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Chapter 1

Introduction

1.1 History and relevance of related-key attacks

Block ciphers are a very important primitive in cryptography and are the primary tool to achieve
confidentiality. Since the beginning of public cryptography in late 1970s, block ciphers have been
extensively studied by both academic community and leading industry agents.

Originally, the security of block ciphers was informally defined as the (in)ability of adversary
to read the encrypted information without the key that was used for encryption. Eventually,
formal models with rigorous definitions appeared, making the use of block ciphers provably secure
under reasonable assumptions.

However, with more and more applied systems in the need of security, the environments
where block ciphers are used are regularly changed with sometimes dangerous consequences for
the overall security. With the seemingly solid theory of block cipher design, cryptographers were
tempted to use block ciphers and their elements as building blocks for other constructions: hash
functions, stream ciphers, MACs, modes of operation, and some others. While some adaptations
were shown to be secure, the other have been completely broken, some of them soon after
introduction.

The notion of “security”, however, is too vague. Naturally we assume that a block cipher is
secure if it is hard to decrypt the ciphertext without a key. This assumption lacks an explicit
formalization of hardness and means of adversary. Both have been formalized in the notion
of semantic security (see [16] for comprehensive treatment of this and subsequent topics). We
would like to avoid excessive formalization here, since the attacks we consider in the report are
not treated in that framework. Less formally, semantic security means that the adversary, having
submitted a couple of plaintexts to the encryption device, is unable to assign the outputs to the
inputs with reasonable probability.

The simplest encryption with a block cipher assumes a message as long as the plaintext block
(128 bits in AES). For this case semantic security follows from the properties of a secure pseudo-
random permutation (PRP), which assumes that under randomly chosen key the permutation
implemented with a block cipher is indistinguishable from a random one.

The property of secure PRP is not always enough, when a block cipher is used as a part of
message authentication code, where it processes a longer message. To invalidate length-extension
attacks, several code algorithms use a key derived from the master key in additional encryption
calls. This situation might require the cipher to be resistant to attacks that exploit the relation
between those keys (related-key attack). RMAC [15] and most of algorithms from ISO standard
9797-1 would require such property to constitute a secure MAC.

5



6 CHAPTER 1. INTRODUCTION

The situation becomes more difficult if a cipher is used as a building block for a hash function.
The key input, earlier uncontrolled by an attacker, often becomes dependent on the message input
and falls under a partial control of the adversary. In order to prove the hash function resistance
to the message manipulation (natural requirement!), one has to prove the cipher resistance to
the key manipulation. HMAC [1], which plugs a keyed hash function into MAC, also requires
the underlying primitive to be resistant to related-key attacks.

There are also numerous ad-hoc modes of operation, hash function designs, and MACs,
whose security depends on the resistance to some type of related-key attacks. If we include
stream ciphers, which are rarely used for hashes and MACs, an infamous case of RC4 is a clear
example. The key was modified predictably, so RC4, which is insecure to this type of attack,
produced related ciphertexts under related keys, and these relations were easy to exploit in the
practical setting [25].

As another environment, where related-key attacks are possible, we mention the so called
fault attacks [6]. It is a type of physical attack, where an adversary is able to cause a fault in a
block cipher circuit, which results in a variable or operation change. Applications of such attacks
to key schedules lead to related-key attacks as we know them. One can argue that fault attacks
are difficult to mount and the key schedule may not be an optimal place to apply them.

To summarize, the related-key attacks are a relevant, though arguably minor, threat to
the security of a cryptosystem built on a block cipher. Since environments always change,
understanding the ciphers’ security to related-key attacks might help to make a right decision
when designing a secure system.

1.2 Definitions and controversies

The key recovery attacks are clearly the most relevant among related-key attacks. They are
easy to formalize and present the largest threat to the system. On the other hand, the so called
distinguishing attacks may have far smaller, in some cases practical complexity. They might
also demonstrate non-trivial properties of a cipher, which might prevent its use in some ad-hoc
constructions.

The standard model of single-key recovery attacks on block ciphers assumes that an adver-
sary has access to some data, encrypted or decrypted on an unknown key. Given D plain-
texts/ciphertexts, the adversary has to recover a secret k-bit key K. An attack is considered
valid if the adversary’s costs (measured in time requirements T , data D, and/or computational
power C) are lower compared to the exhaustive search for one of 2k keys. The attacks are fur-
ther classified by the requirements to the nature of data available to the attacker, ranging from
ciphertext-only to adaptively-chosen-ciphertexts attacks.

The related-key setting assumes that an adversary is able to decrypt and encrypt not only
under the key KA, but also with keys KB = f2(K),KC = f3(K), . . . , fr(K), which are called
related keys. The relation mappings fi are chosen by the adversary. The first related-key attacks
dealt with simple mappings: rotations [3] and bit flips [18]. Recent attacks on AES [8] exploit
dedicated relations, where the fixed difference is applied to expanded keys (subkeys), but not to
original keys. These attacks were later called related-subkey attacks [7].

The total number r of related keys is also a parameter of the attack. While the first related-
key attacks dealt with only two keys, some related-key attacks on AES [5, 19] worked with as
many as 64 related keys in order to get a pair with a desirable relation. We notice that the
generic time/memory/data/key tradeoff attack [11] recovers one of r keys with complexity 2n

r
for block cipher with an n-bit block.
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Definition problems. A cipher is considered secure against regular key recovery attacks, if
there is no valid attack on it (which we defined earlier). This definition, however, is only seemingly
formal. In fact, given no restriction on how the texts are chosen, there are some sets of texts
which contain the key material in their description, and hence allow for trivial attacks. Having
these attacks ruled out, we are not still fine, as there are non-trivial and non-generic attacks that
are valid by our definition and can be applied to virtually any cipher (biclique attacks [13]).

Related-key attacks are even more difficult. As there are trivial data sets, there are trivial key
relations. Some of them admit trivial attacks with low complexity, which apply to any cipher [2].
Even worse, for any given cipher it is easy to define a relation that leads to a trivial attack on
this particular cipher, e.g. the relation f(K) = EK(0). To rule out this class of attacks, one
may try to restrict the set of relations that are “admissible”. For example, we could forbid the
relations that explicitly involve the internal operations of the cipher. The disadvantage of this
approach is that such a restriction also kills already approved related-subkey attacks like [10].

Another idea is to consider related-key attacks only as an application to high-level construc-
tions that use a cipher as a building block. Therefore, each related-key attack enlarges the set
of constructions, which are insecure if instantiated with a particular cipher.
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Chapter 2

Key recovery attacks in the
related-key setting

Though little classification of cryptanalytic methods has been made so far, we can clearly distin-
guish statistical methods from deterministic ones. The statistical group works with property P,
which is preserved by a cipher for only a portion of plaintexts (or sets of plaintexts). For instance,
differential cryptanalysis works with a pair of plaintext with fixed difference, which implies with
high probability a specific difference in ciphertexts. A cryptanalyst shows that due to incomplete
diffusion or weak confusion property P is preserved for a specific sets of plaintexts, which imply
specific conditions on internal variables in the encryption algorithm. The attack then consists
of finding those “right” inputs and deducing keys from those conditions. The related-key model
is easily integrated into this framework, as the key relation becomes part of the property being
observed in the cipher. The complexity of an attack of this kind as well as its success rate is a
random variable.

