.b) k = (w0 ║ w1) mod q

(3.c) kj = k-1mod q

(3.d) rj = (gk mod p) mod q

(4) Assume M0, ..., Mm-1 as the next m messages. Perform steps (4.a) to (4.c) below for a
condition of 0 ≤ j ≤ m-1.

(4.a) h = SHA −1(Mj)

(4.b) sj = (kj
-1(h + xrj)) mod q

(4.c) (rj, sj) is the signature of Mj.

(5) t = h

(6) Return to step (3).

288 Chapter 5 Evaluation of Pseudo-random Number Generators

3. Universal random number generation method

 Some FIPS require the use of random number generation methods recommended by FIPS or NIST.
The random number generation methods defined above in FIPS PUB 186-2 (+ change notice 1)
revised Appendix 3.1 or FIPS PUB 186-2 Appendix 3.1 may be used together with other
recommended random number generation methods. When these random number generation
methods are used for purposes other than generating the DSA key, the mod q operation must be
excluded. Consequently, the following changes are made.

A. Step (3.c) of FIPS PUB 186-2 Appendix 3.1

 Change "xj = G (t, cj) mod q" to "xj = G (t, cj)"

B. Step (3.c) of FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1

 Change "xj = (w0 ║ w1) mod q" to "xj = (w0 ║ w1)"

5.3.6.3 Security evaluation

 Overall evaluation

An attack method [1] that targets DSA using the pseudo-random number generation method of FIPS PUB
186-2 Appendix 3 has been disclosed. According to the press release, this attack method can harm DSA
by means of a known signature of 222 and computation amount of 264 with a {0, 1} bias distribution of the
pseudo-random number to be output.

This attack method can be blocked by restricting the number of times a specific single key can be used to
less than 2 million when pseudo-random numbers are used by DSA. Therefore, the pseudo-random
number generation method in FIPS PUB 186-2 Appendix 3 can be used safely as it is for DSA by
considering the length and number of times the pseudo-random numbers to be generated (for example,
providing an upper limit for the number of times a signature will be generated).

However, we cannot recommend this generator as a standard pseudo-random number generation method
because it clearly produces a large bias in the random number output. Instead, we recommend using the
version that was updated in accordance with "change notice 1".

References

[1] CNN.com.SCI-TECH, Cryptologist sees digital signature flaw, fix:

http://www.cnn.com/2001/TECH/internet/02/06/DSA.flaw.idg/index.html
[2] Secure Hashing: http://csrc.nist.gov/encryption/tkhash.html
[3] New hashing algorithms (SHA-256, SHA-384 and SHA-512): Descriptions of SHA-256,

SHA-384 and SHA-512
[4] FIPS Pub 186-2(+Change Notice), Digital Signature Standard (DSS) (2000 January 27

updated) Appendix3: Random Number Generation for the DSA

5.4 Verification of Pseudo-Random Number Generators 289

5.4 Verification of Pseudo-Random Number Generators

5.4.1 Overview of pseudo-random number verification

The security of symmetric-key ciphers, public-key ciphers, and cryptographic protocols is approached for
discussion by focusing on the confidentiality and random number generating aspects of a private key and
parameters. Therefore, if a series of numbers to be used for such a private key or initial vector has any
bias or uses values that can be easily predicted, its security may not be assured.

This section describes random number verification methods to detect pseudo-random number generating
devices and pseudo-random numbers that should not be used as parameters, such as keys used in the
cryptographic algorithms and protocols. It also describes the pseudo-random number verification
software libraries that are prepared based on the above verification methods and disclosed on the Internet.
These verification methods are useful for identifying random numbers that have obviously deviated from
the ideal random number series.

Assuming the use of a computer, the pseudo-random number verification methods discussed in this
section do the following: a) combine a statistical value calculated based on a predetermined formula with
the verification target fixed-length series generated from a series generating device, b) perform statistical
processing on the result of (a) above, and c) compare with the logical values derived from the probability
theory and statistics theory. These methods verify only a part of the series of numbers. They do not
exhaustively verify all of the patterns.

Qualifying in these verifications satisfies only one of the minimum requirements of pseudo-random
numbers. It does not prove that the security of the generated pseudo-random numbers is high enough.
Furthermore, there is no guarantee that the security of the pseudo-random number generation algorithm is
assured. At this point in time, there is no specific pseudo-random number verification method that can
assure that there is full security.

Most of the decisions regarding input methods, interpretation of verification results, and final verdict of
the verification methods and verification programs covered in this section are left to the person who
performs the verification. Using the documents supplied with each random number verification method
and random number verification program as reference, this person must try to provide a detailed
explanation with logically correct interpretations of the verification method and verification result. This
person is also required to avoid making dogmatic or wrong interpretations. To achieve this objective,
the random number verification should be carried out independently at several organizations, if possible.

The information in this section is not intended to guarantee correct operation of the random number
verification libraries introduced here. Furthermore, some of the disclosed random number verification
libraries may contain software bugs. You must be aware also that such bugs may also produce
characteristics different from the original properties of pseudo-random number series.

5.4.2 NIST: Special Publication 800-22

Special Publication 800-22 (hereinafter referred to as SP 800-22) is the random number and
pseudo-random number statistical test tool and document for cipher application disclosed by NIST ([5] ,
[6]). This tool was used as a random number verification method for the ciphertext output of each
symmetric-key block cipher submitted as a candidate when Advanced Encryption Standard (AES) is
selected. The result of this verification has been reported ([7], [8]).

290 Chapter 5 Evaluation of Pseudo-random Number Generators

Table 5.4: Random-number Verification Methods Included in SP 800-22

Test No. Verification method Description

1 The Frequency (Mono-bit) Test Checks the bias in the number of "0s" and "1s" included in
an input series.

2 Frequency Test within a Block Divides an input series into 256 bits and checks the bias
ratio of the number of "0s" and "1s" in these 256 bits.

3, 4 The Cumulative Sums (Cusums)
Test

Converts "0/1" of an input series into "-1/1" and increments
this value by 1 bit from the beginning or end. Checks the
bias of the maximum absolute value while the incrementing
is being performed.

5 The Run Test Counts the number of runs (portion where "1" or "0" is
repeated) in an input series and checks the bias of the count.

6 Test for the Longest Run of Ones in
a Block

Divides an input series into 256 bits and checks the bias of
the longest run in these 256 bits.

7 The Binary Matrix Rank Test Divides an input series into 32×32-bit partial series and
checks the bias of the order in which the matrix is written.

8 The Discrete Fourier Transform
(Spectral) Test

Breaks down an input series into its frequency components
in accordance with the discrete Fourier transformation.
Checks the bias by counting the number of times the peak
height of each frequency has exceeded the threshold value.

9-156 The Non-overlapping Template
Matching Test

Checks the bias by preparing 9-bit templates and counting
the number of times these templates appear in the input
series. When the same bit string as the template appears,
the search is restarted from the bit subsequent to where the
template appeared. The SP800-22 tool verifies 148
templates.

157 The Overlapping Template
Matching Test

Prepares a template in which all 9 bits are "1". Checks the
bias by counting the number of times the templates appear
in the input series. This check is performed by shifting the
monitoring locations bit by bit regardless of whether the
template appears or not.

158 Maurer's "Universal Statistical" Test Checks the bias of the interval between the appearing of
one 7-bit pattern until this pattern appears next in an input
series.

159 The Approximate Entropy Test Calculates the number of 10-bit and 11-bit patterns that can
be obtained in an input series respectively and checks the
bias of the count.

160-167 The Random Excursions Test Converts "0/1" in an input series into "-1/1" and adds this
value from the beginning. This test assumes that one
cycle starts when the total added value is "0" and ends
when the added value becomes "0" again. Checks the bias
of the number of eight-type (-4 to -1, 1 to 4) states that
appear. This verification method uses eight types of tests
according to each state.

168-185 The Random Excursions Variant
Test

As in the Random Excursions Test, converts "0/1" of an
input series into "-1/1" and adds this value from the
beginning. This test processes the values of the input
series from beginning to end all at once and checks the bias
of the number of 18-type (-9 to -1, 1 to 9) states that appear.
This verification method uses 18 types of tests according to
each state.

5.4 Verification of Pseudo-Random Number Generators 291

Test No. Verification method Description

186-187 The Serial Test Calculates the number of 16-bit patterns, 15-bit patterns,
and 14-bit patterns that can be obtained in an input series
respectively and checks the bias. Two types of tests are
performed: a test using 16-bit and 15-bit patterns and a test
using 15-bit and 14-bit patterns.

188 The Lempel-Ziv Compression Test Checks the extent to which the input series data can be
compressed from the beginning to end using the
Lempel-Ziv data compression algorithm.

189 The Linear Complexity Test Divides an input series into 500-bit blocks and finds the
linear complexity of each series to check the bias.

5.4.2.1 Summary of random number verification

Verification tool l.5 is the latest version (as of October 2002) in SP 800-22. The information provided in
this section is intended for this version. This tool provides 16 verification methods and 189 tests as
listed in Tables 5.4 and 5.5 for checking the pseudo-random numbers.

Due to tool restrictions, multiple series of approximately 1,000,000 bits should be prepared for the
pseudo-random number series to be input,. According to the AES report, three hundred 1M-bit (= 220
bits) series are input. This tool performs two outputs in each test: "pass rate" and "variant". In each
test, the position of the target pseudo-random number series in normal distribution or x2 distribution is
represented by the P-Value, which is a decimal value between "0" and "1". For the "pass rate" output,
the pseudo-random number series passes the test if the P-Value is 0.01 or above. According to the AES
report, if the pass rate is 0.9633 or above (1% rejection) in the 300 input series, then the series has passed
the test. On the other hand, the "variant" output is used to check whether the P-Value distribution in the
input series is uniform or not. The P-Values in each series are added up in 10 segments by 10%. The
number of P-Values in the 10 segments is converted into x2 statistical values and evaluated with the
P-Values. The AES report does not contain verification results of the "variant" output.

5.4.2.2 Precautions

 Allocating pseudo-random numbers

SP 800-22 describes the statistical verification methods for a given pseudo-random number series.
However, it does not provide any information about the method of generating the pseudo-random number
series to be allocated. According to the AES report, two tests are performed: a) Partial round test that
can check the shuffling process using a part of the cryptographic algorithm and b) Full round test that
generates pseudo-random numbers using the entire cryptographic algorithm. The following eight
methods were used to allocate the pseudo-random number series.

• Low Density Key
• Low Density Plaintext
• High Density Key
• High Density Plaintext
• Key Avalanche
• Plaintext Avalanche
• Key/Ciphertext Correlation
• Plaintext/Ciphertext Correlation

It is better to obtain pseudo-random numbers that are generated using values with large bias as input
parameters for the pseudo-random number generating device.

292 Chapter 5 Evaluation of Pseudo-random Number Generators

 Threshold for deciding pass/fail of "variant"

There are no documents or information on the threshold P-Values for deciding pass/fail" with regard to the
variant" verification results. Therefore, the verification tool user must decide these threshold values. The
optimal values are not known at the present time,. In a research outsourced by CRYPTREC, verification
was performed assuming that P-Values of "variant" under 0.01 failed the test, with a rejection of 1%.
When this principle was applied, however, it was noticed that there was an unexpected number of test
failures in tests 8 (Discrete Fourier Transfer Test) and 188 (Lenpel-Ziv Compression Test). This is caused
either by biased input random numbers or a problem in the setting method of the rejection range. Also, it is
possible that the predetermined values of "variant" embedded in the verification tool were deviated from
ideal values in the first place. (The source code shows the traces where these values were once changed in
the past.) Because of the above, the evaluation of "variant" requires careful consideration.

