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Executive summary

This report contains an extensive evaluation of the security of SHA-224, SHA-512/224, SHA-
512/256, and the six SHA-3 functions (SHA3-224, SHA3-256, SHA3-384, SHA3-512, SHAKE128,
and SHAKE256) against best known practical and theoretical collision attacks, preimage attacks,
second-preimage attacks, distinguishing attacks. Moreover, the report contains the security evalua-
tion of the security of message authentication codes (MACs), authenticated encryption, and stream
ciphers based on them against best known practical and theoretical forgery attacks and key recovery
attacks.
We conclude that

— SHA-224, SHA-512/224, SHA-512/256, and the six SHA-3 functions provide the optimal se-
curity with a good security margin against the current best known collision/pseudo-collision
attacks and preimage/pseudo-preimage attacks.

— FEzcept for SHA-22/, all other functions SHA-512/224, SHA-512/256, and the six SHA-3 func-
tions provide the optimal security with a good security margin against the current best known
second-preimage attacks.

e There is a long-message second-preimage attack on SHA-224 with complexity less than 2224,

— All the underlying functions of SHA-224, SHA-512/224, SHA-512/256, and all the six SHA-3
functions provide the optimal security with a good security margin against the current best
known distinguishing attacks.

— FEzxcept for SHA-224, HMAC based on all other functions SHA-512/224, SHA-512/256, and
the six SHA-3 functions provide the optimal security with a good security margin against the
current best known forgery and key-recovery attacks.

e There are best forgery and key-recovery attacks on HMAC-SHA-224 with complexity less
than 2224,

— MAC (Hash with a prefix key) and stream cipher and authenticated encryption (Keyak) based
on the six SHA-3 functions provide the optimal security with a good security margin against
the current best known forgery and key-recovery attacks.
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1 Algorithms

1.1 SHA-224

SHA-224 [47] is a truncated version of SHA-256 with a different initial value. In other words, SHA-
224 is exactly same as SHA-256 except its initial value and its final truncation, where the 224-bit
message digest is obtained by truncating the final hash value to its left-most 224 bits.

Given an input message string M of any length, a sequence of N' 512-bit blocks MM |[M@)]] ... || M)
is defined by the following padding rule pad which appends the bit ‘1’ to the end of the message,
followed by k zero bits, where k is the smallest non-negative integer such that the bit-length of
pad(M) is a multiple of 512, and then finally appends the 64-bit binary representation of the
bit-length of M as follows:

Let MW[[M)[[--- || MM =pad(M)=M]|10"||bines (| M])
And by the big endian order, each M) is converted into sixteen 32-bit words as follows:
MO = Wi Wi w - (W)

The initial value IV of SHA-224 consists of eight 32-bit words, which represent the second
thirty-two bits of the fractional parts of the square roots of the 9th through 16th primes. The IV
is defined as follows:

H” = 02c1059¢d8
HY = 02367¢d507
HY = 023070dd17
H = 02705939
H = 02 f fc00b31
2" = 0268581511
H = 0264f98fa7
L Héo) = Oxzbefad fad
SHA-224 uses a sequence of sixty-four constant 32-bit words, which represent the first thirty-two

bits of the fractional parts of the cube roots of the first sixty-four prime numbers. Each constant is
used only in one step. Therefore the compression function of SHA-224 consists of sixty-four steps.

v = B EO B HEO ) HO ) 2 B |H =

K1;{256} = 02428a2f98 0271374491 0xb5c0fbcf 0xe9bsdbab 0x3956¢25b 0259111 f1
02923 f82a4 Oxablcbedd 0xd807aa98 0x12835601 0x243185be 0x550c7dc3
0272be5d74 0x80debl fe 0x9bdc06a7 0xcl9bf174 0xed9b69cl Oxefbed786
0z0fcl9dc6 0x240calce 0x2de92c6 f 0xda7484aa 0x5cb0a9dc 0x76 f988da
029835152 0xa831¢66d 0xb00327¢8 0xbf597 fc7 0xc6e00bf3 0xd5a79147
0206ca6351 0214292967 0x27670a85 0x2e¢1b2138 0x4d2cbdfc 0x53380d13
02650a7354 0x766a0abb 0x81c2c92e 0x92722¢85 0xa2bfe8al 0xa8lab64b
022468070 0xc76¢c5lad 0xd192e819 0xd6990624 0z f40e3585 0x106aa070
0x19a4cl116 0x1e376c08 0x2748774c 0x34b0bcbd 0x391c0cb3 OxdedS8aada
0z5b9ccad f 0x682e6 f f3 02748 f82ee 0x78a5636 f 0x84¢c87814 0x8cc70208
0z90bef f fa 0xad506ceb Oxbe f9a3d f7 0xc67178 2 for 0<t<63

Let Wt(i) be the word to be used at ¢-th step. Then, Wt(i) is defined as follows:



Wt(i) = Ul(Wt@2) + Wt@7 + UO(Wt(i)m) + Wt(i)w for 16 <t <63
SHA-224 uses six logical functions, where each function operates on 32-bit words, as follows:

Ch(z,y,z) =(xAy)V(~zAz2)
Maj(z,y,z) =(x Ay)V(zAz)V(yAz)

256
Z(j{ }( ) =22 @ >3 g > >>22
2{256}(1,) — p>>>6 g g >>>11 gy . >>>25
o 1256} (z) =2>>>T@a>>>18 g p>>3
256
Ui }(x) = p>>>1T gy p>>>19 gy . >>10

-

Fig. 1. The Step Function of SHA-224 and SHA-256 [52].

The whole process of producing a 224-bit digest, H(()N)|]HfN)||H2(N)HH?EN)||HiN)||HE()N)HHéN),
is as follows:

For i=1 to N:

1. Intialize the eight working variables, a,b,c,d, e, f, g, and h, with the (i-1)%* hash value:

o= Y
b— mY
c= Héi_l)
d=H{"



e = Hiiil)

f _ HE()zfl)

g= Hézfl)

h=H{""

2. For t =0 to 63: )
=h+ 315 e) + Chle, f,9) + KPP + WP
= h+ 28 (a) + Maj(a,b,c)

h =g
g =1
f=e
e =d + T1
d =c
c =b
b =a
a =T +1T>

3. Compute the " intermediate hash value H®:

1.2 SHA-512/224 and SHA-512/256

SHA-512/224 and SHA-512/256 [47] are truncated versions of SHA-512 with different initial values.
In other words, SHA-512/224 and SHA-512/256 are exactly same as SHA-512 except their initial
values and their final truncation, where the 224-bit message digest for SHA-512/224 (the 256-bit
message digest for SHA-512/256) is obtained by truncating the final hash value to its left-most 224
bits (its left-most 256 bits for SHA-512/256).

Given a input message string M of any length, a sequence of N 1024-bit blocks MM||M || - .. [|[M D)

is defined by the following padding rule pad which appends the bit ‘1’ to the end of the message,
followed by k zero bits, where k is the smallest non-negative integer such that the bit-length of
pad(M) is a multiple of 1024, and then finally appends the 128-bit binary representation of the
bit-length of M as follows:

Let MW||M@||--- || MM =pad(M)=M||10"||bin;2s(|M])
And by the big endian order, each M is converted into sixteen 64-bit words as follows:
MO = Wi Wy w)

Unlike SHA-224, SHA-256, SHA-384, and SHA-512, the initial values for SHA-512/224 and
SHA-512/256 are not defined by the fractional parts of the cube roots of prime numbers, but de-
fined by calling SHA-512 hash function with a tweaked IV’ = (IV @ 0zabababa5a5........ ab), where



1V is the original initial value of SHA-512, as follows:

In case of SHA-512/224,

IV519/904 =

0 0 0 0 0 0 0 0
bzalIvzaslivz iz ezl ai vz asliveess

In case of SHA-512/256,

V512256 =

Then, the initial value of SHA-512/224, which consists of eight 64-bit words, is defined as follows:

TVa1aja2a = HSO | HO | HO | HO | HO | HO | HO | HY =

And, the initial value of SHA-512/256, which consists of eight 64-bit words, is defined as follows:

IVs519/956

SHA-512/224 and SHA-512/256 uses the same sequence of eighty constant 64-bit words of
SHA-512, which represents the first thirty-two bits of the fractional parts of the cube roots of the
first sixty-four prime numbers. Each constant is used only in one step. Therefore the compression

B HD B |[H|[H|[H|[H |5

= HOHO ) O HO ) HO) ) O =

—SHA-512(“SHA-512/224”) with IV’

—SHA-512( “SHA-512/256”) with IV’

H” = 028¢3d37c819544da2
H(O) = 0273¢1996689dcd4d6

“’) = OxldfabTae32f f9c82
Hg(o) — 02679dd514582f9 fcf
HY = 020£642b697bd44da8
H(O) — 0277e36 f7304c48942
H(O) = 023£9d85a86a1d36c8

( ) = 021112¢6ad91d692a1

HY = 0222312194 fc2b £ 72¢
H(O) — 029555 fa3c84c64c2
(0 = 02239363666 £53b151
o _ = 02963877195940eabd
Hi ) = 0296283¢e2a88e f fe3
H = 0zbebel 2553863992
H(O; = 02260199 f c2¢85b8aa

) — 020eb72dde81¢52¢a2

function of SHA-512/224 and SHA-512/256 consist of sixty-four steps, respectively.



K™ = 02428a2,98d728ae22 027137449123¢ f65cd 0xb5c0 fbefecdd3b2f

02e9b5dbab8189dbbe

023956¢250 f 3480538 0259 f111 f16605d019 02923 f82a4a f194f9b 0xablcbed5dab6d8118

02d807aa98a3030242 0x12835b0145706 fbe 0x243185bedeedb28c
0272bebd74 276896 f 0x80debl fe3b1696b1 0x9bdc06a725¢71235
02e49b69c19e f14ad2 Oxefbed786384 f25e3 0x0 fc19dc68b8cd5b5
022de92¢6 f59200275 OxdaT7484aabeab6ed83 0x5cb0a9dcbd4l fbd4
02983e5152ee66dfab 0xa831c66d2db43210 0xb00327¢898 fb213 f
02c6e00b f33da88 fc2 0xd5a79147930aa725 0x06ca6351e003826 f
0x270670a8546d22 f fc 0x2e1b21385¢26¢926 0x4d2cbdf chbacd2aed
0x650a73548ba f63de 0x766a0abb3c77b2a8 0x81c2c¢92e47edaeceh
0za2bfe8aldcf10364 0xa81a664bbcd23001 0xc24b8b70d0 f89791
02d192e819d6e f5218 0xd69906245565a910 Ox f40e35855771202a
0219a4c116b8d2d0c8 0x1e376c085141ab53 0x2748774cdf8eeb99
02391c0cb3c5c95a63 0xded8aadae3418ach 0x5b9ccad f7763e373
02748 f82eebde fb2 fc 0x78a5636 4317260 0284c¢87814al f0ab72
0z90be f f fa23631€28 0xadb06cebde82bde9 Oxbe f9a3 fT7b2c67915
0xca273eceea26619¢ 0xd186b8c721c0c207 Oxeada7ddbedeOedble
0206 f067aa72176 fba 0x0a637dc5a2¢898a6 0x113 f9804be f90dae
0x28db77 f523047d84 0x32caab7b40c¢72493 0x3c9ebe0albc9bebe
O0zdcchbddbech3ed2b6 0597 f299c¢ fc657e2a 0x5 fcbb fab3ad6 faec
for0 <t <79

0x550c7dc3d5 f fbde2
0zcl19bf174¢f692694
02240calcc?7ac9c65
0276 f988da831153b5
0xbf597 fcTbee fOeed
02142929670a0e6e70
0x53380d139d95b3df
0x92722¢851482353b
0xc76c51a30654be30
02106aa07032bbd1b68
0x34b0bcb5e19b48a8
0x682¢e6 f f3d6b2b8a3
028cc702081a6439¢c
0xc67178 f2e372532b
0z f57d4f7feecbedl T8
0x1b710635131c471b
02431d67¢49¢100d4c
02x6c44198c4a475817

Let Wt(i) be the word to be used at t-th step. Then, Wt(i) is defined in the same way of SHA-512

as follows:

W = o (W) + W + oo(W5) + W2 for 16

<t<79

SHA-512/224 and SHA-512/256 use the same six logical functions with SHA-512, where each

function operates on 64-bit words, as follows:

Ch(z,y,z) =(xAy)V (-xAz2)
Maj(z,y,z) =(x Ay)V(zAz)V(yAz)

25512} (x) — p>>>28 gy p>>>34 gy . >>>39
21{512} (z) = p>>>1 gy p>>>18 gy . >>>41
05512}(1,) — 2> g g >>>8 gy p>>T
Ui{512}($) — p>>>19 @ p>>>61 gy . >>6



-

- 512 bits >

Fig. 2. The Step Function of SHA-512/224 and SHA-512/256 [52].

The whole process of producing a 224-bit digest for SHA-512/224 (a 256-bit digest for SHA-

512/256), which is the left-most 224 bits (the left-most 256 bits for SHA-512/256) of HV|| - - - || H,
as follows:

For i=1 to N:

1. Intialize the eight working variables, a,b,c,d, e, f, g, and h, with the (i-1)%* hash value:

a= H(()i_l)
b=H'""Y
c= Héi_l)
d=mH{"
e= Hii_l)
F= g0
g = HED
h=H{"

6



2. For t =0 to 79: 4
Ty = h+ 3" (e) + Chee, f,9) + K + W
Ty =h+ 23512}(@ + Maj(a,b,c)

=9
= f

h
g
f
(& :d+T1
d
c
b
a

3. Compute the i intermediate hash value H®:

HY =a+H{Y

HY =4+ g™
Y = c+ Y
HY =d+m{™Y
HY — e+ HY
HY = f+HIY
A — g+ HIY
HY = b+ HY

1.3 The Six SHA-3 Functions

The Draft FIPS FUB 202 [48] specifies the SHA-3 family which consists of four cryptographic
hash functions and two expandable output functions (XOFs). According to digest bit-lengths, the
four cryptographic hash functions are named SHA3-224, SHA3-256, SHA3-384, and SHA-512, where
each SHA3-n produces n-bit digests. The two SHA-3 XOFs are named SHAKE128 and SHAKE256,
where these numerical suffixes ‘128’ and ‘256’ indicate the security strength. Unlike the four SHA-3
cryptographic hash functions, the two SHA-3 XOF's can produce output of any desired length.

All the six SHA-3 functions are based on the same underlying permutation, called KECCAK-
p[1600,24].

The Permutation Keccak-p[1600,24]. Let z,y € Z5 and z € Zgy. Let a[x][y][z] represent each bit
of 1600-bit by the values of z,y, z. The permutation KECCAK-p[1600,24] is an iterated permutation
on 1600-bit, consisting of a sequence of 24 rounds R. A round R=¢0 y o w0 p o § consists of five
steps:

5

] a[2]ly][z] © By_o alz — 1[y][z] © By_g alz + Y[z — 1]
| = alz]lyllz = (¢ + 1)(t +2)/2],

t
with ¢ satisfying 0 <t < 24 and <(2) 21))) <(1)> = (g) in GF(5)2*2,

N

ort=—-1ifz=y=0,

clall] < aleliylowien (7) = (55) ().

x: o alz] < afz] © (afr +1] @ Dafz + 2],
a <+ a®RCJi],

3

~



where the round constants RC[i,][0][0][2/ — 1] = rc[j + Ti,] for all 0 < j < ¢ and 0 < 4, < 23, and
all other values of RC[i,|[z][y][2] are zero. The values rc[t] € GF(2) are defined as rc[t] = (z! mod
28+ 2%+ 25+ 21 +1) mod z in GF(2)[x].

Comparison with Keccak-f. The KEcCAK-f family of permutations, originally defined in [10],
is the specialization of the KECCAK-p family to the case that n, = 12 + 21:

KEccak-f[b] = KECCAK-p[b, 12 + 2I].

Consequently, the KECCAK-p[1600, 24] permutation, which underlies the six SHA-3 functions,
is equivalent to KECCAK-f[1600].

The sponge construction, denoted by SPONGE[f,pad,r](M,d) is a framework for domain exten-
sions of the six SHA-3 functions, where f is a function mapping (r + ¢)-bit stings to (r + ¢)-bit
stings, pad is a padding rule by appending an appropriate string to the given message M, and d
indicates the digest size. The sponge construction is illustrated in Fig. 3.

Then, KECCAK](] is specified as follows:
KEccAK]|c](M,d)=sPONGE[KECCAK-p[1600,24],pad10*1,1600-c| (M ,d),

where pad10*1(M)=M |10'1 with the minimum-non-negative integer ¢ making the size of pad10*1(M)
a multiple of (1600-c).
The four SHA-3 hash functions and the two SHA-3 XOFs are specified as follows:

The Four SHA-3 Hash Functions:

KECCAK([448](M]||01, 224);
KEccAK[512](M |01, 256);
KECCAK([768](M||01, 384);
KEccAaK[1024](M |01, 512);

SHA3-224(M)
SHA3-256(M)
SHA3-384(M)
SHA3-512(M)

The Two SHA-3 XOF's:

SHAKE128(M, d) = KECCAK[256](M|[1111, d);
SHAKE256(M, d) = KECCAK[512](M||1111, d);
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Fig. 3. The sponge construction: Z = SPONGE|f,pad,d] [8].
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Fig. 4. Slice Index Numbering of KECCAK-p state [6]: Note that z=y=0 is depicted at the center of the slice.

d o |
> —
I

Fig. 5. The Function 6 of KECCAK-p [6].
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2 Security Overview

This section describes the security overview of SHA-224, SHA-512/224, SHA-512/256, and SHA-3
functions and their application to MAC, stream cipher, and authenticated encryption. All the de-
tailed results in each table will be explained in Sect. 3, Sect. 4, Sect. 5, and Sect. 6. In other words,
all the tables in this section shows the summary of security analyses explained in this report. For
that purpose, we has examained and, in this report, has contained all of current best practical and
theoretical collision-type, preimage-type, second-preimage, distinguishing attacks on each of SHA-
224, SHA-512/224, SHA-512/256, and SHA-3 functions. In order to explain each attack technique,
we will use some examples along with a simple additional explanation.

Especially, in Sect. 5, we will evaluate the domain separation between SHA-224 and SHA-256,
and the domain separation among SHA-512, SHA-512/224, SHA-512/256, and the domain separa-
tion among the six SHA-3 functions. For the domain separation between SHA-224 and SHA-256,
they use different initial values. For the domain separation among SHA-512, SHA-512/224, SHA-
512/256, SHA-512/224 and SHA-512/256 use different initial values by calling SHA-512 with a
tweaked initial value. For the domain separation among the six SHA-3 functions, they use two
layers of padding rule; the multi-rate padding 10*1 as the outer padding, and a partition-padding
approach as the inner padding, which is explained in detail in Sect. 5.

In Table 1, except for SHA-224, all other functions provides optimal security against the existing
collision, preimage, and second-preimage attacks, because the sizes of their internal states are at
least double of their hash output sizes. In case of SHA-224, we can only guarantee min(224,256-
L(M))-bit security against Kelsey-Schneier’s long-message second-preimage attack [37], where L(M)
is defined as [log,(len(M)/512)], which is explained in Sect. 4.1.

. . Security Strengths in Bits
Algorithm Output Size Collision Psleimageg 2nd Preimage
SHA-224 224 112 224 min(224,256-L(M))
SHA-512/224 224 112 224 224
SHA-512/256 256 128 256 256
SHA3-224 224 112 224 224
SHA3-256 256 128 256 256
SHA3-384 384 192 384 384
SHA3-512 512 256 512 512
SHAKE128 d min(d/2,128)|>min(d,128) min(d,128)
SHAKE256 d min(d/2,256)|>min(d,256) min(d,256)

Table 1. Security Strengths of SHA-2 and SHA-3 functions [48]: L(M) is defined as [log,(len(M)/512)].

In Table 2, we can see the best known practical collision-type attacks against SHA-2, and SHA-3
functions. Here, practical attacks means that examples for collisions or semi-free-start collisions are
actually given, which are explained in detail in Sect. 3.

12



Attack Percent
. 3 ?
Algorithm Type Target |Rounds Broken Practical? |Reference
Semi-free-start| Hash Example
SHA-224 Collision  |Function 38/64 | 59% Given [43]
Semi-free-start| Hash Example
SHA-512/224 Collision  |Function 38/80 | 47.5% Given [32]
Semi-free-start| Hash Example
SHA-512/256 Collision  |Function 38/80 | 47.5% Given [32]
SHA3-224 | Collision Hash 1 o4 | 16,795 | Exemple | oo
Function Given
SHA3-256 | Collision |0 | yjoq | 1679 | EXAmPIe | o)
Function Given
SHA3-384 | Collision | 10 | 304 | 1959 |Example | oy
Function Given
SHA3-512 | Collision |20 | 3/94 | 1950 | EXAmPle o3
Function Given
.. Hash Example
SHAKE128 Collision . 4/24 | 16.7% . [22]
Function Given
.. Hash Example
SHAKE256 Collision . 4/24 | 16.7% . [22]
Function Given

Table 2. Best Known Practical Collision-type Attacks against SHA-2, and SHA-3 functions

In Table 3, we can see the best known theoretical collision-type attacks against SHA-2, and
SHA-3 functions, which are explained in detail in Sect. 3.

Algorithm ATt;?;k Target |Rounds Percent| CF Reference

Broken |Call
SHA-224 - - - - - _

SHA-512/224| - - - N ;

SHA-512/256| - - . : - ]

SHA3-224 - - - - - -
.. Hash 115
SHA3-256 |Collision . 5/24 | 21% |2 [23]
Function
SHA3-384 |Collision| 10 | 494 | 16.7% 217 [23]
Function
SHA3-512 - - - - - -
.. Hash 115
SHAKE128 |Collision . 5/24 | 21% |2 [23]
Function
SHAKE256 |Collision| . 1250 5/24 | 21% [2'"%| [23]
Function

Table 3. Best Known Theoretical Collision-type Attacks against SHA-2, and SHA-3 functions

In Table 4, we can see the best known practical preimage-type and second-preimage attacks
against SHA-2, and SHA-3 functions, which are explained in detail in Sect. 3.

13



Attack Percent

. 1o
Algorithm Type Target |Rounds Broken Practical?|Reference
SHA-224 - - - - - -
SHA-512/224 - - . - - -
SHA-512/256 - - . - - -
SHA3-224 Preimage hash 1 _ 5 1950 | o3 [45]
Second-Preimage|function
SHAB3-256 Preimage hash 1 _ 5 1950 | o3 [45]
Second-Preimage|function
SHA3-384 Preimage hash 1 _ 5 1950 | 93 [45]
Second-Preimage|function
SHA3-512 Preimage hash 1 _ 5 1950 | 93 [45]
Second-Preimage|function
SHAKE128 Prelmage hash <3 |125% 934 [45]
Second-Preimage|function
SHAKE256 |, 1 reimase hash |3 |125% | 2 [45]
Second-Preimage|function

Table 4. Best Known Practical Preimage-type and Second-preimage Attacks against SHA-2, and SHA-3 functions

In Table 5, we can see the best known theoretical preimage-type and second-preimage attacks
against SHA-2, and SHA-3 functions, which are explained in detail in Sect. 3.

. Attack Percent CF
Algorithm Type Target |Rounds Broken Call Reference
SHA-224 Pseudo Hash 155 /64 [81.25% 9255 (38]
Preimage Function
SHA-512/224|  [eudo Hash |57 80 | 71.25% 9511 [38]
Preimage Function
SHA-512/256] oo Hash | 5780 | 71.25% 9511 [38]
Preimage Function
Preimage Hash Time: 27811
SHA3-224 Second-Preimage|Function 7/24 | 29.2% Memory: 218912 (19]
Preimage Hash Time: 222567
SHA3-256 Second-Preimage|Function 8/24 | 33.3% Memory: 22403 (19]
Preimage Hash Time: 257874
SHA3-384 Second-Preimage|Function 8/24 | 33.3% Memory: 232406 (19]
Preimage Hash Time: 2°11-70
SHA3-512 Second-Preimage|Function 9/24 | 37.5% Memory: 25192 (19]
Preimage Hash Expected Time: near 2™
SHAKE128 Second-Preimage|Function 6/24 25% Memory: ? (19]
Preimage Hash Time: 227574
SHAKE256 Second-Preimage|Function 8/24 | 33.3% Memory: 232406 (19]

Table 5. Best Known Theoretical Preimage-type and Second-Preimage Attacks against SHA-2, and SHA-3 functions

In Table 6, we can see the best known practical distinguishing attacks and differential properties
for SHA-2 and SHA-3 Functions, which are explained in detail in Sect. 3.
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Fraction of|Underlying
Algorithm Target |Rounds| Target Function |Reference
Analyzed Call
SHA-224 |COmPTEssion) ooy | 7 gq | Example |
Function Given
Compression Example
SHA-512/224 Function 48/80 60% Given [53]
Compression Example
SHA-512/256 Function 48/80 60% Given [53]
SHA3-224
SHA3-256
29.83
SHA3-384 9/24 37.5% 2
Permutation 59.67 (2]
SHA3-512 10/24 42% 2
SHAKE128
SHAKE256

Table 6. Best Known Practical Distinguishing Attacks and Differential Properties for SHA-2 and SHA-3 Functions

In Table 7, we can see the best known theoretical distinguishing attacks and differential prop-
erties for SHA-2 and SHA-3 Functions, which are explained in detail in Sect. 3.