The second group of methods employs a method that relies on deterministic properties such
as invariants and infrequent use of key material during the encryption. For example, meet-in-
the-middle attacks work for ciphers that use a half of the key in the first part of encryption, and
the other half in the second part. This property leads to a divide-and-conquer method that tests
the key parts independently. In contrast to statistical methods, deterministic attacks always
output the key, and the attack complexity is easy to determine. However, the related-key setting
has not been combined with deterministic methods. Hence we will concentrate on the statistical
methods, with differential cryptanalysis being the most applicable tool.

2.1 Regular differential attacks

The idea of the differential cryptanalysis is to consider the bitwise difference

∆P = P1 ⊕ P2 (2.1)

between plaintexts P1 and P2, and its propagation through nonlinear and linear transformations
of a primitive.

A differential over a transformation F maps input difference ∆I to output difference ∆O:

∆I
F−→ ∆O.

9
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The differential probability (DP) is the number of ordered pairs with input difference ∆I and
output difference ∆O divided by the total number of pairs with difference ∆I :

DPF (∆I ,∆O) = #{{x, y} | x⊕ y = ∆I and F (x)⊕ F (y) = ∆O}/2n,

where n is the output length.
As most ciphers are iterative, differentials over ciphers are combinations of differentials over

rounds. These combinations are called characteristics, or trails:
∆1

f1→ ∆2;

∆2
f2→ ∆3;

· · ·
∆k−1

fk−1→ ∆k.

=⇒ ∆1
f1→ ∆2

f2→ · · · fk−1→ ∆k.

A differential over a whole transformation ∆1
F→ ∆k is a cluster of trails with the same ∆1,∆k.

The differential probability should be high enough to be exploitable. For a random function
the number of pairs conforming to a differential is a random variable with the binomial distri-
bution (in some cases can be approximated by the Poisson distribution) and with mean 2n−m,
where n is the input length and m is the output length. Since the number of ordered pairs
with fixed difference is 2n, a differential probability is expected to be around 2−m. Therefore
a differential with a higher probability is a potential weakness, because a random mapping is
unlikely to have high probability for the same differential.

The key recovery attack based on a differential with probability 2−m works as follows. An
adversary asks for the encryption of c · 2m plaintext pairs with difference ∆1. Here c is some
constant that determines the success rate and is ranging from 4 to 10 in most applications. The
adversary obtains several pairs of ciphertexts with the difference ∆k. Whenever a nonlinear
operation has probability less than one in a differential, it yields a list of possible inputs that
conform to the differential. Those inputs for the first and the last rounds are usually simple
functions of plaintext, ciphertext, and key, which yields simple equations on key bits and restricts
the key space (Figure 2.1). The actual key is found by further restrictions or by exhaustive search.

key

∆

K

search for
f

∆

δ

ciphertext

∆

K

P,P ⊕∆

f

∆

δ

C,C ⊕∇
∇

f(P ⊕K)⊕ f(P ⊕K ⊕∆) = δ

K

conforming pairs

plaintext

Differential: Conforming pair: Key derivation:

Figure 2.1: Key recovery in differential cryptanalysis.
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The related-key setting expands differential attacks. Now the key schedule is part of the
primitive over which a differential is constructed. Since there is usually no feedback from the
internal state to the key schedule, a cryptanalyst assigns a difference to the master key hence
creating related keys. In order to benefit from the related keys, the resulting differential should
activate fewer nonlinear operations in the state than the best regular differential does. Therefore,
the difference from subkeys should correct or cancel the difference in the internal state. However,
this implies that the difference evolution in the key schedule should correspond to the one in the
internal state. Moreover, the key schedule should be at least as vulnerable to differential attacks
as the internal state part is. In fact, as we will see in the main body of the report, the related-key
setting is more likely to give no benefit to key recovery attacks.

2.2 Boomerang attacks

Quite often the first rounds of a differential have much higher probability than the next ones
thanks to the control that the adversary has over the plaintext. As a result, the probability of
a long differential can be much lower than the multiplication of probabilities of its parts. The
boomerang attacks are useful for this sort of ciphers, and they work as follows.

The basic boomerang attack [28] is applied to a cipher EK(·) which is decomposed into E1◦E0.

The first sub-cipher E0 has a differential ∆
E0→ ∆′, and E1, the second one, has a differential

∇′ E1→ ∇, with probabilities p and q, respectively.
We encrypt a pair of plaintexts (P, P ′) with the difference ∆ and apply the difference ∇′ to

the ciphertexts (C,C ′) (Figure 2.2). Then a new pair of ciphertexts (D = C ⊕∇, D′ = C ′ ⊕∇)
is decrypted to Q,Q′. With probability p the first pair has the difference ∆′ in the middle:
E0(P ) = E0(P ′) ⊕ ∆′, and with the probability q2 the pairs (C,D) and (C ′, D′) have the
difference ∇′ in the middle:

E−1
1 (C)⊕ E−1

1 (D) = E−1
1 (C ′)⊕ E−1

1 (D′) = ∇′.
Then

E−1
1 (D)⊕ E−1

1 (D′) = ∆′ = E0(Q)⊕ E0(Q′).

Therefore, Q⊕Q′ = ∆ holds with probability p. Finally, we get a boomerang quartet (P, P ′, Q,Q′)
with probability p2q2, while for a random permutation the probability of this event is 2−n.

Real attacks, including attacks on AES, relax some of the differential properties. In particular,
there might be a gap between E1 and E0, and some bytes of the plaintext difference might not
be fixed, which increases the data complexity.

The amplified boomerang attack [17] (also called rectangle attack [4]) is a significant improve-
ment, which runs in the chosen-plaintext scenario. The idea is to encrypt sufficiently many
plaintext pairs so that the pairs in the middle with the difference ∇′ appear due to the birthday
paradox. Due to the quartet property we immediately get the second pair with the difference
∇′. These pairs produce two pairs of ciphertexts with the difference ∇ with total probability
q2. Therefore, we get a quartet. In total, we generate N2p2q2 quartets out of N pairs, and the
minimal data complexity is 2n/2.

Related-key boomerang attacks. Related-key boomerang attacks assume that the encryp-
tion of P, P ′ and decryption ofD,D′ is performed on four unknown but related keysKA,KB ,KC ,KD.
The difference between keys propagate to subkeys and influence the difference propagation in
the internal state. Evidently, the related-key attacks make sense only if the resulting differentials
have higher probabilities, which usually requires the key schedule to be weaker compared to the
internal state transformation.
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Figure 2.2: Outline of the boomerang attack.



Chapter 3

AES

AES, designed as Rijndael in 1997 and adopted as a standard in 2001 [21], has been the object
of numerous cryptanalytic attacks in the last decade. If counting side-channel attacks, the total
number of AES cryptanalysis papers is well over 100. There is also a dozen of related-key attacks
on AES, which we discuss in this report.

To the large extent, the results presented in this chapter are not the original research. Resis-
tance of AES to related-key attacks has been intensively studied in the crypto community.

The key schedule of AES is not that elegant as the internal round function. It lacks provable
diffusion properties, and it is quite likely that resistance to related-key attacks has not been the
primary target of the designers. The key schedule is almost linear with XOR being the only
diffusion operator. The only nonlinear transformation is an S-box layer, which is applied to four
(eight in 256-bit key variants) bytes of the key state per key schedule round.