5.4.3 DIEHARD

DIEHARD is a pseudo-random number verification tool developed by Prof. George Marsaglia of the
Florida State University [3]. This popular tool provides a verification method for pseudo-random
number series generated from physical devices [2]. The source code and the execution formats
(compiled on DOS, Linux, and Sun) for the DIEHARD verification program are disclosed and available
for download. There are similar programs (written by others), such as a program written in Java
(published) [4] and programs for user interface upgrade [1] and [9] (some of them have to be purchased).

5.4.3.1 Summary of random number verification

This tool can use 18 verification methods as listed in Tables 5.6 and 5.7 to check the pseudo-random
numbers. The tool manual mentions that the author developed all these verification methods himself,
except for the Runs Test.

At least 10MB (= 80Mbits) to 11MB (= 88Mbits) must be available for the pseudo-random number series
input. Although the operation is partially performed using shorter data, the test ends at the end of the
data file and proceeds to the next test. Each test performed by this tool outputs p-values (decimal values
between "0" and "1") as results. If the input data is consists of ideal random numbers, p-values that are
greater than "0" and smaller than "1" are uniformly distributed. Otherwise, the p-values will be close to
"0" or "1". According to the tool manual (tests.txt), if p is less than 0.025 or p is greater than 0.975 then
there is a verification test failure with a 5% rejection range.

5.4.3.2 Precautions

 Threshold values as pass rate criteria

When you use this tool in its entirety, a total of 250 p-values must be taken into consideration. If the
input data consists of ideal random numbers, the p-values that are greater than "0" and smaller than "1"
are uniformly distributed. It has been pointed out that the verification with 5% rejection should "fail"
when p is smaller than 0.0001 or p is greater than 0.9999 if "pass" is required in all of the verifications
[2].

5.4 Verification of Pseudo-Random Number Generators 293

Table 5.6: Random Number Verification Methods Included in DIEHARD

Test No. Verification method Description

1 birthday spacings
test

Divides the input series into a fixed length, sorts values in the descending
order of numbers, and checks the interval between the numbers. If the
random numbers are ideal, the distribution istaken to be Poisson.

2 overlapping
5-permutation test

Checks the ordering bias of five consecutive integers when the input series
is considered as one million 32-bit integers,.

3 binary rank test for
31 × 31 matrices

Divides an input series into a 31×31-bit partial series and checks the bias of
the orders in which the matrices are written.

4 binary rank test for
32 × 32 matrices

A random 32×32 binary matrix is formed. Ranks are found for 40,000 such
random matrices and a chisquare test is performed on counts for ranks.

5 binary rank test for
6 × 8 matrices

From each of sixrandom 32-bit integers from the generator under test, a
specified byte is chosen, and the resulting six bytes form a 6×8 binary
matrix. Ranks are found for 100,000 random matrices, and a chi-square test
is performed on counts for ranks.

6 bitstream test The bitstream test counts the number of missing 20-letter (20-bit) words in
a string of 221 overlapping 20-letter words.

7 OPSO OPSO generates 221 (overlapping) 2-letter words (from 221+1 "key
strokes") and counts the number of missing words -- that is 2-letter words
which do not appear in the entire sequence.

8 OQSO The test OQSO is similar, except that it considers 4-letter words from an
alphabet of 32 letters.

9 DNA The DNA test condiders an alphabet of 4 letters: C,G,A,T, determined by
two designated bits in the sequence of random integers being tested.

10 count-the-1's test on
a stream of bytes

Let the stream of bytes provide a string of overlapping 5-letter words, each
"letter" taking values A, B, C, D and E. The letters are determined by the
number of 1's in a byte : 0,1 or 2 yield A, 3 yields B, 4 yields C, 5 yields D
and 6,7 or 8 yield E. From a string of 256,000 (overlapping) 5-letter words,
counts are made on the frequencies for each word.

11 count-the-1's test for
specific bytes

Let the specified bytes from successive integers provide a string of
(overlapping) 5-letteer words, each "letter" taking values A, B, C, D and E.
The letters are determined by the number of 1's in a byte: 0,1 or 2 yield A,
3 yields B, 4 yields C, 5 yields D and 6, 7 or 8 yield E. From a string of
256,000 (overlapping) 5-letter words, counts are made on the frequencies
for each word.

12 parking lot test Superimposes a circle with a radius of 1 on a square with a side of 100.
The test searches for a new location after placing a circle. This operation
is repeated to find out how many times it will be performed until the nth
circle can be placed.

13 minimum distance
test

Choose 8000 random points in a square of side 10000. Find the minimum
distance between all pairs of points.

14 3DSPHERES test Places 4,000 random points on a cube of edge 1000. Checks the bias of
the minimum distance value between these points.

15 squeeze test Random integers are floated to get uniforms on [0,1]. Starting with
k=231, the test finds j, the number of iterations necessary to reduce k to 1,
using the reduction k = ceiling (k*U), with U provided by flating integers.

16 overlapping sums
test

Sets U(1), U(2), etc. assuming that each 32-bit input series is a floating
integer on [0,1]. Checks the distribution of values S(1) =
U(1)+ ...+U(100), S(2) = U(2)+...+U(101), and so on.

17 runs test Checks the number of increments or decrements assuming that each 32-bit
input series is a decimal value of [0,1].

294 Chapter 5 Evaluation of Pseudo-random Number Generators

Test No. Verification method Description

18 craps test Performs a craps game 200,000 times and checks the number of wins and
losses.

References

[1] Balasubramanian, Narasimhan "Diehard GUI"
 http://www-stat.stanford.edu/~naras/diehard/snapshots.html)
[2] Intel, "The Intel Random Number Generator,", 1999.
 (available at http://www.intel.com/design/security/rng/rngppr.htm)
[3] B.Narasimhan "DIEHARD," (available at http://stat.fsu.edu/~geo/diehard.html)
[4] B.Narasimhan "JDiehard: An implementation of Diehard in Java," Proceedings in DSC2001,

2001.
 (available at http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/,
[5] NIST, Special Publication 800-22, "A Statistical Test Suite for Random and Pseudorandom

Number Generators for Cryptographic Applications,"
 (available at http://csrc.nist.gov/rng/SP800-22b.pdf,
 http://csrc.nist.gov/rng/errata2.pdf)
[6] NIST, Special Publication 800-22,"NIST Statistical Test Suite,"
 (available at http://csrc.nist.gov/rng/sts-1.5.tar,
 http://csrc.nist.gov/rng/rng2.html)
[7] NIST, "Randomness Testing of the Advanced Encryption Standard
 Candidate Algorithms, " IR 6390, Sep. 1999. (available at

http://csrc.nist.gov/rng/AES-REPORT2.doc)
[8] NIST, "Randomness Testing of the Advanced Encryption Standard Finalist Candidates," IR

6483, Apr. 2000. (available at http://csrc.nist.gov/rng/aes-report-final.doc)
[9] Ronin Software Group "DieHard randomness tester result analyzer,"
 (available at http://www.roninsg.com/dhrslt.htm)

 295

Chapter 6

Side-channel Attacks

A cryptographic algorithm implemented in the form of hardware or software is called a "cryptographic
device." Attacks on implementation of cryptographic techniques signify those that attempt to reveal or
infer confidential information such as encryption key and decryption key embedded in a cryptographic
device. This type of attack not only uses plaintexts or ciphertexts to reveal/infer confidential
information but also employs other information obtained from cryptographic devices, so the attack is
called "side-channel attack." Recently, as ciphers are widely used in various fields, side-channel attacks
are directing public concern from the standpoint of pratical security.

This section descibes the current state-of-the-art side-channel attacks. Not all ofthem are effective.
However, there are some effective side-channel attacks and therefore countermeasures against such
attacks are necessary. Since side-channel attacks are advancing day by day with new breaking methods
as well as protection methods proposed, a close watch on the latest trend of study in this field should be
maintained and appropriate actions be taken.

However, even if an article on a new side-channel attack is published, it would rarely exert direct impact
on the security of a cryptographic algorithm itself, and, if we take appropriate countermeasures in actual
implementation environments, a sufficient security for practical use could be maintained. Therefore,
excessive reactions should be refrained. As the level of security against side-channel attacks largely
depends on the actual implementation method and usage environment, protective measures should be
carefully studied with consideration on operability and efficiency as well.

6.1 Summary of Survey Report on Implementation Attacks and
Countermeasures

6.1.1 Introduction

This section discusses side-channel attacks that have so far been known to us, as well as effectiveness of
and countermeasures against these attacks. The contents of this section are comprised mainly of the
overview of Report [11] of a research commissioned by CRYPTREC in 2002. To summarize this section,
Research Report on Security of IC Cards (Smart Cards) [8] was also referenced. For more detailed
discussion of the subject of this section, refer to these reports.

As this report focuses on the security of cryptographic device implementation, issues of the security of the
overall system have been left out for separate discussions.

296 Chapter 6 Side-channel Attacks

6.1.2 IC Card Overview

Smart cards are a typical cryptographic device that executes a cryptographic algorithm. An smart card
consists of a processor, ROM, EEPROM, and a small amount of RAM. Its main purpose is to perform
cryptographic processing including private parameters (key) and to protect that private key so
that it would not be exposed. An attacker, on the other hand, attempts to obtain the private key
stored in the cryptographic device.

The processor is embedded in a chip with standardized interface with external devices. The critical point
in terms of vulnerability against side-channel attacks is that the processor receives from outside power
and clock that are externally measurable. Some smart cards have a physical protection mechanism that
makes it difficult to measure/detect from outside the chip’s circuit operation and data.

6.1.3 Categories of side-channel attacks

Side-channel attacks can be categorized into invasive and non-invasive attacks. A invasive attack destroys
the smart card package and access confidential data, while a non-invasive attack only uses information
such as execution time and power consumption that can be obtained from outside. The attacks can also be
categorized into active and passive attacks. An active attack attempts to access the card’s confidential
data by altering its normal operational behavior, while a passive attack by simply monitoring its normal
state behavior.

Probe attacks and fault-based attacks, to be discussed later in this section, are invasive attacks; and timing
attacks, power analysis attacks, and electromagnetic analysis attacks are non-invasive attacks.
Non-invasive attacks are of more importance in terms of countermeasures as these can be actualized with
a lower cost than invasive attacks.

6.1.4 Probe attack

The probe attack is a typical invasive attack. It opens the smart card package and places a probe on the
chip surface data bus to observe and analyzes on-the-bus bit changes while keeping the circuit running,
thereby attempting to obtain the smart card's confidential information. The minimum components
necessary for the probe attack are available for as little as 10,000 dollars. In some cases, the attackers
would decrease the processor's clock frequency in order to facilitate analysis. Once the attackers are
successful in preparing such a situation, they can obtain most of the card's confidential information,
regardless of the type of cryptographic schemes.

The smart card chip may be equipped with security measures such as a protective layer that blocks
eavesdropping of the chip behavior from outside, and a monitoring mechanism that checks the current
flow in a metal layer covering the circuit and destroys the confidential data if an abnormality is detected.
In some cases, an advanced security measures is provided to destroy the chip itself if the attacker attempts
to remove the protective layer. However, these security measures cannot be regarded unbreakable as
their effectiveness is dependent on the attacker's capability.

6.1 Summary of Survey Report on Implementation Attacks and Countermeasures 297

6.1.5 Faults-based Attack

� Overview

The fault-based attack, that is classified in the active attack category, renders a cryptographic module fall
into a faulty state and has it execute cryptographic processing, thereby attempting to infer its confidential
data from the processing result.

The fault-based attack assumes some of the smart card's fault models that are generally categorized as
follows.

Permanent/temporary faults: faulty states that continue permanently or occur in a specific calculation
stage only.

Error position: errors that occur at a specific position or at an arbitrary position.

Frequency: errors that occur at a specific time point of computation or at an arbitrary point.

Error type: errors that cause values be replaced by other values in bit or byte units, that make memory
cells be fixed to 0 or 1, that occur in one way only (1 to 0, for example), that disable jump
operation during execution, that render the instruction decoder inoperative, etc.