Fraction of| CF
Algorithm Target |Rounds| Target |Call|Reference

Analyzed
SHA-224 - - - - -
SHA-512/224 - - - - -
SHA-512/256 - - - - -
SHA3-224 |Permutation| 12 50% |2'%®] ]2
SHA3-256 |Permutation| 13 54.17% [2*3| 2]
SHA3-384 Permutation| 14 58.33% |2%56 2]
SHA3-512 |Permutation| 14 58.33% [2%°5| 2]
SHAKE128 |Permutation| 11 45.83% |28 [2]
SHAKE256 |Permutation| 13 54.17% (223 2]

Table 7. Best Known Theoretical Distinguishing Attacks and Differential Properties for SHA-2 and SHA-3 Functions

According to existing analyses, we can summarize the best attack complexities on HMAC based
SHA-224, SHA-512/224, and SHA-512/256 as shown in Table 8. As we can see, when the key size
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(k) is same as the hash output size, except for SHA-224, the best known attacks on SHA-512/224
and SHA-512/256 are the exhaustive search over the possible key space. Based on existing attacks,
SHA-512/224 provides better security than SHA-224.

Algorithm 0l s Existential Forgery Universal Forgery Internal State Recovery Key Recovery
HMAC-SHA-v min(2*, 0(2%?) [50])|min(2*, O(£ - 2°~*) [35])|min(2*, O(2°~*) [41,24])|min(2*, O(23¢/*) [35])
v=224  |256| 55 |min(2¥, O(2'%®) [50])| min(2*, O(2*°°) [35]) |[min(2*, O(2*°") [41,24]) | min(2¥, O(2'9?) [35])
v=512/224 |512|118|min(2¥, O(22°%) [50])| min(2*, O(23%%) [35]) |min(2¥, O(23%) [41,24]) | min(2%, O(2%%*) [35])
v=512/256 |512|118|min(2¥, O(22°%) [50])| min(2*, O(23%) [35]) |min(2¥, O(23%) [41,24]) | min(2%, O(2%%*) [35])

Table 8. Best Known Attack Complexity of HMAC based on SHA-224, SHA-512/224, and SHA-512/256: k is the
key size, and £ is the internal state size, 2° is the maximum block length of message.

Table 9 shows the summary of Attacks on MAC, Stream Cipher, and Authenticated Encryption
based on reduced versions of SHA-3 hash functions, which is explained in detail in Sect. 6.

Mode Rounds Type of Attack Generic complexity|Attack complexity
MAC 5 Key Recovery 2128 256
MAC 6 Key Recovery 2128 236
MAC 7 Key Recovery 9128 297
MAC 7 Forgery o128 205
MAC 8 Forgery 2256 2129
AE (Keyak) 6 Key Recovery 2128 230
AE (Keyak) 7 Key Recovery 2128 276
AE (Keyak) 7 Forgery 2128 205
Stream Cipher| 6 Key Recovery 2128 2%
Stream Cipher| 8 |Keystream Prediction 2256 2128
Stream Cipher| 9 |Keystream Prediction 2512 2256

Table 9. Summary of Attacks on MAC, Stream Cipher, and Authenticated Encryption based on KECCAK [25]
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3 Detailed Security Analysis

3.1 SHA-224

SHA-224 [47] is a truncated version of SHA-256 with a different initial value. In other words, SHA-
224 is exactly same as SHA-256 except its initial value and its final truncation, where the 224-bit
message digest is obtained by truncating the final hash value to its left-most 224 bits. Therefore,
existing cryptanalytic techniques to SHA-256, which do not depend only on the initial value of
SHA-256, can be applied to SHA-224.

Best Practical Collision-type Attack on SHA-256 The current best practical collision-type
attack on SHA-256 is a semi-free-start collision attack on 38-step of SHA-256 [43]. Let IV be
the initial value of SHA-256. Actually, we can consider a family of hash functions,{ Hy, }ivezy, by
varying the initial value of SHA-256. So, we can describe SHA-256(M) as Hry(M). A semi-free-
start collision of SHA-256 means that there are two (IV’, M) and (IV', M') such that Hpy/ (M) =
Hpy(M'), where IV’ is different from the initial value IV of SHA-256 and M # M.

Now, we start to explore a practical semi-free-start collision attack, with 237 time complexity,
on the 38 steps of SHA-256 given in [43]. Let f(-,-) be the compression function of SHA-256.
Before finding a semi-free-start collision for SHA-256, we want to find a collision (IV’', M) and
(IV', M') pair for f, where |IV’| = 256 and |M| = |M'| = 512 and M # M'. Once we can find such
collision pair for f, the collision (IV’, M) and (IV’, M') pair is also a semi-free-start collision pair
for SHA-256, because SHA-256 is based on Merkle-Damgard domain extension [20,44], or called
MD construction, with the message length padding after message.

From now on, we focus only on finding two a collision (IV’, M) and (IV’', M’) pair for f.

By the big endian order, M and M’ are converted into sixteen 32-bit words as follows:

M = Wy||[Wh|[Wa| - - - |[Wis5
M" = We||[Wi[[W3]| - - - ||[Wi5

Then, expanded message words W; and W/, which are used at t-th step, are defined as follows:

Wi =o01(Wi—2) + W7 + oo(Wi—15) + Wi—16 for 16 <t <37
Wi =o1(W/_y) + W/_7 + 00(W;_15) + W/_16 for 16 <t <37

As we can see from Fig. 10, [43] considered W; and W/ satisfying the following conditions:

W; # W/ for i € {7,8,10,15, 23,24},
W; = W/ for i ¢ {7,8,10,15,23,24}.

17



=

[ IR NN SR )
~
[

10(15|23|24

Fig. 10. Message word differences and message word conditions for the attacks on the 38 steps of SHA-256 [43]. Rows
show the individual steps of the message expansion to compute W;. Columns (and highlighted rows) show those
expanded message words which contain a difference. An occurrence of a message word in the message expansion
equation is denoted by ‘x’. For all rows which are not highlighted but contain an ‘x’, the message differences must
cancel [43].

Now, a question arises, “How can we 1) find a 18-step differential characteristic from step 7 to
step 24 and 2) find a confirming message pair?”

To search for a differential characteristic and a confirming message pair, [43] use the same ap-
proach and automatic search tool as in [42]. But, [43] improved the selection of starting points for
the search (message words which contain differences) and the search strategy.

Similar to [42], the basic idea of the search algorithm for differential characteristics consists of
three parts which are decision (guessing), deduction (propagation), and backtracking (correction).
The search algorithm proceeds as follows:

— Let U be a set of bits. Repeat the following until U is empty:
1. Decision(Guessing)
(a) Pick randomly (or according to some heuristic) a bit in U.
(b) Impose new constraints on this bit.
2. Deduction(Propagation)
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(a) Propagate the new information to other variables and equations as described in [42].
(b) If an inconsistency is detected start backtracking, else continue with step 1-(a).
3. Backtracking(Correction)
(a) Try a different choice for the decision bit.
(b) If all choices result in an inconsistency, mark the bit as critical.
(c) Continue with step 1-(a).

In the deduction, [43] use generalization conditions on bits described in Fig. 11. A generalized
condition takes all 16 possible conditions on a pair of bits into account. More in detail, through the
following three steps [43], we can find a characteristic and its conforming message pair.

— Stage 1: We first search for a consistent differential characteristic in the message expansion.
Hence, we only add unconstrained bits ‘?” or ‘x’ of W; to the set U;. Furthermore, we try
to reduce the number of conditions after step 15 in the message expansion. In this case, it is
more likely to find confirming message pairs in the last stage of the search. To get a sparser
characteristic in this area, we pick decision bits more often from the last few steps of the message
expansion.

— Stage 2: Once we have found a differential characteristic for the message expansion, we continue
with searching for a differential characteristic in the state update. We add all unconstrained
bits ‘?’ or ‘x’ of chaining variables a ,b , ¢, d, e, f, g, and h of Fig. 1 to the set U,. Note that we
pick decision bits more often from a ,b , ¢, and d, since this results in sparser characteristics for
a,b, c,and d. Similar to Stage 1, experiments have shown that in this case, confirming message
pairs are easier to find in the last stage.

— Stage 3: In the last stage, we search for confirming inputs. We only pick decision bits ‘-’ which
are constrained by linear two-bit conditions, similar as in [42]. This ensures that those bits
which influence a lot of other bits are guessed first. Additionally, at least all bits influenced
by two-bit conditions propagate as well. This way, inconsistent characteristics can be detected
earlier and valid solutions are found faster.

(XNX?'*) (030) (110> (0: 1) (13 1) (XﬂX:‘) (030) (1:0) (01 1) (13 1)
2 v v v v 3 v v - -
= v - - v 5 v - v -
X - v v - i v v v -
0 v - - - A - v - v
u - v - - B v v - v
n - - v - C - - v v
il - - - v D v - v v
# - - - - E - v v v

Fig. 11. Notation for all generalized conditions on a pair of bits [16].

As written in [43], after Stage 3 finishes, we already get a confirming message pair which results
in a semi-free-start collision. The corresponding differential characteristic for 38 steps of SHA-256
is given in Fig. 12.
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Fig. 12. Differential characteristic for the semi-free-start collision attack on SHA-256 reduced to 38 steps [43]. Bits
with gray background have at least one additional condition. [43].

According to [43], it took 8 hours on a single CPU to find the confirming message pair of Fig.
13, which is equivalent to about 237 SHA-256 evaluations.

| ho |ba75b4ac c3c9fd45 fce04f3a 6d620fdb 42559d01 b0a0cd10 729ca9bc b284ab572

4£5267£8 8£f8ec13b 22371c61 56836f2b 459501d1 8078899e 98947e61 4015ef31
06e98ffc 4babdada 27809447 3bf9f3be 7b3b74el 065£711d 6c6eadbe a1781d54
« |[4£5267£8 8£8ec13b 22371c61 56836£2b 459501d1 8078899e 98947e61 7e73f1f1
0699000 4babdada 277£1447 3bf9f3be 7b3b74el 065£711d 6c6eadbe al1781d50
00000000 00000000 00000000 00000000 00000000 00000000 00000000 3e661ecO
'|00001£fc 00000000 00££8000 00000000 00000000 00000000 00000000 00000004

| h1 |9312c19e d18b19eb d9c3c91f 36c4e589 4ab410cb 692af674 72c£d427 8e5a0d0a

m

Fig. 13. Example of a semi-free-start collision for 38 steps of SHA-256 [43].
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Security of SHA-224 against Theoretical Preimage-type Attacks Till now, most of preimage-
type attacks are focused on SHA-256 and SHA-512 so we need to check whether the preimage-type
attacks on SHA-256 can be also applied to SHA-224.

Table 10 summarizes known theoretical preimage-type attacks on SHA-256.

l Published in [Year[ Attack Method [ Attack [Round[CompleXity
12/64] 2507
43/64| 2°°%9
Advanced meet-in-the-middle preimage attacks [34]|2010|Meet-in-the-Middle Preimage 42/64| 27181
Preimage 45/64| 2%°°°
Pseudo-Preimage| 52/64 2255

Preimages for step-reduced SHA-2 [1] 2009|Meet-in-the-Middle Preimage

Bicliques for Preimages: Attacks on

Skein-512 and the SHA-2 family [38] 2012) - Biclique

Table 10. Best Known Theoretical-but-Marginal Preimage-type Attacks against SHA-256

As shown in Fig. 14, the meet-in-the-middle preimage attacks[1, 34] need to match the values of
two internal states generated by forward and backward directions. However, unlike SHA-256, SHA-
224’s internal state size is 24-bit-longer than its hash output size of 224-bit, whereas the internal
state size and the hash output size of SHA-256 are same as 256-bit. Usually the attack complexity
based on meet-in-the-middle attack approach depends on the size of the internal state. Moreover,
as shown in Table 10, the attack complexities of meet-in-the-middle preimage attacks on SHA-
256 are already beyond than the general preimage attack complexity 2224 for SHA-224. Therefore,
it is expected that SHA-224 provides a better security than SHA-256 against meet-in-the-middle
preimage attacks.

split match
< > l <
— < > < < < Target
- > ] 3

<<€
<€

>
>>

Fig. 14. Meet-in-the-Middle Pseudo-Preimage Attack against Davies-Meyer Hash Functions [34].

As shown in Fig. 15, biclique-based preimage attack [38] also need to match the values of two
internal states generated by forward and backward directions. Therefore, it is also expected that
SHA-224 provides a better security than SHA-256 against biclique-based preimage-type attacks.
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Fig. 15. Biclique of dimension 2 in the meet-in-the-middle attack [38].

Best Practical Distinguishing Attack on SHA-256 The current best practical distinguishing
attack on SHA-256 is a second-order differential collision attack (with about 246 time complexity)
on 47 steps out of 64 steps of the compression function of SHA-256 [14]. Let f be the compression
function of SHA-256.

Definition 1. A second-order differential collision for f is a two-tuple (a1, a2) together with a
value y such that

f(y+a1+a2)_f(l/+a1)—f(y—i-ag)—i—f(y):()

In order to understand the second-order differential collision attack approach on the compression
function of SHA-256, firstly we define some basic notations. In cases of SHA-1 and SHA-2 hash
functions, they follow Davies-Meyer construction which is a well known method to turn a block
cipher into a compression function. The Davis-Meyer compression function is as follows:

f(y) = E(y) + 7a(y), where y = (k||z) € {0,1}¥T™ and E is the underlying block cipher and 7,(y)
represents the n least significant bits of y.

The underlying block cipher FE is split into two subparts, EF=F o Ey. Let us assume that there
are two differential characteristics as follows:

— Characteristic 1: E;'(y + 8) — E; '(y) = a holds with probability po
— Characterisitc 2: Fi(y +v) — E1(y) = ¢ holds with probability p;.
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Fig. 16. Schematic view of the attack of Second-Order Differential Collision Attacks [14].

Using these two differential characteristics, we can construct a second-order differential collision
for the block cipher E by the following attack procedure [14] (See Fig. 16):

Choose a random value for X and compute X* =X+, Y =X 4+, and Y* = X* 4 ~.
Compute backward from X, X* )Y, Y™ using EO_1 to obtain P, P*, Q,Q*.

Compute forward from X, X* Y, Y™ using F; to obtain C,C*, D, D*.

Check if P* — P=Q* — Q and D — C=D* — C"* is fulfilled.

B0 =

Due to Chracteristic 1 and 2,

P* — P=Q* — Q=a holds with probability at least p2,
D — C=D* — C*=0 holds with probability at least p?

Therefore, the above attack procedure succeeds with pg X p%. Also, we can get the following
relations [14]:

Q*—Q—P*+P=0and E(Q*) — E(P*) — E(Q)+ E(P) =0

If we set o := a1 and the difference ) — P := ay we can get the following second-order differential
collision relation as follows:

E(P+a1+a2) —E(P+a1)— E(P+a2)+ E(P)=0

Now, we are going to apply the above second-order differential collision attack strategy to 47
steps out of 64 steps of the compression function of SHA-256. The underlying block cipher F, which
consists of 47 steps, is split into two subparts, EF=F7 o Ey, where Ej is the first 22 steps and E1 is
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the last 23 steps. Fig. 17 indicates the characteristic of Ey, which will hold with probability 2728,
and Fig. 18 indicates the characteristic of Fy, which will hold with probability 2772, Though these
probabilities are too low, through the message modification techniques, we can significantly reduce
the complexity for finding values satisfying the two characteristics, because there is no secret key
in case of hash functions.

i | chaining value | message | prob
B: -3
0 | E: +10 +24 +29 2-10
H: -12 -17 +23
C: -3 4
! F: +10 +24 +29 &
9 Dz =3 9—4
G: +10 +24 +29
g 5 | B 8 2-7
s H: +10 +24 +29
< 4|F: -3 2
= 5[G: -3 27!
6 | H: -3 +3 2-1
7 1
20
21 +17 +28 1
A: +17 +28
= E: +17 +28

Fig. 17. Differential characteristic for steps 1-22 using signed-bit-differences [14].
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-25 2

T =25 +25 1
1

e+

23

24

message modification

25

26

27

28

29
30
31
32

mlomzmoglmolrmwmoormomoaTommaw

45 1
46 -7 -18 22 | 27°

A: -7 -18 -22
W S =18 =22

47

m

Fig. 18. Differential characteristic for steps 23-47 using signed-bit-differences [14]. Note that conditions imposed by
the characteristic in steps 23-30 are fulfilled in a deterministic way using message modification techniques [14].
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Finally, the second-order differential collision attack on 47 steps of the compression function
SHA-256 [14] was confirmed by providing an example of second-order differential collision as shown
in Fig. 19.

89456784 4ef9daf6 0abb09fb 3fdf6c93 ferafc67 bO3ad8la £d306df9 1d14cadd
y |daea3041 70£45£d7 4a03bf20 c13c961c 6a12c686 f£c7beb0c 7b060fc2 Oeele276
630c3c7e 734246a4 88401eb0 9aac88cl 4b6bcadb b777cle6 5537cdbl 9bbbcO93b

00000000 00000000 00000000 00000000 00000000 00000000 00000004 00000000
a1 00000000 00000000 00000000 00000000 00000000 0OOC0000 00000000 00000000
00000000 fffffffc 00000000 fffffffc 10800200 00000000 ££800000 803efd14

2335e8561 20£48326 69151911 £5cb76c2 b9dE9e31 32685b9c 90cceff7 081ebbf7
a2 |967c8864 a43138d1 7e9a3eec c39cf7d3 59142008 8d0d3b73 e077c63f d29db1b0
742b8c01 92248811 a119£182 dd829beb €3e1802e 21130e9f 1dacd7d3 8acfilfe

Fig. 19. Example of a second-order differential collision f(y+ a1 +a2) — f(y+a1) — f(y+az2) + f(y) = 0 for 47 steps
of the SHA-256 compression function [14].

3.2 SHA-512/224 and SHA-512/256

SHA-512/224 and SHA-512/256 [47] are truncated versions of SHA-512 with different initial values.
In other words, SHA-512/224 and SHA-512/256 are exactly same as SHA-512 except their initial
values and their final truncation, where the 224-bit message digest for SHA-512/224 (the 256-bit
message digest for SHA-512/256) is obtained by truncating the final hash value to its left-most 224
bits (its left-most 256 bits for SHA-512/256).

Unlike SHA-224, SHA-256, SHA-384, and SHA-512, the initial values for SHA-512/224 and
SHA-512/256 are not defined by the fractional parts of the cube roots of prime numbers, but de-
fined by calling SHA-512 hash function with a tweaked IV’ = (IV @ 0zabababa5a5........ ab), where
1V is the original initial value of SHA-512. Therefore, existing cryptanalytic techniques to SHA-
512, which do not depend only on the initial value of SHA-512, can be applied to SHA-512/224
and SHA-512/256.

Best Practical Collision-type Attack on SHA-512 The current best practical collision-
type attack on SHA-512 is a semi-free-start collision attack on the 38 steps (out of 80) of SHA-
512 [32]. Let IV be the initial value of SHA-512. Actually, we can consider a family of hash
functions,{ H;, }ivery, by varying the initial value of SHA-512. So, we can describe SHA-512(M) as
Hypy(M). A semi-free-start collision of SHA-512 means that there are two (IV', M) and (IV', M’)
such that Hpy/ (M) = Hypyr(M'), where IV is different from the initial value IV of SHA-512 and
M # M.

Now, we start to explore a practical semi-free-start collision attack, with 2405 time complexity,
on the 38 steps of SHA-512 given in [32]. Let f(-,-) be the compression function of SHA-512. Before
finding a semi-free-start collision for SHA-512, we want to find a collision (IV’, M) and (IV', M)
pair for f, where |IV'| = 512 and |M| = |M'| = 1024 and M # M’. Once we can find such
collision pair for f, the collision (IV’, M) and (IV’', M') pair is also a semi-free-start collision pair
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for SHA-512, because SHA-512 is based on Merkle-Damgard domain extension [20, 44], or called
MD construction, with the message length padding after message.

From now on, we focus only on finding two a collision (IV’, M) and (IV', M’) pair for f.

By the big endian order, M and M’ are converted into sixteen 64-bit words as follows:

M = Wo||[Wr|[Wal| - |[Wis
M = We||[WH||Wy|| - - - [[Wi5

Then, expanded message words W; and W/, which are used at t-th step, are defined as follows:

Wi =01 (Wtfz) + W7+ O'()(Wtflg,) + Wi_16 for 16 <t <37
Wi =01(W/_3) + Wi_7 + 00(W/_15) + W/_1 for 16 <t <37

As we can see from Fig. 20, [32] considered W; and W/ satisfying the following conditions:

W; # W/ for i € {7,8,10,15,23,24},
W; = W/ for i ¢ {7,8,10,15,23,24}.

S N N

7| 8/10|15|23|24

Fig. 20. Message word differences and message word conditions for the attacks on the 38 steps of SHA-512 [43,
32]. Rows show the individual steps of the message expansion to compute W;. Columns (and highlighted rows) show
those expanded message words which contain a difference. An occurrence of a message word in the message expansion
equation is denoted by ‘x’. For all rows which are not highlighted but contain an ‘x’, the message differences must
cancel [43, 32].

Now, a question arises, “How can we 1) find a 18-step differential characteristic from step 7 to
step 24 and 2) find a confirming message pair?”
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To search for a differential characteristic and a confirming message pair, [32] uses the same
approach and automatic search tool as in [43]. But, [32] improved the selection of starting points
for the search (message words which contain differences) and the search strategy.

stage decision bit decision rule

probability  choice 1 choice 2

? 1 = X

1-2 X { 1/2 u n
1/2 n u

; 1/2 0 i
i { /2 1 0

Fig. 21. Decision rules in different search stages [32].

Similar to [43], the guess-then-determine attack [32] consists of three stages. The rules of the
guessing strategy are given in Fig. 21 and the three stages are as follows:

— Stage 1: We first search for a consistent differential characteristic in the message expansion.
Hence, we only add unconstrained bits (‘?’) and difference bits (‘x’) of W; to the set U.

— Stage 2: We continue with the search for a differential characteristic in the state update. Hence,
we add all unconstrained bits (‘?’) and difference bits (‘x’) of chaining variables a ,b , ¢, d, e, f,
g, and h of Fig. 2 to the set U. We pick decision bits more often from a ,b , ¢, and d, since this
results in sparser characteristics for a ,b , ¢, and d. Experiments have shown that in this case,
confirming message pairs are easier to find in the last stage.

— Stage 3: In the last stage, we search for confirming message pairs by guessing bits without dif-
ference (‘-’). We only pick decision bits of eight chaining variables and W; which are constrained
by two-bit conditions, similar as in [42]. This serves as a preselection heuristic for the branching
look-ahead in Fig. 22.

Algorithm Look-ahead branching heuristic for differential cryptanalysis

Let U be a set of undetermined bits and Smax the limit of look-ahead candidates.
repeat
Guessing
1. pick a bit v € U randomly and increment s
2. impose new constraints on this bit v
Propagation
3. propagate the new information to other variables and equations
4. if an inconsistency is detected, return v as the decision bit
else count the number m of additional variables that were assigned due to
this guess and save the pair (v,m) in a list L.
Update
5. remove all variables that were assigned due to the guess v from the set U
6. undo all changes to restore the original assignment
until U is empty or § > Smax
return v* from L with the highest score m as the decision bit

Fig. 22. Look-ahead branching heuristic for differential cryptanalysis [32].
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As written in [32], after Stage 3 finishes, we already get a confirming message pair which results
in a semi-free-start collision. The corresponding differential characteristic for 38 steps of SHA-512
is given in Fig. 23.
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Fig. 23. Differential characteristic for a semi-free-start-collision of SHA-512 reduced to 38 steps (bits with two-bit
conditions highlighted) [32].