Nevertheless, the AES designers claimed that the cipher is resistant to related-key attacks.
In the first five years after the AES competition the related-key attacks advanced 1-2 rounds
ahead of the attacks in the single-key model. Cryptanalysts used a traditional related-key model,
where the key difference is selected for the master key. While for ciphers of early 1990s it was
hardly a restriction due to simple key schedules in those ones, for AES it has been apparently a
huge difference.

3.1 Description

AES is a block cipher with 128-bit plaintext and 128/192/256-bit key, whose internal state S
and key K are treated as a 4× 4 and 4× 4/4× 6/ 4× 8 byte matrices Si,j and Ki,j .

The encryption process starts with a bytewise XOR of the first 128 bits of the key to the
plaintext. Then the internal state undergoes 10/12/14 rounds, depending on the key length. One
round is depicted in Figure 3.1 and consists of the bytewise nonlinear transformation SubBytes
(simply SB), the byte permutation ShiftRows (SR), the linear transformation MixColumns (MC),
which operates columnwise, and the subkey addition AddRoundKey (AK). The last round omits
the MixColumns transformation.

SubBytes applies an 8-bit S-box with maximum differential probability as low as 2−6 (for
most cases 0 or 2−7). The ShiftRows rotates bytes in row r by r positions to the left. The
MixColumns is a linear transformation with branch number 5, i.e. in the column equation
(y0, y1, y2, y3) = MC(x0, x1, x2, x3) there can not be fewer than 5 non-zero variables.

13
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Key schedule. The key schedule procedure is a bit different for each key length. Since each
round invokes a 128-bit subkey, the number of key schedule rounds varies significantly depending
on the key length. The 128-bit key undergoes 10 rounds of the key schedule and produces 11
expanded keys including the master key. The 192-bit key undergoes 8 rounds and produces 9
192-bit expanded keys, which are used as 13 128-bit subkeys. The 256-bit key undergoes 7 rounds
and produces 8 256-bit expanded keys. The expanded keys are denoted as K0,K1, . . . ,K10.

KS

ShiftRows

MixColumns

SubBytes

S S

S S

S S

S S

S S

S S

S S

S S

Figure 3.1: Round of AES-128

One key schedule round of AES-128 is mostly linear with only 4 S-boxes:

Kl+1[Column 0]← S(Kl[Rotated Column 3])⊕Kl[Column 0]⊕ Cl;
Kl+1[Column j > 0]← Kl+1[Column j − 1]⊕Kl[Column j],

where S() stands for the S-box, and Cl — for the round-dependent constant. Therefore, each
round has 4 S-boxes.

One key schedule round of AES-192 is very similar:

Kl+1[Column 0]← S(Kl[Rotated Column 5])⊕Kl[Column 0]⊕ Cl;
Kl+1[Column j > 0]← Kl+1[Column j − 1]⊕Kl[Column j],

One key schedule round of AES-256 has an additional S-box layer:

Kl+1[Column 0]← S(Kl[Rotated Column 3])⊕Kl[Column 0]⊕ Cl;
Kl+1[Column 4]← Kl+1[Column j − 1]⊕ S(Kl[Column j]),

Kl+1[Column j = 1, 2, 3, 5, 6, 7]← Kl+1[Column j − 1]⊕Kl[Column j].

The other details of the AES specification are irrelevant to our attack and we refer the reader
to [21].

The expanded keys Kr have the following property: one byte in a subkey Kr affects only two
bytes in the subkey Kr−1.
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3.2 Local collision approach and long differentials

SubBytes

ShiftRows
MixColumns

Key schedule round

Key schedule round

disturbance

correction

Figure 3.2: A local collision in AES-
256.

The notion of a local collision comes from the cryptanal-
ysis of hash functions with one of the first applications
by Chabaud and Joux [14]. The idea is as follows. The
key/message schedule difference in the first subkey is in-
jected to the internal state, causing a disturbance. The
key difference in the second subkey must correct it with
some reasonable probability.

Application of the inverse round copies both distur-
bance and the correction difference one column to the
right, hence creating another local collision. Going back
through the key schedule, we obtain more local collisions
till the difference pass through the S-boxes in the key
schedule. Since each local collision is probabilistic, the
goal is to have as few collisions as possible in order to
reduce the complexity of the attack.

The related-key scenario is very similar to the hash
function collision search, as we assign arbitrary difference
to the key similarly to what we do for the message. How-
ever the attacker can not control the actual value of the
key, so the difference propagation in the key schedule must
be deterministic.

Local collisions in AES are best understood on a one-
round example in AES-256 (Fig. 3.2). The two subkeys that form a local collision pattern are
independent part of the 256-bit expanded key, so the difference can be freely chosen. If we inject
a one-byte difference in byte (0,0), it activates a single S-box, takes one of 27 possible values
afterwards, and expands into a full column difference, which should be corrected by the second
subkey. This differential holds with probability 2−6 if based on an optimal differential for an
S-box:

0x01
SubBytes

=⇒ 0x1f;


0x1f

0
0
0

 MixColumns
=⇒


0x3e
0x1f
0x1f
0x21


The key schedule creates more local collisions in the previous key schedule rounds. Hence we

obtain a set of local collisions, where the expansion of the disturbance (also called disturbance
vector) and the correction differences compensate each other. The probability of the full differ-
ential trail is then determined by the number of active S-boxes in the key-schedule and in the
internal state. The latter is just the number of the non-zero bytes in the disturbance vector.

Therefore, to construct an optimal trail we have to construct a minimal-weight disturbance
expansion, which will become a part of the full key schedule difference. For the AES key schedule,
which is mostly linear, this task can be viewed as building a low-weight codeword of a linear
code. Simultaneously, correction differences also form a codeword, and the key schedule difference
codeword is the sum of the disturbance and the correction codewords. In the simplest trail the
correction codeword is constructed from the disturbance codeword by mere shifting four columns
to the right and applying the S-box–MixColumns transformation.

An example of a good key-schedule pattern for AES-256 is depicted in Figure 3.3 as a 4.5-
round codeword. In the first four rounds the disturbance codeword has only 9 active bytes
(red cells in the picture), which is the lower bound. We want to avoid active S-boxes in the
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Disturbance

Correction
+

Key schedule
=

Figure 3.3: Full key schedule difference (4.5 key-schedule rounds) for AES-256.

key schedule as long as possible, so we start with a single-byte difference in byte K4
0,0 and go

backwards. Due to a slow diffusion in the AES key schedule the difference affects only one more
byte per key schedule round. The correction (grey) column should be positioned four columns
to the right, and propagates backwards in the same way. The last column in the first subkey is
active, so all S-boxes of the first round are active as well, which causes an unknown difference in
the first (green) column.

This pattern yields an 8-round differential in AES-256 with 9 local collisions. For some
proportion of keys, the unknown leftmost column is the result of the MixColumn 1-to-4 expansion.
Hence there is a set of keys, for which this pattern can be longer. This property has been used
in the first attacks on the full AES-256.