The effectiveness of a fault-based attack largely depends on the fault model it assumes, that is in other
words what type of faulty state it utilizes. This section discusses an attack theory that analyzes how a
specific fault leads to the disclosure of secret parameters when a specific fault model is assumed, and
introduces techniques that cause faults in actual cryptographic devices.

� Fault-based attacks on public-key cryptosystems

(a) Fault-based attack on the RSA cryptosystem

The Chinese Remainder Theorem (CRT) is often used in the RSA cryptosystem for the purpose of
speeding up decryption and signature generation. Attacking methods that cause a calculation error in
the CRT operation have been proposed [3, 6]. When private keys are p, q, and d and public keys n(=
pq) and e, the RSA signature generation primitive uses CRT to calculate signature s for plaintext m as
follows:

xp = md mod (p-1) mod p

xq = md mod (q-1) mod q

s = q (q-1 mod p)xp + p (p-1 mod q)xq mod n

In this case, assuming that a calculation error is generated in one of two modular exponentiations
(operations of xp and xq), factorization into prime factors can be performed on n as shown below. Let
us assume, for example, that an error has occurred in the calculation of xp making the result become
x'p. The incorrect signature s' obtained from x'p and xq would satisfy the following expression at a
high probability:

s'e ≡ m mod q

s'e ≡ m mod p

298 Chapter 6 Side-channel Attacks

s'e - m is divisible by q but not by p. Therefore, the greatest common divisor of s'e - m and n is
calculated to be q. Thus, the private key as a prime factor of n can be easily obtained.
In addition to the attacks that cause faults during modular exponentiation, a fault-based attack that
utilizes an error during the "Recombination" of CRT operation has also been proposed [13].

� Differential fault analysis

The differential fault analysis is a kind of fault-based attacks, that is proposed by Biham and Shamir [4].
This analysis method generates a temporary fault in the cryptographic module to infer cryptographic keys.
The attacker can observe the difference between output ciphertexts in normal operation and in faulty
operation, and identify keys that cannot be used as cryptographic keys to narrow down the actual keys.
The differential fault analysis is mainly used for breaking symmetric-key cryptosystems. The analytic
steps are as follows:

(1) Obtain a normal ciphertext by executing correct processing for a plaintext. Using the same plaintext,

acquire a ciphertext by generating a temporary fault at a specific point.
(2) By observing the difference between these output ciphertexts, key candidates that would not be

possible can be determined and they are excluded from the key candidate list.
(3) Repeat (1) and (2) to narrow down the key search space and finally determine a unique key.

Biham and Shamir took up DES as an application example. They proved that all keys could be
identified if a temporary fault (bit inversion) were to be generated for 1 bits in the right half of the final
round input (16th round) in the DES-implemented cryptographic module. Since DES uses a small
number of bits in the partial key that affects the output value of S-box table reference operation, analysis
is possible by observing the difference between normal and faulty output ciphertexts for 50 to 200
ciphertexts. A similar analysis method has also been proposed that assumes an attacker who can
generate a temporary fault in the 14th or 15th round. Analysis is also possible for Triple DES using a
similar method.

Differential fault attack on elliptic curve cryptosystem

An attack that generates a bit error in a register during the elliptic curve cryptosystem operation has been
proposed [2]. Let us assume a device that calculates scalar multiplication point dP using an integer d that
is confidentially stored inside when a point P on an elliptic curve is input. When this device performs
scalar multiplication, the attacker inverts a bit in the register retaining the elliptic curve parameters. Then,
this operation would be performed on a curve that is different from the original. If that curve is
cryptographically weak the confidential information d can be obtained from the calculated point dP

� Techniques to generate faults

It is known that faults can be generated by making the smart card run in an abnormal environment using
techniques shown below. The type of a specific attack—invasive or non-invasive—depends on whether it
involves destruction of the package in generating faults.

• Applying out-of-rating voltage
• Applying out-of-rating clock frequency
• Exposing to electromagnetic wave, radioactive ray, or intense light

Nonetheless, it is not easy to cause a fault at a specific point in the cryptographic processing.

6.1 Summary of Survey Report on Implementation Attacks and Countermeasures 299

Protocol, IC card, ...

Question
Measure the time
difference

Implementation

Confidential information

Answer

Figure 6.1: Principle of timing attacks

6.1.6 Timing attacks

� Overview

The timing attack obtains secret parameters (keys) stored in a cryptographic device by measuring its
execution time. It is a typical non-invasive attack that does not involve package destruction. First
introduced by Kocher, the timing attack has been applied to devices that perform Montgomery-based
RSA cryptographic calculation.

Let us assume that the attacker can obtain the input/output data and processing time of the cryptographic
device. The purpose of the attacker is to identify secret parameters. Figure 6.1 shows the principle of
timing attack.

� Timing attack on the Montgomery-based RSA cryptosystem

Montgomery's algorithm [10] makes it possible to perform modular exponentiation at a high speed as it
requires no division instruction for remainder calculation in modular multiplication and squaring. Because of
this, the algorithm is often used in the RSA cryptosystem. A timing attack method that exploits this
Montgomery-based modular exponentiation is proposed [5].

At the final stage of Montgomery multiplication , the intermediate result must be checked whether it is
smaller or larger than modulus n. If the intermediate result is larger, remainder operation with modulus
n has to be performed (this remainder operation only requires n be subtracted once from the intermediate
result). If the intermediate result is smaller, no operation is required. Therefore, the Montgomery
multiplication with a given modulus n would cause an operation speed difference that is equivalent to a
single subtraction depending on the data that has been input. This makes the RSA cryptosystem
vulnerable to a timing attack [5].

Let us assume that the attacker knows that modular exponentiation y ≡ xd mod n is calculated using the
Binary method, for example, and that modular multiplication and modular squaring are performed using
Montgomery’s algorithm. Based on such a knowledge, the attacker would obtain the exponent d sequentially
in bit by bit starting from the most significant bit (or from the least significant bit). To obtain the i-th bit of
d, the attacker would prepare several sets of x that are categorized into those for which subtraction in
Montgomery multiplication is executed at the i-th bit and those for which such subtraction is not executed.
The attacker would determine whether bit i is l or 0 by statistically analyzing the modular exponentiation
time difference for these sets of x (for example, by comparing the average times). Any attacker who knows
the modular exponentiation algorithm should be able to prepare two types of x by simulating the calculation.

300 Chapter 6 Side-channel Attacks

� Timing attack on symmetric-key cryptosystems

Although timing attacks on symmetric-key cryptosystems (block ciphers) are less common compared
with those on public-key cryptosystems, a method of timing attack on symmetric-key cryptosystems has
also been proposed. It is reported that the method estimates the values of keys stored in the AES
cryptographic device by repeating measurement 4,000 times.

6.1.7 Power analysis attacks

� Overview

The power consumption of a cryptographic device, in addition to its execution time, gives much
information regarding its cryptographic processing and secret parameters. Based on this idea, Kocher
contrived an attack method that uses simple power analysis and differential power analysis [9]. This
attack falls in the non-invasive attack category.

Since the IC receives not only power but also clock from an smart card host terminal, its power
consumption can be easily measured. In an appropriate laboratory environment, this power can be
digitized at an ultrahigh speed (1GHz or higher) and high-precision (within an error of 1%). A device that
performs sampling at 20MHz or higher and sends data to a PC is commercially available for less than 400
dollars .

� Simple power analysis

Simple power analysis (SPA) is a technique that directly measures the power consumption of an smart
card during its cryptographic processing. The data of power consumption measured in a given
cryptographic processing segment is called a trace. For example, a 1ms operation sampled at 5MHz gives
5,000 points of trace. Figure 6.2 shows an example of SPA trace on an smart card that performs DES
operation[1].

Figure 6.2: Power consumption of a typical smart card in its single round DES operation
The upper trace shows the overall encryption processing including initial transposition,

16-round processing, and final transposition.

SPA reveals the card's execution instruction series, making attacks possible on ciphers that have been
implemented to use different execution paths in accordance with the data to be processed. Examples are
given below.

DES key schedule: DES key schedule calculation involves rotation of a 28-bit key register. Conditional
branching takes place with the value of a 1-bit data that has been shifted out by 1 bit. If the
execution path changes on this branching, the trace on each path's power consumption would show
different SPA characteristics.

6.1 Summary of Survey Report on Implementation Attacks and Countermeasures 301

DES permutations: As the result of bit permutation, the card’s power consumption at the conditional
branching in software or microcode would differ depending on the bit value (0 or 1).

Comparison: When comparison with a series or memory value ends in an unmatched status, conditional
branching usually follows. This generates SPA (or timing) characteristics.

Modular exponentiation: In RSA cryptosystems, modular exponentiation y ≡ xd mod n with modulus
n(= pq) is calculated (modular exponentiation with moduli p and q when using CRT). In modular
exponentiation, multiplication and squaring with modulus n are repeated. The point where
multiplication is performed in the calculation depends on exponent d (secret key for decryption
and signature generation). In the basic algorithm of modular exponentiation called Binary method,
d is checked bit by bit either from the most or least significant bit. When the bit is l, multiplication
is performed and when it is 0, multiplication is not performed. There are sometimes differences in
the power waveform characteristics between multiplication and squaring. If it is possible to find
out whether multiplication was performed by analyzing the power waveform, all bits of secret key
d can be obtained. In addition to the Binary method, various modular exponentiation algorithms,
such as the Window method, are being researched. Power analysis attack methods for these
algorithms are also being researched.

Scalar multiplication on elliptic curve: In elliptic curve cryptosystems, scalar multiplication Y = dG on
a point of the curve is executed. The algorithm for this computation is similar to that for modular
exponentiation, and adding/doubling of points are repeatedly executed. Addition of points takes
place when the bit of integer d is l. In the same manner as in the case of attacks on the RSA
cryptosystems, all bits of secret key d can be obtained if differences in waveform characteristics
between point addition and point doubling can be found out through power waveform analysis.

� Differential power analysis

The power consumption waveform of a cryptographic device not only reveals cryptographic processing
information (execution instruction series), but also provides information on cryptographic-key related
secret parameters (internal variables) that are temporarily stored in the device. Generally, such
information is covered with noise, etc. In some cases, however, cryptographic keys can be figured out by
statistically analyzing that information. This analysis technique is called Differential Power Analysis
(DPA). The attacker picks up an internal variable in the cryptographic device and assumes a value as the
cryptographic key related to that internal variable. Then, he/she guesses the value of the internal variable
that corresponds to the assumed key value. If the assumed key is the right key, his/her guess on the
internal variable should be correct and secret parameter information should appear in the statistical
volume of observed power consumption. In this way, the attacker can figure out the correct key. The
specific process of this analysis is as follows:

(1) Execute encryption processing on different plaintexts to obtain ciphertexts and power consumption

waveforms.
(2) Assume a value for a given part (several bits) of the cryptographic key.
(3) Pick up an internal variable in the cryptographic device and guess its one bit from the value of the

previously assumed cryptographic key.
(4) Divide the ciphertexts into two groups by their assumed internal variable value (whether it is 0 or 1).
(5) Calculate the difference between the average power waveforms of these two groups.
(6) Assuming a different value for that part of the cryptographic key, repeat steps (2) through (5) and take

the value at the largest power difference as the correct key.

302 Chapter 6 Side-channel Attacks

(7) Execute steps (2) to (6) for other parts of the cryptographic key, and figure out the cryptographic key
on the whole.

Since DES is widely used, it has been intensively analyzed. DES uses only 6 bits for the cryptographic
keys that are related to the output value of each S-box table reference operation in the final round.
Because of this, it has been reported that all keys could be correctly guessed by measuring power
consumption waveforms of 1,000 ciphertexts. Specifically, the attacker picks up a final-round S-box
and assumes a value for the 6-bit partial key that will be EXORed prior to the input of that S-box. Then,
by using the assumed key value, he/she obtains the first bit of the S-box output, divides the ciphertexts
into two groups, and calculates the difference between the average power waveforms. Assuming a
different value as a key, the attacker repeats the same procedures, and takes the value that causes the
largest difference in the average power waveforms as the right key. By performing the same operation
on other final-round S-boxes, the attacker can at the end figure out all cryptographic keys. It is also
possible to analyze Triple DES using a similar technique.