Using the improvements in the branching heuristic proposed in [32], it took 5441 seconds (=~ 1.5
hours) on a cluster with 40 CPUs to find the confirming message pair of Fig. 24, which is equivalent
to a complexity of about 2405 evaluations of the SHA-512 compression function evaluations.
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e8626£53a3771964 2ae427b8c5065790 c8£d5a1628£c3337 0£362d297£82£987
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Fig. 24. Example of a semi-free-start collision for 38 steps of SHA-512 [32].

Security of SHA-512/224 and SHA-512/256 against Theoretical Preimage-type At-

tacks Till now, preimage-type attacks on SHA-512 are only available so we need to check whether

the preimage-type attacks on SHA-512 can be also applied to SHA-512/224 and SHA-512/256.
Table 11 summarizes known theoretical preimage-type attacks on SHA-512.

| Published in [Year[ Attack Method [ Attack [Round[Complexity
42/80 2°9%°
46/80| 2°11°
Advanced meet-in-the-middle preimage attacks [34]|2010|Meet-in-the-Middle Preimage 42/80] 2%
Bicliques for Preimages: Attacks on Preimage 50/80| 2°11°
Skein-512 and the SHA-2 family [38] Pseudo-Preimage| 57/80 2511

Preimages for step-reduced SHA-2 [1] 2009|Meet-in-the-Middle Preimage

2012 Biclique

Table 11. Best Known Theoretical Preimage-type Attacks against SHA-512

As already shown in Fig. 14, the meet-in-the-middle preimage attacks[1, 34| need to match the
values of two internal states generated by forward and backward directions. However, unlike SHA-
512, SHA-512/224 and SHA-512/256’s internal state sizes are 288-bit-longer and 256-bit-longer
than their hash output sizes of 224-bit and 256-bit, respectively, whereas the internal state size
and the hash output size of SHA-512 are same as 512-bit. Usually the attack complexity based on
meet-in-the-middle attack approach depends on the size of the internal state. Moreover, as shown
in Table 11, the attack complexities of meet-in-the-middle preimage attacks on SHA-512 are al-
ready beyond than the general preimage attack complexity 22?* and 2256 for SHA-512/224 and
SHA-512/256, respectively. Therefore, it is expected that SHA-512/224 and SHA-512/256 provide
better security than SHA-512 against meet-in-the-middle preimage attacks.

As shown in Fig. 15, biclique-based preimage attack [38] also need to match the values of two
internal states generated by forward and backward directions. Therefore, it is expected that SHA-

29



512/224 and SHA-512/256 provide better security than SHA-512 against biclique-based preimage-
type attacks.

Best Practical Distinguishing Attack on SHA-512 The current best practical distinguishing
attack on SHA-512 is a boomerang attack (with about 2°! time complexity) on 48 steps out of
80 steps of the compression function of SHA-512 [53]. Let H be 48-step reduced version of the
compression function of SHA-512, Hy and H; be two sub-ciphers: H = H; o H;. The boomerang
attack on a compression function can be described as follows [53]. Especially, in [53], Hp is the first
23 steps of and Hj is the last 25 steps.

step| Aw; | Aa |Ab|Ac Ad Ae Af Ag Ah
64 23,25,30,36,46,50 0 0 28,36 | 25,30

1 64 23,46,50 28,36
2 64 23,46,50
3 64 23,46,50
4 64 23,46,50
5 64
6 64
7 64
8 64

9-22
33 [56,57,63|56,63 56.63

Fig. 25. The top differential path used for boomerang attack on SHA-512 [53].

23 133,40 2,7,13,23,27,64 41 5,13 il X1 (Aess)
24 | 41 2,7,13,23,27,64 41 5,13 41

25 41 2,7,13,23,27,64 ,13 2,7
26 41 23,27,64 5,13
27 41 23,27,64
28 41 23,27,64
29 41 23,27,64

step | Aw; | Aa Ab Ac Ad Ae Af Ag Ah
2,7

SIS

<

31 41
32 41
33 | 41

48 133,40(33,40 0 0 0 33,40 0 0 0

Fig. 26. The bottom differential path used for boomerang attack on SHA-512 [53].

— Choose a random chaining value v(") and a message w"), compute v?) = v 43, v = (1) 4~
v® = 0B 4+ 8 and w® = wD + B, WA = wW® +~,, W = w® + 3,. We get a quartet
S = {(v®, w®}i=1,2,3,4}.

— Compute backward from the quartet S using H, ! to obtain the initial values, IV;, IVs, IV,
and I'Vy.

— Compute forward from the quartet S using H; to obtain the output values hy, ho, hs, and hy.

— Check whether IVy — IV} = IV, — IV3 = o« and hg — hy = hy — ho = § are fulfilled.

Let Aa be the XOR difference between a and o', and Aa : i (1 <i < 64) is used to denote that
the i-th bit of a is different from the ¢-th bit of @/, and the rest of the bits of a and a’ are the same.
Let w; be the expanded 64-bit message word at i-th step. Fig. 25 is the characteristic for Hy and
Fig. 26 is the characteristic for H; [53].

Then, the boomerang attack procedure on the 48-step reduced version of the compression func-
tion of SHA-256, which is described in [53], is as follows:
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1. Randomly select eleven 64-bit message words wgl) (22 << 32), and a 512-bit chaining variables

v%):(a%), b%), TR h%)). Modify the messages wgl) (22 <i < 32) to meet the conditions in Fig.
28. Compute v\ (23 < i < 33). Modify v} and w!" (22 < i < 32) so that v\ (24 < i < 33)
satisfy all the 59 conditions in Fig. 29.

2. Let w§2) = ( )& Aw (1 2) wgg) = ( )@ Awfl’g), w§4) wZ@) ® sz(l,:}) (22 < ¢ < 32), where
let wl(jl 72) denote the XOR difference of w(]l) and w(”) The message differences Awgm) and
Awgl’?’) are defined in Fig. 27. Compute v( 2 (j = 2,3,4;23 < i < 33). Modify vé? and wgl)
(22 < i < 32) so that v( ) (24 <4 < 33) satisfy all the 59 conditions in Fig. 29 in one side and

18 conditions at step 23 in Fig. 29 in the other side. Check whether vé ) EDU(3) = ( ) EB’U( ) — =0,
which will hold with about 274!, because there are 41 more conditions in step 24- 31 in Flg 29.
If yes, goto the next step. (Note that in [53], 2740 is used rather than 2=*', which is not clear)
Otherwise, go back to step 1.

3. Select five 64-bit message words w(l) (17 << 21) randomly, which means that there are 320-bit

freedom to choose. Let w( ) = w(l) (17 < ¢ < 21). Compute w(l) and w(2) (33 <1 <47,0<

i < 16) in forward and backward directions separately. Let w( ) w( ) and w(4) w( ) when

33 < i < 37. Compute wg ) and wl( ) when 38 < ¢ < 47 and 0 < ¢ < 21 by the message
expansion.

4. Compute 11%]2), véjl) ceey (]) (j = 1,2,3,4) in forward direction. Check whether v( ) v(()l) =

v(()4) — v(()g) and U(Q) Ufé) = 04(18) — vg), which can hold with probablhty 2751 because the
probability of steps 22 to 1 of the top differential path is about 2~ (but it was not explained
in [53] how the authors got this probability 2745.), and the probability of the message expansion
is 276, If yes, output w(j) (j =1,2,3,4;0 < i < 15) and vgj) (j = 1,2,3,4). Otherwise, go to
step 3.

Hence, the complexity of the 48-step attack is 240 4 245 x 26 ~ 251 while its generic best
attack requires the complexity 22°% by the zero-sum distinguishing attack [2]. And [53] provided an
example of boomerang distinguisher as shown in Fig. 30.

) A2 Aw'?)

22(4180000000000000{0000008100000000
23|8000000000000000{0000010000000000
2410502081000000002
25(0200100000000004
26(2804080001020010
27(1008000002000020
28(00825520891408a 1
29|¢c184220110080140
30{0504804080200408
31{0001008000400800
32(2ab100a291089050|0000010000000000

[en) Nen] Nen) N av] Nan] as] Han) Nan)

Fig. 27. Message differences in steps 23 to 33 [53].
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Fig. 29. The conditions of chaining variables in the middle steps [53].
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d98d2e211f08b5e3 3185a2321¢c2013d0 493b7695ecb8bc63 40dde2bb03£f050£7
7897cf7f1c02fa18 c0e30c69¢c197577d £6016b4df4a5101b 44cf12bc7c5£f7£89
d28a43112a41160f a481e26554eddb75 8adfbecd8ee90f42 8c10896df299f0a3
8bd715591505422b 82£9e09643a6f94e 82e783224a988778 d858b794e8b95ada
d98d2e211f08b5e3 3185a2321¢c2013d0 493b7695ecb8bc63 40dde2bb03£050£7
2ec928b5e9b2bae2 da67703373£8£947 c4c2b463d9c34453 a4d359b70a54809d
829416361dlacc84 49208682435343aa 8adc7bbefe34b2e8 d6bcd7d0a70c5663
efbab6123cadba871 a134d5cebfaebe21 €32944037719f06e 81033c0b86b9f18e
9d4d5849a78a6aa9 4634d6dd6a193ca7 783f014e5106c88e bcd2£996a68b63f7
2ec928bbe9b2bae2 da67703373£8£947 c4c2b463d9c34453 a4d359b70a54809d
829416361d1acc84 49208682435343aa 8a4c7bbefe34b2e8 56bcd7d0a70c5663
efba6123cadba871 al34dbcebfaebe21 €32944037719£06e 81033c0b86b9f18e
9d4d5849a78a6aa9 4634d6dd6al193ca7? 783£014e5106c88e bcd2f996a68b63f7

v

w®

IV(B)

v

MD
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Fig. 30. Example of a quart satisfying H(IV®, M®) - HIV® MDY - HIV®  M®) + HIVE, MP) = 0 for
48 steps of the SHA-512 compression function. [53].
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3.3 SHA3-224
As shown in Sect. 1.3, SHA3-224 is defined as follows:
SHA3-224(M) = KECCAK[448](M |01, 224)

However, since all known cryptanalytic results were done only for KECCAK[448](M, 224) without
the two-bit 10 padding, the results cannot be directly applied to SHA3-224. Nonetheless, the results
on KECCAK[448] (M, 224) clearly show the security strength of SHA3-224, because the attack tech-
niques on KECCAK[448](M, 224) can be also applied to SHA3-224 with a small change by considering
the two additional padding bits. Therefore, in this subsection, we focus on describing all known
cryptanalytic results on KECCAK[448](M,224). For simplicity, we will call KECCAK[448](M,224)
KECCAK-224(M).

Best Practical Collision-type Attack on Keccak-224 The best practical collision attack on
KECCAK-224 is the attack on the four round version of KECCAK-224, which is described in [22].
They even provided a collision pair which was found within a few minutes on a single PC. In this
subsection, we will describe their attack idea step by step. Note that A round function R of KEC-
CAK-224 consists of five steps, 0, p, 7, x, and ¢.
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Fig. 31. A Double Kernel trail for 2-round characteristic leading to collisions on KECCAK-224 and KECCAK-256 [27,
46, 22]: The probability of the first transition is 2712 The probability of the second transition is 1, since there are no
active Sboxes which affect the output. — indicates the four-bit zero difference. Note that the order of lanes is from
left to right.

For understanding the attack, we need to know the notion of a column parity kernel or CP-
kernel that was defined in the KECCAK submission document [9]: a 1600-bit state difference is in
the CP-kernel if all of its columns have even parity. It is easy to see that if a state differece a is
in the CP-kernel, a is a fixed state of #, that is, a = 6(a). Since p and 7 just reorder the bits of
the state, the total hamming weight of a state is preserved. In other words, when let a’ = 7(p(a)),
then HW (a) = HW (a'), where HW (x) means the hamming weight of z. Also, when a’ is a low
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hamming weight differential state, x(a’) will be same as a’ with a high probability. Since ¢ is the
operation of adding a constant, there is no change of difference and hamming weight. Therefore,
if an input state a of a round function R is in CP-kernel, then HW (a) = HW (R(a)) with a high
probability.

In [27] and [46], the authors provided differential characteristics that input differential states
of the first and second rounds stay in the CP-kernel, which are named double kernel trails in [46].
The 2-round characteristic in Fig. 31 is an example of a double kernel trail, where — indicates
the four-bit zero difference. Since KECCAK-224 takes the first 224 bits of the final 1600-bit state,
the 2-round characteristic in Fig. 31 provides a collision after two rounds in case of KECCAK-224.
Later, the 2-round characteristic in Fig. 31 will be used for 4-round practical collision attack on
KECCAK-224 in [22].

In [22], the authors backwardly extended one more round from the 2-round characteristic of
Fig. 31 as shown in Fig. 32. The characteristic is a 3-round characteristic leading to collisions on
KECCAK-224 with probability 2724 [22]. As we can see from Fig. 32, the hamming weight of the
input differential state of the 3-round characteristic is very high due to the diffusion effect by 6.

| 26978AF134CB835E | AF224C4D78366789 | CADAE35E2656F26B | 357C4789AF3-6AF1 | 78D3526BC6A74C4D |
| 26978AF134CB835E | AF224C4D78366789 | CADAE35E2656F26B | 357C4789AF3-6AF1 | 78D3526BC6A74C4D |
| 26978AF134CB835E | AF224C4D78366789 | CADAE35E2676F26B | 357C4789AF3-6AF1 | 78D3526BC4A74C4D |
| 26978AF134CB835E | AF224C4D78366789 | CADAE35E265EF26B | 357C4789AF3-4AF1 | 78D3526BC6A74C4D |
| 26978AF134CB835E | AF226C4D78366789 | CADAE35E2656F26B | 35FC4789AF3-6AF1 | 78D3526BC6A74C4D |

| | |
! | |

| ~mmmm e | -mmmm e | ~mmmm oo | -8 |
| | e e |
| | | |

| |
| |

| ~=mmmm oo | ~mmmmm oo | == 1----
! |
| |

|
|
———————————————— R B
|
|

Fig. 32. A 3-round characteristic leading to a collision on KECCAK-224 with probability 272* [22]. Note that the
order of lanes is from left to right.

Let AT be the input differential state of the 3-round characteristic of Fig. 32 as shown in Fig.
33.
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|26978AF134CB835E | AF224C4D78366789 | CADAE35E2656F26B | 357C4789AF3-6AF1|78D3526BCEAT4ACAD |
| 26978AF134CB835E | AF224C4D78366789 | CADAE35E2656F26B | 357C4T89AF3-6AF1| 78D3526BC6A74C4D |
|26978AF134CB835E | AF224C4D78366789 | CADAE35E2676F26B | 357C4789AF3-6AF1 | 78D3526BC4AT4C4D |
|26978AF134CB835E | AF224C4D78366789 | CADAE35E265EF26B | 357C4789AF3-4AF1|78D3526BCEAT4CAD |
| 26978AF134CB835E | AF226C4D78366789 | CADAE35E2656F26B | 35FCAT89AF3-6AF1 | 78D3526BC6A74C4D |

Fig. 33. A Target Difference AT": This is the input differential state of the 3-round characteristic shown in Fig. 32.
Note that the order of lanes is from left to right.

Here, we focus on collision attack on 4-round KECCAK-224. For any hash output size, r+c¢=1600,
where r is the bitrate and c is the capacity. In case of KECCAK-224, r=1152 and ¢=448, where the
capacity size is defined as 2x224. Also, as the padding rule, pad10*1 is used. In case of KECCAK-
224, given any message M, pad10*1(M)=DM]|[10'1, where ¢ is the least non-negative integer such
that the bit-size of pad10*1(M) is a multiple of r(=1152).

Let R be the round function of KECCAK-224 and let p be the 8-bit pad 10000001. In order to
find a 4-round collision using the characteristic of Fig. 32, [22] provides an answer to the following
question,

“Given a target difference AT, how can we find two different 1144-bit M and M’ such that
R(M||p||0*8) & R(M'|[p||0%®) = AT?”

[22] developed an algorithm, called the target difference algorithm (TDA), to solve the above
problem. Given a target difference AT, the TDA efficiently produces message pairs (M, M’)’s such
that R(M||p[|0**) & R(M'|]p][0***) = AT.

And Let DDT(6,6°") be {z € {0,1}°|x|5(x) ® xj5(z & 6) = 6°'}.

In order to answer to the above question, we need to understand the following important
property, which is already described in [22],

“For any non-zero 5-bit output difference §°* to KECCAK Sbox X|5, the set of possible input
differences, {6"*|DDT (5", §°%) > 0}, contains at least 5 (and upto 17) 2-dimensional affine
subspaces,”

A 2-dimensional affine subspace means that it can be described by {z,z @y, x G z,z Dy & 2},
where x is a 5-bit value, and y and z (y # z) are any non-zero 5-bit values. Therefore, the above
property shows that there are at least five 2-dimensional affine subspaces which are contained in
{6"| DDT (5, 5°%) > 0}.

Firstly, given a AT, we know the possible 1600-bit input different of y from {§**|DDT (5™, §°ut) >
0}, where §°“! is defined according to AT. But, our concern is not {§"*|DDT (5", 5°%) > 0}, but
an affine subspace {z,r ® y,z @® 2,7 ® y ® 2} which are contained in {§"*|DDT (6™, 5°%) > 0},
where 6°“ is defined according to AT

Since the bit-size of AT is 1600, we can divide AT into 320 5-bit differences and take only
non-zero 5-bit differences (say that there are ¢ non-zero 5-bit differences from AT'), denoted by §9%
for 1 < i < t. And for each 67", let us choose one affine subspace, say AS; = {z;, z; ® y;, x; D
2i, 0 ®y; Dz} for 1 < i < t, which are contained in {§"*|DDT(6, §¢%) > 0}. Therefore, any 5-bit
difference, say s;, in AS; can be possible to produce its corresponding five-bit output difference
sout,

Let L' be 6 top~tor™h
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Then, our interest is how can we select (s1, Sg, ....., 5¢) such that the last 456-bit of L=!(s) is

p||0%48, where s be the 1600-bit input difference of y which is determined by (s, s2,

,st). For

this, firstly, [22] suggests to describe each AS; (for all i) by three linear equations over 1-bit.

For each 5-bit s;, we denote s; = s; 1||54,2||5:,3][5i.4
we denote x; = x;1||%; 2|2 3] |75 4| |25, Yi = Yin

’Si75. For AS; = {a:i, i DYi, x; Dz, xi@yi@zi},
Vi 2||vi3l|viallvis, and 2z = 21|z 2]|2i,3]| 25,4

|Zi’5.

Therefore, we can form the following five linear equations and each bit of s; is defined by two

1-bit variable a and b only.

si1=Ti1Da-y1Db-
Si2=Ti2@a-Y2Db-
sig=Ti3Da-y3Db-
Sia=TiaDa-YsDb-
Si5=Ti5Da-y5Db-

Zi1
Zi 2
233
Zi 4
25

Any s; is possible as long as there are a and b satisfying the above five linear equations. Since
there are two 1-bit variables a and b, we can reduce the number of equations from 5 to 3 by replacing

a and b as follows.

— Since for any i y; and z; are non-zero 5-bit differences and y; # z;, there should exist a j such

that y; ; # z; ;. Without loss of generality, assume j =1 and y; ; = 1, so z;1 = 0.

— Rearrange the first equation and get a new linear equation, a = s; 1 @ x;,1, and apply this to

the second equation.

— The second equation is changed into a new equation b = s;2 @ ;2 ® (Si,1 P xi1) - Yi2-

Apply these two equations to the remaining three equations by replacing a and b.

Finally, we get the following three equations and any s; is a possible input difference of chijs

when the three equations holds. That is, given AT, in order to find s;, we have to solve the

following three linear equations with five variables s; 1, 8;2, $i 3, Si4, and s; 5.

Si3 =3B (i1 P win) Vi3 ® (Si2®Ti2® (si1 P xin) - Yi2) - 2i3
Sia=Tia P (i1 Pxin) Yia® (Si2DTi2® (i1 Bxin) - Yi2) - 2ia
Sis=Ti5 DB (i1 P xin) Yis D (Si2® Ti2® (i1 P xin) - Yi2) - 2is

Since 1 < i < t, we can construct 3t linear equations with 5¢ variables in total. Also, since
the last 456-bit of L~!(s) should be p||0*®, 456 linear equations are added. Therefore, we have to
solve (3t + 456) equations with 5¢ variables. For example, for ¢ = 310, as shown in [22], we can get

a solution subset of dimension at least 164, that is, we can find

s’s which are possible input

difference of y and satisfy the padding constraint given by p||0**®. Moreover, given any s, we can
calculate actual values using DDT (6, 6°%). Therefore, we can find 2'6* (M,M’) pairs from 2164
s’s by applying L~!. In this way, the target difference algorithm was developed in [22].

Now, we only need to connect one of these (M,M’) pairs to the 3-round characteristic given in
Fig. 32 with probability 2724, Finally, we can get a 4-round collision as shown in Fig. 34.
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Mi=

FAC7TAC69 2710BE04 8462C382 7ABF1BF9 DO65CD30 DB64DEB8 1410CD30 C837D79B 22E446B7 31E9BDGL5S
A6B2074C C86E32CC DE50A10A F7BAAAS8 D96CBC88 9FBD75F6 SEOD735A D22AA663 16A574AA 7DB08692
558AB029 109B4D30 86CESDCA 13A295C7 E7COD94B 648794D2 62EE3CF8 69439337 8CABOF15 AC7C3267
90F41CBE A20E6893 B4781F24 0BA37647 F29A67A0 81F628D0

M2=

CEGBFBC81 47710FCC 462C92E0 48F5D2CF F92F6EC3 053E64E1 570780B9 F838ECH4 8F74809F 66B4ACEF
70DD1843 BF34F0C5 5010C89A D8791148 D5CCO73E 3239AEBC 7DF48D79 OEC7767B FB081604 AFA975B9
F8EFAEQF ED793473 479E931C F2F80A74 7192D0O8F S5EBGSAB27 F1CACO4E F394232D 48656B2A A3471644
DB74E60A O5FB3B18 41DC27C3 8384BF53 32534C3E 811CO0B5

Output=
826B10DC 0670E4E1 5B510CDA AB876AA8 B50557ED 267932FB AA4D38ES

Fig. 34. A collision for 4-round KECCAK-224 [22].

Best Practical Preimage and Second-preimage Attack on SHA3-224 There are two types
of practical preimage attacks on reduced versions of underlying permutation of SHA3-224. One is
the dedicated attack utilizing a round structure of the underlying permutation of SHA3-224. The
other is the general attack (not depending on specific structure) using the SAT solver algorithms.
Till now, the best dedicated attack is a 2-round preimage attack on KECCAK-224 and KECCAK-
256 with time complexity 233 and memory complexity 229 [46]. The best SAT-solver-based general
attack is a 3-round preimage attack on KECCAK-p with time complexity about 234 when the message
size is 40-bit and hash output size is 1024-bit [45].

DEDICATED PRACTICAL PREIMAGE ATTACK ON 2-ROUND KECCAK-224 AND KECCAK-256 [46]:
See Fig. 85. As explained in [46], we are given a hash value, which is 4 (in case of KECCAK-256
according to the index ordering in Fig. 4) out of the 5 white lanes in the most right slice #4, in
Fig. 35, that represents the final state after the permutation. In Fig. 35, each white lane is a lane
known and fixed, each colored one, a not-yet-fixed lane. The fifth lane is not known but we can
choose a random value for it and fix it.

See Fig. 36: ag, a1, - ,eq,e1 are message conditions such that ag = a1, -+, eg = e1 to bypass
0’s diffusion effect. Therefore, there are 318 (=4 x 64 + 62) degrees of freedom for the message,
because we can choose any values for ag, by, cg, €9 and can freely choose the first 62 bits of dy due
to 10*1 padding rule. The number k£ under x; means that xz; at slice z on the left side gets moved
to slice z + k (mod 64) after the transformation

In the forward direction from #1 to #2, we can compute the known white lanes in #2 after
0, p, and 7. In the backward direction from #4 to #3, we can compute the values of 5 white
lanes in #3 from the fixed value of 5 white lanes in #4. Now, we only need to find suitable 318 bit
message bits which enables the forward and backward directions to be matched. In this way, we can
find preimages of 2-round KECCAK-224 and KECCAK-256 with time complexity 232 and memory
complexity 229 [46].
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Fig. 35. Strategy of 2-Round Preimage Attack on KECCAK-224 and KECCAK-256 [46]: the numbering of indexes
follows Fig. 4. Each square represents a 64 bit lane. Each white lane is a lane known and fixed, each colored one, a
not-yet-fixed lane.
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Fig. 36. Shows how the bits ag, a1, - ,eo,e1 get moved by 6, p, and 7 [46].