AES-128 and AES-192 The AES versions with 128- and 192-bit keys are more difficult for
a cryptanalyst. The length of the key schedule pattern is clearly limited by the key state width
measured in columns. Indeed, as soon as the disturbance byte reaches the rightmost column and
enters the nonlinear transformation with rotation, it is injected into improper position in the
internal state. Hence the number of key schedule rounds should not exceed the column width.
The following table gives evidence to the width/rounds ratio for different key sizes:

Key length Key schedule rounds Key state width (columns)
128 11 4
192 9 6
256 8 8

As a result, whereas good patterns exist for the full AES-256, only 60% of AES-192 and less
than half of AES-128 can be analyzed with a single pattern. To penetrate more rounds, a more
restrictive model of boomerang attacks is applied.

Optimality of related-key differentials. Biryukov and Nikolic described a tool that finds
optimal related-key differentials [12]. They proved that AES-128 has no 6-round related-key
differential trails with probability higher than 2−128. The best differential trail for AES-192
covers 11 rounds and has 31 active S-boxes (20 in the state, 11 in the key). The best differential
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trail for AES-256 covers all 14 rounds. Similar properties are expected of differentials grouping
several trails.

3.3 Distinguishing attacks

Though distinguishing attacks are not a direct threat, they demonstrate a potential vulnerability
for high-level constructions that use the cipher. AES-256 has been the first and the only AES
variant attacked in this manner; there have been other ciphers and hash functions later [20].
The following attack is a summary of [10], and is provided here also for its quite low complexity
compared to other attacks.

The idea is to extend the key schedule pattern shown at Figure 3.3 so that it covers the full
AES-256. The differential in the key schedule becomes probabilistic, as active bytes in fourth
and eighth column of the key state activate a total of 5 S-boxes. It is required that the local
collision idea still holds after the differences pass through S-boxes, which puts restriction on the
number of possible actual values for differences.

Nevertheless, it is relatively easy to find particular values for the differences, and they are
specified in [10]. The number of 5 active S-boxes implies that about 1 out of 235 keys conforms
to the key schedule differential. This yields a class of weak keys vulnerable to the attack of
complexity 2131.

A weaker model leads to attacks with lower complexity, later called distiguishing attacks.
Keeping local collisions within the internal state, we obtain a related-key differential for the
whole 14-round AES-256. To increase the probability, we lift the local collision requirement in
the first rounds and get 16 active S-boxes in the first round. The plaintext has still the zero
difference, and the ciphertext has a difference with only four active bits.

Since the differences have been chosen by a cryptanalyst, this raises questions on whether a
tuple with similar properties can be found with a generic algorithm, and if so, what the complexity
is. Indeed, one can choose two arbitrary plaintexts and encrypt them on two arbitrary keys, then
obtaining a tuple which conforms to some trail for free. The situation is different if a cryptanalyst
requires many tuples with the same difference to appear, even though the difference itself is not
specified. This led to the notion of differential multicollision presented as follows.

Definition 1 A set of two differences and q pairs

{∆K ,∆P ; (P1,K1), (P2,K2), . . . , (Pq,Kq))}

is called a differential q-multicollision for a cipher EK(·) if

EK1(P1)⊕ EK1⊕∆K
(P1 ⊕∆P ) = EK2(P2)⊕ EK2⊕∆K

(P2 ⊕∆P ) =

= · · · = EKq (Pq)⊕ EKq⊕∆K
(Pq ⊕∆P ). (3.1)

The following theorem says that if the cipher is viewed as a black box, then for sufficiently
large q such a construction can be found with complexity 2n or even larger, where n is the
plaintext size.

Theorem 1 To construct a differential q-multicollision for an ideal cipher with an n-bit block

an adversary needs at least O(q · 2 q−2
q+2n) queries on the average.

On the other hand, it is easy to demonstrate that any q tuples conforming to a single related-
key differential trail produce a differential q-multicollision. The authors of [10] show how to find
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such a tuple for the first five rounds of the trail for free. With 11 S-boxes left, the complexity of
finding a single tuple grows to 267. Hence AES-256 is clearly far from being a good instantiation
of an ideal cipher.

This attack is barely practical, as 267 is beyond capabilities of academic institutions, putting
aside the minority of the threat posed by the attack. Still it is possible to demonstrate some non-
trivial properties of AES-256 in practice by relaxing the difference conditions for the plaintext.
Then the complexity plummets to 237.

This techniques stops at 5 rounds of AES-128 and 11 rounds of AES-192. The latter case
yields a key recovery attack with complexity 2186 [12].

3.4 Boomerang attacks on AES-128, AES-192, and AES-
256

The presence of active S-boxes in the key schedule in the differential trail reduces the attack scope
to a weak key class. To avoid this restriction a cryptanalyst has to work in an attack framework
that allows for shorter differential trails. For all the versions of AES such a framework is yielded
by the concept of boomerang attacks and their modifications (Section 2.2).

Boomerang attacks on AES-192 and AES-256 were proposed in [8] and later refined in [12].
A boomerang attack on AES-128 was published in [12].

AES-256. The boomerang attack on the full AES-256 is the simplest of the three. The subci-
pher E0 covers rounds 1–9, and E1 covers rounds 9–14. The E0 differential is based on a local
collision in round 7, where the difference is injected in byte (1,1). The key difference is specified
in the expanded key K3. Though the differential has 15 active S-boxes in the internal rounds,
the most of them are in the first or in the last round and do not contribute to the amplified
probability p̂, which is equal to 2−30. The E1 differential is based on a local collision in round
13 with the key difference specified in the expanded key K6. It has a higher amplified probabil-
ity of 2−18, which yields 2−96 as the total probability P of the boomerang differnetials Due to a
truncated differential in the first round, the total computational complexity of the attack slightly
exceeds 1/P and is equal to 299. The data requirements are 299 adaptively-chosen plaintexts and
ciphertexts. The memory complexity is estimated as 277.

It was proved that the relation between four keys is well defined, i.e. that any key uniquely
determines the other three.

Though the computational complexity of this attack is high, it drops significantly as the
number of rounds decreases. For instance, the 13-round version of AES-256 can be attacked
with almost practical complexity of 276 [9]. The reduction is achieved by removing the expensive
first round from the differential characteristic.

AES-192. The boomerang attack on the full AES-192 is slightly more complicated. First, it is
an amplified differential attack, because the ciphertext differential is not determined completely.
The E0 differential is based on a local collision in round 4, and the key difference is specified
for the expanded key K2. The E1 differential is based on a local collision in round 8 with the
key difference specified for the expanded key K5. The total probability P of the boomerang is
estimated as 2−48. Due to the nature of the amplified boomerang attack, the total computational
complexity is very large and is estimated as 2169 with additional requirements of 2116 chosen
plaintexts [12].

It has been also demonstrated that the relation between four keys is well defined.
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AES-128. Related-key attacks on AES are not much better than single-key differential attacks.
The reason is that the relatively small key size provides sufficient diffusion to activate many
key schedule S-boxes and render the local collision approach useless. As a result, the optimal
boomerang attack covers 7 rounds only and involves only two related keys with no key difference
in the E0 differential [12]. The latter is a well-known 3-round boomerang differential. The E1

differential is a 4-round related-key differential based on a local collision in round 6. The key
difference is specified in the expanded key K5. Due to faster diffusion, the E1 differential has
8 active S-boxes, which brings the total boomerang probability to 2−96. The computational
complexity of the attack is 297, and it requires 297 chosen plaintexts.
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Chapter 4

Hierocrypt-3

Hierocrypt-3 [27] is an SPN-based cipher with each round containing two subrounds with distinct
linear transformations. When investigating the resistance of Hierocrypt-3 to related-key attacks,
we first checked the applicability of the local collision method earlier applied to AES.