6.1.8 Electromagnetic analysis attacks

The electromagnetic analysis attack classified into the non-invasive attack category. To find out the
behavior of a cryptographic chip, the attacker attempts to measure its electromagnetic radiation by placing
a coil in the chip’s vicinity. The thus obtained electromagnetic radiation data can be processed in the
same way as in the case of power waveform data. For actual measurement, however, it is necessary to
remove the chip package and protective layer. In this sense, this type of attack should be regarded as an
invasive attack.

6.1.9 Countermeasures

� Countermeasures against probe attacks

Countermeasures against probe attacks are discussed in 6.1.4 together with the mechanism of probe
attacks as these are closely related to each other.

� Countermeasures against fault-based attacks

A trivial action against fault-based attacks is to confirm the calculation result through re-calculation.
However, implementing it will be costly in terms of time and hardware cost, and might even prove
ineffective in the case of a permanent fault.

(a) Countermeasures based on software implementation

One of the possible actions against fault-based attacks on the signature generation of public key
cryptosystems is to verify generated signatures. As the fault-based attack causes an incorrect signature,
it is possible to detect attacks by checking whether or not the generated signature fails in verification. In
decryption, moreover, it is possible to detect attacks by encrypting the decrypted plaintext once again and
checking if the re-encrypted ciphertext is identical to the original. RSA cryptosystems allow use of a
small value as the signature verification/encryption public key e (e.g. e = 216 + 1); thus so far as e is small,
increase in the operation volume resulting from this countermeasures would be relatively insignificant.
More efficient countermeasures have also been proposed [12, 7].

6.1 Summary of Survey Report on Implementation Attacks and Countermeasures 303

(b) Countermeasures based on hardware implementation

A hardware-based solution has also been proposed as a means to counter fault-based attacks. This
involves addition of a hardware that performs inverse operation on a specific operation to check operation
results. However, it inevitably increases the cost of hardware while its effectiveness is limited to certain
types of fault-based attacks.

� Countermeasures against timing attacks

Countermeasures against timing attacks can be classified into two basic strategy categories: eliminating
differences in calculation time between secret key and input data; and hiding intermediate calculation
states to hinder the attacker's attempt to simulate the calculation.

An example of the former strategy—elimination of calculation time difference—is a countermeasure
against attacks that exploit modular operation (subtraction with modulus n) in the Montgomery
multiplication. This is a method to eliminate the calculation time difference by continuously performing
remainder operation (as dummy operation). Since such a dummy operation-based countermeasure
increases operation time, various improvement techniques have been proposed.

An example of the latter strategy—concealment of intermediate calculation states in modular
exponentiation—is as follows. Before executing modular exponentiation y ≡ xd mod n, select a random
pair (vi, vf) that satisfies v-1 ≡ vi

e mod n. Multiply x by vi and perform modular exponentiation. Finally,
multiply the result by vf. In this way, modular exponentiation proceeds on the basis of a value that is
different from x so that the attacker cannot simulate the calculation.

For a block cipher that involves shift operation, implementing it to make its shift instruction execution
time be independent from the shift volume would be effective against timing attacks.

� Countermeasures against power analysis and electromagnetic analysis attacks

Software-based countermeasures against power analysis and electromagnetic attacks are almost the same
in their principle—these hide internal secret parameters thereby making any information that leaks out
meaningless.

For a countermeasure that is based on hardware implementation to be effective, it must be able to counter
the both power analysis and electromagnetic analysis attacks.

(a) Countermeasures based on software implementation

The following software-based countermeasures have been proposed against power analysis and
electromagnetic analysis attacks. These contermeasures are effective in making attacks difficult, but not
perfect.

(I) Make it difficult to measure power consumption difference for each input value and operation.
(II) Generate noise to hamper power measurement.
(III) Minimize the correlation between internal variables and power consumption.
(IV) Minimize the correlation between operation instructions and power consumption.
(V) Randomize the order of operation execution thereby minimizing the correlation between operation

and power consumption.

304 Chapter 6 Side-channel Attacks

(VI) Make power consumption constant throughout operations.
In the case of RSA cryptosystem modular exponentiation, there is a technique to execute
multiplication regardless of whether the exponent bit is 0 or 1. However, this method has a
drawback of increased calculation time, and is not necessarily secure against all kinds of power
analysis attacks. Attacks not only on the Binary method but also on various modular
exponentiation algorithms including the Window method have been extensively researched together
with possible countermeasures against these.

(VII) Store in-calculation internal variables at different locations using secret sharing scheme, thereby
making these internal variables difficult to figuguess.

(b) Countermeasures based on hardware implementation

The following hardware-based countermeasures have been proposed against power analysis and
electromagnetic analysis attacks. However, none of these is perfect.
(I) Make hardware specifications confidential.
(II) Randomize the order of operation upon implementation to minimize the correlation between

operations and power consumption.
(III) In the case of a block cipher, change the order of S-box referencing in accordance with plaintexts.

� Elliptic curve specific countermeasures

For attacks on SPA, use of a curve that performs addition and doubling throughout scalar multiplication
(such as the Montgomery type, Hessian type, and Jacobi type), as well as a curve in which calculation
volume (number of multiplication on a definition) is consistent for both addition and doubling have been
proposed as countermeasures. It should be noted, however, that not every elliptic curve can be
converted into such a curve. Other countermeasures proposed include one that uses an ingenious point
addition formula on the normal Weierstrass type elliptic curve, and another that is based on the
Montgomery ladder.

For attacks on DPA, countermeasures that change the key expansion method (either unsigned or signed
expansion methods) or point display method (i.e. display method in the projective coordinate system) for
each scalar multiplication have been proposed. In addition to these, a countermeasure that randomly
converts the calculation-subject curve or definition by using the same type of mapping.

References

[1] R. Anderson and M. Kuhn, Tamper resistance–a cautionary note, Proc. of the second USENIX

workshop on electronic commerce (Oakland, California), Nov. 18-21 1996, pp. 1–11.
[2] I. Biehl, B. Meyer, V. Muller, "Differential Faults Attacks on Elliptic Curve Cryptosystems,"

Advances in Cryptology – CRYPTO'2000, LNCS, 1880 (2000), Springer-Verlag, 131–146.
[3] D. Boneh, R.A. DeMilo, R.J. Lipton, "On the Importance of Checking Cryptographic Protocols

for Faults," Advances in Cryptology – EUROCRYPT'97, LNCS, 1233 (1997), Springer-Verlag,
37–51.

[4] E. Biham, and A. Shamir, "Differential fault analysis of secret key cryptsystems," Advances in
Cryptology – CRYPTO'97, LNCS, 1294 (1997), Springer-Verlag, 513–525.

[5] J.-F. Dhen, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater, J.-L. Willems, "A Practical
Implementation of the Timing Attack," CARDISL998, LNCS, (1998), Springer-Verlag.

[6] M. Joye, A.K. Lenstra, J.-J. Quisquater, "Chinese Remaindering Based Cryptosystems in the
Presence of Faults," Journal of Cryptology, 12 (1999), No. 4, 241–245.

[7] M. Joye, P. Paillier, S.M. Yen, "Secure Evaluation of Modular Functions," International
Workshop on Cryptology and Network Security, (2001).

6.2 Recent Topics on Implementation Attacks 305

[8] Information-technology Promotion Agency, Japan, "1999 Research Report on Smart Card
Security", http://www.ipa.go.jp/security/fy11/report/contents/crypto/crypto/report/ SmartCard/,
February 29, 2000

[9] P. Kocher, J. Jaffe, and B. Jun, "Differential Power Analysis," Advances in Cryptology –
CRYPTO '99, LNCS, 1666 (1999), Springer-Verlag, 388–397.

[10] P.L. Montgomery, "Modular Multiplication without Trial Division," Math. Comp., 44 (1985),
no. 170, 519–521.

[11] J.-J. Quisquater, "Side channel attacks – State-of-the-art –," 2002.
[12] A. Shamir, "How to Check Modular Exponentiation," Presented at the rump session of

EUROCRYPT'97.
[13] L.Y. Wang, C.S. Laih, H.G. Tsai, N.M. Hunag, "On the Hardware Design for DES Cipher in

Tamper Resistant Devices Against Differential Fault Analysis," IEEE international symposium
on circuits and systems, (2000).

6.2 Recent Topics on Implementation Attacks
This section introduces recent topics on symmetric-key cryptosystem side-channel attacks, such as the
side-channel attacks reported in the 2003 Symposium on Cryptography and Information Security and
CHES2002.

6.2.1 Trend of Research on Recent Implementation Attacks

The CHES Workshop (Workshop on Cryptographic Hardware and Embedded Systems) started in 1999 as
a workshop to bridge the gap between the cryptography research communities and cryptographic
application area, and was convened four times until CHES2002 in San Francisco. The number of
participants has been over 200. In the CHES workshop, research results on general security issues of
cipher-implemented hardware and systems have been presented. For example, efficient implementation
methods of various cryptographic techniques in hardware, high-speed software implementation methods,
and implementation of random number generators, as well as cryptographic analysis, have been studied.
In particular, papers on side-channel attacks have been on the increase, making up as much as 40% of the
42 papers in total that were presented at CHES2002. However, few reports concerned side-channel
attacks on symmetric-key cryptosystems—only two AES-related analyses and one DES-related analysis
were reported at CHES2002.

SCIS (Symposium on Cryptography and Information Security) is the largest event of all information
security symposia held in Japan. SCIS2003 held in Hamamatsu in 2003 is the 20th convention, where
more than 400 persons participated and more than 200 presentations were made. Of all the presentations
made at SCIS2003, 20 or approximately 10% concerned cryptographic side-channel attacks, and 12 were
on the analysis of symmetric-key cryptosystems.

306 Chapter 6 Side-channel Attacks

6.2.2 Summary of Attacks on Symmetric Key Block Ciphers

As mentioned in the previous section, 12 of the presentations made at SCIS2003 concerned side-channel
attacks on symmetric key block ciphers, of which 11 were related to cache attacks. This signifies that,
all the symmetric-key ciphers, except CIPHERUNICORN-E, CIPHERUNICORN-A, Hierocrypt-3, and
SC2000, that were in the list of recommended ciphers for the e-Government have been reported as
breakable—all of their secret keys can be decoded within a practical time under certain circumstances*1.
As these reports are based on evaluations carried out by third parties, they can be regarded to a certain
extent as reliable attack assessment. Nonetheless, these attacks are difficult to assume in the context of
practical scenes, and are thought to be blockable by taking proper countermeasures in cryptographic
implementation. Thus, these attacks should not be regarded as imminent threats to the security of
cryptographic algorithms.

References

[1] Kazuhiko Minematsu, Yukiyasu Tsunoo, Etsuko Tsujihara, "Theoretical Evaluation of

Cache-based Side-Channel Attacks," SCIS2003, 2D-1, (2003).
[2] Kenji Okuma, Shinichi Kawamura, Hideo Shimizu, Hirofumi Muratani, Fumihiko Sano "Key

Presumption Analysis of Implementation Attacks Using Cache Error," SCIS2003, 2D-2,
(2003).

[3] Toyohiro Tsurumaru, Yasuyuki Sakai, Tooru Sorimachi, Mitsuru Matsui, "Timing Attacks on
64-bit Block Ciphers," SCIS2003, 2D-3, (2003).

[4] Kazumaro Aoki, Tsuyoshi Yamamoto, Hiroki Ueda, Shiho Moriai, "Cache Attacks on 128-bit
Block Ciphers," SCIS2003, 2D-4, (2003).