PRACTICAL PREIMAGE ATTACK ON 3-ROUND KECCAK USING SAT SOLVERS[45]: Before we
explain about SAT and the application of SHA solvers to preimage attacks on hash functions, let
us consider the following example in [49].

pVvgVr pV gV -r -pVaqV-r -pV-qVr

pVaqgVr,pV-oqV-r, - pVqgV-r, and -pV gV r are called “clauses”. Especially, the
above four clauses are related to p @ ¢ @ r = 1. More precisely, any solution (p,q,r) of the
boolean equation ‘p & ¢ & r = 1’ makes the values of above all the four clauses ‘1’. A formula
(pVagVr)AN(pV-gV-r)\(-pVqV-r)A(—pV-qVr)isa conjunction of the four clauses, which
is called a conjunctive normal form(CNF). We say that if there is a solution (p,¢,r) making all
the four clauses of the formula ‘1’, we say that the formula in CNF is satisfiable. In case of XOR
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operation with n literals, 2”1 clauses are required to form a formular in CNF related to a problem
of finding a solution of the XOR operation with n literals.

Another example is for 32-bit modular addition [49]. As explained in [49], a full-adder circuit
takes three inputs, x, y, and ¢;,, (the three bits to be summed), and outputs two bits, s (the lower
bit of the sum) and ¢y (the carry bit). We can give s and ¢y as functions as follows [49]:

S(.%'7 Y, Cin) =TDYDcCin
Cout(xaya Cin) = ((:C S y) A Cin) \ (33 A y)

Each of the binary XOR gates requires 4 clauses to encode, while each of the binary AND
and OR gates requires 3 clauses. Encoding a binary 32-bit adder circuit therefore requires 32 x 4
variables (in addition to the 3 x 32 variables for x, y, and s) and 32 x (2 x 4 + 3 x 3) = 544 clauses
[49]. In this way, all the operations in a hash function can be described in clauses. And a problem
of finding a preimage of a hash function can be reduced to finding a solution for the CNF of all the
clauses.

Morawiecki and Srebrny [45] developed CryptLogVer for generating CNF of a hash function
along with a given preimage which is passed to the SAT solver PrecoSAT [13].

| Input parameters | Attack times [secs] |
Function Number offMessage |Hash size|SAT-solver |Exhaustive
rounds size [bits] |([bits] attack search
KECCAK[1024,576] |3 24 1024 2’ 2!
KECCAK([1024,576] |3 32 1024 2 oF
KECCAK([1024,576] |3 40 1024 glos= 2
KECCAK[120,80] 3 24 80 20 g4
KECCAK[120,80] 3 32 80 257 2°
KECCAK([120,80] 3 40 80 . dd B
KECCAK([24,26] 4 24 24 pal e
KECCAK[24,26] 5 24 24 s %

Fig. 37. Preimage attacks: SAT-based attacks vs. exhaustive search. [45]: The experiments were carried out on a
4-core Intel Xeon 2.5 GHz which was a part of Grid’5000 system. [33]

Finally, Morawiecki and Srebrny [45] had found a preimage for the 3-round KECCAK-f[1600]
with 40 unknown message bits with about time complexity 234, which is faster than the generic
attack complexity 2%9. However, this attack cannot be applied to preimage attacks on reduced-
round KECCAK-224, because they only considered a specific situation that a message size is only
40-bit, which is much smaller than the bit-rate size 1152 of KECCAK-224.

Fig. 38 shows current status of preimage challenges [5]. According to Fig. 38, there is no practical
attack finding preimages for more than two-round version of KECCAK.

40



Function Pre-image Image
Keccak[r = 40, c = 160, n, = 1] found by Joan Boyar and Rene Peralta e f5 7f €2 a9 b@ eb d8 44 98

Keccak[r = 240, c = 160, n-= 1]  found by Pawel Morawiecki d9 db d3 c8 4d la cl d7 5f 96
Keccak[r = 640, c = 160, n.= 1]  found by Pawel Morawiecki 3f A1 9f 88 1c 4D of fec 5f d7
Keccak[r = 1440, c = 160, n-= 1] found by Pawel Morawiecki ef @a f7 @7 4b 6a bd 48 6f 80
Keccak[r = 40, c = 160, n, = 2] ? 92 4a 55 18 el e9 5d b5 32 19
Keccak[r = 240, c = 160, n-= 2]  found by Pawel Morawiecki 7a b8 98 1a da Bf db 6@ ae fd
Keccak[r = 640, ¢ = 160, n = 2]  found by Pawet Morawiecki 82 8d 4d @9 85 Be @6 35 87 Se
Keceak[r = 1440, c = 160, n, = 2] found by Pawel Morawiecki 63 9@ 22 @e 7b 5d 32 84 d2 3e

Keccak[r = 40, c = 160, n, = 3]
Keccak[r = 240, c = 160, n. = 3]
Keccak[r = 640, ¢ = 160, n. = 3]
Keccak[r = 1440, ¢ = 160, n- = 3]
Keccak[r = 40, c = 160, n. = 4]
Keccak[r = 240, c = 160, n, = 4]
Keccak[r = 640, c = 160, n = 4]

d8 ed 85 69 2a fb ee 4c 99 ce
5c 9d 5e 4b 38 5e 9c 4f Be 2e
@@ 7b b5 c5 99 88 66 @e 02 93
@6 25 a3 46 28 @ cf e7 6c 75
74 2c 7e 3c d9 46 1d @d 63 4e
@d d2 5e 6d e2 9a 42 ad b3 58
75 1la 16 e5 ed 95 el e2 ff 22

S "LV IV )

Fig. 38. Pre-image challenges and status [5]

Best Theoretical-but-Marginal Preimage and Second-preimage Attack on SHA3-224
The best theoretical-but-marginal preimage attack on SHA3-224 is the attack [19] on the 7-round
version of SHA3-224, which requires time complexity 22'%11 and memory complexity 2'8%12, Since
the same attack technique is applied to all other variants of SHA3 family, we firstly describe its
attack idea using the slides presented by [19] at the SHA-3 workshop in 2014. Note that this
preimage attack can be also considered as a second-preimage attack.

The attack’s complexity is going to be measured in terms of number of bit-operations such as
® and A, and so on. Fig. 39 shows that the number of bit-operations of each round of KECCAK-p
is, in total, at least 8064 (=1600+1280+320+4800+64) bit-operations to compute one round.

For 0<x<4, 0<y<4, 0<z<63.

1600 bit-operations 1590 pit-operations

320 bhit-operations
ey

s alx]y][z] ¢ alz][y][= QH);,:“ alz — 1] [_u’][:(ﬂé ;,:” alz + 1][y'][z — 1]
poalx][y][z] « alx]y][z — @+ (T +2)/2],

y t
01\" /1 r Do
with ¢ satistying 0 < t < 24 and (‘) ,3) (“) = (') in GF(5)2%2,
2: y

oot=—-1lifr=y=0,
'
_U; ?

. FRdE o i il _1_)

alz]ly]  a[2'][y], with (U) = (2 3
a [r} — r:L.J_’J\@ (rr[‘r - 1] &1)a [J‘ — 2].

G 4 i {@‘{U[":-J- 4800 bit-operations

64 bit-operations

o)

-

Fig. 39. Number of Bit-operations of each Round of KECCAK-p: In total, at least 8064 (=1600+1280+320+44800+64)
bit-operations are required to compute one round.
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Fig. 40 shows that general preimage attack complexity for Keccak-o, where o is the hash output
size requires r x 8064 x 2° bit-operations to find its preimage with high probability.

|

i
| ;

1600-2> H—{tastobit}———
|
ur
— |

2xo0| |0 > —:—»

absorbing i squeezing

sponge

Fig. 40. General Preimage Attack Complexity for Keccak-o, where o is the hash output size: So, given a o-bit hash
value Z, we need r x 8064 x 2° bit-operations to find its preimage with high probability.

POLYNOMIAL ENUMERATION (used by Dinur and Shamir [26]): Given a boolean function f; (1 <
i < b) with n-bit input and degree d, where f; is the i-th output bit of f, polynomial enumeration
algorithm is a way of constructing the truth table of f; by the following two steps:

: J
J=0
2. Construct the truth table of f; using the fast Moebius transformation with time complexity
nx2n 1,

d
1. Compute coefficients of f; with time complexity Z(2j X (n) )

THE FAST MOEBIUS TRANSFORMATION: This transforms the coefficient array of a boolean function
to its truth table array. For example, see Fig. 41.

Coefficient Array Truth Table Array
O_ Clw O f(ororo)
1 1 1 57 f(0,0,1
0- [ OR~ 0 4&——f(0,1,0
0 1] | 1<4—f011
1- Ll 1Jd— #1100
0 1 0<— (101
1= 0 0 f(1,1,0
1 1 0 ﬁ 111

Fig. 41. The Fast Moebius Transformation in case that f(z1,z2,23) = z1 ® 17223 ® x122 ® 3: Generally, for n
variables, n x 2"~ 1-bit XOR operations are required.
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PREIMAGE ATTACK ON A HASH FUNCTION H USING POLYNOMIAL ENUMERATION (used by Dinur
and Shamir [26]): Given a o-bit hash output Z, the attack consists of the following two steps:

1. By polynomial enumeration algorithm, efficiently find messages M’s which partially match over
b bits of the given o-bit hash value, where b is a value less than o.

2. if there is M s.t. H(M) = Z, then return M else goes to Step 1.

IMPROVING POLYNOMIAL ENUMERATION (by Bernstein [12]): Given a boolean function f; (1 <
i < b) with n-bit input and degree d, where f; is the i-th output bit of f, polynomial enumeration
algorithm is a way of constructing the truth table of f; by the following two steps:

d
1. Compute coefficients of f; with time complexity Z(] X <n> ).
. J
7=0
2. Construct the truth table of f; using the fast Moebius transformation with time complexity
nx 2n 1L,

Bernstein [12] suggested an idea of storing the partial sums and reusing them to speed-up the
d

d
polynomial enumeration algorithm. So, he could improve Z(Qj X (n)) into Z(] X (n)) But,
, J , J
7=0 7=0
Bernstein did not define the algorithm in detail. Later, by [19], as shown in Fig. 7?7 His idea was
formally described in [19].

APPLICATION TO 6, 7, 8 ROUNDS OF KECCAK-512 ( by Bernstein [12, 21]): The followings are
results:

— 6 rounds: 2'7 bits of memory give a workload reduction by a factor 50 ( 6 bits)
— 7 rounds: 23%° bits of memory give a workload reduction by a factor 37 (5 bits)
— 8 rounds: 2598 bits of memory give a workload reduction by a factor 1.4 (half a bit)

FURTHER IMPROVING BERNSTEIN’S RESULTS (by Chang et al. [19]): The results of [19] can be
summarized as follows:

— Bernstein only described the idea of improving Step 1 complexity. However, overall time and
memory complexity of his attack is not clear.

e Result 1: Based on Bernstein’s idea, [19] made Algorithm 1 (in Fig. 42) for generating the
coefficient array of a boolean function with detailed time and memory complexity.

e Result 2: We provide a general preimage attack methodology on hash functions using Result
1 and meet-in-the-middle-matching technique.

e Result 3: Using Result 2, as an example, we further improve Bernstein’s result upto 9 rounds
of KECCAK-512.
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Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C' of size 2", which is initialized with all zeros in the beginning

1 begin

2 1=0;

3 while | < d do

4 for A€ a AND |A| =1do
5 y=0;

6 i=0;

7 y=F(54);

8 Sumo[Sa] = y;

9 while i < [ do
10 y=y & Sum;[Sa,it1];
11 =il
12 Sum;[Sa] = y;
13 C[Sa) =y, where Cj4 is also same as C[S4];
14 I=1+1;

Fig. 42. Algorithm 1 for Computing the Coefficient Static Array of a Boolean Function (Result 1)[19]: This is followed
by Bernstein’s idea in [12]

Algorithm 1: Computing the Coefficient Static Array of a Boolean Functian
Input: Boolean function f wilﬁ n-bit inpuamd having algebraic dog‘tec(glt most d )
Result: Coeffient static array C o , which is initialized with all zerosTh the beginning
1 begin
2 1=0;
'y = . <

s | whilel<d a={A:|Al]€dandA c={1,2,.....,n}}

4 for A ND |A] =1 do The time complexity of f isT.

5 y=0; / (in terms of number of bit-operations)

6 i=0;

7 y=J(Sa); | 2bit-operations(1 XOR, 1-bit memory access of staticarray Sum)

8 Sump[Sa| =3

0 while i <1 do ,/ 2 bit-operationsare needed on average
10 y =y @ Sum;[Sain];
11 i=i+1; 1 bit -operation (1-bit update of staticarray Sum)
12 Sum;[Sa] = ¥;
13 '[Sa] = y. where C, Is also same as C[S4): Step 7
¥ d=i1; ,Step 10,11,12 /
Time Complexity:( 5 x (Ed [ X (n) 1 X Zd (n)

N [=0 l =0\
— — — —

Memory Complexity: (Qd - 1) x 2™ 427

Fig. 43. Time Complexity of Algorithm 1 for Computing the Coefficient Static Array of a Boolean Function (Result
1) [19]: This is followed by Bernstein’s idea in [12]
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Algorithm 1: Computing the Coefficient Static Array of a Boolean Function

Input: Boolean function f with n-bit input and having algebraic degree at most d
Result: Coeffient static array C' of size 2", which is initialized with all zeros in the beginning
begin

; 1=0: Current Sum Arrays: Each Sum array (which is static) has 2"

3 | whilel<ddo elements of size 1-bit. We need at most d+1 current Sum arrays.

4 for A€ a AND I do

5 y=0;

6 i=0; Previous Sum Arrays : Each Sum array (which is static) has 2"

7 y=1(58: elements of size 1-bit. We need at most d previous Sum arrays.
9 while ¢ < Jdo

10 y = yfp Sum;[Sa ;i 11]:

11 i—ijghl:

12 e Coefficient Array (which is static) has 2" elements of size 1-bit.
13 & where C,4 is also same as C[Sal;

14 i=l+1;

Time Complexity: 5 X (Zf:ol X (?)) ek Z?:O (T;)

Memory Complexity: (Qd + 1) x 22"

Fig.44. Memory Complexity of Algorithm 1 for Computing the Coefficient Static Array of a Boolean Function
(Result 1) [19]: This is followed by Bernstein’s idea in [12]

@ Repeat 2°" times

| Message M with n variables I
| l I
I |
I Polynomial I
I Enumeration I
I ® (Algorithm 1 H 1 I
I and the fast I
I Moebius (with Time Comp. T’) . o
I Transformation) @ M_at-chmg w'_th I
: remaining o-b bits :
| @ g-bit matching (q>b) 1
| T 1
! 1
; Table Look-up . ) H 2 !
I (with Time Comp. T”) I
I (alarge I
i memory may b bitsI |
I be required) ; !
L Given: o-bithashvalueh 1
______________________________ |

Fig. 45. General Preimage Attack on H = Hs o H; (Result 2) [19]
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Time Complexity:

|bx2q><T”+2q_bx(q—b)xq+

@ Generating lookup Table for H,
® Algorithm 1 (here, w=1)

da

@ (T'xz(?))+((2w+3)qu§:jx (’;))

+

gxnx2" Y+

- =0

~
(T x 2" %)+ (max{(q — b),1} x 2" x g)|,

@ Matching over remaining @ Matching over g-bit
o-q bits (where T=T'+T"")

Memory Complexity:

q x 2q7b|+ k2d+ g+1)x 2“|

@ the fast Moebius
Transformation

Lookup Table for H, g Coefficient arrays and 2d+1 Sum arrays of size 2" for

Polynomial Enumeration

Fig. 46. Complexity of General Preimage Attack on H = Hz o Hy (Result 2) [19]

@ Repeat 2°" times

Message M
Polynomial

Enumeration 1

@ (Algorithm1 First r-0.5 rounds
and the fast
L (degree: 2™1)

Transformation)
@ g-bit mthhin

. : Last 0.5 round
@{ nverting

no memaory b bitSI
required)
Given: o-bithash value h

B e e b  aa |

@ matching with
remainingo-b bits

Fig. 47. Application of General Preimage Attack to KECCAK (Result 3) [19]
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Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor

Keccak-256 [18] 2 Preimage 9% 2ees
Keccak-512 z E Preimage o008 64
Keccak-512 Preimage ot 64
Keccak-512  [12,8) 6 |2nd Preimage] 200 ar 50
12,8, 14 7 ™ o e =

12,8,14 8 = 27 2= 1.44

This work, § 7 6 Preimage/ o009 goeon 7.01

2nd Preimage

This wrael- £ 7 EF n 25()9‘49 211&.\';..‘ 6-13

Changet al's results 7 500973 531529 1.81

Keccak-224This work, § 8] 7 2 patEL glen.1s 58.66

Keccak-2560This work, § 8| 8 “ D i b 1.29

Keccak-384{This work, § 8 8 3 2710HIS goss 38.36

Keccak-512fThis work, § 8] 6 G govesd 104,43 85.70

This work, § 8| 7 e e 59.34

This work, § 8| 8 p ghuGs o 38.36

This work, § 8| 9 “ pETEm G SRRIE] 1.23

Fig. 48. 1st and 2nd Preimage Attacks on 6, 7, 8, 9 rounds of KECCAK (Result 3) [19]

Version | Reference | No. of | Type of Time Memory | Improvement
Rounds| attack Complexity| Complexity Factor
Keccak-256 [18] 2 Preimage 2% 2es
Keccak-512 Z t Preimage 000 64
Keceak-512 Preimage a0t 64
Keccak-51]  [12,8) 6 |2nd Preimage] 20 T 50
12,8,14 7 m o e /.37
12,8, 14 B i e d geme /7 1.4
This work, § 7 6 Preimage/ g e
2nd Preimage
Thioc nmael- £ 7 7 ” 25119-‘19 2“-%-\':-1
Changet al's results i T g0 =3 85.70
Keccak-224This work, § 8| 7 2 s I R
Keccak-250f This work, § 8] 8 5 277" 3755934
Keccak-384fThis work, § 8 8 A R et w5004
Keccak-514This work, § 8] 6 » 2755 1.44 - 38.36 85.70
This work, § 8| 7 g D R e LA 59.34
This work, § 8| 8 7 g New:1.23 SAegg35

[2=]

1
This work, § 8 : v g g s 1.23

Fig. 49. Comparison between Bernstein’s results and Chang et al.’s results (Result 3) [19]

Best Practical Distinguishing Attack on SHA3-224 The following zero-sum structures were
investigated to find distinguishers of the underlying permutation of SHA3-224 [39, 2]. According to
Fig. 51, zero-sum structures for 9-round and 10-round versions of the underlying permutation of

SHA3-224 can be found with practical time complexity 22983 and 25967, respectively.
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Definition 2. [15] Let F' be a function from Fy into F5'. A zero-sum for F of size K is a subset
{z1,--+ ,xx} C FY of elements which sum to zero and for which the corresponding images by F
also sum to zero, i.e.,

K K
1=1 =1

The above zero-sum structures can be easily found using the concept of higher-order derivatives
of a function. Higher-order derivatives of a function and its related property were well studied in [40].

Definition 3. [{0] Let F be a function from F3 into Fy'. For any a € Fy the derivative of F' with
respect to a is the function D F(x) = F(x 4+ a) + F(x). For any k-dimensional subspace V' of FY
and for any basis of V, {a1,- - ,ax}, the k-th order derivative of F with respect to V' is the function
defined by

DyF(z) = Dgy Doy -+ Do F(x) = Y F(x +v),Va € Fy
veV

And for every subspace V' of dimension (> deg(F') + 1),

DyF(x) = ZF(JJ—i—U) =0,Vz € F}
veV

For example, as shown in Fig. 50, the degree of the forward direction of 6-round KECCAK-p is
at most 60 and the degree of the backward direction of 4-round KECCAK-p is at most 27. This is
because the algebraic normal form (ANF) of the round function has degree 2 and the ANF of the
inverse of round function has degree 3. Therefore, once we choose a subspace of dimension 61 in
the middle, we can find zero-sum structures by an application of higher-order derivative concept.

4 rounds 6 rounds
degree < 27 degree < 60

Fig. 50. Structure of the 10-round Distinguisher for KECCAK-p [2].

Fig. 51 clearly shows how much time complexity is required to find zero-sum distinguishers for
some numbers of rounds of KECCAK-p [2]. According to Fig. 51, zero-sum structures for 9-round
and 10-round versions of KECCAK-p can be found with practical time complexity 22983 and 25967,
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type of backwards forwards total
bounds | #rounds degree < | #rounds degree < | #rounds complexity
1 slice 2 9 4 9 G 984t
1 lane 3 9 3 8 g 92900
1 lane 3 9 4 15 7 9laTT
1 slice 3 17 5 17 g 916.58
1 lane 4 2 5 30 g 92983
1 lane 4 27 6 60 10 959-67
I-per-row 5 81 6 60 10 2798
I-per-row 5 81 7128 12, 2500
1-per-row 6 243 7 128 13 924288
1-per-row 6 243 8 256 14 229577
2-per-row 6 243 9 512 15 9511.68
anywhere 6 729 10 1024 16 2102388

Fig. 51. Parameters of the best distinguisher for various total number of rounds. The columns “type of bounds” gives
the type of bounds used, either with respect to bits in a same slice (only if order < 25), in one lane (only if order <
25), at most two per row (3" *, 2", only with order < 640), or anywhere in the state (3", 2"). For consistency, we
give the normalized complexity in terms of evaluations of the permutation (assuming that computing a round has
the same complexity as computing an inverse round), e.g., the complexity given is 2'° x 26 = 2542 for the attack on
the first line, since it requires 2'° evaluations of the two rounds of the inverse permutations, out of six rounds in total
in the permutation considered [2].

Best Theoretical-but-Marginal Distinguishing Attacks on Keccak-256 A zero-sum struc-
ture of the full 24-round KECCAK-p can be found with time complexity 257 [29], which is still
far beyond the general collision attack complexity 2"/2 and the general preimage attack complex-
ity 2", where n is a hash output size (n=224 for KECCAK-224, n=256 for KECCAK-256, n=384
for KECCAK-384, n=>512 for KECCAK-512). This marginal zero-sum distingushing attack on the
full 24-round KECCAK-p can be applied to any of KECCAK-224, KECCAK-256, KECCAK-384, and
KrEccAk-512. Let us take a look at this marginal attack.

| forward | backward |
# rounds|bound on deg(R")||# rounds|bound on deg(R™")
1 2 1 3

2 4 2 9

3 8 3 27

4 16 4 81

5 32 5 243

6 64 6 729

7 128 7 1309

8 256 8 1503

9 512 9 1567

10 1024 10 1589

11 1408 11 1596

12 1536 12 1598

13 1578 13 1599

14 1592

15 1597

16 1599

Fig. 52. Upper bounds on the degree of several rounds of KECCAK-p and of its inverse [15].
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As shown in Fig. 52, [15] provided upper bounds on the degree of several rounds of KECCAK-p
and of its inverse. Soon later [28] improved the results of [15] as shown in Fig. 53.

round old New
1 3 3

2 9 9

3 21 27

4 81 81

5 243 243
6 729 729
7 1309 1309
8 1503 1454
9 1567 1532
10 1589 1566
11 1596 1583
12 1598 1591
13 1599 1595
14 1597
15 1598
16 1599

Fig. 53. Comparison of the Upper Bounds on Deg(R™") [28]: Old means the results of [15] and New means the
improved results of [28].

By the same authors [29], the Upper Bounds on Deg(R™") were further improved as shown in
Fig. 54.

Round Old Improved Bound
i 3 3
2 9 9
3 27 27
4 81 81
s 243 243
6 729 729
7 1309 1164
8 1503 1382
9 1567 1491

10 1589 1545
il 1596 1572
12 1598 1586
13 1599 1593
14 1599 1596
15 1599 1598
16 1599 1599

Fig. 54. The Further Improved Upper Bounds on Deg(R™") [29]: Old means the results of [15].
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From Fig. 52, Fig. 53, and Fig. 54, the degree of the backward direction of 11-round KECCAK-
p is upper-bounded by 1572 and the degree of the forward direction of 12-round KECCAK-p is

upper-bounded by 1536.
[15, 29, 28] considered how to extend one more round without increasing the degrees. The main

question is described in Fig. 55. How can we connect the forward direction and backward direction?

Complexi
11 rounds 21F5,1'2 » y
How to connect ? ‘ )
g* W
| 12t Round | T
L X
“~ -JI
i
Complexi

12 rounds 21F5,36 Y

Fig. 55. The Zero-sum Distinguishing Attack Strategy on the full 24-round KECCAK-p [29].