The related-key attacks on AES are so powerful because the AES key schedule is mostly
linear, and there are differentials with probability 1 in the key schedule which last for several
rounds, depending on the key size. As we explain in the further text, this approach does not
work for Hierocrypt-3.

Design

Here we discuss the internal rounds and the key schedule of Hierocrypt-3. We also introduce
some new notation.

Hierocrypt-3 is a version of an SPN cipher, which operates on a 128-bit state. Each round
consists of two sub-rounds. Odd sub-rounds starts with a subkey addition and proceed with a
layer of 8-bit S-boxes and a diffusion layer mdsL, which transforms 32-bit words independently.
Even sub-rounds have another diffusion layer MDSH , which is applied to the entire state.

Each full round uses two 128-bit subkeys, which come from the key schedule procedure.

The key schedule, irrespectively of the key size, operates on a 256-bit state, which we call a
key state. The 128-bit and 192-bit keys are padded to a 256-bit state Z1||Z2||Z3||Z4 as follows:

128 : K1||K2 −→ K1||K2||K1||C1;

128 : K1||K2||K3 −→ K1||K2||K3||C2,

where C1, C2 are predefined constants.

The very first key state is denoted by Z
(−1)
1 ||Z(−1)

2 ||Z(−1)
3 ||Z(−1)

4 .

The key state undergoes 8/9/10 rounds for 128/192/256-bit key length, respectively. The
first round is special, as it omits a linear function. The rest are two groups of rounds, which we
mark as ’type I’ and ’type II’. The key state words Z3 and Z4 are updated linearly every round,
while Z1 and Z2 follow the Feistel network with additional input from Z3 and Z4.

21
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Figure 4.1: One round of Hierocrypt-3.

The key state variables in the round of the first type are modified as follows:

(Z
(r)
3 , Z

(r)
4 )← L34(Z

(r−1)
3 , Z

(r−1)
4 );

Z
(r)
1 ← Z

(r−1)
2 ;

F (r) ← Fσ(Z
(r)
1 ⊕ Z(r)

3 );

Z
(r)
2 ← Z

(r−1)
1 ⊕ Fσ(Z

(r−1)
2 ⊕ Z(r)

3 ), r = 0, 1, 2, . . .

where L34 is a linear function. We note that the round function is invertible. It is a also
bitslice transformation, which splits its input into 8-bit words and process each slice of bits with
an independent linear transformation. The other details are irrelevant for our analysis. The
function Fσ consists of a level of S-boxes followed by the function P (16). The Hierocrypt S-box
is an 8-bit nonlinear transformation and has the same differential-linear properties as the S-box
of AES. The function P (n) splits its input into n-bit words and applies a bitwise invertible linear
transformation to them.

Every round of type I generates a pair of 128-bit subkeys K1||K2 and K3||K4 as follows:

K
(r)
1 ← Z

(r)
2 ;

K
(r)
2 ← Z

(r)
3 ⊕ F (r);

K
(r)
3 ← Z

(r)
4 ⊕ F (r);

K
(r)
4 ← Z

(r)
1 ⊕ Z(r)

4 , r = 1, 2, . . .
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Figure 4.2: Round of Hierocrypt-3 key schedule

The round function of type II is quite similar. It is almost equivalent to the inversion of the
type I round, but the linear function that operates on Z3 and Z4 is different.

Z
(r)
1 ← Z

(r−1)
2 ;

F (r) ← Fσ(Z
(r)
1 ⊕ Z(r−1)

3 );

(Z
(r)
3 , Z

(r)
4 )← L′34(Z

(r−1)
3 , Z

(r−1)
4 );

F (r) ← Fσ(Z
(r)
1 ⊕ Z(r)

3 );

Z
(r)
2 ← Z

(r−1)
1 ⊕ Fσ(Z

(r−1)
2 ⊕ Z(r)

3 );

In contrast to the most key schedules, subkeys of Hierocrypt-3 are not merely bits of the key
state, but linear functions of them. Though it is possible to derive explicit equations that relate
subkeys of distinct rounds, we found it difficult to exploit. Hence we proceed with the analysis
of the key schedule rounds.

4.1 Key schedule properties

First, it is quite easy to express the key state as a function of the subkey pair and then express
the subkeys of one round as a function of previous subkeys. For the round of the first group it is
shown in Figure 4.3. However, a new round function uses two nonlinear operations Fσ instead
of one. One can see that the resulting round function is also more complicated.

Secondly, we notice that rounds of type II have the same properties. If the subkeys are
expressed via each other, the resulting scheme would be very similar to that in Figure 4.3 (we
do not present the second scheme here).
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Figure 4.3: Round of Hierocrypt-3 key schedule: subkey view

Finally, we notice that the master key is a nonlinear function of subkeys. As a result, a simple
difference in the first subkey may result a sophisticated and probabilistic difference in the initial
256-bit key state. Since the 128-bit and 192-bit keys are padded to 256 bits, this implies that a
good subkey difference may not be a valid difference in a 128-bit and a 192-bit master key.

4.2 Differentials

Let us explore related-key differentials in Hierocrypt-3, and start with the key schedule. As
we stressed earlier, the longest related-key differential in a cipher would not be longer than the
longest key schedule differential. We found it difficult to construct a differential based on subkeys,
and decided to operate on the key state instead.

First, we notice that the diffusion in the key state is good enough to spread a difference to the
input of the nonlinear function Fσ within one or two rounds. Therefore, if the difference in the
key state is not properly chosen, most of S-boxes are activated and the differential becomes key-
dependent. Though there exist remarkable related-key attacks which work for a subclass of keys,
we decided not to pursue this direction. The main reason is that the size of the resulting subclass
decreases quickly as the number of rounds grows and most of S-boxes are active. Another reason
is that the this type of attack is much less practical.

Therefore, we start with differentials which do not activate Fσ functions, and will subsequently
relax this condition in the first and the last round of a differential. Let us denote the output
difference of Fσ by ∆F . Then

∆F = 0 ⇔ ∆Z1 = ∆Z3.

This is a sufficient condition for a single round. However, such a short differential does not make
much sense, since we can simply consider a difference in a single round key without referring to
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the key state.
Let us consider a longer high-probability differential. The condition ∆F = 0 in two consecu-

tive rounds r and r + 1 yields the following equations:

∆Z
(r)
1 = ∆Z

(r)
3 ;

∆Z
(r+1)
1 = ∆Z

(r+1)
3 ⇔ ∆Z

(r)
2 = ∆Z

(r+1)
3 .

