
Evaluation of Some Blockcipher

Modes of Operation

Phillip Rogaway
University of California, Davis

Dept. of Computer Science
Davis, California, USA

URL: http://www.cs.ucdavis.edu/∼rogaway

February 10, 2011

Evaluation carried out for the
Cryptography Research and Evaluation Committees (CRYPTREC)

for the Government of Japan

ii

Contents

1. Summary . 1

2. Preliminaries . 10

I Confidentiality Modes 15

3. ECB Mode . 24

4. CBC, CFB, and OFB Modes . 30

5. CTR Mode . 45

6. XTS Mode . 53

II Authenticity Modes 66

7. CBC-MAC Algorithms 1–6 . 72

8. CMAC Mode . 92

9. HMAC Mode . 97

10. GMAC Mode . 106

III Authenticated-Encryption Modes 112

11. CCM Mode . 117

12. Galois/Counter Mode . 125

Bibliography 138

End . 153

iii

iv

Acknowledgments

Many thanks to Mihir Bellare for his drafting the chapter on HMAC. We also corresponded
on other random matters that came up as I carried out this study. More broadly, many of the
viewpoints embodied in this evaluation were co-developed with Mihir over a great many years.

I received numerous insightful and useful comments, corrections, and answers to questions
from colleagues Morris Dworkin, Niels Ferguson, Shai Halevi, Viet Tung Hoang, Ted
Krovetz, David McGrew, Chanathip Namprempre, Bart Preneel, and Kan Yasuda.
My heartfelt thanks to everyone named for all your time and kind assistance.

The work of this report was supported by the Cryptography Research and Evaluation Com-
mittees (CRYPTREC), Japan. I hope my report will serve your needs well.

Phillip Rogaway

February 2011

v

vi

Chapter 1

Summary

1.1. Overview. This report analyzes the security of some 17 cryptographic modes of operation
described within some eight U.S. or international standards. Most of the schemes are well-
known; many are widely used. The modes under consideration are the encryption schemes ECB,
CBC, CFB, OFB, CTR, and XTS; the message authentication codes CMAC, HMAC, GMAC,
and MAC Algorithms 1–6 of ISO 9797-1:1999; and the authenticated-encryption schemes CCM
and GCM. The containing standards are FIPS 198-1, ISO/IEC 9797-1:1999, NIST SP 800-38A,
NIST SP 800-38B, NIST SP 800-38C, NIST SP 800-38D, NIST SP 800-38E, and by reference
from the last standard, IEEE 1619-2007 [61–65, 90, 91, 159].

Despite the modes being standardized and well-known, the quality varies. Some schemes
are quite sensible and modern, while the value of others seems to be mostly in their legacy
significance, or as building blocks for other schemes.

In many cases it is unclear, to me, if a mode “ought” to be included in the CRYPTREC
portfolio; the problem is that some well-entrenched schemes are, in fact, rather poor and dated
designs. Correspondingly, I take my main goal as the description of what is known about each
scheme, rather than an explication of what I think “should” be done. Still, I sometimes do offer
opinions.

I have tried to avoid being overly technical in these pages. The scope is too large, and the
schemes too well-studied, for it to make sense to try to write up fresh proofs for everything.
Doing so would easily turn this already-long manuscript into a book-length treatment. Instead,
I have tried to explain the various results, point the reader to the relevant literature, and explain
how, I think, the results should be interpreted.

I divide the modes into three categories: (I) confidentiality modes, (II) authenticity modes,
and (III) authenticated-encryption modes. See Figure 1.1. When I contracted for this project,
CRYPTREC organized matters differently: eight techniques partitioned into two categories,
named “modes of operation” and “message authentication codes.” I would like to clarify that
all the schemes of this report can be viewed as modes of operation.

1.2. Evaluative approach. I have tried to instill a degree of uniformity in the evaluative
process. I will, for each mode, be answering some or all of the following questions

1.2.1 What cryptographic problem does the mode try to solve? Problem identification is
crucial, yet often ignored. A definition is sought, in the tradition of provable-security
cryptography. Sometimes problem identification is trivial; we know, for example, that
CCM is supposed to be a nonce-based authenticated-encryption scheme because the

1

1.
Sum m ary

2.
Prelim inaries

Part I.
Confidentia lity

Part II I.
Authenticated

Encryption
Part II.

Authentic ity

4.
CBC , CFB , O FB

5.
CTR

3.
ECB

6.
XTS

7.
CBC -M ACs

8.
CM AC

9.
HM AC

10 .
G M AC

11 .
CCM

12 .
G CM

IV -b ased en cryp tio n sch em es C o n ven tio n a l M A C s n o n ce-b ased M A Cb lo ckc ip h er n o n ce-b ased A E A D sch em es

Figure 1.1: Roadmap. The chart shows organization and logical dependencies among the chapters
and parts of this documents.

designers said this, and because the mode springs from that tradition. But what is the
cryptographic problem a mode like ECB or XTS is supposed to solve? This is a less
trivial question, and sometimes one that cannot be as definitively answered. Modes
are often designed to achieve many aims, not all of them clear, formalized, or well
understood.

1.2.2 What does the apparatus of provable security have to say about the mode’s security?
Can one establish that the mode does its now-identified job under well-believed crypto-
graphic assumptions? If so, under what assumptions? For blockcipher-based schemes,
the preferred assumption is security as a pseudorandom-permutation (PRP). How tight
are the reductions to breaking the underlying PRP?

1.2.3 What attacks are known against the scheme? Is there a quantitative gap between the
known attacks and the proven bounds? Does the gap matter?

1.2.4 How efficient is the scheme? There are multiple characteristics that can matter for
efficiency, and the relevant ones depend on that scheme’s goal.

1.2.5 How widely-used is the scheme already? If a mode has a long history or is extensively
deployed, this alone can be a reason for standardization, other problems with the scheme
notwithstanding.

1.2.6 How simple is the scheme? Good modes of operation are pretty things, elegant and
minimal for accomplishing their aims.