Fig. 56 shows that the starting point will be the input states of x function at 12th Round.

11 rounds Cor;lpsa_!gmty _
How to connect ? P ;) No-extra cost
| 15® Round i }T Starting point
%“ (Input Space : V)
Complexity
12 rounds i No-extra cost

Fig. 56. The Zero-sum Distinguishing Attack Strategy on the full 24-round KECCAK-p from the Middle of 12th Round
[29].

As we know, the non-linear operation, repetations of the 5-bit Sbox operation in parallel, of y
function is done over each 5-bit row independently in parellel. Therefore, since the 5-bit Sbox is

o1



bijective, if we consider all possible 5-bit values, which forms 5-dimensional subspace, for a particular
5-bit row, we can expect that all 32 possible outputs, which will again form 5-dimensional subspace,
will come after the Sbox operation. So, if we construct a subspace V in a way that for each row,
either all 32 5-bit values appear in the row or only one particular 5-bit value appears in the row.
Once we form such subspace V' with dimension ¢ for a ¢, {x(x)|x € V} also will be a subspace
with dimension ¢. Therefore, we can extend the second half round of 12th round (x and ¢ functions)
without any extra cost for the zero-sum attack. Moreover, the first half (0, p, and 7) can be inverted
without increasing any degree because they are linear functions.

Since the degree of the backward direction of 11-round underlying permutation of SHA3-224 is
upper-bounded by 1572 and the degree of the forward direction of 12-round underlying permuation
of SHA3-224 is upper-bounded by 1536 and the Sbox input size is 5-bit, we have to choose a
subspace V' with dimention 1575 (= the minimum value which is a multiple of 5 and bigger than
1572 and 1536.) in a way that for each row, either all 32 5-bit values appear in the row or only
one particular 5-bit value appears in the row. Therefore, a zero-sum structure of the full 24-round
underlying permutation of SHA3-224 can be found with time complexity 217 [29].

However, compared to the security strength of SHA3-224, which has 224-bit security strength,
the time complexity 2'°7 is too high. Let’s find the best attack with complexity less than 2224,
According to Fig. 51, 7-round in the forward direction has degree of 128 and 5-round in the backward
direction has degree of 81. Therefore, we can find a zero-sum distinguisher for 12-round underlying
permutation of SHA3-224 with about complexity 2'2%, which is less than 2224, As we learned from
Fig. 55, we can extend one more round by considering all the possible inputs of each active row.
According to Fig. 52, we can find a zero-sum distinguisher for 12-round underlying permutation of
SHA3-224 with about complexity 2!39, which is less than 2224,

3.4 SHA3-256
As shown in Sect. 1.3, SHA3-256 is defined as follows:
SHA3-256(M) = Keccak([512](M]|01, 256)

However, since all known cryptanalytic results were done only for KECCAK[512](M, 256) without
the two-bit 10 padding, the results cannot be directly applied to SHA3-256. Nonetheless, the results
on KECCAK[512](M, 256) clearly show the security strength of SHA3-256, because the attack tech-
niques on KECCAK[512](M, 256) can be also applied to SHA3-256 with a small change by considering
the two additional padding bits. Therefore, in this subsection, we focus on describing all known
cryptanalytic results on KECCAK[512](M,256). For simplicity, we will call KECCAK[512](M, 256)
KECCAK-256(M).

Best Practical Collision-type Attack on Keccak-256 The best practical collision attack on
KECCAK-256 is the attack on the four round version of KECCAK-256, which is described in [22].
They even provided a collision pair which was found within a few minutes on a single PC. In this
subsection, we will describe their attack idea step by step. Note that a round function R of KEC-
CAK-256 consists of five steps, 6, p, 7, x, and ¢.

In the same way of the 4-round practical collision attack on KECCAK-224 in Sect. 3.3, [22] pro-

vided the following collision of Fig. 58 on the 4-round KECCAK-256 using the 3-round characteristic
of Fig. 57, which is same as one of Fig. 32.
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| 26978AF134CB835E | AF224C4D78366789 | CADAE35E2656F26B | 357C4789AF3-6AF1 | 78D3526BC6A74C4D |
| 26978AF134CB835E | AF224C4D78366789 | CADAE35E2656F26B | 357C4789AF3-6AF1 | 78D3526BC6A74C4D |
| 26978AF134CB835E | AF224C4D78366789 | CADAE35E2676F26B | 357C4789AF3-6AF1 | 78D3526BC4A74C4D |
| 26978AF134CB835E | AF224C4D78366789 | CADAE35E265EF26B | 357C4789AF3-4AF1 | 78D3526BC6A74C4D |
| 26978AF134CB835E | AF226C4D78366789 | CADAE35E2656F26B | 35FC4789AF3-6AF1 | 78D3526BC6A74C4D |

|

|

|
[y

I

|

|

|

———————————————— | = mmm oo |
________________ I
________________ I
________________ |

———————————————— e ]
________________ |
|

Fig.57. A 3-round characteristic leading to a collision KECCAK-256 with probability 2724 [22]. Note that the order

of lanes is from left to right.

Mi=

C4F31C32 4CE59AE6D 5D1SFOF4
3BA4AO6F 4A0CC7F1 CCBS55ESL1
1ACE2C15 471C1DC7 D4098568
3C2ABCFA E6A4807B 2AB281B8

M2=

A4D30EF7 80BB8F69 90C048DF
DB78EAC2 C8EAE779 442F9C35
4E2F3E9C 73717DAD 5566015A
89A9BCAA E12BF1F1 30EF9595

Output=

25C4E44B
8D0ODD983
F1EBF639
812332B3

EB7213B9
3221E287
A198CFB9
812E8B45

D8853032
2B0A0843
EAF7B257

A6650424
B3017A5A
5A1CA8C2

61FB1891 F326B6D5 24DD94DF 73274984 O05DA9A1D

Fig. 58. A collision for 4-round KECCAK-256 [22].

8DEE12F2 BB6E6EE2 27C33B1E 6C091058 EBS002D5
9B21D3B0 53679075 526DDED2 48294844 6FF4ED2C
09FDAE87 688878E6 4875EB30 C9C32D80 3COE6FCB

3A65F63E 8C268881 B651B81F AADAFA3C EE2CA5C3
90790712 1B1C8BDC EO8B10A8 9A9D25CA 1BET7AAAC
AOE3348A AE6COBB1 3980FOE4 A4FA8SB91 6E81A989

3FD359B9 78B8393B F2E7990B

Note that the order of lanes is from left to right.

Best Efficient-but-theoretical Collision-type Attack on Keccak-256 The best efficient-but-
theoretical collision-type attack on KECCAK-256 is a collision attack on the 5-round reduced version
of KECCAK-256 with complexity 2!'° using generalized internal differences [23]. As shown in [23],
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this same technique can be also applied to show a practical collision attack on the 3-round version
of KECCAK-384 and an efficient-but-theoretical collision attack on the 4-round version of KECCAK-
384 with complexity 2'47 and a practical collision attack on the 3-round version of KECCAK-512,
which will be described in Sect. 3.5 and 3.6 for evaluating SHA3-384 and SHA3-512.

As said in [23], this new attack approach using internal differentials is a special type of subset
cryptanalysis, which tries to track the statistical evolution of a certain set of values. Here, an
internal differential means the statistical evolution of the differences between parts of only one
plaintext. This is different from the standard differential attacks in a sense that the attack follows
the statistical evolution of the difference between two difference plaintexts.

The new attack using internal differentials on KECCAK can be also called “Squeeze attacks”

[23].
SQUEEZE ATTACKS [23]. Assume that a hash function maps a set S of possible inputs into a set
D of possible outputs. In order to find a collision for the hash function with a high probability, by
the birthday attack complexity, we need to compute hash output for every input in a set S’ C S,
where |S’| = \/W . Now, consider a variant of this attack. Instead of considering a collision over
the set D, let’s consider a collision over a set D’ C D and let D’ contain a fraction ¢ of the points
in D. Assume that the probability of picking an input in S’ whose output is in D’ is p. Then, in
order to find a collision, we need to compute hash outputs for y/¢|D|/p inputs in S’. In order to
guarantee a better performance of this new variant approach, we need an assumption that p? > g¢.
For an example, see Fig. 59.

21600 otates
A outputs
lp=27 0 g
P — \ ...................... dlscard """"""" | ............... l‘x o
(N p=212 \ A1 Collision
N e e e
............ —.ij. . T
p =
2270 putputs
2196 states

Fig. 59. A Squeeze Attack with |S| = 2'%%9; |§'|= 2'96; |D| = 2%%%; | D'|=2%""; p=2""2 [23].

INTERNAL DIFFERENCE SETS [23]. Each internal state of KECCAK family can be described with
1600-bit. Let a[z][y][z] represent each bit of 1600-bit by the values of x,y, z, where z,y € Zs and
z € Zgs. Given a rotation index ¢ € {1,2,4,8,16,32}, let us consider a set of symmetric states
alx]]y][z] such that alz][y][z] = a[z][y][z + ¢]. Given a 1600-bit symmetric state a, let a1 = 7(a),
as = p(a), az = B(a), and ag = x(a). Then, it is easy to check that ai, as, ag, and a4 will be also
symmetric states. For i = 16, a symmetric state a[z][y][z] is composed of four repetitions of slices
0-15 (See an example in Fig. 60.). Each such sequence of slices (0-15, 16-31, 32-47, 48-63) is called a
consecutive slice set or CSS in short. However, after applying ¢, the symmetric property would not
be preserved. However, the influence by ¢ is small so the state remains close to being symmetric.
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[169D169D169D169D | A965A9654965A965 | 3BECT3ECT3ECT73ECT |9025902590259025 | C264C264C264C264 |
|A34BA34BA34BA34B| OF330F330F330F3314902490249024902 | 3D683D683D683D68|613D613D613D613D |
| C684C684C684C684 | B368B368B368B368 | 589B589B589BE89B | 5F335F335F335F33 | E27AE27AE27AE27A |
[ 22E822E822E822E8 | 3D583D583D583D58 | B37AB37AB37AB37A|1047104710471047 | D525D526D525D525 |
| 60F360F360F360F3 | C3E4C3E4C3E4C3E4 | 37TFA37FA37FA37FA18193819381938193 | 69BA69BAG9BAGOBA |

Fig. 60. A symmetric state with i=16 [23]: The state is described as a matrix of 5x5 lanes of 64 bits, ordered from
left to right, where each lane is given in hexadecimal using the little-endian format. Each lane of the state consists of
4 repetitions of a 16-bit word [23].

‘Internal differences’ are defined in this way [23]: Internal differences measure how close the
state is to a symmetric state. In case that ¢ = 16, the internal differences can be obtained by com-
puting the XOR differences between the first consecutive slice set, and each of the three other ones,
denoted by the triplet (A;, Az, As). So, an internal difference in KECCAK can be defined by the
set of states with a fixed value of (A;, Ay, A3). Especially, when all 4 CSS’s are equal, the internal
difference is called a zero internal difference.

‘Internal difference set’ is defined in this way [23]: An internal difference set {v + w : w is
symmetric} is defined by using a single representative state v and adding to it all the fully sym-
metric states. Given a rotation index 4, the internal difference set is denoted by [i, v].

THE EVOLUTION OF INTERNAL DIFFERENCE THROUGH KECCAK’S PERMUTATION [23]. It is clear
that the zero internal difference passes with probability 1 all the four operations 7, p, 8, x. However,
the addition of a constant by the operation ¢ affects the characteristic. Since each operation except
for x is an affine mapping, the followings hold:

m([i,v]) = [i,7(v)],
p([i;v]) = [i, p(v)],
0([i,v]) = [i,0(v)],
o([i; ]) = [i; e(v)]-

THE EVOLUTION OF INTERNAL DIFFERENCE THROUGH X [23]. Since x is a nonlinear mapping,
x([2,v]) # [i, chi(v)]. However, when a state of an internal difference which is not symmetric enters
the x function, it is possible to consider the possible outcomes in terms of “distance” from the zero
internal difference. For a detailed explanation, the authors defines a rotated row set, {r(y, z),r(y, z+
16),r(y, 2+ 32),r(y, 2+ 48)} (in case that i = 16), where a row r(y, z) is in the first CSS and other
three rows are in the other CSS’s (see Fig. 61.). We say that a rotated set {r(y, ), r(y, 24+16), r(y, 2+
32),r(y,z+ 48)} (in case that i = 16) is inactive only when r(y, z) = r(y,z + 16) = r(y,z + 32) =
r(y, z + 48).

[0001000100010001]0001000100010001|0001000100010001|0001000100010001|0001000100010001 |

Fig. 61. A rotated row set [23]: The first five lanes of a state in which the 20 bits of the first rotated row set for i=16
are set to 1. The lanes are ordered from left to right, where each lane is given in hexadecimal using the little-endian
format. [23].
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In [23], a rotated row set is called sparse when it contains at most two distinct input value (See
Fig. 62.). When a rotated row set is sparse, there is only a single input difference between the two
groups of Sboxes. So, we can use the difference distribution table also in the more general case of
1 # 32, when the rotated row set is sparse.

[0001000100010001|0001000000010000|0000000000000000|0001000100010001 | 0000000100000001 |

Fig. 62. A sparse rotated row set [23]: The first five lanes (given in the format of Example of Fig. 61) of a state in
an internal difference in which the first rotated row set is sparse for i=16. The (binary) value of r(0,0) and r(0,32) is
10011, while the value of 7(0,16) and r(0,48) is 11010. In this example, the internal difference fixes the difference of
01001 between the two groups of rows. The value of the other rows is zero. [23].

CHOOSING THE VALUE OF THE ROTATION INDEX [23]. Assume that a hash output would be one
of 2¢ restricted values with probability p. Then, we can find a collision pair, whose hash output is
a restricted value, with complexity p~! - 2%/2. Let n be a hash output size of KECCAK-n. Since the
padding of KECCAK is the 10*1 padding, we should be able to generate messages (1600-2n-2)-bit
M'’s such that M|[11]|0?" € [i,0] for a fixed i € {1,2,4,8,16,32}. Since the padding “11”, we
can choose (i — 2) bit-values for the lane containing the “11” padding. When r is the bitrate (or
message block, in case of KECCAK-n, the bitrate is 1600-2n), we can choose values only for r/64
lanes and there is i-bit freedom for such lanes except for the lane containing the padding “11”.
Therefore, we can generate 27 (#/64)=2 initial states which are symmetric. Hence, we have to ensure
that 2r(i/64)—2 > pfl .9d/2

EXTENDING INTERNAL DIFFERENTIAL CHARACTERISTICS [23]. [23] proposes a way of extending
1.5 rounds more from an internal differential characteristic by aggregating internal output differ-
ences of y function in the second last round, using affine subspaces.

In [10], it was observed that since the algebraic degree of the KECCAK Sbox is only 2, all the
possible output differences of the Shoxes form an affine subspace. For example, a two-dimensional
affine subspace has a form of {A, A D A}, AD Ay, A D A1 @ Ag} (= AD{0,A1, As, Ay @ As}).
More precisely, as shown in Fig. 63, a given non-zero difference 4;,,, the number of possible output
differences Ay is 4 or 8 or 16, and the set of such possible output differences, { Ay v s.t. x(v) ®
(v® Ajp) = Aour}, will be two- or three- or four-dimensional affine subspace. For example, when
A, = 10, the set of possible output differences will be {01,09,11,19} from Fig. 63, which can be
described by A & {0, Ay, Ag, Ay & As}), where A =01, Ay = 08, Ay = 10. Moreover, each vector
of the two-dimensional affine subspace, A ® {0, A1, Ag, Ay & As}, is described as A @ 1 A1 B oAy
using two variables ¢i(= 0 or 1) and ca(= 0 or 1). In case of a three-dimensional subspace, it can
be described by three variables.
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Fig. 63. The differential distribution table of the xy when viewed as Sbox. The first bit of a row is viewed as the least
significant bit. Given input difference A;, and output difference Ayy,+ the number in the table shows the size of the
solution set {v|x(v) B (v & Ain) = Aout}. Differences are in hex number. [27].

So, we can describe the evolution of internal differences through x as follows:

x([i,4]) = [i, 0], where 4 is a specific internal input difference and 1 is the symbolic form to
describe all the possible internal output differences using allocated variables from each rotated
row set.

In order to calculate the number of possible final hash outputs after the truncation, in case of
KEccak-224 and KECCAK-256, we have to know the number of possible first 320-bit values of an
1600-bit input state of x at the last round. In case of KECCAK-384 and KECCAK-512, we have to
know the number of possible first 640-bit values of an 1600-bit input state of y at the last round.
Especially, for n = 384, a further improvement is possible [23]: for n = 384, we can know the first
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320 bits of the hash output from the first 320-bit input of x at the last round and the remaining
last 64-bit of the hash output is defined by the next 192-bit input (= input value for next three
lanes, where each lane size is 64-bit) because the last 64-bit output is determined by three lanes by
the definition of y. Therefore, in case of KECCAK-384, we can know the number of possible final
hash outputs from the number of possible first 512(=320+192) bits of x’s input at the last round.

Now, let’s count the number of possible input states of y in the last round. Let ¢ be the weight
of the 1600-bit internal input difference of y function in the second last round. For example, see
Fig. 64. In this case, t = 12 to allocate 24 variables, say t’=24, and extend the characteristic beyond
x function, because every row of input internal differences of x is at most 1, and according to Fig.
63, there are only four possible output difference when its weight of input difference has 1. So, each
non-zero difference bit of 11 non-zero difference bits allocates two variables. Therefore, in total, 24
variables are allocated.

In cases of KECCAK-224 and KECCAK-256, we only consider the possible number of values for
the first five input lanes of y at the last round, which is 32¢(= 2°%), since there are i rotated row sets
and there 32 possible cases for each set. And assume that ¢’ variables are allocated at the second
last round. Therefore, the total number of possible values for the final hash output will be 2¢'+5¢,

In cases of KECCAK-384, the number of possible first 320-bit of hash outputs is influenced by
the number of possible values for the first five input lanes of y at the last round, which is 32/ (= 2°).
And the number of possible remaining 64-bit of the hash outputs will be min(2%4,23%), because we
are considering only three lanes, not five lanes. And assume that ¢’ variables are allocated at the
second last round. Therefore, the total number of possible values for the final hash output will be
ot'+5i min(264, 231)

In cases of KECCAK-512, we need to consider the possible number of values for the first ten
input lanes of x at the last round, which is (32¢)?(= 2!%%). And assume that ¢’ variables are allocated

at the second last round. Therefore, the total number of possible values for the final hash output
will be 2¢+107,

COLLISION ATTACK ON 5-ROUND KECCAK-256 [23]. As we learned already, we can see the fol-
lowing evolution of an internal difference set [i,v] through 7, p, 6, ¢, and x as follows:

m([i,v]) = [i,m(v)] with probability 1

p([i,v]) = [i, p(v)] with probability 1

0([i,v]) = [i,0(v)] with probability 1

t([i,v]) =i, ¢(v)] with probability 1
: 1

(
(
17 Y([i,v]) = [i,¢"(v)] with probability 1
x([¢,v]) = [i,v'] with probability p whose value depends on the values of v and v/

Using the above evolution information of each function, as shown in Fig. 64, [23] found an 2.5-
round internal differential characteristic with probability 237 from the input difference of the second
round R1 to the output difference of R3.5, where a rotation index value i is 32. This characteristic
will be used to attack on the 5-round collision attack on KECCAK-256 with about complexity 211°.
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|BCE-1EDC-------- | 68A-49EE----—--~ | 4A6-2999---—-=-~ 1916-3-39-------- | 68A--D8-----—--~- |

|BCE-9EB4-------- | 68A-49EA--—-—--~ | 446-2999---—---- 1916-3-99-------- | 6CA--D8--------~- |
| FCE-9EB4-————-—- | 68A-49EE-————--~ | 442-2999-—-—-—-— 1916-3-99-—--—-—- | 68A--Dg-—-—-——-~- | R1
|BCE-9EB4----—--- | 68A-49EE----—--~- | 446-2999---—-—- 1916-3-99-------- | 68A--D8--------~- |
|BCE-9EB4----—---- | 68A-49EE----—--~ | 4A6-2B99-—-—-—-~ 1916-3-99-------- | 69A--D8--------~- |
| ----8-88---=--==| === e B e B R 4mmmmmmmm - |
| --——-—- A-———————| - It R B ] B 4o |

| ----8-8A----—-—- | —===gmmm oo | --———-- 2---—-——- | —mmmmm oo R 4mmmmmmmm - |
R— g R e R—  — | == | -—-——- T |
| -——mm - | -mm o - R | ———mmm - | —mm - |
| == | == | == m e | == | == |
| —=—m - | —mm e - R | —=—m - | mm e - |
2l
— - R | -—————- R | -—-——- T |
| --——--- -———- | ----4-———-m——- | ------- 2---—-—-- | -=——mm - |---——- 4 |
| = | === | == e | == | == | R2
| ———m - | -mm - | --=mmmmm - | —— - - | —mm o - |
| = mmmm - | == m - |- l;]; ——————— | = mmm - e e |
|--—---- g-——————- | -4-———m - | -==mmmm | -=—mmm - | mm - |
|- |-4---mmm oo |- mmm oo |- oo R e |
| -8 - | -———- e | - e | —— - R |
| ------- 2---———- | ---——- O R | ———mmm - R |
e e |- e e |
X (p=27")
| --mm——- 8--——--—- | 4= mmmm e | =mmmmmmm oo | = mmmmm - R e |
|- |-4---mm oo | - mmm oo |- R |
| ----8------———- | ---——- e R — e | -mm - |
|------ 82-------- |------ g-—-—----- | - m oo oo |- R |
e R | -==mmmmmm - e R |
iy
|8---8-82-------- |-4--mmm e |- m oo |- m oo R |
R | -4-——m— - R R | = - |
| ----8--—-------- |------ g-—-—----- |- m oo |- | == | R3
— 82-———=-—- | -==——-  — | == mmmmm e R | = |
e e e |--——- lj]; ——————— | = mmmm - | == m - |
|8-—-8-82-—-—-——- | -—-——- L R R R |
| —=—mmm - | —mm oo - R — | --1------ - | -=mmm - |
| -8 m - | === R | == R e | R3.5
R | - R R | - |
|- m oo | -=mmm oo R |---1-4-—-------- | -mm oo |

Fig. 64. The 2.5 round internal differential characteristic with probability 2727 used in the 5-round collision attack
on Keccak-256 [23]: This characteristic has a rotation index value of ¢ = 32.

In Fig. 64, let us consider the internal output difference of R3.5 which is shown in Fig. 65, where
the internal output difference of R3.5 is also the internal input difference of x in the fourth round.
We can see that the difference weight of any two rows of every rotated row set for ¢ = 32 is 1,
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because the values, 1,2,4,8, in Fig. 65 are described by four-bit 0001, 0010,0100, and 1000, whose
hamming weights are 1 only. Then, the number of possible differences between rows in each rotated
row set after y function is exactly four. More precisely, according to the differential distribution
table of the x in Fig. 63, when A;, = 01, Ayypur will be one of {01,09,11,19}. When A;, = 02,
Aoutpur Will be one of {02,03,12,13}. When A;, = 04, Ayupus will be one of {04,05,06,07}.
When A;, = 08, Agupur Will be one of {08,04,0C,0E}. When Ajy, = 10, Agytpur will be one of
{10, 14, 18,1C}. Moreover, each of {01,09, 11,19}, {02, 03,12, 13}, {04, 05,06, 07}, {08,0A4,0C,0E},
and {10, 14, 18,1C'} forms two-dimensional subspaces by two 0-1 variables.

Let [i,v] be the internal difference set representing the difference set in Fig. 65. Since the weight
of v has 12, the internal output difference set of y function will be described by [i, V'], where v/ is
represented by the 24 variables. Then, [, v'] will be evolved as follows:

[i, V'] =, [i,v})](= [i,¢(v")]) at R3 with probability 1

[i, V1] =0 [i, v5)](= [¢,0(V])]) at R4 with probability 1
i, vy] =, [1, v5)](= [i, p(v)]) at R4 with probability 1
[i, V5] == [i, V)] (= [i, 7(vh)]) at R4 with probability 1

Finally, [, v})] will be the internal difference set of x function in the last round R4. Now, our
concern is the number of possible hash outputs. Especially, in case of KECCAK-256, the values of
hash output can be determined only by the first 320-bit of the input state of x function. According
to the internal differential characteristic of Fig. 64, we see that the input states of y function will be
in [i,v)})] with probability 237 and the first 320-bit of the input state of x is defined by combining
2% symmetric states and 224 possible values for 24 variables. So, the number of possible first 320-bit
of the input state of y function will be 2% - 224, When i = 32, it will be 284,

|8---8-82--------

| | ! |
| | ! |
R | mmmmmm e R | mmmm o | ===2m e | R3.5
| | ! |
| | ! |

Fig. 65. The internal output difference of R3.5 described in Fig. 64 [23]: This characteristic difference has a rotation
index value of ¢ = 32.