[5] Yukiyasu Tsunoo, Hiroyasu Kubo, Maki Shigeri, Etsuko Tsujihara, Hiroshi Miyauchi, "Timing
Attacks on AES Using Cache Delay in the S-box," SCIS2003, 3D-1, (2003).

[6] Teruo Saito, Yukiyasu Tsunoo, Tomoyasu Suzaki, Hiroshi Miyauchi, "Timing Attacks on DES
Using Cache Delay in the S-box," SCIS2003, 3D-2, (2003).

[7] Yukiyasu Tsunoo, Tsuyoshi Kawabata, Etsuko Tsujihara, Kazuhiko Minematsu, Hiroshi
Miyauchi, "Timing Attacks on KASUMI Using Cache Delay in the S-box," SCIS2003, 3D-3,
(2003).

[8] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Tsuyoshi Kawabata, Hiroshi Miyauchi,
"Timing Attacks on Camellia Using Cache Delay in the S-box," SCIS2003, 3D-4, (2003).

[9] Yukiyasu Tsunoo, Maki Shigeri, Etsuko Tsujihara, Hiroshi Miyauchi, "Timing Attacks on
SC2000," SCIS2003, 4D-1, (2003).

[10] Tsuyoshi Kawabata, Yukiyasu Tsunoo, Teruo Saito, Etsuko Tsujihara, Hiroshi Miyauchi,
"Timing Attacks on Hierocrypt-L1/-3," SCIS2003, 4D-2, (2003).

[11] Kazumaro Aoki, Soichi Furuya, Shiho Moriai, "Timing Attacks on CIPHERUNICORN-A
Implementation Using Multiplication Time Difference," SCIS2003, 4D-3, (2003).

[12] Yukiyasu Tsunoo, Tomoyasu Suzaki, Hiroyasu Kubo, Etsuko Tsujihara, Hiroshi Miyauchi,
"Timing Attacks on CIPERUNICORN-E/-A Utilizing Cache Delay in S-box," SCIS2003, 4D-4,
(2003).

[13] E. Trichina, D. De Seta, L. Germani, " Simplified adaptive multiplicative masking for AES and
its secure implementation ," CHES2002, pp187-197, (2002).

[14] J. Dj. Golic, C. Tymen, " Multiplicative masking and power analysis of AES," CHES2002,
pp198-212, (2002).

*1 Full-round ciphers whose secret keys have been cracked are discussed in the form of summarized evaluation comments on

side-channel attacks in the section of each cryptographic technique.

6.2 Recent Topics on Implementation Attacks 307

[15] R. Clayton, M. Bond, " Experience Using a Low-Cost FPGA Design to Crack DES Keys,"
CHES2002, pp582-595, (2002).

[16] F-X. Standaert, G. Rouvroy, J-J. Quisquater, J-D. Legat, "A Time-Memory Tradeoff using
Distinguished Points: New Analysis & FPGA Results," CHES2002, pp596-611, (2002).

[17] I. Biehl, B. Meyer, V. Muller, "Differential Faults Attacks on Elliptic Curve Cryptosystems,"
Advances in Cryptology – CRYPTO'2000, LNCS, 1880 (2000), Springer-Verlag, 131–146.

[18] A. Shamir, "How to Check Modular Exponentiation," Presented at the rump session of
EUROCRYPT'97.

[19] L.Y. Wang, C.S. Laih, H.G. Tsai, N.M. Hunag, "On the Hardware Design for DES Cipher in
Tamper Resistant Devices Against Differential Fault Analysis," IEEE international symposium
on circuits and systems, (2000).

308 Chapter 6 Side-channel Attacks

 309

Chapter 7

Contacts Regarding Cryptographic Techniques to be
Listed in the e-Government Recommended Ciphers List

In the contents of this chapter, the offered cryptosystems are all excerpts from the application documents

submitted by the applicants as of May 2002 except for those whose correction was requested by applicants

and accepted. Therefore, some persons in charge of receiving inquiries, etc. have been changed.

In addition, for cryptographic techniques that need to be evaluated, the information possibly helpful for

acquisition of cryptographic specifications, etc. is covered.

7.1 Public-key cryptographic techniques

7.1.1 DSA
Specification As stipulated in ANSI X9.30:1-1997, Public Key Cryptography for The Financial

Services Industry: Part 1:The Digital Signature Algorithm (DSA)

Reference URL Available via http://www.x9.org/

7.1.2 ECDSA (Elliptic Curve Digital Signature Algorithm)
URL for submitted cryptographic technique

Japanese text http://www.labs.fujitsu.com/techinfo/crypto/ecc/

English text http://www.labs.fujitsu.com/en/techinfo/crypto/ecc/

Date and the name of the conference where the submission was publicized

SECG (Standards for Efficient Cryptography Group), "SECG standards" open on Web page via

http://www.secg.org/ as of September 20, 2000

Contact person for supply

Name Takayoshi Kurita

Division/assignment Manager, Software Group Middleware Platform Div. Development Dept.I

Affiliation Fujitsu Ltd.

Address TECH Bldg. 3-9-18, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa

222-0033, Japan

TEL +81-45-474-1927(4460)

FAX +81-45-474-1954

e-mail crypto-ml@ml.soft.fujitsu.com

 Chapter 7
310 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List

Intellectual property and license
All patents and intellectual properties regarding the submission

See SECG member patent letters (accessible at the following address).

http://www.secg.org/collateral/certicom_secg_patent.pdf

Copyright

License to copy the document is granted provided it is identified as "Standards for Efficient

Cryptography (SEC)", in all material mentioning or referencing it.

All related patents

Please refer to SECG Patent Policy: http://www.secg.org/patent_policy.htm

License policy of usage for the e-Government in Japan

Fujitsu Limited has filed patent applications on the technique used in this application.

Fujitsu Limited will license any resulting patent on reasonable and non-discriminatory terms and

conditions.

7.1.3 RSA Public-Key Cryptosystem with Probabilistic Signature Scheme
(RSA-PSS)

Specification PKCS#1 RSA Cryptography Standard (Ver.2.1)

Reference URL http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

URL for submitted cryptographic technique

Japanese text http://www.rsasecurity.com/rsalabs/submissions/index.html

English text http://www.rsasecurity.com/rsalabs/submissions/index.html

Date and the name of the conference where the submission was publicized

Phillip Rogaway, "PSS/PSS-R (an encoding method for RSA or RW signatures)", IEEE P1363

Working Group, August 1998

Contact person for supply

Name Eiji Arai

Division/assignment Senior Manager, Developer Sales Dept.

Affiliation RSA Security Japan, Ltd.

Address Tokyo Ginko Kyokai Bldg. 13F, 1-3-1 Marunouchi, Chiyoda-ku, Tokyo 100-0005,

Japan

TEL +81-3-5222-5210

FAX +81-3-5222-5270

e-mail earai@rsasecurity.com

Intellectual property and license

All patents and intellectual properties regarding the submission

Copyright

RSA Security owns copyright on sample codes in this submission.

7.1 Public-key cryptographic techniques 311

All related patents

License policy of usage for the e-Government in Japan

RSA Security has no patent right on RSA-PSS.

7.1.4 RSASSA-PKCS1-v1_5
Specification PKCS#1 RSA Cryptography Standard (Ver.2.1)

Reference URL http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

7.1.5 RSA Public-Key Cryptosystem with Optimal Asymmetric Encryption
Padding (RSA-OAEP)

Specification PKCS#1 RSA Cryptography Standard (Ver.2.1)

Reference URL http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

URL for submitted cryptographic technique

Japanese text http://www.rsasecurity.com/rsalabs/submissions/index.html

English text http://www.rsasecurity.com/rsalabs/submissions/index.html

Date and the name of the conference where the submission was publicized

M. Bellare and P. Rogaway, "Optimal asymmetric encryption – How to encrypt with RSA"

Eurocrypt94, August 1994

Contact person for supply

Name Eiji Arai

Division/assignment Senior Manager, Developer Sales Dept.

Affiliation RSA Security Japan, Ltd.

Address Tokyo Ginko Kyokai Bldg. 13F, 1-3-1 Marunouchi, Chiyoda-ku, Tokyo 100-0005,

Japan

TEL +81-3-5222-5210

FAX +81-3-5222-5270

e-mail earai@rsasecurity.com

Intellectual property and license

All patents and intellectual properties regarding the submission

Copyright RSA Security owns copyright on sample codes in this submission.

All related patents

License policy of usage for the e-Government in Japan

RSA Security has no patent right on RSA-OAEP.

7.1.6 RSAES-PKCS1-v1_5
Specification PKCS#1 RSA Cryptography Standard (Ver.2.1)

Reference URL http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

 Chapter 7
312 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List

7.1.7 DH
Specification As stipulated by ANSI X9.42-2001, Public Key Cryptography for The Financial

Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm
Cryptography

Reference URL Available via http://www.x9.org/

7.1.8 ECDH (Elliptic Curve Diffie-Hellman Scheme)
URL for submitted cryptographic technique

Japanese text http://www.labs.fujitsu.com/techinfo/crypto/ecc/

English text http://www.labs.fujitsu.com/en/techinfo/crypto/ecc/

Date and the name of the conference where the submission was publicized

SECG (Standards for Efficient Cryptography Group), "SECG standards" open on Web page via

http://www.secg.org/ as of September 20, 2000

Contact person for supply

Name Takayoshi Kurita

Division/assignment Manager, Software Group Middleware Platform Div. Development Dept.I

Affiliation Fujitsu Ltd.

Address TECH Bldg. 3-9-18, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa

222-0033, Japan

TEL +81-45-474-1927(4460)

FAX +81-45-474-1954

e-mail crypto-ml@ml.soft.fujitsu.com

Intellectual property and license

All patents and intellectual properties regarding the submission

Please refer to SECG member patent letters below.

http://www.secg.org/collateral/certicom_secg_patent.pdf

Copyright

License to copy the document is granted provided it is identified as "Standards for Efficient

Cryptography (SEC)", in all material mentioning or referencing it.

All related patents

Please refer to SECG Patent Policy: http://www.secg.org/patent_policy.htm

License policy of usage for the e-Government in Japan

Fujitsu Limited has filed patent applications on the technique used in this application.

Fujitsu Limited will license any resulting patent on reasonable and non-discriminatory terms and

conditions.

7.1 Public-key cryptographic techniques 313

7.1.9 PSEC-KEM Key agreement
URL for submitted cryptographic technique

Japanese text http://info.isl.ntt.co.jp/

English text http://info.isl.ntt.co.jp/

Date and the name of the conference where the submission was publicized

“Public-key Cryptosystems “EPOC” and “PSEC”, by Tatsuaki Okamoto, ISEC Technical Report,

May 25, 2000

Contact person for supply

Name Masayoshi Nakao

Division/assignment Senior Researcher, NTT Information Sharing Platform Laboratories

Affiliation Nippon Telegraph and Telephone Corporation (NTT)

Address 1-1-609A Hikarino’oka, Yokosuka-shi, Kanagawa 239-0847. Japan

TEL +81-468-59-3334

FAX +81-468-59-3365

e-mail nakao@isl.ntt.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application No. H10-320172

Title Titled in Japanese

Date of application November 11, 1998

2. Application No. 2000-32461

Title Titled in Japanese

Date of application: February 9, 2000

Copyright

Nippon Telegraph and Telephone Corporation reserves the copyright on the following

documents: (2) Specifications in 2001, (3) Self Evaluation Report in 2001, (5) Reference

code/its specification and test vector generation program/its specification, and (7) Presentation

file for CRYPTREC submission explanation meeting.

All related patents

We believe that other entities do not have any related patents.

License policy of usage for the e-Government in Japan

We are prepared to grant, on the basis of reciprocity and non-discriminatory, a royalty-free

license under above patents to an unrestricted number of applicants to manufacture, use and/or

sell implementations of PSEC-KEM.