1.2.7 How robust is the scheme against misuse? If one can expect that a scheme will rou-
tinely be misused—used in ways contrary to what is required of the mode or guaranteed
by the mode—this is certainly a problem.

1.2.8 How well understood is the scheme? Has the mechanism been widely studied? Have
the important questions been answered, or do there remain important gaps in what we
know?

1.2.9 How good is the specification document that describes the mode? While some might
claim that a mechanism transcends the virtues or failings of its description, I believe
the opposite, that the quality of the specification is part and parcel of the quality of the

2

scheme. For one thing, the specification document impacts the likelihood of a scheme
being correctly or incorrectly used.

Another aspect of this report is the simple fact of organizing this menagerie of modes in some
coherent way. The taxonomy of Figure 1.1 was not the only possible approach.

1.3. The positive role of the standards bodies. This report takes a fresh look at eight
different standards—six from NIST and one each from the IEEE and ISO/IEC. Overall, the
assessment I will give may sound fairly critical about this body of work. This does not repre-
sent my actual view. Quite the opposite; the modes are, collectively, quite good, and NIST, in
particular, has shown commendable leadership in their work on standardizing (or “recommend-
ing”) modes of operation. If it was once true that, in cryptography, each standards body liked
to wait around for the other to act, this most definitely is not the case today.

Some of the negativism one will see in this report may be a bit half-hearted and pro forma:
academics are supposed to be critical of what we review; it is wired in our brains. Any piece of
completed work could have been better done, and a critique should bring out these shortcomings.
A negative-sounding critique should not be understood as an overall negative opinion of a
standard or a mode contained therein; it is par for the course.

More concretely, I would make the following comments to help balance the possibly negative-
sounding tenor of this report. First, that all of the modes embodied in FIPS 198-1 and NIST
Recommendations SP 800-38B (CMAC), SP 800-38C (CCM), SP 800-38D (GCM), and SP 800-
38E—standards for HMAC, CMAC, CCM, GCM, and XTS, respectively—owe their existence
to the provable-security tradition. In standardizing this set of techniques, NIST has ushered in
a new age in symmetric cryptography, one where everything “above” the level of a blockcipher
(or hash function or compression function) is designed using, and proven with, the provable-
security chest of tools and ideas. Recommendation SP 800-38A, while not standardizing any
fundamentally new technique, expanded the repertoire of sanctioned modes by including a
method—CTR mode—that gains its importance equally from the current nature of processor
and hardware design and from our current understanding of provable-security cryptography.
The standardization of the named modes has a strongly positive impact in bringing about safer
shared-key encryption, authenticated encryption, and message authentication.

Whatever criticism I may raise about this method or that, or about some phrase, para-
graph, appendix, idea, or result, the overall context and summary opinion should not be lost:
(a) that having standards for symmetric cryptography—standards reaching above the level of
blockciphers—is important and desirable; (b) that these standards should be well-informed by
the science that the cryptographic community has been working to create; (c) and that this is
precisely the direction we are seeing, overall, from the set of standards I was invited to review.

There is a reason that standards often take years to complete. The reason is not politics,
bickering, or stupidity, as I have heard claimed more than once. The reason is that fashioning a
good standard is hard. It is both hard technically and hard because a standard that has value
is an artifact that, almost always, can only emerge after a high degree of dialog arising within a
particular socio-technical institution. I have much respect and appreciation for those who have
worked hard to bring us the modes reviewed in these pages. I hope that those who have had a
hand in creating these modes and standards will take my comments as quiet and constructive
suggestions and ideas.

1.4. Some “types” of cryptographic objects. We now introduce some terms we will be
using for the remainder of this chapter. Later in this report, we will be describing all of these

3

terms in greater depth; still, we must introduce the terms now for our summary to make sense.

When we speak of an IV-based encryption scheme we mean that the “syntax” of the
mechanism looks like C = E IVK (P) where K is a key, P is a plaintext, C is a ciphertext, and
IV is an “initialization vector.” We are not speaking of the scheme’s security characteristics.
A probabilistic encryption scheme C = ERK(P) is an IV-based encryption scheme, syntacti-
cally, but we are suggesting that, in the security definition, the IV will be regarded as a random
value R. A nonce-based encryption scheme C = ENK (P) is an IV-based encryption scheme,
syntactically, but we are suggesting that, in the security definition, the IV will be regarded as a
nonce N : a value that is used at most once for a given key. When we speak of a blockcipher
C = EK(P) we mean a keyed, length-preserving permutation. We are not suggesting any par-
ticular security property. A message authentication code (MAC) T = FK(M) is a keyed
function of strings that returns a fixed-length tag. The notion of security will be unforgeability
under an adaptive chosen-message attack. A nonce-based MAC T = FN

K (M) is a like a MAC
with an additional argument, a nonce N . Finally, when we speak of a nonce-based AEAD
scheme (authenticated-encryption with associated-data) C = EN,A

K (P) we mean a nonce-based
encryption scheme with one extra argument, the associated data, a string A. The intent is
that C protects the confidentiality and authenticity of P , as well as the authenticity of A.

1.5. Confidentiality modes. Summary findings on six different confidentiality modes are
given in Figure 1.2. The first four modes (the “basic four”) are classical, going back more
than 30 years, to FIPS 81 [153] (at which time the modes were specific to DES). Yet none
of these are terribly sensible schemes from a modern point of view; ECB doesn’t come close
to receiving the classically-understood “goal” of a confidentiality scheme—semantic security
under a chosen-plaintext (CPA) attack, or notions equivalent to it [14, 74]—while other modes
achieve it, assuming a random IV, but at a pointlessly high cost. Most of these schemes were
invented to address issues like error-propagation, or an attempt to deny the adversary chosen
plaintext/ciphertext pairs, goals that arguably have almost no significance from the point of view
of how we currently understand cryptography or, for that matter, good security architecture.
Re-standardization of some or all of the basic-four modes would be primarily justified by legacy
considerations. In the cases of ECB and CBC, the modes are also relevant as building blocks
for creating other blockcipher modes.