Finally, we only need to show how to find 1086-bit M’s such that R(M]||11]|0°!2) in the internal
input difference of R1 in Fig. 66. This can be done in a similar way with the target difference
algorithm (TDA), which was already explained in detail to attack on SHA3-224. In this case, we
consider the internal difference, so a new algorithm, called a target internal difference algorithm
(TIDA), can be developed.
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|BCE-1EDC-------- | 68A-49EE-------~ | 446-2999-------- 1916-3-39-------- |684--Dg--------- |

| BCE-9E54-------- | 68A-49EA-—-—-—-- | 446-2999-------- 1916-3-99-------- | 6CA--D8------=-= |
| FCE-9EB4-—-—-——- | 68A-49EE-—-—-—-- |442-2999-—-—---- 1916-3-99---—-—-- | 68A--Dg--------- | R1
|BCE-9E54-------- | 68A-49EE-—-—---- | 446-2999---—---- 1916-3-99---—---- | 68A--D8------=-= |
|BCE-9E64-------- | 68A-49EE-—-—-—-- | 446-2B99-—-—---— 1916-3-99---—---- | 69A--D8------=-= |

Fig. 66. The internal input difference of R1 described in Fig. 64 [23]: This characteristic difference has a rotation
index value of ¢ = 32.

Therefore, according to the sqeeze attack, we can find a collision by the complexity 237 - 2184/2

(=2'29) which is higher than the birthday attack complexity. So, [23] further considered a message
modification in TIDA to quickly find messages M’s to follow the internal characteristic described
in Fig. 64, which improves the 2'?° time complexity of the basic attack by a multiplicative factor
which is between 2' and 22!. Therefore, with about 2''® complexity, a collision for 5-round reduced
version of KECCAK-256 can be found.

Best Practical Preimage and Second-preimage Attack on SHA3-256 As shown from the
evaluation part of SHA3-224, the current best practical preimage attack is on 3-round KECCAK
only with 40-bit messages [45]. But it is not clear how to utilize the result of [45] to find a preimage
or second-preimage of 3-round SHA3-224.

Best Theoretical-but-Marginal Preimage and Second-preimage Attacks on SHA3-256
The best theoretical-but-marginal preimage attack on SHA3-256 is the attack [19] on the 8-round
version of SHA3-256, which requires time complexity 225>64 and memory complexity 22°403 with
improvement factor 1.29. For a detailed explanation, see the evaluation part of SHA3-224. Note
that this preimage attack is also considered as the second-preimage attack.

Best Practical Distinguishing Attack on SHA3-256 A zero-sum structure of the 9- and 10-
round underlying permutation of SHA3-256 can be found with practical time complexity 22°-%3 and
259-67 respectively, which was already explained in the evaluation part of SHA3-224.

Best Theoretical-but-Marginal Distinguishing Attacks on SHA3-256 A zero-sum structure
of the full 24-round underlying permutation of SHA3-256 can be found with time complexity 21572,
which was already explained in the evaluation part of SHA3-224. However, compared to the security
strength of SHA3-256, which has 256-bit security strength, the time complexity 2'°7 is too high.
Let’s find the best attack with complexity less than 2256, According to Fig. 51, 7-round in the
forward direction has degree of 128 and 6-round in the backward direction has degree of 243.
Therefore, we can find a zero-sum distinguisher for 13-round underlying permutation of SHA3-256
with about complexity 2243, which is less than 22°6. As we learned from Fig. 55, we can extend
one more round by considering all the possible inputs of each active row. According to Fig. 52, we
can find a zero-sum distinguisher for 13-round underlying permutation of SHA3-256 with about
9245 9256

complexity , which is less than

3.5 SHA3-384
As shown in Sect. 1.3, SHA3-384 is defined as follows:
SHA3-384(M) = KECCAK[768](M |01, 384)
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However, since all known cryptanalytic results were done only for KECCAK|[768](M, 384) without
the two-bit 10 padding, the results cannot be directly applied to SHA3-384. Nonetheless, the results
on KECCAK][768](M, 384) clearly show the security strength of SHA3-384, because the attack tech-
niques on KECCAK|[768](M, 384) can be also applied to SHA3-384 with a small change by considering
the two additional padding bits. Therefore, in this subsection, we focus on describing all known
cryptanalytic results on KECCAK[768](M,384). For simplicity, we will call KECCAK[768](M, 384)
KECCAK-384(M).
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Fig. 67. The 1.5-round internal differential characteristic with probability 272 used in order to find collisions in
3-round Keccak-384 [23]:The characteristic has a rotation index value of i=4 [23].

Best Practical Collision-type Attack on Keccak-384 The best practical collision attack on
KECCAK-384 is the attack on the three-round version of KECCAK-384, which is described in [23].
They even provided a collision pair which was found within a minute on a single PC. The collision
can be found by the sqeeze attack using the internal differential characteristic in Fig. 67 for ¢ = 4.
As we can see, the final internal difference has six non-zero-bit internal difference in Fig. 67. So,
in the same way for attacking KECCAK-256, we can calculate the bound on the output subset by
allocating two 0-1 variables corresponding to each of six non-zero-bit internal differences (in total,
there are 12 variable allocations). We need to know the first 512-bit of the input states of x function
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in the last round (R2) to determine 384-bit hash outputs. So, we can bound the number of possible
hash output by calculating the number of possible first 512-bit of the input states of x function as
the last round. Since i = 4, there are 284 symmetric states on the first 512-bit and 12 0-1 variables
influence the 512-bit. Therefore, there are 244 possible first 512-bit values which bound the number
of possible hash outputs as 2%4.

Therefore, we only need to try 222 initial states, which confirm the characteristic in Fig. 67, to

find a collision. It was shown in [23] that for n = 384, we have r=832 and we can choose a sufficient
number of 2712 . 2m(#/64)=2) — 938 egsages that satisfy the constraints, where i=4. Finally, [23]
found a collision pair, which is shown in Fig. 68, in less than a minute on a single PC.

Mi=

FFFFFFFF FF7FFFFF BEBBBBBB BBFBBBBB 44444444 44444444 FFFFFFFF FFFFFFFF 99999999 99999999
44444444 44C44444 44444444 44444444 44644444 44444444 AAAAAAAA AAAAAAAA 66666666 66666666
44444444 44444444 DDDDDDDD DDSDDDDD DDFDDDDD DDDDDDDD

M2=

33333333 33B33333 55555555 55155555 AAAAAAAA AAAAAAAA 77777777 77777777 44444444 44444444
66666666 66E66666 EEEEEEEE EEEEEEEE 11311111 11111111 CCCCCCCC CCCCCCCC FFFFFFFF FFFFFFFF
11111111 11111111 99999999 99D99999 DDFDDDDD DDDDDDDD

Output=

99999991 11199999 4440C444 405C60DC 00000000 0C10001Q 777677F7 73F77767 3550F597 55D57155
66666664 66666666

Fig. 68. A collision in 3-round Keccak-512 [23]:The messages were found using Characteristic of Fig. 67 [23].

Best Efficient-but-theoretical Collision-type Attack on Keccak-384 The best efficient-but-
theoretical collision-type attack on KECCAK-384 is a collision attack on the 4-round reduced version
of KECCAK-384 with complexity 2'47 using generalized internal differences [23]. This attack is one-
round extension of the 3-round practical collision attack on KECCAK-384. The internal differential
characteristic used for the attack is the combination of Fig. 67 and Fig. 69.

As we can see, the final internal difference in Fig. 69 has a relatively high weight of 88. It is
written in [23] that “there are 20 non-sparse rotated row sets, whose 4 Sboxes assume (exactly)
3 values. However, it is easy to verify that in 18 out of the 20 non-sparse rotated row sets, the
possible values for the input state of x function as the third round, are still contained in an affine
subspace whose dimension is at most 4.”
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Fig. 69. The 1-round extension of Characteristic of Fig. 67 used in the collision attack on 4-round Keccak-384 [23]:The
characteristic has a rotation index value of i=16 (this applies to the full 2.5-round characteristic used in the 4-round
attack) and probability 27 2. The total probability of the full 2.5-round characteristic is 272 [23].

[23] exploited this observation, they alloted 140 0-1 variables for all but 2 rotated row sets to
extend one more round in the same way with practical 3-round collision attack on KECCAK-384.
Finally, they could bound the number of hash output by 210F128+132 — 9270 31q the expected time
complexity of the attack is bounded by 212 . 2270/2 = 2147 which is 2% times faster than the 292
complexity of the birthday attack.

Also, it is written in [23] that we have sufficiently many degrees of freedom to find a collision.
We need to try about 2'47 initial states. According to the calculation of the degrees of freedom, we
have 2712 . 97 (1/64)=2 — 9196 gtateg that satisfy the constraints, where i = 4 and r=832.

Best Practical Preimage and Second-preimage Attack on SHA3-384 As shown from the
evaluation part of SHA3-224, the current best practical preimage attack is on 3-round KECCAK
only with 40-bit messages [45]. But it is not clear how to utilize the result of [45] to find a preimage
or second-preimage of 3-round SHA3-384.

Best Theoretical-but-Marginal Preimage and Second-preimage Attacks on SHA3-384
The best theoretical-but-marginal preimage attack on SHA3-384 is the attack [19] on the 8-round
version of SHA3-384, which requires time complexity 23787 and memory complexity 23249 with
improvement factor 38.36. For a detailed explanation, see the evaluation part of SHA3-224. Note
that this preimage attack is also considered as the second-preimage attack.

Best Practical Distinguishing Attack on SHA3-384 A zero-sum structure of the 9- and 10-
round underlying permutation of SHA3-384 can be found with practical time complexity 22°-%3 and
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25967 respectively, which was already explained in the evaluation part of SHA3-224.

Best Theoretical-but-Marginal Distinguishing Attacks on SHA3-384 A zero-sum structure
of the full 24-round underlying permutation of SHA3-384 can be found with time complexity 2157,
which was already explained in the evaluation part of SHA3-224. However, compared to the security
strength of SHA3-384, which has 384-bit security strength, the time complexity 2'°7 is too high.
Let’s find the best attack with complexity less than 23%*. According to Fig. 51, 8-round in the
forward direction has degree of 256 and 6-round in the backward direction has degree of 243.
Therefore, we can find a zero-sum distinguisher for 14-round underlying permutation of SHA3-384
with about complexity 2256, which is less than 23%*. As we learned from Fig. 55, we can extend
one more round by considering all the possible inputs of each active row. According to Fig. 52, we
can find a zero-sum distinguisher for 14-round underlying permutation of SHA3-384 with about
complexity 2290, which is less than 2384,

3.6 SHA3-512

As shown in Sect. 1.3, SHA3-512 is defined as follows:

SHA3-512(M) = KECCAK([1024](M][01,512)

However, since all known cryptanalytic results were done only for KECCAK[1024](M, 512) with-
out the two-bit 10 padding, the results cannot be directly applied to SHA3-384. Nonetheless, the
results on KECCAK[1024](M, 512) clearly show the security strength of SHA3-512, because the at-
tack techniques on KECCAK[1024](M,512) can be also applied to SHA3-512 with a small change
by considering the two additional padding bits. Therefore, in this subsection, we focus on de-
scribing all known cryptanalytic results on KECcCcAk[1024](M,512). For simplicity, we will call
KEccaK[1024](M, 512) KECCAK-512(M).

Best Practical Collision-type Attack on Keccak-512 The best practical collision attack on
KECCAK-384 is the attack on the three-round version of KECCAK-512, which is described in [23].
They even provided a collision pair which was found in less than an hour on a single PC. The
collision can be found by the sqeeze attack using the internal differential characteristic in Fig. 70
for i = 4. As we can see, the final internal difference has 11 non-zero-bit internal difference in Fig.
70. So, in the same way for attacking KECCAK-256, we can calculate the bound on the output
subset by allocating two 0-1 variables corresponding to each of 11 non-zero-bit internal differences
(in total, there are 22 variable allocations). We need to know the first 640-bit of the input states of
X function in the last round (R2) to determine 512-bit hash outputs. So, we can bound the number
of possible hash output by calculating the number of possible first 640-bit of the input states of x
function as the last round. Since i = 4, there are 22 symmetric states on the first 640-bit and
22 0-1 variables influence the 640-bit. Therefore, there are 262 possible first 640-bit values which
bound the number of possible hash outputs as 262.
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Fig. 70. The 1.5-round internal differential characteristic with probability 1 used in order to find collisions in 3-round
Keccak-512 [23]:The characteristic has a rotation index value of i=4 [23].

Therefore, we only need to try 23! initial states, which confirm the characteristic in Fig. 70, to
find a collision. It was shown in [23] that for n = 512, we have r=576 and we can choose a sufficient
number of 27 (/69)-2) — 234 megsages that satisfy the constraints, where i=4. Finally, [23] found a
collision pair, which is shown in Fig. 71, in less than an hour on a single PC.

Mi=

88888888 88888888 66666666 66666666 AAAAAAAA AAAAAAAA 77777777 77777777 BEBEBBBBB BEBEBBBB
EBBBBBBB BBBBBBBB 11111111 11111111 88888888 88888888 CCCCCCCC CCCCCCCC

M2=

AAAAAAAA AAAAAAAA 88888388 88888888 EEEEEEEE EEEEEEEE 99999999 99999999 99999999 99999999
99999999 99999999 88888888 88888888 CCCCCCCC CCCCCCCC CCCCCCCC ccccccce

Output=

56BCC94B C4445644 D7655451 5DD96555 71FA7332 3BA30B23 958408C5 64407664 41805414 11190901
GABAASBA ASABAEFA 7EFS8AEEE ECCE68DC 4EC8ACEC DD5D5CCC

Fig. 71. A collision in 3-round Keccak-512 [23]:The messages were found using Characteristic of Fig. 70 [23].

Best Practical Preimage and Second-preimage Attacks on SHA3-512 As shown from the
evaluation part of SHA3-224, the current best practical preimage attack is on 3-round KECCAK
only with 40-bit messages [45]. But it is not clear how to utilize the result of [45] to find a preimage
or second-preimage of 3-round SHA3-512.

Best Theoretical-but-Marginal Preimage and Second-preimage Attacks on SHA3-512
The best theoretical-but-marginal preimage attack on SHA3-512 is the attack [19] on the 9-round
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version of SHA3-512, which requires time complexity 25170 and memory complexity 2°1%:0? with

improvement factor 1.23. This detailed explanation was already described in the evaluation part
for SHA3-224. Note that this preimage attack is also considered as the second-preimage attack.

Best Practical Distinguishing Attack on SHA3-512 A zero-sum structure of the 9- and 10-
round underlying permutation of SHA3-512 can be found with practical time complexity 22983 and
25967 respectively, which was already explained for evaluation of SHA3-224.

Best Theoretical-but-Marginal Distinguishing Attacks on SHA3-512 A zero-sum structure
of the full 24-round underlying permutation of SHA3-512 can be found with time complexity 2157,
which was already explained in the evaluation part of SHA3-224. However, compared to the security
strength of SHA3-512, which has 512-bit security strength, the time complexity 2'°7 is too high.
Let’s find the best attack with complexity less than 2°12. According to Fig. 51, 8-round in the
forward direction has degree of 256 and 6-round in the backward direction has degree of 243.
Therefore, we can find a zero-sum distinguisher for 14-round underlying permutation of SHA3-512
with about complexity 2256, which is less than 2°12. As we learned from Fig. 55, we can extend
one more round by considering all the possible inputs of each active row. According to Fig. 52, we
can find a zero-sum distinguisher for 14-round underlying permutation of SHA3-512 with about
complexity 2290, which is less than 2°12.

3.7 SHAKE128

Best Practical Collision Attack on SHAKE128. The capacity size of SHAKE128 is ¢ = 256,
which less than any other capacity size of the SHA3-224, SHA3-256, SHA3-384, and SHA3-512.
Therefore, from the attack point of view, there is more freedom on messages in SHAKE128, com-
pared to other SHA-3 functions. For a further domain separation purpose as explained in Sect. 4.3,
SHAKE128 has “1111” as its inner 4-bit padding in addition to 10*1 padding as its outer padding.
In Sect. 3.4, we learned that there is a practical collision attack on 4-round KECCAK-256 [22]. It
looks that the attack procedure used for 4-round KECCAK-256 still works for SHAKE128 when the
output size d of SHAKE128 is less than or equal to 320-bit, because there are zero-differences on
the first 320-bit ((see the first five lanes on the first row of the last differential state of Fig. 32)) of
the hash output as shown in Fig. 32.

Best Theoretical Collision Attack on SHAKE128. The capacity size of SHAKE128 is ¢ = 256.
For a further domain separation purpose as explained in Sect. 4.3, SHAKE128 has “1111”7 as its
inner 4-bit padding in addition to 10*1 padding as its outer padding. Note that KECCAK-256 uses
the 10*1 padding only. In Sect. 3.4, we learned that there is a theoretical collision attack on 5-
round KECCAK-256 with complexity 2!1° [23]. Tt looks that the attack procedure used for 5-round
KECCAK-256 can still work for SHAKE128 when 231 < d < 320, where d is the output size of
SHAKE256. This is because 1) the attack complexity 2!''® is meaningful only for d > 230, and
2), as explained in the evaluation part of KECCAK-256, the internal differential characteristic in
Fig. 64 is 2737 and the number of possible 320-bit hash outputs is 2'3¢, and by the help of the
squeeze attack and message modification in TIDA, we can find a collision over 320-bit with about
complexity 2! in the same way.

Best Practical Preimage and Second-preimage Attack on SHAKE128. As shown from the

evaluation part on KECCAK-224, the current best practical preimage attack is on 3-round KECCAK
only with 40-bit messages [45]. But it is not clear how to utilize the result of [45] to find a preimage
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of 3-round SHAKE128. Note that this preimage attack is also considered as the second-preimage
attack.

Best Theoretical Preimage and Second-preimage Attacks on SHAKE128. As described
n [48], NIST claims that the security strength of SHAKE128 in terms of preimage resistance is
min(d,128), where d is the output size, since we can only guarantee at most 128-bit security due to
the capacity size ¢ = 256. As shown in Fig. 48, it seems to be expected (but, it is required to verify)
that the current best theoretical preimage attack would be an attack on 6 rounds of KECCAK-128
with complexity less than the general preimage attack complexity 2'2®, which can be applied to
SHAKE128 with d=128. Note that this preimage attack is also considered as the second-preimage
attack.

Best Practical Distinguishing Attack on SHAKE128. A zero-sum structure of the 9- and
10-round underlying permutation of SHAKE128 can be found with practical time complexity 229-83
and 25967 respectively, which was already explained in the evaluation part of SHA3-224.

Best Theoretical-but-Marginal Distinguishing Attacks on SHAKE128. A zero-sum struc-
ture of the full 24-round underlying permutation of SHAKE128 can be found with time complexity
21575 ' which was already explained at the evaluation part of SHA3-224. However, compared to the
security strength of SHAKE128, which has 128-bit security strength, the time complexity 2157 is
too high. Let’s find the best attack with complexity less than 2128, According to Fig. 51, 6-round
in the forward direction has degree of 60 and 5-round in the backward direction has degree of 81.
Therefore, we can find a zero-sum distinguisher for 11-round underlying permutation of SHAKFE128
with about complexity 28!, which is less than 2'2%. As we learned from Fig. 55, we can extend one
more round by considering all the possible inputs of each active row. According to Fig. 52, we
can find a zero-sum distinguisher for 11-round underlying permutation of SHAKE128 with about
complexity 2%°, which is less than 2128,

3.8 SHAKE256

Best Practical Collision Attack on SHAKE256. The capacity sizes of SHAKE256 and SHA3-
256 has the same capacity size as ¢ = 512. For further domain separation purpose as explained in
Sect. 4.3, SHAKE256 has “1111” as its inner 4-bit padding in addition to 10*1 padding as its outer
padding. Note that KECCAK-256 uses the 10*1 padding only. In Sect. 3.4, we learned that there is
a practical collision attack on 4-round KECCAK-256 [22]. Though there is the 4-bit loss of freedom
due to “1111” padding compared to the attack on 4-round KECCAK-256, the attack procedure used
for 4-round KECCAK-256 still works for SHAKE256 when the output size d of SHAKE256 is less
than or equal to 320-bit, because there are zero-differences on the first 320-bit ((see the first five
lanes on the first row of the last differential state of Fig. 32)) of the hash output as shown in Fig. 32.

Best Theoretical Collision Attack on SHAKE256. The capacity sizes of SHAKE256 and
SHA3-256 has the same capacity size as ¢ = 512. For further domain separation purpose as ex-
plained in Sect. 4.3, SHAKE256 has “1111” as its inner 4-bit padding in addition to 10*1 padding as
its outer padding. Note that KECCAK-256 uses the 10*1 padding only. In Sect. 3.4, we learned that
there is a theoretical collision attack on 5-round KECCAK-256 with complexity 215 [23]. Though
there is the 4-bit loss of freedom due to “1111” padding compared to the attack on 5-round KEC-
CAK-256, the attack procedure used for 5-round KECCAK-256 can still work for SHAKE256 when
the output size d of SHAKE256 is less than or equal to 320-bit. This is because, as explained in the
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evaluation part of KECCAK-256, the internal differential characteristic in Fig. 64 is 2737 and the
number of possible 320-bit hash outputs is 2'84, and by the help of the squeeze attack and message
modification in TIDA, we can find a collision over 320-bit with about complexity 2!1° in the same
way.

Best Practical Preimage and Second-preimage Attack on SHAKE256. As shown from the
evaluation part on KECCAK-224, the current best practical preimage attack is on 3-round KECCAK
only with 40-bit messages [45]. But it is not clear how to utilize the result of [45] to find a preimage
of 3-round SHAKE256. Note that this preimage attack is also considered as the second-preimage
attack.

Best Theoretical Preimage and Second-preimage Attacks on SHAKE256. As described
n [48], NIST claims that the security strength of SHAKE256 in terms of preimage resistance is
min(d,256), where d is the output size, since we can only guarantee at most 256-bit security due
to the capacity size ¢ = 512. As shown in Fig. 48, the current best theoretical preimage attack
is an attack on 8 rounds of KECCAK-256 with complexity less than the general preimage attack
complexity 22°6, which can be applied to SHAKE256 with d=256. Note that this preimage attack
is also considered as the second-preimage attack.

Best Practical Distinguishing Attack on SHAKE256. A zero-sum structure of the 9- and
10-round underlying permutation of SHAKE256 can be found with practical time complexity 229-83
and 25967 respectively, which was already explained in the evaluation part of SHA3-224.

Best Theoretical-but-Marginal Distinguishing Attacks on SHAKE256. A zero-sum struc-
ture of the full 24-round underlying permutation of SHAKE256 can be found with time complexity
21575 which was already explained in the evaluation part of SHA3-224. However, compared to the
security strength of SHAKE256, which is 256-bit security strength, the time complexity 2'°7 is too
high. Let’s find the best attack with complexity less than 2256, According to Fig. 51, 7-round in
the forward direction has degree of 128 and 6-round in the backward direction has degree of 243.
Therefore, we can find a zero-sum distinguisher for 13-round underlying permutation of SHAKFE256
with about complexity 2243, which is less than 22°6. As we learned from Fig. 55, we can extend
one more round by considering all the possible inputs of each active row. According to Fig. 52, we
can find a zero-sum distinguisher for 13-round underlying permutation of SHAKE256 with about
complexity 224°, which is less than 22°6.
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4 Security Evaluation of Domain Extensions

4.1 Security Analysis of Each Domain Extension against Second-preimage Attacks

In 2005, Kelsey and Schneier [37] introduced a general second preimage-finding attack on the MD
hash functions with message length padding (called SMD hash functions)such as MD5, SHA-1,
SHA-2 with about the birthday attack complexity. Their attack works even when the compression
function is a random oracle of fixed input length. Here, we want to explain the idea of Kelsey-
Schneier’s general second-preimage attacks. For that, we follow the way of explaining the attacks

from Chang’s PhD thesis [17].

Let SPRINGif(IV; X) be a set of message M’s such that for all M ESPRING%(IV; X), t1 <
||M|| <t and [SPRING?(IV; X)|=ty —t; + 1 and MD/(IV, M)=X and all element have different
block-lengths and X is a fixed value. Assume that ¢t; = k and to = 28 + k — 1. Let ¢ be 2F + k + 1.