Let us denote ∆Z
(r)
1 by δ and ∆Z

(r+1)
1 by δ′. Then we get the following constraints for r = 1,

i.e. for the first two rounds of the key schedule that output subkeys:

r ∆Z1 ∆Z2 ∆Z3 ∆Z4 ∆F
1 δ δ′ δ − 0
2 δ′ δ δ′ − 0

Since Z3 and Z4 update each other via an invertible linear transformation, these constraints
(almost) uniquely define ∆Z4:

r ∆Z1 ∆Z2 ∆Z3 ∆Z4 ∆F
1 δ δ′ δ L5(δ, δ′) 0
2 δ′ δ δ′ L6(δ, δ′) 0

where L5 and L6 are linear functions. We note, however, that the ∆Fσ is likely to be non-zero
in round 0, so the master key difference may not be expressed as a simple function of δ and δ′.

We also notice that the functions L5 and L6 are bitslice in the same sense as the function
L34: it partitions the input into 8-bit words and processes each bit slice independently.

Hence the subkey differences can be expressed as functions of δ and δ′:

r ∆K1 ∆K2 ∆K3 ∆K4

1 δ′ δ L5(δ, δ′) δ ⊕ L5(δ, δ′)
2 δ δ′ L6(δ, δ′) δ′ ⊕ L6(δ, δ′)

We could not find a way to use this class of differentials as is. First, we considered a local
collision approach, where a subkey difference cancels the difference introduced by the previous
subkey. However, we can not maintain a good difference in the key state. Though the difference
propagation is deterministic, and the linear function L5 and L6 are bitslice, both functions have
very good diffusion. As a result, either K1||K2 or K3||K4 have high weight in each non-zero slice.
A local collision would be very expensive in terms of probability, as every S-box in the internal
round would be active.

For the same reason a differential that does not cancel differences in the internal state has
too low probability because of the internal diffusion. Then we attempted to construct a related-
key differential that keeps zero difference in the internal state as long as possible. This would
require some subkey be equal to zero. Since the full key can not have the zero difference, the
zero difference in the internal state survives for one round only.

1-round differentials Let us consider differentials which determines three consecutive subkeys
and sets the second subkey to zero.

The first case deals with K3||K4 = 0 and K1||K2 before and after this injection being non-
zero. We have the following system of equations:{

∆Z
(1)
4 = ∆F (1);

∆Z
(1)
4 = ∆Z

(1)
1 ;
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With ∆F (1) = 0 this implies

r ∆Z1 ∆Z2 ∆Z3 ∆Z4 ∆F
1 0 δ′ 0 0 0
2 ∆F (2) ∆F (2) 0 0 ∆F (2)

(4.1)

and
r ∆K1 ∆K2 ∆K3 ∆K4 ∆F
1 δ′ 0 0 0 0
2 ∆F (2) ∆F (2) ∆F (2) δ′ ∆F (2)

We note that the value ∆F (2) depends on the actual key value.
Let us figure out the type of difference in the master key. We recall that the key schedule

round is invertible, and Z3, Z4 are modified independently of Z1, Z2. As a result, the difference

in Z
(−1)
3 ||Z(−1)

4 is zero. This is valid option for a 192-bit key, but highly unlikely for a 128-bit
key.

For the sake of completeness, we also consider the case with K1||K2 = 0 while the subkeys
K3||K4 are non-zero. However, this condition together with ∆F = 0 implies an all-zero difference,
so this case proves worthless.

Key schedule rounds of type II. The key schedule rounds of type II are almost equivalent to
the inversion of the rounds of type I. The distinction is linear transformation L34 and the subkey
generation procedure. However, the main attack properties remain the same, so it equally difficult
to construct a high-probability differential more than two rounds long. The two-round differential
in the key schedule has the same property of high weight, which implies that it is not suitable for
a good differential in the cipher. Since a version of the cipher that covers middle rounds is less
attractive, we decided against the separate analysis of the rounds of type II. Instead, we claim
that the following results and attacks can be translated with pretty much the same efficiency to
any starting point within the cipher.

The middle two rounds where a round of one group follows a round of the other group appear
to be as strong as any other pair of rounds.

4.3 Attacks

1-round attack. Let us describe a 1-round related-key attack for Hierocrypt-3-256. We work
with the differential (4.1), which results in a valid difference in the 192/256-bit master key. We
restrict here to 256-bit key.

Suppose we are able to encrypt and decrypt on two keys KA and KB , whose relation follows
the differential (4.1) for some 64-bit constant δ′. Then we encrypt two plaintexts with differ-
ence ∆P = δ′||0 on different keys. Since the first subkey K1||K2 has difference δ′||0, the two
encryptions are identical until the last subkey injection.

The ciphertext difference ∆C is equal to ∆F (2)||∆F (2), where

∆F (2) = Fσ(Z
(1)
1 ⊕ Z(1)

3 )⊕ Fσ(Z
(1)
1 ⊕ Z(1)

3 ⊕ δ′).

Here Zi stand for key state words of KA.
Given ∆F (2), we apply the inverse of the linear function in Fσ to it and obtain the output

difference of the S-box layer. For each active S-box we obtain 2 or 4 candidates for the input

value. If all S-boxes are active, we obtain at maximum 216 candidates for the value Z
(1)
1 ⊕ Z(1)

3 .
Hence we recover 48 bits of the key state.
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Unfortunately, the other state bits are difficult to recover unless another key relation is
considered. Due to few attacked rounds, we do not investigate this case. Nevertheless, for each
remaining 208 bits of the key state we can reconstruct the master key and test if it the right
key for given plaintext-ciphertext pairs. We will need one more plaintext-ciphertext pair for the
filtering. Hence we obtain a simple 1-round attack, which requires 3 plaintexts and works in
about 2208 time for the values δ′ that activates all S-boxes of Fσ.

2-round boomerang attack. The 1-round attack can be extended into a 2-round attack in
the boomerang framework. The boomerang attack has some notable properties in the related-key
model. First, it usually involves four rather than two related keys, one for each computation
line. Secondly, key relations within non-trivial key schedules can be quite complicated in the
boomerang attack, because one of them is usually chosen to better suit a differential in the second
part of the cipher, where subkeys can be a complex function of the master key.

E0 E1

Key State Key State
KA ⊕KB KA ⊕KC

KC ⊕KD KB ⊕KD

Plaintext δ′||0
Round 1 K1||K2 δ′||0 →

0||0
K3||K4 0||0 →

0||0 δ||0
Middle state

Round 2 K1||K2 ∆F ′||∆F ′ δ||0 →
∆F ′||∆F ′ 0||0

K3||K4 0||0 →
0||0

Whitening K1||K2 ∆F ||∆F
Ciphertext ∆F ||∆F

Table 4.1: Differentials and subkey relations in the boomerang attack on reduced Hierocrypt-3.

All these issues hold for Hierocrypt-3. Let E0 and E1 stand for two consecutive internal
rounds. We consider two 1-round related key differentials, described in Section 4.2:

δ||0→ ∆F ||∆F and δ′||0→ ∆F ′||∆F ′,

where δ and δ′ are some constants. They can be chosen arbitrarily provided that they affect
different S-boxes in the function Fσ. The value F (δ) depends on the key value, so it must be
guessed in order to mount an attack. The attack recovers secret related keys KA, KB , KC , KD.
The key relations are defined via subkeys in Table 4.1.

The brief attack description would be as follows:

• Prepare a pair of plaintexts P and P ′ = P ⊕ δ||0 and encrypt them on KA and KB ,
respectively. Denote the ciphertexts by C,C ′.