The next mode, CTR, was apparently suggested by Diffie and Hellman just as early as the
basic-four modes [58], yet for some reason it was not included in the initial batch. I regard CTR
as the “best” choice among the classical confidentiality-only techniques. Its parallelizability and
obvious correctness, when based on a good blockcipher, mean that the mode should be included
in any modern portfolio of modes.

The last scheme, XTS, is a relative newcomer; it was only standardized by NIST in January
2010 [65], following IEEE standardization in 2007 [90]. Unlike the other modes reviewed in this
document, XTS is intended for a specific application: encrypting fixed-length “data units” (eg,
disk sectors) on a storage device. Whereas ECB leaks the equality of blocks across time and
position, XTS leaks the equality of blocks across time but not position. The mode is inherently
a compromise, achieving weaker goals than what a tweakable blockcipher “should” achieve if it
is applied to a possibly-long string, but running more efficiently.

1.6. Authenticity modes. Summary findings for the reviewed authentication modes are in
Figure 1.3. I begin by looking at the cornucopia of MACs that were included in ISO 9797-1.
By one natural reckoning, that standard encompasses some twenty-one different schemes. The
request from CRYPTREC was to review the CBC-MAC from this standard—but they’re all

4

Mode
from

Summary evaluation

ECB
SP 800-38A

A blockcipher, the mode enciphers messages that are a multiple of n bits by separately
enciphering each n-bit piece. The security properties are weak, the method leaking
equality of blocks across both block positions and time. Of considerable legacy value,
and of value as a building block for other schemes, but the mode does not achieve any
generally desirable security goal in its own right and must be used with considerable
caution; ECB should not be regarded as a “general-purpose” confidentiality mode.

CBC
SP 800-38A

An IV-based encryption scheme, the mode is secure as a probabilistic encryption
scheme, achieving indistinguishability from random bits, assuming a random IV. Confi-
dentiality is not achieved if the IV is merely a nonce, nor if it is a nonce enciphered under
the same key used by the scheme, as the standard incorrectly suggests to do. Ciphertexts
are highly malleable. No chosen-ciphertext attack (CCA) security. Confidentiality is for-
feit in the presence of a correct-padding oracle for many padding methods. Encryption
inefficient from being inherently serial. Widely used, the mode’s privacy-only security
properties result in frequent misuse. Can be used as a building block for CBC-MAC
algorithms. I can identify no important advantages over CTR mode.

CFB
SP 800-38A

An IV-based encryption scheme, the mode is secure as a probabilistic encryption
scheme, achieving indistinguishability from random bits, assuming a random IV. Confi-
dentiality is not achieved if the IV is predictable, nor if it is made by a nonce enciphered
under the same key used by the scheme, as the standard incorrectly suggests to do. Ci-
phertexts are malleable. No CCA-security. Encryption inefficient from being inherently
serial. Scheme depends on a parameter s, 1 ≤ s ≤ n, typically s = 1 or s = 8. Inefficient
for needing one blockcipher call to process only s bits . The mode achieves an interesting
“self-synchronization” property; insertion or deletion of any number of s-bit characters
into the ciphertext only temporarily disrupts correct decryption.

OFB
SP 800-38A

An IV-based encryption scheme, the mode is secure as a probabilistic encryption
scheme, achieving indistinguishability from random bits, assuming a random IV. Con-
fidentiality is not achieved if the IV is a nonce, although a fixed sequence of IVs (eg, a
counter) does work fine. Ciphertexts are highly malleable. No CCA security. Encryp-
tion and decryption inefficient from being inherently serial. Natively encrypts strings of
any bit length (no padding needed). I can identify no important advantages over CTR
mode.

CTR
SP 800-38A

An IV-based encryption scheme, the mode achieves indistinguishability from ran-
dom bits assuming a nonce IV. As a secure nonce-based scheme, the mode can also be
used as a probabilistic encryption scheme, with a random IV. Complete failure of privacy
if a nonce gets reused on encryption or decryption. The parallelizability of the mode
often makes it faster, in some settings much faster, than other confidentiality modes.
An important building block for authenticated-encryption schemes. Overall, usually the
best and most modern way to achieve privacy-only encryption.

XTS
SP 800-38E
& IEEE 1619

An IV-based encryption scheme, the mode works by applying a tweakable block-
cipher (secure as a strong-PRP) to each n-bit chunk. For messages with lengths not
divisible by n, the last two blocks are treated specially. The only allowed use of the
mode is for encrypting data on a block-structured storage device. The narrow width
of the underlying PRP and the poor treatment of fractional final blocks are problems.
More efficient but less desirable than a (wide-block) PRP-secure blockcipher would be.

Figure 1.2: Summary findings — confidentiality modes. The list includes the four “classical”
modes (ECB, CBC, CFB, OFB), a parallelizable (no chaining) alternative (CTR), and a recent scheme
for on storage-device encryption (XTS).

5

Mode
from

Summary evaluation

ALG1–6
ISO 9797-1:

1999

A collection of MACs, all of them based on the CBC-MAC. Too many schemes.
Some are provably secure as VIL PRFs, some as FIL PRFs, and some have no provable
security. Some of the schemes admit damaging attacks. Some of the modes are dated.
Key-separation is inadequately attended to for the modes that have it. Should not be
adopted en masse, but selectively choosing the “best” schemes is possible. It would
also be fine to adopt none of these modes, in favor of CMAC. Some of the ISO 9797-1
MACs are widely standardized and used, especially in banking. A revised version of the
standard (ISO/IEC FDIS 9797-1:2010) will soon be released [93].

CMAC
SP 800-38B

A MAC based on the CBC-MAC, the mode is provably secure (up to the birthday
bound) as a (VIL) PRF (assuming the underlying blockcipher is a good PRP). Essen-
tially minimal overhead for a CBCMAC-based scheme. Inherently serial nature a prob-
lem in some application domains, and use with a 64-bit blockcipher would necessitate
occasional re-keying. Cleaner than the ISO 9797-1 collection of MACs.