Their attack consists of the following four steps.

- =

the target message M is given (see Fig. 72.).
we use SPRING% (IV; X). (see Fig. 73.).

we compute f(X, M) = h} for 1 <i < 2" % where M’s are chosen arbitrarily (see Fig. 74.).
According to the birthday paradox, with a high probability, there exist hj and h; such that

hi =h;for 1 <1<2"%and k+1<j <2 +k (see Fig. 75.).

— Therefore, given a message of 2% + k + 1 blocks and SPRING% (IV; X)), with the complexity
2"* we have a second preimage M’ such that pad(M') = S|| M} ||Mjt1]| - - - |[Mas 4 p4q and
SMDJ(IV,M') = hy and S has j-1 block length and is the element of SPRINGE (IV; X).
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General Method for Obtaining SPRING%’(I V;X) with complexity k2"/2. See Figure 76.
In order to construct SPRING% (IV; X), Kelsey and Schneier [37] used Joux’s multicollision attack
method as shown in Figure ?7. At first, with the birthday attack complexity we can get mq||ms
and ny such that f(f(IV,m1),m2) = f(IV,n1) = hy , n; and m; are n bits. Next, with the birthday
attack complexity we can get mg|[ma||m; and ny such that f(f(f(h2,ms),
Likewise, for other cases, we can have the results shown in Figure ?7. Therefore, with the complex-
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ity k2"/% we can construct SPRINGE (IV; X) where t1 is k and 5 is 28 + &k — 1.

Method for Obtaining SPRING% (IV;X) in the case of MD4-style Hash Functions such
as MD4, MD5 and SHA-1 with complexity 2"/2+!, Kelsey and Schneier [37] described another
method for constructing SPRING%(I V; X) using the fixed points of the compression functions of
MD4-style hash functions such as MD4, MD5 and SHA-1. The compression functions f’s of MD4-
style hash functions have the same structure as follows: f(h;—1, M;) = Inv(h;—1, M;) + h;—1 where
Inv is an efficiently-invertible function with given M;. So, for any M;, we can easily get h* such
that Inv(h*, M;) = 0. In other words, f(h*, M;) = h* where h* is a fixed point of f when a M; is
given. See Figure 77. In the same way, with the complexity 2° we can compute fixed points p;’s for
1 <i < s where s = 2%/2, And with the complexity s = 2"/2 we can compute ¢;’s for 1 < i < s.
Then, according to the birthday paradox, with the high probability there exist ¢; and p; such that
q; = p; for some 7 and j.

Finally, with the complexity 2"/2*1 we can construct SPRINGE (IV; X) using m; and n; where
X = q; or pj;, t1 and t3 are any values. See Figure 78.

ml nl
a’—bitl’\\ d—biz;\/\\
n-bit n-bit n—bit n-bit
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d,/y,-,J/\\ d—th\\
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. | it | .
. | 1 :
: ql pj : :
H e e e ] | H
m, . n .
(H)HJK\ OH)”JK\
]V n-bit n-bit qV px n—bit R p_,-

Fig. 77. A General Method of Expandable Messsages in case of SHA-256 style Hash Function [37]: Step 1

]V’JJ]JJ]JJJ]
X X X X X X X X X X

Fig. 78. A General Method of Expandable Messsages in case of SHA-256 style Hash Function [37]: Step 2

Security of Domain Extensions of SHA-224 against second-preimage attacks. The com-
plexity of Kelsey-Schneier’s general second-preimage attack on SHA-224 depends on the internal
state size. In case of SHA-224, the state size is 256 bits and it is very easy to find fixed points so
the attack complexity would be O(2'%%), which is much less than the optimal security bound of
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hash functions with hash output sizes of 224 or 256 bits.

Security of Domain Extensions of SHA-512/224 and SHA-512/256 against second-
preimage attacks. The complexity of Kelsey-Schneier’s general second-preimage attack on SHA-
224 depends on the internal state size. In cases of SHA-512/224 and SHA-512/256, their internal
state sizes are 512 bits only so the Kelsey-Schneier’s attack complexity on them would be O(2%5),
which is beyond than the general second-preimage attack complexity 2224 for SHA-512/224. We
know from [18] that any indifferentiable attack on chopMD with n-bit internal state and (n — s)-bit
hash output requires at least O(min (2" 571, m)) queries when the compression function of
chopMD is assumed to be the random oracle. In case of SHA-512/224, n=>512 and s=288, the attack
complexity would be O(min (2223, 3X2228:+1)) = 0(2?%) which shows that SHA-512/224 is guaran-
teed to provide the optimal security against the second-preimage attacks. In case of SHA-512/256,
n=>512 and s=256, the attack complexity would be O(min(22°3, %)) = 0(22%%) which shows
that SHA-512/224 is guaranteed to provide at least the almost optimal security against the second-

preimage attacks.

Security of Domain Extensions of SHA3-224, SHA3-256, SHA3-384, SHA3-512 against
second-preimage attacks. The four SHA3 hash functions are based on the sponge construction,
not based on the MD construction. So, Kelsey-Schneier’s general second-preimage attacks cannot be
directly applied to the four SHA3 hash functions. It was shown in [7] that the sponge construction
provides at least 2¢/2 indifferentiable security, where c is the capacity size. Since the capacity sizes
of the four SHA-3 hash functions are double of their hash outputs, the four SHA-3 hash function
provides the optimal security against second-preimage attacks.

Security of Domain Extensions of SHAKE128 and SHAKE256 against second-preimage
attacks. It was shown in [7] that the sponge construction provides at least 2¢/2 indifferentiable
security, where c is the capacity size. In case of SHAKE128, ¢=256, so, we can only guarantee
the 128-bit security against the second preimage attacks, regardless of its output size. In case of
SHAKE256, ¢=512, so, we can only guarantee the 256-bit security against the second preimage
attacks, regardless of its output size.

4.2 Domain Separation of SHA-224, SHA-512/224 and SHA-512/256

The initial value V594 of SHA-224 consists of eight 32-bit words, which represent the second thirty-
two bits of the fractional parts of the square roots of the 9th through 16th primes. On the other
hand, I'V519/994 and IV5;9/956 are defined by using the SHA-512 hash function as follows:

IVsy2/204=SHA-512(“SHA-512/224) with IV’ = V515 @ Oxabajas...a5
IV512/256:SHA—512(‘LSHA—512/256”) with IV/ = -[1/512 @ Oxabadbab...ad

Each domain extension can be described in Fig. 79, Fig. 80, and Fig. 81.
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Fig. 79. Domain Extensions of SHA-256 and SHA-224, where fa56 is the compression function of SHA-256.

SHA-512
Pad(M) =

[V512

SHA-512/224
Pad(M) =
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SHA-512/256
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Fig. 80. Domain Extensions of SHA-512, SHA-512/224, and SHA-512/256, where Pad is the padding rule of SHA-512.
Unlike SHA-224, the initial values of SHA-512/224 and SHA-512/256 are generated by calling SHA-512 for one-block

padded message.
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SHA-512/224
Pad(“SHA-512/224")

N

0xa5as...as®1V,, —=—| fsi2 [ 1V,

512-bit 512-bit

SHA-512/256
Pad(“SHA-512/256")

Y

0xa5as...a5®1V;,, = fs2 | v,

512-bit 512-bit

Fig. 81. Initial Values IV512/204 and IV519/256 of SHA-512/224, and SHA-512/256: The initial values of SHA-512/224
and SHA-512/256 are generated using IVs12 @ Oxabab....ab, where I'Vs12 is the initial value of SHA-512, Pad is the
padding rule of SHA-512, and f512 is the compression function of SHA-512.

Now, a question arises: What if we only use V312 rather than V512 @ Oxababab...ab? If we we
use the same [V512 without tweak for generating I'Vs2/904 and IV;5/956, we can easily show that
SHA-512 and SHA-512/224 (or ‘SHA-512 and SHA-512/256’) are related and dependent on each
other. Let us define a message M’ such that Pad(M’):=(Pad(“SHA-512/224”)||My||- - - ||M;—1) for
an integer ¢t > 1. Then, let us define another message M such that Pad(M)=(Mi||- - ||M¢-1|| M),
where Mj, - -+, M;_1 were already defined from Pad(M’). Once we know SHA-512(M)=h’, then we
can calculate h(=SHA-512/224(M)) without calling SHA-512/224 but calculating h = f512(h', My).
Therefore, we can easily find a dependency between two hash outputs of SHA-512 and SHA-512/224
if V519 is used rather than I'V519 @ Oxababab...ab. Likewise, we can see that it is also easy to find a
dependency between two hash outputs of SHA-512 and SHA-512/256 if IVs19 is used rather than
IV519 @ Oxababab...ab.

SHA-512

Pad(M')=[Pad(“SHA512/224") A, e M, |

sz l Vs 744\5-_\_' h,
512-bit 512-bit 512-bit 512-bit 512-bit

SHA-512/224 with [T,
Pad“SHA-512/224™)  PadOe M,  —— I, A |

5 - Truncation of
151, ‘&-_\_’ 1512204 4\_’ ‘\—‘-_\—‘ ‘\_K‘I ‘_\—’ the Isb 224-bit | 7

512-bit 512-bit 512-bit 512-bit 512-bit 512-bit 512-bit 512-bit 224-bit

Fig. 82. The reason of Generating IV512/224 not from IVsia: if 1V519/224 is generated only from I'Vs12 without any
tweak on it, it is easy to show that SHA-512 and SHA-512/224 are not independent.
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4.3 Domain Separation of the SHA-3 Functions

The padding rule Pad’s of the six SHA-3 functions are defined by composing two padding rules;
one is the outer padding Pad,,;, called multi-rate padding 10*1, and the other is the inner padding
Pad,;;,, say partition-padding. Therefore, the padding Pad of each of SHA-3 functions is described as
Pad(M)=Pad,.:(Pad;,((M)). As shown in [7], the sponge construction, on which SHA-3 functions
are defined, is indifferentiably secure in random oracle model and in the single stage setting model
[51], under the condition that the last block of padded message should be non-zero.

SHA3-224 Last block
----- I
: m 11
O .
1151 bits [- e

1152th bit ——&~ f
448 bits ————

SHA3-384 Last block

831 bits —

832th bit ——e~ f
768 bits ————

SHAKE128

1343 bits

1344th bit
256 bits

SHA3-256 Last block
SHAKE256 | oy 1 |
| _[_ el gl

1087 bits —

1088th bit ——a-~ f
512 bits

SHA3-512 Last block
| |

575 bits —

576th bit ——-~ f
1024 bits

Last block

g

Fig. 83. The last block of padded message after outer padding 10*1 of the SHA-3 functions
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Using multi-rate padding 10*1 as the Outer Padding (Domain Separation between Two
domain extensions when their bitrates are different.) As we can see from Fig. 83, the bitrate
of SHA3-n is 1600-n for n=224,256,384,512. Therefore, after applying the multi-rate padding 10*1
as the outer padding is that in case of SHA3-224 the 1152-th bit of the last 1600-bit input chaining
state will be XORed with the bit ‘1, in case of SHA3-256 the 1088-th bit of the last 1600-bit input
chaining state will be XORed with the bit ‘1’ in case of SHA3-384 the 832-th bit of the last 1600-bit
input chaining state will be XORed with the bit ‘1’, and in case of SHA3-512 the 576-th bit of
the last 1600-bit input chaining state will be XORed with the bit ‘1’. Therefore, we can see that
the last blocks of padded messages for any two different variants of SHA-3 family will be always
different and non-zero, which will guarantee that there is no dependency on the hash outputs of
different variants of SHA-3 family with help of the result of indifferentiable security of the sponge
construction [7].

Using Partition-Padding Approach as the Inner Padding(Domain Separation between
Two domain extensions when their bitrates are same.) In order to explain the necessity of
the inner padding, firstly let us see the cases of SHA3-256 and SHAKE-256.

SHA3-256(M) = Krccak[512](M][01,256);
SHAKE256(M, d) = KECCAK[512](M|[1111, d);

As we can see, the capacity c is same as 512 for SHA3-256 and SHAKE256. SHA3-256 uses “01”
padding as its inner padding and SHAKE256 uses “1111” as its inner padding. More in detail, the
inner paddings are defined in Fig 85. The reason why we need such inner padding is that we need
to guarantee that hash outputs will be independent even for the same capacity size. If there is no
such inner padding, it is easy to find any dependency on the outputs of SHA3-256 and SHAKE256.

11 SHAKE128
SHAKE256
RawSHAKE128 P
RawSHAKE256 .
FIPS 202 Inner function
1 00*1 of Sakura hash
(non-sequential)
A
O T
Reserved
SHA3-224, SHA3-256

SHA3-384, SHA3-512

Fig. 84. Inner Padding Methods via Padding-partition. [30] : Note that the padding bits are reversely ordered.

As we can see examples in Fig. 85, for various purposes we can partition inner padding bits for
domain separation.
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Fig. 85. Example for Structure of Extensions [30]

78




5 Evaluation of HMAC based on the Domain Extension of SHA-224,
SHA-512/224, SHA-512/256, and the Four SHA-3 Hash Functions

In this section, we examine the security of HMAC based on the chopMD, which is the domain
extension of SHA-224, SHA-512/224, and SHA-512/256. A chopMD hash function is a MD hash
function with its final output truncation.

HMAC [4]. Let K be a n-bit key. We define K = K||0°~™ where b indicates the size of the
message block of a hash algorithm H (ex. b = 512 for SHA-224, b = 1024 for SHA-512/224 and
SHA-512/256).0opad is formed by repeating the byte ‘0x36’ as many times as needed to get a b-bit
block, and ipad is defined similarly using the byte ‘0x5c’. Then, HMAC is defined as follows:

HMACk (M) = H(K @ opad||H(K @ ipad||M)).

K®ipad Y P— M,
1V — f o —— —7 / ~— n-bit trunc—F+—*> Z

I-bit I-bit I-bit I-bit ;—\n_buj

K®opad  pad(2)

w—s [ of n-bit trunc —— MAC value
I-bit 1-bit I-bit n-bit

v

Fig. 86. HMAC construction: for SHA-224, {=256 and n=224, for SHA-512/224, (=512 and n=224, for SHA-512/256,
=512 and n=256

In this section, we consider the following four attacks.

Existential Forgery: the attacker builds valid pair (M,T), without having queried M.

Universal Forgery: the attacker first receives a message M sent as a challenge, and then builds

valid pair (M,T), without having queried M.

— Internal State Recovery: the attacker recovers any internal state during any MAC value
computation.

— Key Recovery: the attacker recovers the secret-key K used in the MAC algorithm.

According to existing analyses, we can summarize the best attack complexities on HMAC based
SHA-224, SHA-512/224, and SHA-512/256 as shown in Table 12. As we can see, when the key size
(k) is same as the hash output size, except for SHA-224, the best known attacks on SHA-512/224
and SHA-512/256 are the exhaustive search over the possible key space. Based on existing attacks,
SHA-512/224 provides better security than SHA-224.
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Algorithm

HMAC-SHA-v ¢

S

Existential Forgery
min(2*, O(2¢2) [50])

Universal Forgery
min(2*, O(¢-2°=*) [35])

Internal State Recovery
min(2", O(2¢7°) [41, 24])

Key Recovery
min(2*%, 0(23¢4) [35)])

v=224 256| 55

min(2*, O(2'%®) [50])

min(2¥, 0(229) [35])

min(2*, O(22°) [41, 24])

min(2*, O(2'%?) [35])

v=512/224 |512(118

min(2*, 0(22°%) [50])

min(2*, 0(23%®%) [35])

min(2*, 0(23%%) [41, 24])

min(2*, 0(2*%1) [35])

512{118

v=512/256

min(2*, 0(22°%) [50])

min(2*, 0(23%®%) [35])

min(2*, 0(23%%) [41, 24])

min(2*, 0(2*%") [35])

Table 12. Best Known Attack Complexity of HMAC based on SHA-224, SHA-512/224, and SHA-512/256: k is the
key size, and /¢ is the internal state size, 2° is the maximum block length of message.

Security of HMAC based on the four SHA-3 hash functions. There are four SHA-3 hash
functions, SHA3-224, SHA3-256, SHA3-384, and SHA3-512. The capacity size of each SHA-3 hash
function is double of its hash output size, which is similar to SHA-512/224 and SHA-512/256.
Therefore, we can at least guarantee that the best known forgery, key-recovery, internal-state re-
covery attacks on HMAC based on the MD hash functions such as SHA-224, SHA-256, SHA-512
cannot be applied to HMAC based on SHA-3 hash functions with less complexity than min(2F,2"),
where k is the key size and n is the hash output size.
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6 Evaluation of MAC, Stream Cipher, and AE based on the SHA-3 Functions

In this section, we explain results of [25] for MACs, stream ciphers, and AEs based on SHA-3
functions. Let us see attack ideas.

Key Recovery Attack using Linear Superpolys [25]. As an example, let’s consider a boolean
function f(xg,x1,x2,x3) = 9 + ToT172 + ToT123 + 2. And f can be described in the following
ways:

f(xo, 1, 22, 23) = 20(1 + 2172 + T173) + T2,
f(zo, 21,22, 13) = 21 (T0T2 + TOT3) + X0 + T2,
f (o, 1,22, 3) = w1 (72 + T3) + W0 + T2.
We say toy = xo, t{1y = @1, 1{0,1} = ToZ1, Py, (X0, 71, T2, ¥3) = 1+z122+3123, Py ) (T0, 21, T2, T3) =
z0T2+x0x3, Prpy ), (w0, T1, T2, T3) = B2 +23, Qg (T0, T1, T2, ¥3) = 32, Py, (0, 21, T2, 13) = 2o+ 2,
Py o0y (Tos 21, 02, T3) = T0 + T2

So, we can describe f in the following ways:

f($) = t{O} ’ Pt{o} (.’L’) + Qt{o} (l’),
f(l') = t{l} : Pt{l} ('I) + Qt{l} (l‘)v
f(x) = t{(],l} : Pt{oyl} (l‘) + Qt{o’l}(x)‘

Genearally let f: {0,1}" — {0,1} and let I C {0,1,2,--- ,n— 1}. Then, f can be described as
follows:

f(x) =tr- Pt1($) + Qtl(m)'
where none of the terms in Q, () is divisible by ;.

The key-recovery attack using the linear superpolys consists of two phases, preprocessing (of-
fline) phase and online phase.

PREPROCESSING (OFFLINE) PHASE. Let us consider a boolean function f(v, x) where v = (vy, -+ ,v4-1)
are (d-1) public variables (variables controlled by the attacker, e.g. a message or a nonce) and = =
(z1,- -+ ,x,) are n secret key variables. Let I = {1,--- ,d—1} and we define C; = {(b1,....,b4—1)|1 <

Vj <d—1,b; € {0,1}}, which is the set of all binary vectors of the length d — 1.

> fwx)=Py(l,-,1,2) = L(x)

vely d—1 times

where, L(zx) is called the superpoly of C7.
Assuming the degree of f(v, ) is d, then, according to [40], we can write

L(z) =a1x1 + - apxyn + ¢

If the boolean function f’s algebraic normal form is not public and we only know input-output
relations of f and the degree d of f, we interpolate the linear coefficients of L(x) as follows:

— fine the constant ¢ = Z f(v,0)
veCT
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—finda; = Y f(v,0,-+-, 1 ,0,--+,0))

veCr x;

ONLINE PHASE. In online phase, our target is to find the secret key variables x. For that, we need
n linearly independent equations to find x by the Gaussian elimination. In order to get a linear
equation, an attacker has to make 29! chosen plaintext queries v’s for every v € C to an oracle
f(-, ) to get the value f(v,x), where x are n secret key variables, and he can calculate the value
of L(x) by summing up all the values of f(v,x)’s as follows:

> fw,x)=Py(l,-,1,2) = L(x)

vely d—1 times

Let the value of L(z) be b;,. We have to repeat this procedure for different boolean functions
f’s until he can get n linearly independent equations.

Divide-and-Conquer Key Recovery Attack using Partial-key-dependent Constant Su-
perpolys [25]. For example, let the secret key size be 128-bit. Assume that constant superpolys
of some cubes, where each cube is formed by d public variables, are defined only by the first 64-bit
value of the 128-bit key. Then, the idea of the divide-and-conquer key recovery attack [25] is as
follows:

1. (Offline) For each of 264 possible cases of the first 64-bit value of the secret key, the attacker
precomputes and stores the values of the constant superpolys depending only on the first 64-bit,
where the value of each constant superpoly for each 64-bit case can be calculated by summing
all the possible outputs such as MAC values or internal states or keystreams, etc.

2. (Online) Once the 128-bit secret key is fixed, the attacker makes 2% queries by considering all
the possible values for the d public variables and sums all the returned values to get the values
of superpolys. Then, we can get the first 64-bit value of the secret key by finding matching
values with the summed values from the precomputed table.

Forgery Attack using a Zero Superpoly [25]. As we learned from the zero-sum distinguisher,
The zero-sum structures can be easily found using the concept of higher-order derivatives of a
function. Higher-order derivatives of a function and its related property were well studied in [40].
Let us repeat one of his results as follows:

Definition 4. [{0] Let F be a function from F3 into Fy'. For any a € Fy the derivative of F' with
respect to a is the function D F(x) = F(x 4 a) + F(x). For any k-dimensional subspace V' of FY
and for any basis of V', {a1,- - ,ar}, the k-th order derivative of F' with respect to V' is the function
defined by

DyF(2) = Da, Day - -+ Do, F(w) = Y F(x + v),Va € Fy
veV

And for every subspace V' of dimension (> deg(F') + 1),
DyF(z) =Y F(z+wv)=0YzeFj;

veV
Let us consider a boolean function f(v, z) of degree d where v = (v1,- -+ ,v441) are (d+1) public
variables (variables controlled by the attacker, e.g. a message or a nonce) and x = (1, - ,,) are

n secret key variables. According to the above result of [40], the following equation holds (in other
words, the superpoly of C7 is zero):
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Z f(v,z) =0

veCr

where the degree of f(v,x) is d, Cr = {(b1,....,ba+1)|1 < Vj < d+1,b; € {0,1}}, which is the set
of all binary vectors of the length d + 1.

Therefore, once we know Z f(v, ) through 291 —1 queries, we can know that f(v',z) =
veCr—{v'}
Z f (v, x) without any additional query, which is a successful forgery attack, because f (v, )@
veCr—{v'}
Z f(v,z) should be zero according to the above result of [40].
veCr—{v'}

Keystream Prediction [25]. Higher-order derivatives of a function and its related property were
well studied in [40]. Let us consider a boolean function f(IV,x) of degree d where IV = (v1,--- ,vq)
are d public initial variables (initial variables controlled by the attacker) and x = (x1,--- ,x,) are
n secret key variables. According to the above result of [40], the following equation holds:

> FUV0,---,0,00= Y fIV,0,---,0,1)=---= > f(IV,1,---,1,1) =constant

IVeCy IVeCr IVeCy

where constant is either 1 or 0, the degree of f(IV,z)isd, Cr = {(b1,....,bq)|1 <Vj < d,b; € {0,1}},
which is the set of all binary vectors of the length d.

Therefore, once the attacker computes Z fIV,0,---,0,0) (offline phase) and knows Z fIV,z)
1VeCT wec;—{1v';
through 2¢ —1 queries (online phase), the attacker can know that f(IV’, z) = Z f(v, z) with-
veCr—{v'}
out any additional query for the previously unseen initial value IV’, which is a successful keystream
prediction attack, because (f(IV',x)® Z f(IV,z)) should be zero according to the above
IVeC;—{1v'}
result of [40].

6.1 Key-recovery Attack on MAC construction based on 5-round Keccak

[25] considered the 5-round version of KECCAK with a 1600-bit state with 7=1024 and ¢=576 and
the authors considered a MAC construction with the 128-bit key and 128-bit tag as shown in Fig.
87.
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key || message

pad
R

L .tag

M.
N\

(round-reduced)
Keccak-f[1600]
permutation

—

Fig. 87. MAC based on KECCAK [25]

Since the degree of the 5-round version of KECCAK is at most 32 (=2°), the authors [25] chose
31 public variables v = (v1, - -+ ,v31) among message area in Fig. 88 for a cube attack on the 5-round
version of KECCAK as MAC for the key recovery attack. As shown already, the superpoly of any
cube with 31 variables consists of linear terms only.

x=0 x=1 x=2 x=3 x=4

key (128-bit secret fixed value)

B>

y=0 |A[0,0] A[1,0]|A[2,0] A[3,0] A[4,0]

padded message (896-bit y=1 |A[0,1] A[1,1] A[2,1] A[3,1] A[4,1]
controlled by attacker) o

D

y=2 |A[0,2] A[1,2] A[2,2] A[3,2] A[4,2]

y=3 JA[0,3]|A[1,3] A[2,3] A[3,3] A[4,3]

constant (576-bit fixed value) P
y=4 JA[0,4] A[1,4] A[2,4] A[3,4] A[4,4]

Fig. 88. Area of key, message, and constant of input state of the permutation considered in [25] for Key Recovery
Attack on 5-round KECCAK working as MAC: the ordering of lanes is defined according to Fig. 89

PREPROCESSING (OFFLINE) PHASE. Once we choose any cube with 31 variables among 896 message
bits, do the following procedure to find a linear equation over 128 secret key variables by defining
different f’s with allocation of any fixed constant values onto the remaining 865 bits (=896-31).