• For each difference ∇ = ∆F ′||∆F ′, which yields a valid differential for Fσ obtain new
ciphertexts

D = C ⊕∇, D′ = C ′ ⊕∇.
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• Decrypt D,D′ on KC ,KD, respectively. Denote the new plaintexts by Q,Q′.

• Check if Q = Q′ ⊕ δ||0, i.e. if P, P ′, Q,Q′ form a boomerang quartet. If so, the guess of
F (δ′) is correct and we derive the input values of active S-boxes in the key schedule. This
restricts the number of candidates for KA,KB ,KC ,KD.

The complexity of the attack depends on the hamming weight of δ′ and the number of key
relations we can exploit. In the natural case, where only a single key relation is available, the
64-bit difference δ′ is optimal. Then we obtain 48 bits of the secret subkey, and the other bits
we have to recover by exhaustive search. Still, partial key recovery is practical.

The full key recovery would require the exhaustive search for remaining 208 bits, which yields
the total computational complexity of 2208 cipher calls. As we pointed out earlier, the difference
in subkeys would not translate to the valid difference in the 128-bit key padded to the 256-bit
state.

The 192-bit situation is more favorable. We guess Z
(−1)
3 and compute Z

(1)
3 , Z

(1)
4 as Z

(−1)
4 is

constant. It remains to exhaustively search for remaining 256− 48− 128 = 80 bits, which yields
the total complexity of the key recovery equal to 2144 cipher calls. Partial recovery of 48 key bits
requires roughly 248 calls.

We conclude that Hierocrypt-3 is resistant to related-key attacks. The most successful attack
breaks only 2 rounds, and the total complexity is very high. We note that the best single key
attacks break more rounds [26], because they do not have to control the difference propagation
in the key schedule.
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CipherUnicorn-A

The cipher CipherUnicorn-A has been designed by NEC corporation [22] and submitted for the
CRYPTREC project in early 2000s. It employs the Feistel scheme with 16 rounds of very heavy
round function. The plaintext block is 128-bit long. The first round is preceded by and the last
round is followed by the addition of a whitening 128-bit subkey.

Few cryptanalytic results have been published on CipherUnicorn-A, which we attribute to the
strength of the round function. Existing self-evaluation report [23] is very brief on the related-key
attacks and concentrates mainly on the statistical properties of the round function.

The round function Fr of CipherUnicorn-A consists of the subkey addition and two nonlinear
functions with high diffusion (Figure 5.1). We refer to the specification for the details. We do
not need a detailed explanation of the round function for related-key attacks, since they are
efficiently prevented by the key schedule.

Fr

kr+1

kr+19

kr+37

kr+55

kr+19

kr+55

kr+1
kr+37

nonlinear
function

nonlinear
function

Figure 5.1: Round of CipherUnicorn-A and overview of the round function

The master key of 128/192/256 bits is splitted into 32-bit words. Let us describe the key
schedule on the example of 128-bit key, as the other variants are similar.

The 128-bit key is divided into four 32-bit words M0,M1,M2,M3. Then the key undergoes

29
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a sequence of 156 identical rounds:

Mnew
3 ||Mnew

0 = MT (Mold
0 ,Mold

1 ); (5.1)

Mnew
1 = Mold

2 ; Mnew
2 = Mold

3 , (5.2)

where MT (X,Y ) is a simple function (Figure 5.2):

X ← X ⊗ 01010101 (mod 232);

Y ← Y ⊕
[
S(X3)||S(X3)||S(X3)||S(X3)

]
,

where S() is the 8-bit S-box. The multiplication by 01010101 is a linear transformation on bytes
of X:

X3||X2||X1||X0 ← (X3 ⊕X2 ⊕X1 ⊕X0) || (X2 ⊕X1 ⊕X0) || (X1 ⊕X0) ||X0;

MT

M0 M1 M2 M3

MT

MT

subkey
S

X3 X2 X1 X0 Y3 Y2 Y1 Y0

MT

Figure 5.2: Three key schedule rounds of CipherUnicorn-A with a subkey output and the MT
function.

Key schedule starts with 12 blank rounds. Then it alternates rounds that output subkeys
with rounds that do not as follows: 8 blank rounds followed by 8 rounds with subkey output from
Mnew

0 (Figure 5.2), then again 8 blank rounds followed by 8 rounds with the subkey production.
As a result, subkeys are produced after key schedule rounds 21–28, 37–44, etc., if we enumerate
them from 1.

The total of 72 32-bit subkeys are grouped into two 128-bit whitening keys and 16 groups of
four subkeys for the Feistel function. The subkey order is very untrivial: for round r subkeys are
kr+1, kr+19, kr+37, kr+55, i.e. not in the order they are produced.

CipherUnicorn-A-192 and CipherUnicorn-A-256. The key schedules for 192- and 256-bit
key are very similar to the 128-bit version. The only difference is that the master key is divided
into 6 (or 8) 32-bit words and undergoes more dummy rounds: 18 for CipherUnicorn-A-192 and
24 for CipherUnicorn-A-256.
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Round function properties. The earlier differential analysis by Robshaw [24] fails to find
a differential for the round function. Even the simplified version has the best differential of
probability 2−14. We have not found any improvement on this, nor we found a differential for
the full round function. Thus we assumed that any related-key differential would likely to activate
all the key additions.

5.1 Key schedule properties and (in)feasibility of related-
key attacks

We emphasize two important properties of the key schedule of CipherUnicorn-A. On one hand,
each round is a weak transformation, where the only nonlinear element is inactive as long as an
8-bit condition (∆X3 = 0) is true. On the other hand, the number of key schedule rounds is
huge, and the subkeys are used not in the order they are produced. The latter property has a
tremendous effect on cryptanalysis.

We noticed earlier that a related-key differential in an internal round is highly likely to involve
all the four subkeys due to the heavy round function. Secondly, to determine the subkeys in a
single internal round, we have to compute as many as 55 subkeys ki, which constitutes about
75% of the key schedule, or 112 rounds. Therefore, any related-key attack on even two rounds
of CipherUnicorn-A must imply a weakness for the major part of the key schedule.

Let us investigate if the key schedule preserves any property for sufficiently many rounds.
We have noticed that the nonlinear element of a round is active as long as ∆Xnew

3 = 0, which is
equivalent to

∆X0 ⊕∆X1 ⊕∆X2 ⊕∆X3 = 0. (5.3)

Unfortunately, this property (let us denote it by ΣX = 0) does not hold as invariant. Nevertheless,
we have explored for how long a property of this kind can be sustained.

Let us make several observations. First, if ΣM0
= 0, the function MT does not change ΣM1

(nor, clearly, ΣM2
nor ΣM3

). Though ΣM0
is modified, the modification is deterministic as long

as ∆M0 is known.

Secondly, we notice that as soon as ΣM0
6= 0, the difference activates the S-box and fills the

other key words very quickly, one word by round. Hence we are interested in characteristics
where ΣM0 = 0 in all rounds, except for the last and the first ones.

Therefore, the longest characteristic is the one where ΣM0
= 0 holds for the largest number

of rounds. As long as it is the case, all ΣMi are updated independently. Hence the optimal case
is yielded by all of them but one equalling zero. Thus we consider the case

∆M1 = ∆M2 = ∆M3 = 0, ΣM0 = 0.