HMAC
FIPS 198-1

A MAC based on a cryptographic hash function rather than a blockcipher (although
most cryptographic hash functions are themselves based on blockciphers). Mechanism
enjoys strong provable-security bounds, albeit not from preferred assumptions. Multiple
closely-related variants in the literature complicate gaining an understanding of what is
known. No damaging attacks have ever been suggested. Widely standardized and used.

GMAC
SP 800-38D

A nonce-based MAC that is a special case of GCM. Inherits many of the good and
bad characteristics of GCM. But nonce-requirement is unnecessary for a MAC, and here
it buys little benefit. Practical attacks if tags are truncated to ≤ 64 bits and extent
of decryption is not monitored and curtailed. Complete failure on nonce-reuse. Use is
implicit anyway if GCM is adopted. Not recommended for separate standardization.

Figure 1.3: Summary findings — authenticity modes. The various authenticity modes (MACs)
reviewed in this report. All but GMAC are pseudorandom functions (PRFs) as well as MACs.

CBC-MACs, under a sufficiently catholic understanding of the word, and I decided I ought to
consider them all. The chapter on the ISO 9797-1 scheme—not surprisingly, the longest of the
lot—tries to go through what is and isn’t known about all the different CBC-MAC variants.
Overall, I am rather critical of this standard, which I see as fundamentally too open-ended,
and particularly sloppy when it comes to key-separation. I do not recommend blanket adoption
of ISO 9797-1 schemes. A new version of ISO/IEC 9797-1 will soon be forthcoming; a revised
Final Draft International Standard (FDIS), document ISO/IEC FDIS 9797-1:2010, has just been
approved [93]. While not in scope of this review (and while located too late to be reviewed,
regardless), it appears that the revised 9797-1 draft addresses many, but not all, of the concerns
I raise regarding the ISO/IEC 9797-1:1999 standard.

Next I look at CMAC and HMAC, both of which I like. They are simple and modern
schemes, with good provable security results. The second mode, especially, is by now quite
widely deployed.

Finally, I consider GMAC, which is a special case of GCM (reviewed in the authenticated-
encryption part of this report). I find significant problems with the mode: it does not work
well when tags are substantially truncated, and the absolute necessity of supplying a (never-
repeating) nonce means that the scheme is needlessly vulnerable (for a MAC) to misuse. I
would advise against separately standardizing this scheme, which would, in any case, be “auto-
matically” covered by any standard covering GCM.

1.7. Authenticated-encryption modes. Summary findings for two authenticated-encryption

6

Mode
from

Summary evaluation

CCM
SP 800-38C

A nonce-based AEAD scheme that combines CTR mode encryption and the raw
CBC-MAC. Inherently serial, limiting speed in some contexts. Provably secure, with
good bounds, assuming the underlying blockcipher is a good PRP. Ungainly construction
that demonstrably does the job. Simpler to implement than GCM. Can be used as a
nonce-based MAC. Widely standardized and used.

GCM
SP 800-38D

A nonce-based AEAD scheme that combines CTR mode encryption and a GF(2128)-
based universal hash function. Good efficiency characteristics for some implementation
environments. Good provably-secure results assuming minimal tag truncation. Attacks
and poor provable-security bounds in the presence of substantial tag truncation. Can be
used as a nonce-based MAC, which is then called GMAC. Questionable choice to allow
nonces other than 96-bits. Recommend restricting nonces to 96-bits and tags to at least
96 bits. Widely standardized and used.

Figure 1.4: Summary findings — authenticated-encryption modes. Here we summarize findings
for the two authenticated-encryption modes reviewed in this report. Both are nonce-based and can
process incoming associated data, such as a message header.

schemes, CCM and GCM, are in Figure 1.4. Both are nonce-based (meaning that the user must
supply a never-repeating IV). Both allow “associated-data” (for example, a message header) to
be authenticated alongside whatever is being encrypted. The methods are therefore sometimes
termed schemes for AEAD—authenticated-encryption with associated-data. I offer substantial
criticism on both CCM and GCM, but none of the criticisms are particularly new. For CCM,
the serial nature of the scheme, for both encryption and decryption, is unpleasant, as is its
failure to be on-line. The latter aspect, especially, is fundamentally unnecessary. For GCM, we
complain most stridently about security if tag lengths are short (where even 64 bits must be
considered short, given the security results). Still, in the end, I must come down in favor of
including both CCM ad GCM in any portfolio of modern AEAD schemes: the mechanisms are
widely used, and can be used safely. The overall migration from pure-privacy modes (CBC and
its friends) to AEAD modes (CCM, GCM, and the like) represents an important shift in the
“service” that users can expect symmetric encryption schemes to provide, a shift that is likely
to result in decreasing misuse.

1.8. Organization. The evaluation of each mode has been dropped into its own chapter with
the exception of three IV-based encryption schemes—CBC, CFB, and OFB—which I treat
together, and the various CBC-MAC modes of ISO 9797-1, which I likewise lump together.
Background material for each of the three parts of this report is given the “pseudo-chapters”
that are labeled as Parts I–III. Finally, there is, after this summary, a chapter of preliminaries
that contains material useful for the overall enterprise. While there are some synergies to be
found by reading everything, I have tried to keep the chapters independent of one another. A
partial exception is the chapter on GMAC, which might benefit from a prior reading of the
chapter on GCM. See again the chart of Figure 1.1.

1.9. New material. I would identify the following aspects of this report as at least somewhat
novel, going beyond what I, at least, had understood to be the current state of thinking on
modes of operation.

1.9.1 Our (syntactic) formulation for IV-based encryption schemes is new, as is the viewpoint
we select that makes probabilistic and nonce-based security different notions levied on
the same underlying object. An advantage of this approach is that it lets one formally

7

claim that nonce-based security is properly stronger than probabilistic security (before,
such a statement could only be understood as a “meta” assertion, since, formally, nonce-
based and probabilistic encryption schemes were different kinds of objects). I also
employ a syntax for IV-based encryption schemes that follows the traditional approach
for defining blockciphers—that is, just a single algorithm, rather than a three-tuple or
the like. I go on to use the single-algorithm formulation for AEAD schemes too, a nice
syntactic simplification for these objects as well.