 Chapter 7
314 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List

7.2 Symmetric-key Cryptographic Techniques

7.2.1 CIPHERUNICORN-E
URL for submitted cryptographic technique

Japanese text http://www.hnes.co.jp/products/security/index.html

English text http://www.hnes.co.jp/products/security/index-e.html

Date and the name of the conference where the submission was publicized

NEC Corporation, "Registration number: 19, registration date: July 6, 1998, Algorithm

Registration", ISO/IEC 9979 Data cryptographic techniques - Procedures for the registration of

cryptographic algorithms, July 6, 1998

NEC Corporation, "A Secure Cipher Evaluated by Statistical Methods", SCIS'98-4.2.B (in

Japanese), 1998 Symposium on Cryptography and Information Security, January 29, 1998

Contact person for supply

Name Security Technology Center

Division/assignment Internet Software Division

Affiliation NEC Corporation

Address 2-11-5, Shibaura, Minato-ku, Tokyo 108-8557, Japan

TEL +81-3-5476-1913

FAX +81-3-6576-1678

e-mail sec@isd.nec.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application number H9-213274

Title A recording medium that can be read by cryptographic equipment or by a computer

storing a program for achieving cryptographic equipment (in Japanese)

Date of application August 7, 1997

Copyright

Copyrighted material CIPHERUNICORN-E program

Trademark Registration number: 4221077

All related patents

At this point in time, no prior related patents from other companies have been found in the

official patent gazette.

License policy of usage for the e-Government in Japan

Free of charge except when purpose of use is for profit by private business or the like.

7.2 Symmetric-key Cryptographic Techniques 315

7.2.2 Hierocrypt-L1
URL for submitted cryptographic technique

Japanese text http://www.toshiba.co.jp/rdc/security/hierocrypt

English text http://www.toshiba.co.jp/rdc/security/hierocrypt

Date and the name of the conference where the submission was publicized

Kenji Okuma, "Security and Performance Evaluations for the block ciphers Hierocrypt-3 and

Hierocrypt-L1" Technical report of IEICE ISEC2000-71 pp.71-100, September 29, 2000

Contact person for supply

Name Kenji Okuma

Division/assignment Senior Research Scientist, Computer Network Systems Laboratory,

Corporate Research & Development Center

Affiliation Toshiba Corporation

Address 1, Komukai, Toshiba-cho, Saiwai-ku, Kawasaki-shi 212-8582, Japan

TEL +81-44-549-2156

FAX +81-44-520-1841

e-mail kenji.ohkuma@toshiba.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application number 2000-210484

Title Titled in Japanese

Date of application March 6, 2001

2. Application number 2000-211686

Title Titled in Japanese

Date of application July 12, 2000

3. Application number 2000-212175

Title Titled in Japanese

Date of application July 13, 2000

4. Application number 2001-68742

Title Titled in Japanese

Date of application June 30, 2001

Copyright

All related patents

License condition is permitting no exclusive use or looser.

License policy of usage for the e-Government in Japan

License condition is permitting no exclusive use or looser.

 Chapter 7
316 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List

7.2.3 MISTY1
URL for submitted cryptographic technique

Japanese text http://www.security.melco.co.jp/misty

English text http://www.security.melco.co.jp/misty

Date and the name of the conference where the submission was publicized

Mitsuru Matsui, "Block Encryption Algorithm MISTY", ISEC Technical report of IEICE, July 22,

1996

Contact person for supply

Name Binji Komatsuda

Division/assignment Deputy Manager, Information Security Consulting & Supporting Center,

Information Systems and Network Service Group

Affiliation Mitsubishi Electric Corporation

Address Mitsubishi Electric Building, 2-2-3, Marunouchi, Chiyoda-ku, Tokyo 100-8310,

Japan

TEL +81-3-3218-3221

FAX +81-3-3218-3638

e-mail Binji.Komatsuda@hq.melco.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Patent number 3035358

Title Data transformation apparatus and data transformation method

Date of registration February 18. 2000

This patent is also applied to PCT/JP96/01254 (date: July 31, 1996).

Copyright

Mitsubishi Electric Corporation reserves the copyright on the all submitted documents.

All related patents

We believe that other entities do not have any related patents.

License policy of usage for the e-Government in Japan

We are prepared to grant, on the basis of reciprocity and non-discriminatory, a royalty-free license

under above patents to an unrestricted number of applicants to manufacture, use and/or sell

implementations of MISTY1.

7.2.4 Triple DES
Specification FIPS PUB 46-3, Data Encryption Standard (DES)

Reference URL http://csrc.nist.gov/CryptoToolkit/tkencryption.html

7.2.5 AES
Specification FIPS PUB 197, Advanced Encryption Standard (AES)
Reference URL http://csrc.nist.gov/CryptoToolkit/tkencryption.html

7.2 Symmetric-key Cryptographic Techniques 317

7.2.6 Camellia
URL for submitted cryptographic technique

Japanese text http://info.isl.ntt.co.jp/camellia/

English text http://info.isl.ntt.co.jp/camellia/

Date and the name of the conference where the submission was publicized

Masayuki Kanda, "Camellia - A 128-bit Block Cipher", ISEC Technical report for IEICE, May 25,

2000

Contact person for supply

Name Masayoshi Nakao

Division/assignment Group Leader, NTT Information Sharing Platform Laboratories,

Information Security Project

Affiliation Nippon Telegraph and Telephone Corporation (NTT)

Address 1-1-609A, Hikarino'oka Yokosuka-shi, Kanagawa 238-0847, Japan

TEL +81-468-59-3334

FAX +81-468-59-3365

e-mail nakao@isl.ntt.co.jp

Name Atsushi Toshima

Division/assignment General Manager, NTT Projects Division, First Department

Affiliation Mitsubishi Electric

Address Office Tower Z 13F, 1-8-12 Harumi, Chuo-ku, Tokyo, 104-6212, Japan

TEL +81-3-6221-2634

FAX +81-3-6221-2770

e-mail toshima@npd.hon.melco.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application number 2000-064614

Title Titled in Japanese

Date of application March 9, 2000

This patent is also applied to PCT/JP01/01796 (date: March 8, 2001) and Taiwan (No.90105464,

date: March 8, 2001).

Copyright

Nippon Telegraph and Telephone Corporation and Mitsubishi Electric Corporation reserve the

copyright on the following documents; (2) Specifications in 2001, (3) Self Evaluation Report in

2001, and (7) Presentation file for CRYPTREC submission explanation meeting. Mitsubishi also

holds the copyright on the documents "(5) Reference code/its specification, and test vector

generation program/its specification."

All related patents

We believe that other entities do not have any related patents.

 Chapter 7
318 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List

License policy of usage for the e-Government in Japan

We are prepared to grant, on the basis of reciprocity and non-discriminatory, a royalty-free license

under above patents to an unrestricted number of applicants to manufacture, use and/or sell

implementations of Camellia.

7.2.7 CIPHERUNICORN-A
URL for submitted cryptographic technique

Japanese text http://www.hnes.co.jp/products/security/index.html

English text http://www.hnes.co.jp/products/security/index-e.html

Date and the name of the conference where the submission was publicized

NEC Corporation, "A New 128-bit Block Cipher CIPHERUNICORN-A", Vol. 100, No.76,

pp23-46, ISEC2000-5, ISEC (Information Security Technical), Group of IEICE of Japan, May 26,

2000

Contact person for supply

Name Security Technology Center

Division/assignment Internet Software Division

Affiliation NEC Corporation

Address 2-11-5, Shibaura, Minato-ku, Tokyo 108-8557, Japan

TEL +81-3-5476-1913

FAX +81-3-6576-1678

e-mail sec@isd.nec.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application number H9-213274

Title A recording medium that can be read by cryptographic equipment or by a computer

storing a program for achieving cryptographic equipment (in Japanese)

Date of application August 7, 1997

Copyright

Copyrighted material CIPHERUNICORN-A program

Trademark Registration number: 4221077

All related patents

At this point in time, no prior related patents from other companies have been found in the official

patent gazette.

License policy of usage for the e-Government in Japan

Free of charge except when purpose of use is for profit by private business or the like.

7.2 Symmetric-key Cryptographic Techniques 319

7.2.8 Hierocrypt-3
URL for submitted cryptographic technique

Japanese text http://www.toshiba.co.jp/rdc/security/hierocrypt

English text http://www.toshiba.co.jp/rdc/security/hierocrypt

Date and the name of the conference where the submission was publicized

Kenji Okuma, "Security and Performance Evaluations for the block ciphers Hierocrypt-3 and

Hierocrypt-L1", Technical report of IEICE ISEC2000-71 pp.71-100, September 29, 2000

Contact person for supply

Name Kenji Okuma

Division/assignment Senior Research Scientist, Computer Network Systems Laboratory,

Corporate Research & Development Center

Affiliation Toshiba Corporation

Address 1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan

TEL +81-44-549-2156

FAX +81-44-520-1841

e-mail kenji.ohkuma@toshiba.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application number 2000-210484

Title Titled in Japanese

Date of application March 6, 2001

2. Application number 2000-211686

Title Titled in Japanese

Date of application July 12, 2000

3. Application number 2000-212175

Title Titled in Japanese

Date of application July 13, 2000

4. Application number 2001-68742

Title Titled in Japanese

Date of application June 30, 2001

All related patents

License condition is permitting no exclusive use or looser.

License policy of usage for the e-Government in Japan

License condition is permitting no exclusive use or looser.

 Chapter 7
320 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List

7.2.9 SC2000
URL for submitted cryptographic technique

Japanese text http://www.labs.fujitsu.com/theme/crypto/sc2000_j.html

English text http://www.labs.fujitsu.com/theme/crypto/sc2000.html

Date and the name of the conference where the submission was publicized

Takeshi Shimoyama, "Symmetric Key Block Cipher SC2000 ISEC2000-72)", IECIC, ESS society,

Technical Group on Information Security, September 29, 2000

Contact person for supply

Name Takayoshi Kurita

Division/assignment Manager, Software Group Middleware Platform Div. Development Dept.I

Affiliation Fujitsu Ltd.

Address TECH Bldg. 3-9-18, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa

222-0033, Japan

TEL +81-45-474-1927(4460)

FAX +81-45-474-1954

e-mail crypto-ml@ml.soft.fujitsu.com

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application number 2001-018016

Title Apparatus, program, and recording media for encryption and encryption design

Date of application January 26, 2000

2. Application number 2000-212813

Title Method and apparatus for including SPN structure in F-function

Date of application July 13, 2000

3. Application number 2000-212814

Title Method and apparatus for combining Feistel structure and SPN structure

Date of application July 13, 2000

4. Application number 2000-212482

Title Apparatus and recording media for extension key generation

Date of application July 13, 2000

Copyright Fujitsu Ltd.

All related patents None

License policy of usage for the e-Government in Japan

Fujitsu Limited has filed patent applications on the technique used in this application.

Fujitsu Limited will license any resulting patent on reasonable and non-discriminatory terms and

conditions.

7.2 Symmetric-key Cryptographic Techniques 321

7.2.10 MUGI
URL for submitted cryptographic technique

Japanese text http://www.sdl.hitachi.co.jp/crypto/mugi/

English text http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html

Date and the name of the conference where the submission was publicized.

Dai Watanabe “The correlation of the output sequence generated by the PANAMA-like keystream

generator (in Japanese)”, Regular Workshop of ISEC Group, IEICE, September 17, 2001

Contact person for supply

Name Shinichiro Harano

Division/assignment Director IPR & Cryptographic Technology

Affiliation Network Software, Software Division, Hitachi, Ltd.