— fine the constant ¢ = Z f(v,0)

veCT
—finda; = Y f(v,0,---, 1 ,0,--+,0))
veCy x;
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x=0 x=1 x=2 x=3 x=4

y=2110]11]112 13| 14

y=3|] 15|16 |17 | 18] 19

y=4120|21122|23]|24

Fig. 89. Lane Odering of State considered in [25]

According to Sect. 4.1 of [25], only 20-25% of the superpolys were useful (i.e. non-constant)
based on their simulation. The authors finally found 117 linearly independent equations using 19
cubes and several output bits.

ONLINE PHASE. We can guess remaining 11 additional secret key-bit values and find the 128-bit
secret key by making 19 - 231 ~ 23% chosen plaintext MAC queries and by using the Gaussian
elimination.

6.2 Key-recovery Attack on Stream Cipher construction based on 6-round Keccak

For the 6-round version of KECCAK with a 1600-bit state with r=1024 and ¢=576, the authors [25]
considered a stream cipher construction with the 128-bit key and 128-bit initial value IV as shown in
Fig. 90. As described in [25], The first 960 of the 1024 available output bits contain 960/5=192 full
rows, which can be converted using x~! operating on the rows independently, so we can compute
960 bits after 5.5 rounds with probability 1. Therefore, we only need to break 5.5-round version
with at most 32 degrees, because the first half round is linear.

key || IV ciphertext

pad plaintext

S

M\
U

——— keystream

(round-reduced)
Keccak-f[1600]
permutation

N 7

Fig. 90. Stream Cipher based on KECCAK [25]
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Since the degree of the 5.5-round version of KECCAK is at most 32 (=2°), the authors [25] chose
31 public variables v = (v1,--- ,v31) among initial value area in Fig. 91 for a cube attack on the
5.5-round version of KECCAK as stream cipher for the key recovery attack. As shown already, the
superpoly of any cube with 31 variables consists of linear terms only.

x=0 x=1 x=2 x=3 x=4
S = Initial Value (128-bit
y=0 |A[0,0] A[1,0]]A[2,0] A[3,0]]A[4,0] controlled by attacker)

key (128-bit secret fixed value)

y=1 JA[0,1] A[1,1] A[2,1] A[3,1] A[4,1]

constant (1344-bit fixed value) =
y=2 JAIO0,2] A[1,2] A[2,2] A[3,2] A[4,2]

y=3 JA[0,3] A[1,3] A[2,3] A[3,3] A[4,3]

y=4 |AI0,4] A[1,4] A[2,4] A[3,4] Al4,4]

Fig. 91. Area of key, initial value, and constant of input state of the permutation considered in [25] for Key Recovery
Attack on 6-round KECCAK working as Stream Cipher: the ordering of lanes is defined according to Fig. 89

PREPROCESSING (OFFLINE) PHASE. Once we choose any cube with 31 variables among 128 initial
value bits, do the following procedure to find a linear equation over 128 secret key variables by

defining different f’s with allocation of any fixed constant values onto the remaining 97 bits (=128-
31).

— fine the constant ¢ = Z f(v,0)

veCy
_ﬁndai:Zf(Uvov"'v\1,701"'70))
veCy T;

According to Sect. 4.2 of [25], the authors finally found 128 linearly independent equations using
25 cubes and several output bits.

ONLINE PHASE. Therefore, we can find the 128-bit secret key by making 25 - 23! ~ 236 chosen IV
queries and by using the Gaussian elimination.

6.3 Key-recovery Attack on Authenticated Encryption based on 6-round Keyak

For the 6-round version of KECCAK with a 1600-bit state with r=1348 and ¢=252, the authors [25]
considered Keyak family algorithms [11] with the 128-bit key, 128-bit nonce, and 128-bit tag as
shown in Fig. 92. The attack procedure using the chosen nonce attack is same as the key-recovery
attack on 6-round version of stream cipher in Sect. 6.2.
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128-bit key || 128-bit nonce

S

plaintext,
N 128-bit tag
pad
Y
N
L

(round-reduced)
Keccak-f{1600]
permutation

ciphertext, ciphertext,
6 plaintext, 6
pad
/AR
(round-reduced) (round-reduced)
Keccak-f1600] Keccak-f[1600]
permutation permutation

N 7

Fig. 92. Lake Keyak processing two plaintext blocks [25] : The capacity ¢ is 252 and the bitrate r is 1348.

key (128-bit secret fixed value)

constant (1344-bit fixed value)

y=0

y=1

x=0 x=1 x=2 x=3 x=4

- &

A[0,0] A[1,0]|A[2,0] A[3,0]]JA[4,0]

A[0,1] A[1,1] A[2,1] A[3,1] A[4,1]

>

y=2
y=3

y=4

A[0,2] A[1,2]' A[2,2] A[3,2] A[4,2]
A[0,3] A[1,3] A[2,3] A[3,3] A[4,3]

A[0,4] A[1,4] A[2,4] A[3,4] Al4,4]

Nonce (128-bit
controlled by attacker)

Fig. 93. Area of key, initial value, and constant of input state of the permutation considered in [25] for Key Recovery
Attack on 6-round Keyak: the ordering of lanes is defined according to Fig. 89
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6.4 Forgery Attack on MAC construction based on 7-round and 8-round Keccak
and 7-round Keyak

Forgery Attack on MAC construction based on 7-round Keccak [25]. In case of 7-round
KECCAK, its degree is at most d = 128. However, if we carefully define variables the public variables
v = (v1,---,v;), we can reduce the degree of 7-round KECCAK from d = 128 to d = 64. More
precisely, as shown in Fig. 94, there are 896-bit padded message area, which can be controlled by
the attacker.

x=0 x=1 x=2 x=3 x=4

-

y=0 |A[0,0] A[1,0] A[2,0] A[3,0] A[4,0]

key (128-bit secret fixed value)

padded message (896-bit y=1JA[0,1] A[1,1] A[2,1] A[3,1] A[4,1]
controlled by attacker) ~

==

y=2 JA[0,2] A[1,2] A[2,2] A[3,2] A[4,2]

y=3 |A[0,3]|A[1,3] A[2,3] A[3,3] A[4,3]

constant (576-bit fixed value) =
y=4 JA[0,4] A[1,4] A[2,4] A[3,4] A[4,4]

Fig. 94. Area of key, message, and constant of input state of the permutation considered in [25] for Forgery Attack
on 7-round KECcCAK working as MAC: the ordering of lanes is defined according to Fig. 89

Then, as shown in Fig. 95, we, as an attacker, define two sets of random variables, V; =
(v, v3, -+ v}) from A[0,2], and Vo = (v}, 03, - ,v?) from A[1,1], where i+ j = 65. Let C; and Cy
be any ¢-bit constant and j-bit constants chosen by the attacker, respectively. Then we define the
i positions of A[0,3] as V; @ C and the j positions of A[1,2] as Vo @ Cy such that A[0,2] @ A[0, 3]
and A[l,1] & A[1,2] are constant regardless what values are assigned to the 65 variables. Except
for the 130-bit positions defined by the 65 public random variables, remaining 766 (=896-130) bits
are fixed as any constants chosen by the attacker. As we can see from Fig. 95, there is no change of
positions influenced by the 65 variables after 6 step, because A[0,2] & A[0,3] and A[1,1] & A[l, 2]
are constant regardless what values are assigned to the 65 variables. Since p step independently
works in each lane, there is again no change of non-constant positions. As we can see from Fig. 96,
the final positions influenced by the 65 variables will be determined as shown in the final status of
Fig. 95.

As we can see from the final status of Fig. 95, there are no two adjacent positions (determined
by the random variables) in a row and each of the 130 positions influenced by the 65 random vari-
ables are described by a boolean function with degree 1. By the definition of x step, after x step,
there is no increase of degree because there are no two adjacent positions (influenced by the random
variables) in a row. So, there is no increase of degree after the first round, and the degree of 7-round
Krccak will be 64 (=25) only, not 128 (=27). Therefore, as explained in [25], the forgery attack
works by collecting 26° — 1 tags for 205 — 1 chosen message queries by varing 65 public variables
among message parts in Fig. 88, we can get the tag (= the sum of all 265 — 1 tags) for the last
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x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4

y=0 y=0
y=1 6 y=1
y=2 y=2
y=3 y=3
y=4 y=4
x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4
y=0 y=0
P y=1 T y=1
 — _—
y=2 y=2
y=3 y=3
y=4 y=4
: Constant . : Dependent on the variables V; (1<i<2)

Fig. 95. Transition through the first linear part of the round (6, p, 7w steps) for 7-round Forgery Attack: Cy and Cs
are any constants, V; (1 < ¢ < 2) are variables.

x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4

y=0] O 1 2 3 4 y=0] O 6 |12]| 18| 24

y=1] 5 6 7 8 9 T y=1| 3 9 110]16| 22
—

y=2110]111]12 |13 ]| 14 y=21 1 7 113]19] 20

y=3| 15|16 |17 | 18| 19 yv=31 4 | 5 |11]117 ] 23

y=41201211]122]|23]|24 y=4| 2 8114|115 21

Fig. 96. Change of Positions through 7 step
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remaining chosen message without any additional query.

Forgery Attack on MAC construction based on 8-round Keccak [25]. In case of 8-round
KECCAK, its degree is at most d = 256. However, if we carefully define variables the public variables
v = (v1,---,v;), we can reduce the degree of 8-round KECCAK from d = 256 to d = 128. More
precisely, as shown in Fig. 97, there are 768-bit padded message area with 256-bit key size, which
can be controlled by the attacker.

x=0 x=1 x=2 x=3 x=4

>

y=0 |A[0,0] A[1,0] A[2,0] A[3,0]|A[4,0]

key (256-bit secret fixed value)

padded message (768-bit y=1 JA[0,1] A[1,1] A[2,1] A[3,1] A[4,1]
controlled by attacker) ~

=

y=2 JA[0,2] A[1,2] A[2,2] A[3,2] A[4,2]

y=3 JA[0,3]]A[1,3] A[2,3] A[3,3] A[4,3]

constant (576-bit fixed value) P
y=4 A[0,4] A[1,4] A[2,4] A[3,4] A[4,4]

Fig. 97. Area of key, message, and constant of input state of the permutation considered in [25] for Forgery Attack
on 8-round KEcCcAK working as MAC with 256-bit key: the ordering of lanes is defined according to Fig. 89

Then, as shown in Fig. 98, we, as an attacker, define three sets of random variables, Vi =
(vi, v, v}) from A[2,0], Vo = (v},03,--- ,’U?) from A[4,0], and V3 = (v}, v3,--- ,v;’) from
A[4,1], where i 4+ 25 = 129. Let C; and C5 be any i-bit constant and j-bit constants chosen by the
attacker, respectively. Then we define the i positions of A[2,1] as V] @ C; and the j positions of
A[4,2] as Vo ® V3@ Cy such that A[2,0]@ A[2,1] and A[4,0] @ A[4, 1] @ A[4, 2] are constant regardless
what values are assigned to the 129 variables. Except for the (2i4-3j)-bit positions defined by the
129 (=i+2j) public random variables, remaining (768 — 2i 4+ 3j) bits are fixed as any constants
chosen by the attacker. As we can see from Fig. 98, there is no change of positions influenced by
the 129 variables after 6 step, because A[2,0] & A[2,1] and A[4,0] © A[4,1] & A[4, 2] are constant
regardless what values are assigned to the 129 variables. Since p step independently works in each
lane, there is again no change of non-constant positions. As we can see from Fig. 96, the final

positions influenced by the 129 variables will be determined as shown in the final status of Fig. 98.

As we can see from the final status of Fig. 98, there are no two adjacent positions (determined
by the random variables) in a row and each of the (2i+3j) positions influenced by the 129 (=i+2j)
random variables are described by a boolean function with degree 1. By the definition of x step,
after x step, there is no increase of degree because there are no two adjacent positions (influenced
by the random variables) in a row. So, there is no increase of degree after the first round, and the
degree of 8-round KECCAK will be 128 (=27) only, not 256 (=2%). Therefore, as explained in [25],
the forgery attack works by collecting 2129 — 1 tags for 229 — 1 chosen message queries by varing
129 (=i + 2j) public variables among message parts in Fig. 97, we can get the tag (= the sum of
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x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4

y=0 y=0
y=1 0 y=1
E—
y=2 y=2
y=3 y=3
y=4 y=4
x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4
y=0 y=0
,0 y=1 T y=1
e
y=2 y=2
y=3 y=3
y=4 y=4
: Constant . : Dependent on the variables V; (1<i<3)

Fig. 98. Transition through the first linear part of the round (8, p, w steps) for 8-round Forgery Attack: C; and Cs
are any constants, V; (1 < ¢ < 3) are variables.
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all 2129 — 1 tags) for the last remaining chosen message without any additional query.

Forgery Attack on 7-round Keyak [25]. In this case, we assume that the nonce is fixed. The
forgery attack is to start from the state after the first permutation call as shown in Fig. 99. In the
same with the forgery attack on MAC construction based on 7-round KECCAK, we can forge the
128-bit tag with complexity 26° in case of 7-round Keyak [25].

ciphertext, ciphertext,
laintext plaintext, .
128-bit key || 128-bit nonce E E : E B 128-bit tag
pad pad
) o
L/
(round-reduced) (round-reduced) (round-reduced)
Keccak-11600] Keccak-f]1600] Keccak-f]1600]
permutation permutation permutation
/
7
252-bit
x=0 x=1 x=2 x=3 x=4
y=0 JAI0,0] A[1,0] A[2,0] A[3,0] A[4,0]
1348-hit controlled by attacker y=1 JA[0,1] A[1,1] A[2,1] A[3,1] A[4,1]

—

y=2 |Al0,2] A[1,2] A[2,2] A[3,2] A[4,2]

y=3 |A[0,3] A[1,3] A2,3] A[3,3] Al4,3]

Secret constant (252-bit fixed value)

y=4 JA[0,4] A[l,zc] A[2,4] A[3,4] A[44]

Fig. 99. Area of 252-bit Secret Constant and 1348-bit Values controlled by the attacker when the initial value is fixed
in [25] for Forgery Attack on 7-round Keyak: the ordering of lanes is defined according to Fig. 89

6.5 Keystream Prediction for 8- and 9-round Keccak-based Stream Cipher

In this subsection, the attacker targets on predicting a keystream for a previously unseen IV’ in
the stream cipher mode.

— In case of keystream prediction for 8-round KECCAK-based Stream Cipher, we assume that the
key size is 256-bit, the initial value size is 128-bit, the bitrate r = 1024, and capacity ¢ = 576.
Having 1024 bits of keystream, we can invert 960 bits among the 1024 bits of the keystream
through ¢ and Y, since chi works on every 5-bit row independently. Therefore, in this attack,
the attacker targets on 7.5 rounds, not 8 rounds.
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— In case of keystream prediction for 9-round KECCAK-based Stream Cipher, we assume that the
key size is 512-bit, the initial value size is 256-bit, the bitrate » = 1024, and capacity ¢ = 576.
Having 1024 bits of keystream, we can invert 960 bits among the 1024 bits of the keystream
through ¢+ and y, since x works on every 5-bit row independently. Therefore, in this attack, the
attacker targets on 8.5 rounds, not 9 rounds.

Keystream Prediction for 8-round Keccak-based Stream Cipher [25]. For the 8-round
version of KECCAK with a 1600-bit state with r=1024 and ¢=576, the authors [25] considered
a stream cipher construction with the 256-bit key and 128-bit initial value IV as shown in Fig.
90. As described in [25], The first 960 of the 1024 available output bits contain 960/5=192 full
rows, which can be converted using x~!' operating on the rows independently, so we can com-
pute 960 bits after 7.5 rounds with probability 1. Therefore, we only need to break 7.5 round
version with at most 128 degrees, because the first half round is linear. Let IV = (vy,--- ,v128)
be 128 public initial variables (initial variables controlled by the attacker) and x = (1, - , Z256)
be 256 secret key variables. Let f(IV,x) be the 7.5-round KECCAK. In the offline process, the
attacker computes Z f(IV,0,---,0,0) with time complexity 2'?%. In the online process, the
1VeC;
attacker knows Z f(IV,z) through 2'2® — 1 queries, and then the attacker can know that
IVeC;—{Iv'}
fuav' z) = Z f(v,z) without any additional query for the previously unseen initial value
veCr—{v'}
IV’  which is a successful keystream prediction attack, because (f(IV', z) @ Z fUIV,x))
IVeC;—{IV'}

should be zero.

Keystream Prediction for 9-round Keccak-based Stream Cipher [25]. For the 9-round
version of KECCAK with a 1600-bit state with r=1024 and ¢=576, the authors [25] considered a
stream cipher construction with the 512-bit key and 256-bit initial value IV. In the same way with
the 8-round prediction attack, we can predict the keystream for an unused IV’ with complexity 2256.

6.6 Divide-and-Conquer Key Recovery Basic Attack on 6-round Keccak-based MAC

[25] considered the 6-round version of KECCAK with a 1600-bit state with 7=1024 and ¢=576 and
the authors considered a MAC construction with the 128-bit key and 128-bit tag as shown in Fig.
87. Since the degree of the 6-round version of KECCAK is at most 64 (=2%). Then, as shown in
Fig. 100, we, as an attacker, define a set of random variables, Vi = (vi, 03, -+ vi,) from A[2,2].
Let C7 be any 32-bit constant. Then we define the 32 positions of A[2,3] as V; @ C; such that
A[2,2] @ A[2,3] is constant regardless what values are assigned to the 32 variables. As we can see
from the final status of Fig. 100, any position dependent on the second 64-bit secret value assigned
to A[2,0] and any position dependent on the public random variables V; are not adjacent to each
other in a row. Also, the positions influenced by V1 and Vi @ Cy are located in different rows. So, by
the definition of x step, after y step, there is no increase of degrees among random variables and
the value of any superpoly of the cube formed by all the 32 random variables V; after 6-round is
independent of the value of the second 64-bit secret key in A[1,0]. On the other hand, as we can see
from the final status of Fig. 101, A[1,0] and A[2,0] are adjacent and A[2,3] and A[3,3] are adjacent,
which means that the value of any superpoly of the cube formed by all the 32 random variables V;
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after 6-round is dependent on the value of the first 64-bit secret key in A[0,0].

x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4
y=0 y=0
y=1 6 y=1
_—
y=2 y=2 Vi
y=3 y=3 V,@C,
y=4 y:4
x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4
y=0 y=0 Vi
,0 y=1 T y=1
_—
y=2 Vi y=2
y=3 V,®C, y=3 V,@C,
y=4 y=4
: Constant : Dependent on the second 64-bit secret

. : Dependent on the public variables 7,
Vi

: Linear Combination of the public variables }/; and the second 64-bit secret

Fig. 100. Transition generated by the second 64-bit secret value A[1,0] [25]: the ordering of lanes is defined according
to Fig. 89

Therefore, the following two properties hold [25]:

— Property 1: The cube sum of each output bit after 6 rounds does not depend on the value of
AJ1,0].
— Property 2: The cube sums of the output bits after 6 rounds depend on the value of A[0,0].

The offline phase of the divide-and-conquer key recovery attack [25] with time complexity 2%
and memory complexity 264 is as follows:

1. Set the capacity lanes (A[1,4], A[2,4], A[3,4], A[4,4]) to zero. Set all other state bits (besides
AJ0,0] and the cube variables) to an arbitrary constant.
2. For each of the 264 possible values of A[0,0]:
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x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4

y=0 y=0
y=1 g y=1
y=2 y=2
y=3 y=3
y=4 y=4
x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4
p y=1 T y=1
R T =
y=4 y=4

: Constant : Dependent on the first 64-bit secret

: Dependent on the public variables 7,

il

Fig. 101. Transition generated by the first 64-bit secret value A[0,0] [25]: the ordering of lanes is defined according
to Fig. 89
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(a) Calculate the cube sums after 6 rounds for all the output bits. Store the cube sums in a
sorted list L, next to the value of the corresponding A[0,0].

The online phase of the divide-and-conquer key recovery attack [25] with time complexity 232
is as follows:

1. Request the outputs for the 23? messages that make up the chosen cube (using the same constant
as in the offline phase).

2. Calculate the cube sums for the output bits and search them in L.

3. For each match in L, retrieve A[0,0] and store all of its possible values.

6.7 Divide-and-Conquer Key Recovery Attack on 7-round Keccak-based MAC and
7-round Keyak

In the previous subsection, The offline phase of the divide-and-conquer key recovery attack on
6-round KECCAK-based MAC [25] requires the time complexity 2% and memory complexity 254.
On the other hand, the online phase of the divide-and-conquer key recovery attack [25] requires
only the time complexity 232. So, there is a large gap between the complexities of online and offline
phases. So, [25] considered how to balance those complexities by lowering the offline complexity
and increasing the online complexity. In order to understand the balanced attack, we need to know
a concept of impact of auxiliary variables as shown Fig. 102. If the constant assigned to A[0,1] is
same as the first 64-bit value of the 128-bit secret key assigned to A[0,0], then the transition of the
first half round is determined as shown Fig. 102. From the last state of Fig. 102, we can see that
there will be no multiplication via x step between any of the first 64-bit K and the public random
variables V7, because they are not adjacent to each other. So, the cube sums with the 32 random
variables Vi after 6 rounds depend neither on the value of A[0,0], nor on the auxiliary variables of
AJ0,1]. This observation in [25] gives rise to the balanced attack as follows:

The offline phase of the divide-and-conquer balanced key recovery attack [25] with time com-
plexity 264 and memory complexity 232 is as follows:

1. Set the state bits (which are not cube variables) to zero (or an arbitrary constant). Furthermore,
set A[1,0] and the 32 LSBs of A[0,0] to zero (or an arbitrary constant).
2. For each possible value of the 32 MSBs of A[0,0]:
(a) Calculate the cube sums after 6 rounds for all the output bits. Store the cube sums in a
sorted list L, next to the value of the 32 MSBs of A[0,0].

The online phase of the divide-and-conquer balanced key recovery attack [25] with time com-
plexity 266 and memory complexity 232 is as follows:

1. For each possible value of the 32 LSBs of A[0,1]:

(a) Request the outputs for the 232 messages that make up the chosen cube with the 32 LSBs
of AJ0,1] set according to Step 1 (setting the same constant values in the state as in the
preprocessing).

(b) Calculate the cube sums for the output bits and search them in L.

(c¢) For each match in L, retrieve the 32 MSBs of A[0,0]. Assume that the 32 LSBs of A[0,0]
are equal to the 32 LSBs of A[0,1] (the 32 column parities should be zero, as in the offline
phase). Then, given the full 64-bit A[0,0], exhaustively search A[1,0] using trial encryptions,
and if a trial encryption succeeds, return the full key A[0,0],A[1,0].
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x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4

y=0| K y=0| K
y=1] K 6 y=1] K
y=2 - y=2
y=3 ¥—3
y=4 y=4
x=0 x=1 x=2 x=3 x=4 x=0 x=1 x=2 x=3 x=4
y=0| K y=0| K .
p y=1] K T y=1
- 2 S -
y=4 y=4
: Constant K | : Dependent on the first 64-bit secret K

- : Dependent on the public variables 7,
K

: Dependent on the constant K which is same as the first 64-bit secret K

Fig. 102. Transition when the public constant A[0,1] is same as the secret A[0,0] [25]: the ordering of lanes is defined
according to Fig. 89
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For the key recovery attack on the 7-round KEccak-based MAC, we need 64 random variables
[25]. Due to this reason, we need to increase the above 6-round attack by a factor of 232. Therefore,
the data complexity of the 7-round attack is 204, its time complexity is 27, and its memory
complexity remains 232,

Using this divide-and-conquer balanced key recovery approach, [25] suceededed in finding the
secret key of 7-round Keyak with the time complexity 27, the data complexity 27°, and the memory

complexity 243 of words.
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