1.9.2 I describe a formalization for the (limited) privacy goal to which ECB and XTS ap-
parently aim. A “filter function” F can be defined such that one can speak of ECB
being private up to the leakage of FECB. Similarly, one can speak of being private up
to the leakage of FXTS, or private up to leaking any piece of information F(C) about
ciphertexts. I suggest adapting this approach to similarly speak of nonmalleability up
to some function F , so that one could speak of just “how malleable” a scheme like XTS
is.

1.9.3 I suggest that Appendix C of NIST SP 800-38A is wrong to recommend that, to create
the IV for CBC or CFB modes, one can “apply the forward cipher function, under the
same key that is used for encryption of the plaintext, to a nonce” [61, p. 20]: the result-
ing scheme does not achieve what we define as the intended goal. The spec is similarly
a bit off in suggesting that the IVs for OFB need only be nonces; while unpredictabil-
ity is not needed, there are attacks if the sequence of distinct IVs—nonces—may be
adaptively changed.

1.9.4 Our formalization for CTR mode is new. At issue is the fact that SP 800-38A doesn’t
indicate how counters are to be formed and so, to match this spec, it does not really
work to assume some specific counter-increment technique, as was done by Bellare,
Desai, Jokipii, and Rogaway [14].

1.9.5 I try to clarify that there are effectively three tweakable blockciphers associated to the
definition of XTS, and we reformulate the mode in a way that helps clarify its structure
and make it more transparent how XEX “should” have been enlarged if one aimed to
do well enciphering substrings of η ≥ n bits.

1.9.6 I explain that, despite there being proofs in the standard model for many of the ISO
9797-1 CBCMAC-variants [91], that it would still be good to have good PRF-advantage
bounds for ideal-cipher-model. By explicitly attending to key length, such bounds
would help one to assess the efficacy of attacks that run in a certain amount of time
and use a certain number of message/MAC pairs. I suspect that cryptographers have
too quickly dismissed the utility of ideal-cipher-model proofs in this domain because
standard-model proofs were available and assumed preferable, rather than incompara-
ble. With respect to HMAC and other iterated MACs, we identify as an important
open problem to prove that a limited amount of truncation can improve security beyond
the birthday-bound.

1.9.7 I point out that Ferguson’s attack [67] on GCM applies equally well to GMAC. I explain
the serious shortcoming of the bounds asserted by McGrew and Viega [133] in the face
of substantial tag-truncation. It seems not to have been clearly acknowledged by the
authors or others that the bounds for GCM are, in the presence of shortened tags, much
worse than what one sees with CCM [203] and other modes of operation. The defect is
not an artifact of the analysis, as Ferguson’s attack makes clear.

1.9.8 I call attention to the problem of properly defining authenticated encryption for the

8

setting in which authentication tags may be short, acknowledging the deficiency of ex-
isting definitions for this setting, where one should not “give up” (regard the adversary
as having won) when the adversary forges, for example, a one-byte tag.

Some of these matters are appropriate targets for follow-on academic papers.

9

Chapter 2

Preliminaries

2.1. Notation. We aim to use notation standard enough that it will not be much noticed or
questioned by likely readers of this report. By “strings” we always mean (finite) binary strings.
The empty string is written ε. The bit-length of a string X is written |X|. The byte-length of
a byte string X is written |X|8. Concatenation of strings A and B is written as either A ‖ B or
AB. We sometimes use conventional formal-language notation, like {0, 1}∗ for binary strings
or ({0, 1}n)+ for strings having a positive multiple of n bits. We occasionally use hexadecimal
notation, as in 0x36 for the byte 00110110. The first t bits of a string X of length at least t is
written MSBt(X), while the last t bits are LSBt(X). We write A⊕B for the bitwise exclusive-
or of two equal-length strings. We also use this notation for the xor of unequal-length strings,
where the understanding is to drop rightmost bits of the longer string until the two strings are
equal, and then bitwise xor.

We write a
$←X for the experiment of randomly sampling from a space X and assigning the

result to a. Either X will have a distribution associated to it or X will be finite and we mean
the uniform distribution.

Adversaries will typically be understood as (possibly probabilistic) algorithms with access to
oracles. We write oracles that an adversary Amay access as in AF . When we write an expression

like Pr[AFK ⇒ 1] or Pr[AFK(·) ⇒ 1] or Pr[K
$←K : AFK ⇒ 1] we mean the probability that A

outputs 1 when it is run with an oracle FK . What the probability is over will either be explicit
in the bracketed experiment or implicit in the reader’s understanding of the notation.

If i ∈ [0..2n−1] is a number we write [i]n for the n-bit string that encodes i as a binary
number.

We walk a fine line between trying to preserve the variable names and other notation found in
the defining standards and trying to use either more uniform or more elegant notation through-
out this report. Be sensitive to the possibility that notation, as well as descriptive approach,
may have been silently changed.

2.2. Blockciphers. Modes of operation are usually modes of operation of a blockcipher, so we
now review the usual definitions for blockciphers and their security. Refer to [17, 18, 126, 128] for
early treatments. A blockcipher is a function E : K×{0, 1}n → {0, 1}n such that EK(·) = E(K, ·)
is a permutation on {0, 1}n. The inverse to the blockcipher E is D = E−1 defined by DK(Y)
being the unique X ∈ {0, 1}n such that EK(X) = Y . A typical blockcipher is AES. Actually, to
match the definition just given, the AES spec [158] would be understood as any defining three
blockciphers, AES-128, AES-192, and AES-256, one for each of three permitted key length.
Typically a scheme’s parameters, like the key length k for AES, must be fixed for the scheme,

10

as described in the spec, to match the syntax we employ in a definition.