Address 5030 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa 244-8555 Japan

TEL +81-45-862-8715

FAX +81-45-865-9010

e-mail harano@itg.hitachi.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application number 2001-013959

Title Titled in Japanese

Date of application January 23, 2000

2. Application number 2001-145783

Title Titled in Japanese

Date of application May 16, 2000

3. Application number 2001-274433

Title Titled in Japanese

Date of application September 11, 2000

Copyright

All documentations as program codes related to the submission of MUGI are copyrighted material,

protected by relevant Japanese laws and international conventions.

All related patents

Hitachi, Ltd. considers that the patent applications specified above will relate to MUGI. In the case

that MUGI is adopted in response to this submission, Hitachi, Ltd. is prepared to grant on the basis

of reciprocity licenses on non-discriminately and reasonable terms, under the relevant patents.

License policy of usage for the e-Government in Japan

The same policy to the general is applied as well to the electtonic government in Japan.

 Chapter 7
322 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List

7.2.11 MULTI-S01
URL for submitted cryptographic technique

Japanese text http://www.sdl.hitachi.co.jp/crypto/s01/index-j.html

English text http://www.sdl.hitachi.co.jp/crypto/s01/index.html

Date and the name of the conference where the submission was publicized.

Soichi Furuya, "On Paddings of MULTI-S01 and Their Security Evaluation (in Japanese)",

Regular Workshop of ISEC Group, IEICE, September 29, 2000

Contact person for supply

Name Shinichiro Harano

Division/assignment Director IPR & Cryptographic Technology

Affiliation Network Software, Software Division, Hitachi, Ltd.

Address 5030 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa 244-8555 Japan

TEL +81-45-866-8140

FAX +81-45-865-9036

e-mail harano@itg.hitachi.co.jp

Intellectual property and license

All patents and intellectual properties regarding the submission

1. Application number (Publication number) 2000-108334 (2001-007800)

Title “Encryption device and method”

Date of application April 10, 2000

2. Application number (Publication number) 2000-070994

Title “Common-key encryption device and method”

Date of application March 9, 2000

3. Application number (Publication number) 2000-210690

Title “Common-key encryption device and method”

Date of application July 6, 2000

Copyright

All documentations as program codes related to the submission of MULTI-S01 are copyrighted

material, protected by relevant Japanese laws and international conventions.

All related patents

Hitachi, Ltd. considers that the patent applications specified above will relate to MULTI-S01. In

the case that MULTI-S01 is adopted in response to this submission, Hitachi, Ltd. is prepared to

grant on the basis of reciprocity licenses on non-discriminately and reasonable terms, under the

relevant patents.

License policy of usage for the e-Government in Japan

The same policy to the general is applied as well to the electronic government in Japan.

7.3 Hash Functions 323

7.2.12 RC4
Contact RSA Security Japan, Ltd. (http://www.rsasecurity.co.jp/)

Specification RC4 algorithm shown in the following paper described in CryptoByte magazine

(Volume 5, No.2, Summer/Fall 2002) published by RSA Laboratories:

Fluhrer, Scott, Itsik Mantin, and Adi Shamir, “Attacks on RC4 and WEP”, CryptoBytes,

Volume 5, No.2, Summer/Fall 2002

Reference URL http://www.rsasecurity.com/rsalabs/cryptobytes/index.html

7.3 Hash Functions

7.3.1 RIPEMD-160
Reference URL http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html

7.3.2 SHA-1, SHA-256, SHA-384, SHA-512
Specification FIPS PUB 186-2, Secure Hash Standard (SHS)

Reference URL http://csrc.nist.gov/CryptoToolkit/tkhash.html

7.4 Pseudo-random Number Generators

7.4.1 PRNG in ANSI X9.42-2001 Annex C.1/C.2
Specification ANSI X9.42-2001, Public Key Cryptography for The Financial Services Industry:

Agreement of Symmetric Keys Using Discrete Logarithm Cryptography
Reference URL http://www.x9.org/

7.4.2 PRNG in ANSI X9.62-1998 Annex A.4
Specification ANSI X9.62-1998, Public Key Cryptography for The Financial Services Industry:

The Elliptic Curve Digital Signature Algorithm (ECDSA)
Reference URL http://www.x9.org/

7.4.3 PRNG in ANSI X9.63-2001 Annex A.4
Specification ANSI X9.63-2001, Public Key Cryptography for The Financial Services Industry:

Key Agreement and Key Transport Using Elliptic Curve Cryptography
Reference URL http://www.x9.org/

7.4.4 PRNG for DSA in FIPS PUB 186-2 Appendix 3
Specification FIPS PUB 186-2, Digital Signature Standard (DSS)
Reference URL http://csrc.nist.gov/CryptoToolkit/tkrng.html

7.4.5 PRNG for general purpose in FIPS PUB 186-2 (+ change notice 1)
Appendix 3.1

Specification FIPS PUB 186-2, Digital Signature Standard (DSS)
Reference URL http://csrc.nist.gov/CryptoToolkit/tkrng.html

 Chapter 7
324 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List

7.4.6 PRNG in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1/3.2

Specification FIPS PUB 186-2, Digital Signature Standard (DSS)

Reference URL http://csrc.nist.gov/CryptoToolkit/tkrng.html

 325

Chapter 8

List of Cryptographic Techniques to Be Evaluated

1. Public-key Cryptographic Techniques
(a) Signature

i. DSA
In FY 2000, CRYPTREC judged that evaluation of this cryptographic technique was
necessary and evaluated in detail. In FY 2001, the evaluation was continued on the
technique for its use under the Law concerning Electronic Signatures and Certification
and other related laws, and the technique was remained as an e-Government cipher
candidate. In FY 2002, it was added to the e-Government recommended ciphers list.
See Chapter 2 of this report for the evaluation results for reference.

ii. ECDSA (ANSI X9.62)
In FY 2001, this cryptographic technique was evaluated in detail for its use under the
Law concerning Electronic Signatures and Certification and other related laws, and
was remained as an e-Government cipher candidate. In FY 2002, ECDSA in SEC1
was chosen as a recommendation according to the investigation of the elliptic curve
selection methods. See Chapter 2 of this report for the evaluation results for
reference.

iii. ECDSA (Elliptic Curve Digital Signature Algorithm) in SEC1 [ECDSA]
In FY 2000, the cryptographic technique was submitted and evaluated in detail. In
FY 2001, the evaluation was continued on the technique for its use under the Law
concerning Electronic Signatures and Certification and other related laws, and the
technique was remained as an e-Government cipher candidate. In FY 2002, it was
added to the e-Government recommended ciphers list. See Chapter 2 of this report
for the evaluation results for reference.

iv. ESIGN [ESIGN]
In FY 2000, the cryptographic technique was submitted and evaluated in detail. In
FY 2001, it was resubmitted with changes in the specification, and was evaluated in
detail for its use under the Law concerning Electronic Signatures and Certification and
other related laws. It was remained as an FS 2002 cipher candidate for detailed
evaluation. In FY 2002, after the detailed evaluation, it was judged that the
tequnique does not have provable security. Therefore, the evaluation was terminated.
See Chapter 2 of this report for the evaluation results for reference.

v. TSH-ESIGN
In FY 20002 CRYPTREC judged evaluation of this cryptographic technique was
necessary, and evaluated in detail. See Chapter 2 of this report for the evaluation
results for reference.

326 Chapter 8 List of Cryptographic Techniques to Be Evaluated

vi. RSA Public-Key Cryptosystem with Probabilistic Signature Scheme (RSA-PSS) [RSA-PSS]
In FY 2000, CRYPTREC judged that evaluation of this cryptographic technique was
necessary, and evaluated in detail after its submission In FY 2001, the detailed
evaluation was continued on the technique for its use under the Law concerning
Electronic Signatures and Certification and other related laws, and the technique was
remained as an e-Government cipher candidate. In FY 2002, it was added to the
e-Government recommended ciphers list. See Chapter 2 of this report for the
evaluation results for reference.

vii. RSSSA-PKCS1-v1_5
In FY 2001, this cryptographic technique was evaluated in detail for its use with the
Law concerning Electronic Signatures and Certification and other related laws, and
was remained as an e-Government cipher candidate. In FY 2002, it was added to the
e-Government recommended ciphers list. See Chapter 2 of this report for the
evaluation results for reference.

(b) Confidentiality

i. ECIES (Elliptic Curve Integrated Encryption Scheme) in SEC 1 [ECIES]
In FY 2000, this cryptographic technique was submitted under the name ECAES and
evaluated in detail. In FY 2001, the technique was renamed ECIES. Just after
deliberations in ISO/IEC 18033-2, the technique was remained as an FY 2002 cipher
candidate for detailed evaluation. In FY 2002, after the detailed evaluation, it was
judged that the tequnique does not have provable security. Therefore, the evaluation
was terminated. See Chapter 2 of this report for the evaluation results for reference.

ii. HIME(R) (High Performance Modular Squaring Based Public Key Encryption (Re-vised
version)) [HIME(R)]

In FY 2001, this cryptographic technique was submitted and underwent a screening
evaluation, and was remained as an FY 2002 cipher candidate for detailed evaluation.
In FY 2002, after the detailed evaluation, it was judged that it cannot be determined at
the point of September 2002 whether the tequnique has provable security. Therefore,
the evaluation was terminated. See Chapter 2 of this report for the evaluation results
for reference.

iii. RSA Public-Key Cryptosystem with Optimal Asymmetric Encryption Padding (RSA-OAEP)
[RSA-OAEP]

In FY 2000, CRYPTREC judged that evaluation of this cryptographic technique was
necessary, and evaluated in detail after its submission. In FY 2001, the evaluation
was continued, and the technique was remained as an e-Government cipher candidate.
In FY 2002, it was added to the e-Government recommended ciphers list. See
Chapter 2 of this report for the evaluation results for reference.

iv. RSAES-PKCS1-v1 5
In FY 2002, CRYPTREC judeged that evaluation of this cryptographic technique was
necessary, and evaluated in detail. The cryptographic technique was then added
(with notes) to the e-Government recommended ciphers list. See Chapter 2 of this
report for the evaluation results for reference.

2. Symmetric-key Cryptographic Techniques 327

(c) Key agreement

i. DH
In FY 2000, CRYPTREC judged that evaluation of this cryptographic technique was
necessary, and evaluated in detail. In FY 2001, this cryptographic technique was
remained as an e-Government cipher candidate. In FY 2002, it was added to the
e-Government recommended ciphers list. See Chapter 2 of this report for the
evaluation results for reference.

ii. ECDH (Elliptic Curve Diffie-Hellman Scheme) in SEC 1 [ECDH]
In FY 2000, this cryptographic technique was submitted under the name ECDHS and
evaluated in detail. In FY 2001, the cryptographic technique was renamed ECDH,
and was remained as an e-Government cipher candidate. In FY 2002, it was added
to the e-Government recommended ciphers list. See Chapter 2 of this report for the
evaluation results for reference.

iii. PSEC-KEM Key agreement [PSEC-KEM]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, this technique was resubmitted with changes in the specification, and
underwent a screening evaluation, and then it was remained as an FY 2002 cipher
candidate for detailed evaluation. In FY 2002, the cryptographic technique was
added (with notes) to the e-Government recommended ciphers list after the evaluation.
See Chapter 2 of this report for the evaluation results for reference.

2. Symmetric-key Cryptographic Techniques
(a) 64-bit block ciphers

i. CIPHERUNICORN-E [UNI-E]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, the evaluation was continued, and the technique was remained as an
e-Government cipher candidate. In FY 2002, it was added to the e-Government
recommended ciphers list. See Chapter 3 of this report for the evaluation results for
reference.

ii. Hierocrypt-L1 [HC-L1]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, the technique was remained as an e-Government cipher candidate In FY
2002, it was added to the e-Government recommended ciphers list. See Chapter 3 of
this report for the evaluation results for reference.

iii. MISTY1 [MISTY1]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, this technique was remained as an e-Government cipher candidate. In FY
2002, it was added to the e-Government recommended ciphers list. See Chapter 3 of
this report for the evaluation results for reference.