Since the property (5.3) is computed bitwise, without loss of generality we may assume all the
bits but the least significant ones be equal to zero. Hence we consider only 24 = 16 distinct
differences for M0, which we denote as zzzz, where z stands for 0 or 1. The 16 differences fall
into six classes of equivalence:

• The difference 0000, or full zero, is a trivial case, as it renders the full key difference to
zero.

• The difference 1000 is a fixed point, but ΣM0
is always equal to 1. Hence it is useless for

the attack.
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• The difference 1100 is transformed by MT to 0100 and then back to 1100. Hence two MT
functions have no active S-box, which yields 8 good rounds of the key schedule for 128-bit
key, 12 rounds for 192-bit key, 16-rounds for 256-bit key.

• The difference 1001 starts a cycle of length 4:

1001→ 0111→ 1101→ 1011→ 1001,

where two consecutive entries 1001 and 0111 satisfy the condition ΣM0
= 0. This yields 16

rounds of a deterministic differential in the 256-bit key schedule.

• The difference 1010 starts a cycle of length 4:

1010→ 0110→ 0010→ 1110→ 1010,

where three consecutive entries satisfy the condition ΣM0
= 0. This yields 24 rounds of a

deterministic differential for CipherUnicorn-A-256.

• The difference 1111 starts a cycle of length 4:

1111→ 0101→ 0011→ 0001→ 1111,

where four consecutive entries satisfy the condition ΣM0
= 0. This yields 32 rounds of a

deterministic differential for CipherUnicorn-A-256.

Therefore, the longest deterministic differential in the key schedule has 32 rounds, which is
far below the required 112 rounds for the most reduced version. Thus it makes little sense to
analyze the behaviour of this differential in the first and the last rounds, since even a careful
analysis would add only a few rounds to the total.

We conclude that the nontrivial subkey selection of CipherUnicorn-A makes a great deal of
preventing related-key attacks on this cipher. However, even if the subkey order were natural,
we would still construct a property for only 5 (out of 16) rounds of the cipher. Hence we state
that CipherUnicorn-A is resistant to related-key attacks with a large security margin.

5.2 Fixed point property and its implications

Robshaw noticed [24] that the key schedule transformation has a fixed point. This is natural for
simple iterative transformations without round constants.

Let X0 and Y0 be 32-bit values such that

MT (X0, Y0) = Y0||X0. (5.4)

Then the key schedule round (Equation (5.1)) has a fixed point:

X0||Y0||X0||X0 −→ X0||Y0||X0||X0.

If so, Mnew
0 is constant through the key schedule, which implies that all the subkeys are also

constant equal to X0. The property can be easily translated to 192- and 256-bit versions. Since
these versions differ in the number of rounds and the number of words Mi, exactly the same
property with the same values X0, Y0 holds for these versions too. Robshaw has found a pair X0

and Y0 conforming to (5.4), which yields a tuple of equivalent keys (K128
0 ,K192

0 ,K256
0 ). Those

keys yield, in turn, identical subkeys and hence identical encryption procedures.
This property, though certainly being a certificational weakness, has no apparent security

implication. Nor it is relevant for related-key attacks per se. Let us check, however, if a similar
property holds with respect to some relation between keys.
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Differential fixed point. Let us reconsider Equation (5.4) from the differential point of view:

MT (∆X,∆Y ) = ∆Y ||∆X. (5.5)

Since MT is a nonlinear function, Equation (5.4) is probabilistic. Let us figure out if the
probability is high for certain groups of keys.

Let us rewrite Equation (5.4) on the byte level:

∆Y = ∆X ⊗ 0x01010101; (5.6)

∆X = ∆Y ⊕ S(∆3Y )||S(∆3Y )||S(∆3Y )||S(∆3Y ). (5.7)

Equation (5.6) implies that ∆0Y = ∆0X. Substituting this to (5.7), we get

S(∆3Y ) = 0,

which is equivalent to ∆3Y = 0. Therefore, we obtain that

∆X = ∆Y.

However, {
∆Y = ∆X ⊗ 0x01010101;

∆X = ∆Y.
⇔ ∆X = ∆Y = 0.

Therefore, there is no fixed point for differentials.

Rotational fixed point. Let us consider another type of key relation: the key K ′ is a rotation
of K by r positions to the left:

K ′ =
−→
K.

Let us figure out if the function MT preserves the rotational property for certain groups of keys.
Hence we reconsider Equation (5.5):

MT (
−→
X,
−→
Y ) =

−→
Y ||−→X. (5.8)

However, this simply means that
−→
X and

−→
Y are yet another solution to Equation (5.4). We are

not aware of any other solution but presented by Robshaw, whereas his analysis implicitly states
that there is only one solution. Hence we conclude that there is no rotational fixed point in
CipherUnicorn-A.

We conclude that the cipher CipherUnicorn-A is secure against related-key attacks thanks
to its nontrivial key schedule. We did not consider 1-round attack, but demonstrated that any
attacks on two or more rounds would require a property holding through many rounds of the
key schedule. No property of differential or rotational nature that we considered has this effect.
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Chapter 6

Conclusion

We have made a comprehensive investigation of resistance of Hierocrypt-3, CipherUnicorn-A,
and AES to various kinds of related-key attacks. We have checked regular differential related-
key attacks, boomerang attacks, rotational properties, and properties mentioned in previous
research. An overview of related-key attacks on these designs is given in Table 6.

The cipher AES has been subject for numerous related-key attacks in various settings.
Related-key attacks exist for both reduced and original versions of AES. Related-key distinguish-
ers have practical complexity, the key recovery attacks have complexity far below the exhaustive
key search. However, the key recovery attack use a relation between subkeys, which does not
translate to simple relation in master keys, which render the attack model less practical.

The cipher Hierocrypt-3 has no related-key weakness, but it is possible to mount a related-key
attack on a greatly reduced version. Nonlinearity of the key schedule and a nontrivial method
of selecting subkeys makes longer attacks highly unlikely.

The cipher CipherUnicorn-A appears to be the most secure to related-key attacks. Due to its
complicated key schedule and heavy round functions it is virtually invulnerable to related-key
attacks.

We conclude that whenever the security to related-key attacks is required, e.g., when using
a specific message authentication code, AES is not the best option, while Hierocrypt-3 and
CipherUnicorn-A are a safe choice.

35
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Type of attack Rounds Key relation Complexity

CipherUnicorn-A(all keys, 16 rounds)

N/A N/A N/A N/A

Hierocrypt-3 (128-bit key)

N/A N/A N/A N/A

Hierocrypt-3 (192-bit key)

Boomerang 1 Related subkey
248 (partial)

2144 (full)

Hierocrypt-3 (256-bit key)

Differential 1 Related subkeys
248 (partial)

2208 (full)

Boomerang 2 Related subkeys
248 (partial)

2208 (full)

AES-128, 10 rounds

Boomerang 7 Related subkeys 297

AES-192, 12 rounds

Differential 11 Related subkeys 2186

Boomerang 12 Related subkeys 2169

AES-256, 14 rounds

Distinguisher 14 Chosen keys 267 and 237

Boomerang 13 Related subkeys 276

Boomerang 14 Related subkeys 299

Differential 14 Related subkeys 2131

Table 6.1: Related-key key recovery attacks on CipherUnicorn-A, Hierocrypt-3, and AES.
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