The usual way to quantify the security of a blockcipher E : K × {0, 1}n → {0, 1}n works as

follows. Choose a random K
$←K and a random permutation π on n-bits. An adversary A is

given blackbox access either to EK or to π. The adversary tries to guess which kind of object
it has. We let

Advprp
E (A) = Pr[K

$←K : AEK(·) ⇒ 1]− Pr[π
$← Perm(n) : Aπ(·) ⇒ 1] (2.1)

where Perm(n) denotes all the permutation on n-bit strings.

An alternative measure of security for a blockcipher compares it against a random function
instead of a random permutation. In that case we set

Advprf
E (A) = Pr[K

$←K : AEK(·) ⇒ 1]− Pr[ρ
$← Func(n, n) : Aρ(·) ⇒ 1] (2.2)

where Func(n, n) denotes the set of all functions from n-bit strings to n-bit strings. It is a
standard result that Pr[Aπ ⇒ 1]−Pr[Aρ ⇒ 1] ≤ q2/2n+1 for any adversary A that asks at most q

queries. This makes the PRP and PRF notions of advantage close: |Advprp
E (A)−Advprf

E (A)| ≤
q2/2n+1 if A asks q or fewer queries. The observation is sometimes known as the PRP/PRF
Switching Lemma [27].

Yet another important security notion for blockciphers strengthens the requirement for re-
sembling a random permutation by giving the adversary oracles not only for the forward direc-
tion of the cipher or the random permutation, but for the backwards direction, too. This is some-
times called the “strong” notion of PRP security. It amounts to permitting a chosen-ciphertext
attack (in addition to a chosen-plaintext attack). The definition of advantage becomes

Adv±prp
E (A) = Pr[K

$←K : AEK(·), E−1
K (·) ⇒ 1]− Pr[π

$← Perm(n) : Aπ(·), π−1(·) ⇒ 1]. (2.3)

It is easy to see that good ±prp-security implies good prp-security, but that the reverse does
not hold.

It is strongly believed that blockciphers like E = AES are good in the PRP and strong-
PRP senses of the word: “reasonable” adversaries have only a “small” value Advprp

E (A) or

Adv±prp
E (A). In the concrete-security tradition, the approach that makes makes most sense

when dealing with blockciphers, we usually leave it at that, not trying to define reasonable or
small. If one did want to specify an explicit assumption, one would say something like “we
think that Adv±prp

AES128(A) < 2−10 if A asks at most 250 queries and uses at most 290 time” (with
time understood to include the adversary’s description size and some particular computational
model being fixed). But we certainly do not know how to prove any such statement, and making
concrete conjectures like the one just given does not seem to have any real value.

There are other notions of blockcipher security, but the PRP, PRF, and strong-PRP notions
have proven to be the most productive. Weaker notions of blockcipher security, like unpre-
dictability of the blockcipher, seem to be inadequate for supporting efficient schemes with strong
security proofs. In particular, none of the modes looked at within this report would be secure
if one only demanded the blockcipher to be unpredictable. Similarly, there are stronger notions
for blockcipher-security, like security with respect to related-key attacks. But such assumptions
seem to be overkill for using the blockcipher to achieve standard privacy and authenticity aims.
Insisting that blockcipher-based constructions make use of nothing beyond PRP or strong-PRP
security is a way to impose some restraint in design, and a way to make sure that one is not
assuming unrealistically much.

Blockciphers of the sort the reader probably has had in mind on reading this section are
what one might call conventional blockciphers; in particular: blocksize n is some fixed and

11

rather small number, like n = 64 or n = 128, and the blockcipher is a “true” primitive, not
something built up from something else. We warn the reader that, in this report, we are going
to be rather more catholic in what we are willing to call a blockcipher. In particular, ECB
mode, enciphering an arbitrary string in ({0, 1}n)+, is also a blockcipher, at least if you forgive
the transgression that its domain contains strings of multiple different lengths (even then, the
old definition would apply for each possible blocksize n). Now as a blockcipher, ECB may
disappoint, since it does not achieve good security in the prp-sense we have defined. But it is
still a blockcipher.

A bit more carefully, to regard a mode like ECB as a blockcipher one treats the syntax of a
blockcipher just a bit more liberally, now defining a blockcipher as a function E : K × X → X
where X ⊆ {0, 1}∗ is the message space and EK(·) = E(K, ·) is a length-preserving permutation.
The inverse to the blockcipher E isD = E−1 defined byDK(Y) being the uniqueX ∈ {0, 1}n such
that EK(X) = Y . To define the prp and ±prp security notions for blockcipher E : K × X → X
one adjusts (2.1) and (2.3) to

Advprp
E (A) = Pr[K

$←K : AEK(·) ⇒ 1]− Pr[π
$← Perm(X) : Aπ(·) ⇒ 1] (2.4)

and

Adv±prp
E (A) = Pr[K

$←K : AEK(·), E−1
K (·) ⇒ 1]− Pr[π

$← Perm(X) : Aπ(·), π−1(·) ⇒ 1] (2.5)

where Perm(X) denotes the set of all length-preserving permutations on X . We comment
that we changed the blockcipher “E” to an “E” as we will attempt to use the former symbol to
suggest a conventional blockcipher and the latter for a higher-level encryption scheme (including
a blockcipher like ECB, built out of an underlying blockcipher).

2.3. Modes of operation. When a blockcipher is used in some scheme to accomplish a higher-
level goal, we call the blockcipher-using scheme a (blockcipher-based)mode of operation. Usually
one sees the term mode of operation without the “blockcipher” qualification; it is understood
that we are basing the mode on a blockcipher. Besides using the blockcipher, the mode may
use other simple tools, like simple bit manipulations, xor operations, message padding, and
even some finite-field arithmetic. If one started to use quite complex operations—something
like a modular exponentiation or an elliptic-curve computation—one would probably draw the
line and say that this no longer looked like a mode of operation: there is no precise meaning
ascribed to the term modes of operation of a blockcipher, but we expect, somehow, that use of
the blockcipher is the dominant thing that is going on.