328 Chapter 8 List of Cryptographic Techniques to Be Evaluated

iv. Triple DES
In FY 2000, CRYPTREC judged that evaluation of this cryptographic technique was
necessary, and evaluated in detail. In FY 2001, the technique was remained as an
e-Government cipher candidate. In FY 2002, it was added (with notes) to the
e-Government recommended ciphers list. See Chapter 3 of this report for the
evaluation results for reference.

(b) 128-bit block ciphers

i. Advanced Encryption Standard (AES)
In FY 2000, CRYPTREC judeged that evaluation of this cryptographic technique was
necessary, and evaluated in detail. In FS 2001, after the technique was standardized
as FIPS, it was remained as an e-Government cipher candidate. In FY 2002, it was
added to the e-Government recommended ciphers list. See Chapter 3 of this report
for the evaluation results for reference.

ii. Camellia [Camellia]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FS 2001, the technique was remained as an e-Government cipher candidate. In FY
2002, it was added to the e-Government recommended ciphers list. See Chapter 3 of
this report for the evaluation results for reference.

iii. CIPHERUNICORN-A [UNI-A]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, the evaluation was continued, and the technique was remained as an
e-Government cipher candidate. In FY 2002, it was added to the e-Government
recommended ciphers list. See Chapter 3 of this report for the evaluation results for
reference.

iv. Hierocrypt-3 [HC-3]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, it was remained as an e-Government cipher candidate. In FY 2002, it was
added to the e-Government recommended ciphers list. See Chapter 3 of this report
for the evaluation results for reference.

v. RC6 Block Cipher [RC6]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, it was remained as an e-Government cipher candidate. In FY 2002, in
response to a notice from an applicant, the evaluation was terminated in October 2002.
See Chapter 3 of this report for the evaluation results for reference.

vi. SC2000 [SC2000]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, it was remained as an e-Government cipher candidate. In FY 2002, it was
added to the e-Government recommended ciphers list. See Chapter 3 of this report
for the evaluation results for reference.

3. Hash Functions 329

(c) Stream ciphers

i. MUGI
In FY 2001, this cryptographic technique was submitted and underwent a screening
evaluation, and it was then remained as an FY2002 cipher candidate for detailed
evaluation. In FY 2002, it was then added to the e-Government recommended
ciphers list after the evaluation. See Chapter 3 of this report for the evaluation
results for reference.

ii. MULTI-S01 [S01]
In FY 2000, this cryptographic technique was submitted and evaluated in detail. In
FY 2001, the evaluation was continued, and the technique was remained as an
e-Government cipher candidate. In FY 2002, it was added to the e-Government
recommended ciphers list. See Chapter 3 of this report for the evaluation results for
reference.

iii. RC4
In FY 2001, CRYPTREC judged that evaluation of this cryptographic technique was
necessary, and the technique was remained as an FS 2002 cipher candidate for
detailed evaluation. In FY 2002, the technique was added (with notes) to the
e-Government recommended ciphers list after the evaluation. See Chapter 3 of this
report for the evaluation results for reference.

3. Hash Functions
(a) RIPEMD-160

In FY 2000, CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. In FY 2001, this technique was remained as an e-Government cipher
candidate. In FY 2002, it was added to the e-Government recommended ciphers list. See
Chapter 4 of this report for the evaluation results for reference.

(b) SHA-1

In FY 2000. CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. In FY 2001, this cryptographic technique was remained as an
e-Government cipher candidate. In FY 2002, it was added to the e-Government recommended
ciphers list. See Chapter 4 of this report for the evaluation results for reference.

(c) SHA-256, SHA-384, SHA-512

In FY 2001, CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. It was remained as an e-Government cipher candidate. In FY 2002,
after a cryptographic technique identical to the draft version of the specification was standardized
as FIPS, it was added to the e-Government recommended ciphers list. See Chapter 4 of this
report for the evaluation results for reference.

330 Chapter 8 List of Cryptographic Techniques to Be Evaluated

4. Pseudo-random Number Generators
(a) PRNG in ANSI X9.42-2001 Annex C.1/C.2

In FY 2002, CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. Then, Annex C.1 based on SHA-1 was added as an example to the
e-Government recommended ciphers list. See Chapter 5 of this report for the evaluation results
for reference.

(b) PRNG in ANSI X9.62-1998 Annex A.4

In FY 2002, CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. See Chapter 5 of this report for the evaluation results for reference.

(c) PRNG in ANSI X9.63-2001 Annex A.4

In FY 2002, CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. See Chapter 5 of this report for the evaluation results for reference.

(d) PRNG for DSA in FIPS PUB 186-2 Appendix 3

In FY 2000, CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. In FY 2001, this technique was remained as an e-Government cipher
candidate. See Chapter 5 of this report for the evaluation results for reference.

(e) PRNG for general purpose in FIPS PUB 186-2 (+ change notice 1) Appendix 3.1

In FY 2002, CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. Then an example based on SHA-1 was added to the e-Government
recommended ciphers list. See Chapter 5 of this report for the evaluation results for reference.

(f) PRNG in FIPS PUB 186-2 (+ change notice 1) revised Appendix 3.1/3.2

In FY 2002, CRYPTREC judged that evaluation of this cryptographic technique was necessary
and evaluated in detail. Then, Appendix 3.1 based on SHA-1 for multi-purpose was added as an
example to the e-Government recommended ciphers list. See Chapter 5 of this report for the
evaluation results for reference.

 331

Index

A3 function 196
adaptive chosen-ciphertext attack 61, 76
adaptive chosen-message attack
 53, 54, 56, 58, 61
Anomalous curve method 100
ANSI X9.17 270
ANSI X9.30 (Part 2) 262
ANSI X9.42 274
ANSI X9.62 274
ANSI X9.63 274
approximate e-th root problem 53, 55, 56, 58
ASIC 120
attack is successful 114
authenticated encryption 241
avalanche effect evaluation 116

Baby-Step/Giant-Step method 96, 101
Birthday attack 248, 253, 254, 265
Brent's prediction equation 97

Carter-Wegman MAC 238
Chabaud-Joux attacks against 263-265
Chaudbaud & Joux collision search by

differenctial attacks 266
CHES2002 305
chi-square attack 217
chosen-input attack 281
chosen-plaintext attack 113
cipher strength evaluation system 145, 196
ciphertext matching attack 171
ciphertext only attack 109
collision 249
collision resistance 249
collision resistance 263
computational security 113

Decisional Diffie-Hellman progrem 84
DES 278
DES Challenge 172
Deviation Parameter 238
differential attack 115, 124, 133
Dobbertin attacks against 263-265

Dobbertin collision search 266
DSA 275

ECC challenge 101
ECM 90-93
e-Hellman problem 88
elementary statistics value evaluation 147
elliptic curve method 90, 92
elliptic curve parameter 74, 81, 99
existential forgery 58
existentially unforgeable 53, 54, 56, 58, 60
exponential time 91
extension property problem 265

FIPS 186-2 46
FIPS PUB 180-2 254, 262
FIPS PUB 186 274
FIPS186-2 change notice 47
FL function 186
forward security 273
forward-secrecy 82
FPGA 120
function field sieve method 96

Gap-Diffie-Hellman assumption 75
general number field sieve method (GNFS)
 90-93, 96

Hardware implementation evaluation 119
higher order differential attack 115, 124

IND-CCA2 61, 75
index calculus method 96, 98
indistinguishability 273
interpolation attack 124
ISO/IEC 10118-3 252

key collision attack 147
known-plaintext attack 113
Koblitz curve 75, 82, 100

lattice factoring method (LFM) 91, 92

332 Index

lattice reduction technique 48
leaked internal state extension attack 273
Lenstra-Verheul 97, 100
LFM 91-94
linear attack 115, 126, 133
linear sum attack 122

maximum differential characteristic probability
 115, 124, 133
maximum differential probability 115, 124, 133
maximum linear characteristic probability
 115, 124, 133
maximum linear probability 115, 124, 133
modes of operation 170
modified hash function 265
Moore's law 91-94
MT function 196

non-malleability 61
number field sieve method 96

one-wayness 249
one-wayness 266
one-wayness function 275
P function 186

Panama 235
PKCS #1 v1.5 61
Pohlig-Hellman method 96, 100
Pollard method 96, 100, 101
polynomial time 91, 102
practical security 124, 133
preimage 266
preimage resistance 263, 266
provable security against the differential
cryptanalysis 115
provable security against the linear cryptanalysis
 115

quantum computer 93, 98

random oracle model 47, 53, 56, 57, 75
recursive SPN structure 207
re-input attack 273
RFC2246 262
RIPE project 250
RIPEMD 252
 123, 131, 139
RSA confidentiality 61
RSA primitive 61

RSA signature 61
RSA-FDH 61
RSA-OAEP 61
RSA-PSS 61
S function 186
SCIS2003 305
SECG 74, 81
second preimage 266
second preimage resistance 263, 262
Secure Hash Standard (SHS) 254
security margin 129, 139
Secutiry of Kelsey method for resolving 265
seed key 196
semantically secure 76
SHA-1 278
signature oracle 57, 58
SO-CMA 57, 58
Software implementation evaluation 117
special number field sieve method 96
squarefree 93
squarefree part 93
SSL3.0/TLS1.0 (Proposed Standard) 262
Statistical verification procedures 116
strong forward security (SFS) 273
subexponential time 90

T function 196
T0 function 196
temporary key generation 196
the Law concerning Electronic Signatures
 45, 47, 61, 63, 71
theoretical decryption 129, 139
Triple DES 270

unconditional security 113
universal forgery 60

Vernam cipher 237

weak collision-resistance 266
weak forward security (WFS) 273
weak key 149
Weil descent method 100
Weil/Tate Pairing method 100

	CONTENTS
	Preface
	Evaluation Committee Members
	Chapter 1 Overview of Evaluation Activities
	1.1 History
	1.2 CRYPTREC Structure
	1.3 Background of Evaluation Activities
	1.4 Public Offering and Evaluation Targets
	1.5 Evaluation and Selection of Cryptographic Techniques
	1.6 e-Government Recommended Ciphers List (Draft)
	1.7 Other Results
	1.8 Acknowledgments

	Chapter 2 Evaluation of Public-key Cryptographic Techniques
	2.1 Overview
	2.2 Evaluation result
	2.3 Evaluation of Individual Cryptographic Techniques
	2.4 Evaluation of the Difficulty of Number-Theoretic Problems
	2.5 Selection of Parameters Relating to Public-key Cryptographic Techniques

	Chapter 3 Evaluation of symmetric-key cryptographic techniques
	3.1 Evaluation method
	3.2 Overview of evaluation results
	3.3 Evaluation of individual ciphers

	Chapter 4 Hash Function Evaluation
	4.1 Evaluation Method and General Evaluation
	4.2 Evaluation Results
	4.3 Evaluation of Individual Cryptographic Techniques

	Chapter 5 Evaluation of Pseudo-random Number Generators
	5.1 Evaluation Method
	5.2 General Review of Evaluation Results
	5.3 Evaluation of Individual Cryptographic Techniques
	5.3 Evaluation of Individual Cryptographic Techniques

	Chapter 6 Side-channel Attacks
	6.1 Summary of Survey Report on Implementation Attacks and Countermeasures
	6.2 Recent Topics on Implementation Attacks

	Chapter 7 Contacts Regarding Cryptographic Techniques to be Listed in the e-Government Recommended Ciphers List
	7.1 Public-key cryptographic techniques
	7.2 Symmetric-key Cryptographic Techniques
	7.3 Hash Functions
	7.4 Pseudo-random Number Generators

	Chapter 8 List of Cryptographic Techniques to Be Evaluated
	1. Public-key Cryptographic Techniques
	2. Symmetric-key Cryptographic Techniques
	3. Hash Functions
	4. Pseudo-random Number Generators

	Index