The goal of different modes of operation varies. We will be looking at a variety of goals in
this report, but all of them involving privacy and authenticity.

Besides the blockcipher modes of operation, we will also be looking at HMAC, which is
normally understood as being a mode of operation of a hash function rather than a blockcipher
mode. The idea is the same, however; the higher-level goal (here, making a message authen-
tication code / an arbitrary-input-length PRF) is accomplished from the lower-level primitive
(the cryptographic hash function).

2.4. Reduction-based approach. We will mostly be following the reduction-based approach
of modern cryptography, the branch of cryptography most strongly associated to Goldwasser
and Micali’s seminal work [74]. We follow the “practice-oriented” variant of this approach, most
strongly associated to Bellare and Rogaway [14, 17, 18, 25].

The idea, in this setting, is as follows. We have some blockcipher mode of operation, Π,
that we would like to prove secure. The scheme Π depends on a blockcipher E, so you have to

12

specify E before Π[E] becomes a concrete scheme. The mode is supposed to accomplish some
goal—say, for concreteness, the goal might be message authentication. So we formally define the
goal—for concreteness, the “MAC” formulation of security for message authentication. Formal-
izing the MAC goal means that we associate to any adversary A and any message authentication
code F a real number Advmac

F (A) ∈ [0, 1] that measures how good a job the adversary A does
in “breaking” the MAC. An advantage of 0 means “terrible job” and an advantage of 1 means
“great job.” Now to evidence that we have used E well in making our mode Π[E] we prove a
theorem to capture the intent that

If E is a good blockcipher, then Π[E] is a good MAC.

Taking the contrapositive, we want a theorem that says that

If Π[E] is a poor MAC, then E is a poor blockcipher.

Making the role of the adversary more explicit:

If there is a reasonable adversary A that does well at breaking Π[E] as a MAC, then
there is a reasonable adversary B that does well at breaking E as a blockcipher.

Inserting our named notions of security and explicitly emphasizing the constructive nature of
our enterprise:

Given an adversary A that achieves advantage Advmac
Π[E](A) there is a corresponding

adversary B, explicitly determined from the description of A, where adversary B is
about as efficient as A and where B gets advantage Advprp

E (B) in attacking E that
is about as large as Advmac

Π[E](A).

A careful theorem statement gives an explicit formula that lower bounds Advprp
E (B) in terms

of Advmac
Π[E](A). The theorem also gives formulas to explain how the computational resources

of B compare to those for A. We hope for “tight” reductions—meaning, in this case, that
Advprp

E (B) should be close to Advmac
Π[E](A) and B should be almost as efficient as was A. The

formulas make manifest how tight the reduction be.

In the approach we suggest and implicitly use throughout this report, there are is no asymp-
totics. No polynomial times, expected polynomial time, negligible functions, or the like. Any-
thing we want to say about how one scheme’s security is related to another can be stated
precisely, and in a way that makes sense for functions with finite domains.

The point of giving a reduction is to bootstrap assurance: our belief in the security of a
blockcipher is leveraged into a belief about the blockcipher mode. The point in having explicit
and quantitatively precise reductions is that we can answer just how secure the mode has been
proven to be relative to the blockcipher’s assumed strength.

Because we aim to base designs for modes of operation on the PRP or strong-PRP assump-
tion, things like related-key attacks on AES [33, 34] tend to be irrelevant when looking at the
security of a proven-secure AES-based mode. The alleged weakness of the blockcipher is not
relevant to our confidence that the mode does its job; all that matters is that AES be good as
a PRP. At least with respect to this use of AES, we ought not to care if AES is subject to an
effective related-key attack.

It should be emphasized that a proof that a mode is secure if its underlying blockcipher is
a PRP provides no assurance of security if the underlying blockcipher is not a PRP. Also, the

13

meaning of the mode being “secure” is always something quite specific: the mode does well with
respect to some specified definition D. Absent other evidence, there will be no reason to believe
that the scheme does well with respect to some definition D′ that differs—even a little—from
definition D. This is one reason cryptographers study security relations among definitions; we
want to make sure that our definitions are reasonably robust.

2.5. Information-theoretic arguments. At the core of almost every reduction-based proof
for a blockcipher mode of operation is a proof that has nothing to do with complexity-theoretic
cryptography. One regards EK , for a random key K, as a uniform random permutation π. One
then proves, for this idealized blockcipher, that the mode of operation definitely does well. If the
mode is for a MAC, say, then you get a bound on Advmac

Π[Perm(n)](A) for any adversary that asks
a certain number of queries, those queries of specified lengths. One makes no assumptions about
how long adversary A may run. Working in the information-theoretic realm makes things vastly
less provisional: we know how well our adversaries can do, and we can give concrete results to
show it.

After giving the information-theoretic “core” of a reduction, we must generally go back and
describe what, concretely, it means when the blockcipher E is not ideal. Inevitably—well, at
least for all of the examples that arise in this report—this step is quite routine, and only ends
up, in a theorem statement, taking on a term like Advprp

E (B). When we describe the “quality”
of a reduction, we often ignore this final step, because it never (again, in the context of the
modes of this report) has any bearing on how good a job one has done in demonstrating a mode
secure. When describing the quality of a reduction within the information-theoretic setting,
this is done not because the final result is in an idealized setting, it is only for simplicity of
exposition, and to focus on what matters most.

2.6. Other approaches to looking at the security of a mode. In the ideal-cipher model—
see §II.6—we don’t bother with reductions at all. Instead, we treat the underlying blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n as a family of random permutations on n bits, each one named
by a k-bit key. The adversary is given black-box access to E(K,X) and its inverse D(K,Y).
Because modes of operation most often can be analyzed in the “standard,” reduction-based
approach, it is the one that cryptographers generally prefer. The bias is ultimately rooted in a
classical belief in the danger of abstracting away computational aspects of algorithm.

Many cryptographers have let the entire provable-security tradition pass them by and con-
tinue to use the more classical, attack-based approach. Throughout this report, we do sometimes
describe attacks on the considered modes of operation. We have mixed feelings on attack-based
study of modes. Unless one steps outside of the model (eg, in looking at timing attacks, or
looking at attacks that break the “rules” of the mode, as when one requires repetition of a
nonce), one knows, once a scheme has been proven secure, that the attack will not be more
effective than that which is guaranteed by the bound. If the bound is good and the model is
not being subverted, an attack-based analysis of a mode is, then, an exercise in futility. But,
opposing this view, one cannot say that a mode of operation is fully understood until one has
both security upper and lower bounds, and found that they essentially match. Attacks therefore
tell you how much room there is, or isn’t, in improving ones bounds. Additionally, looking at
modes—or any cryptographic scheme—from an alternative perspective can inspire new insights
and questions. So we are certainly not “opposed” to trying to break modes, even proven-secure
ones, by looking at attacks. One should simply understand the limits of what might be shown
in the presence of sound and strong proofs. And ultimately it is proofs—not the inexistence of
effective attacks—that should be the thing that engenders confidence in a mode’s worth.

14

Part I

Confidentiality Modes

15

Part I

Confidentiality Modes

I.1. Overview. The six modes of operation reviewed in Part I of this document are all focused
on achieving message confidentiality. Five of the six modes—CBC, CFB, OFB, CTR, and
XTS—can be understood as having “syntax” that looks like this:

C = E IVK (P) where IV is either a nonce, a random value, or a tweak. (2.6)

For one of the six confidentiality modes—ECB—there is no initialization vector (IV). The
absence of an IV can, for consistency, be understood as the silent provisioning of a fixed IV, say
the empty string. But we will not take this view, regarding ECB as a fundamentally different
“kind” of object from the other five modes. We call a mechanism E with a syntax as in E IVK (P)
an IV-based encryption scheme. A more precise definition will be given later.

The set of possibilities from which IV is drawn in (2.6), the IV space, differs across the
different modes, as do the sets from which one draws the key K (the key space) and the
plaintext P (the message space). Each of the six confidentiality modes implicitly depends on
an underlying blockcipher

E : K × {0, 1}n → {0, 1}n . (2.7)

The permitted blockciphers, the blockcipher space, one might say, also varies across the different
modes. Altogether, the syntax for our six confidentiality schemes can be summarized as follows:

Mode key space message space IV space blockcipher space

ECB K ({0, 1}n)+ N/A AES, Skipjack, or TDEA

CBC K ({0, 1}n)+ {0, 1}n AES, Skipjack, or TDEA

CFB K ({0, 1}s)+ {0, 1}n AES, Skipjack, or TDEA

OFB K {0, 1}∗ {0, 1}n AES, Skipjack, or TDEA

CTR K {0, 1}∗ ({0, 1}n)+ AES, Skipjack, or TDEA

XTS K ×K {0, 1}≥n {0, 1}n AES (only AES-128 or AES-256)

For CFB mode, the number s (1 ≤ s ≤ n) one sees showing up in the message space is a
parameter of the scheme. For CTR mode, the number of components in the provided IV must
be equal to the block length of the provided plaintext, m = �|P |/n.

I.2. Possible goals. When using the term “IV-based encryption scheme” I am not implying
any particular security property. Correspondingly, there is no such thing as being “good” in the

16

sense of IV-based encryption. Here, quite broadly, are three security goals to which an IV-based
encryption scheme might aspire:

Probabilistic encryption. An IV-based encryption can be secure as a probabilistic encryp-
tion scheme. There are multiple ways to formalize this, but in all of them the IV is assumed
to be selected uniformly at random, chosen anew with each message that is encrypted.
We may here denote the IV by the letter R, writing C = ERK(P). The IV is, in this setting,
not under the user’s (nor the adversary’s) control. The random IV is normally assumed
to accompany the ciphertext. Indeed in many treatments in the cryptographic literature,
the random IV would be considered as part of the ciphertext (but we will not formalize
things in this way). Probabilistic symmetric encryption schemes were first formalized and
investigated by Bellare, Desai, Jokipii, and Rogaway [14], building on Goldwasser and
Micali’s approach in the public-key setting [74].

Nonce-based encryption. An IV-based encryption scheme might be secure as a nonce-
based encryption scheme. There are, again, multiple way to formalize this, but in all of
them the IV is under the user’s control. What is expected of him is that he provides a
new IV—a nonce—with every message he encrypts. A counter (one that is forbidden to
“wrap around”) is the prototypical nonce. A random value can also be used as a nonce,
assuming the random value is long enough so that collisions will almost never arise. In
the nonce-based setting we sometimes denote the IV by the letter N , writing C = ENK (P).
Nonce-based symmetric encryption was first formalized by Rogaway [180], although the
idea was no doubt long present in the “folklore” of applied cryptography.

Tweakable blockcipher. An IV-based encryption scheme might be secure as a tweakable
blockcipher. Now the IV is called a “tweak,” (or, less often, a “salt” or “diversity pa-
rameter”). Correspondingly, we write C = ETK(P), giving the IV yet another letter. One
encrypts a plaintext P using key K and tweak T to get a ciphertext C = ETK(P). You can
also reverse the map, letting P = DT

K(C). The length of plaintext P and the ciphertext C
must again be equal. Usually what we want is, at least, that, for each tweak T , the per-
mutation EK(·) looks like a random permutation to one who does not know the key K.
Tweakable blockciphers were first formalized by Liskov, Rivest, and Wagner [124].

I.3. SemCPA notions. When we speak of SemCPA security (“semantic security with
respect to a chosen-plaintext attack”) we are assuming the setting of a probabilistic or nonce-
based encryption scheme and a formalization of security that captures an adversary’s inability
to break the scheme when launching a chosen-plaintext attack (CPA). With the SemCPA label
we do not mean any specific security definition; we mean any of several security definitions
along these lines.

The particular SemCPA security definitions we focus most on is what we call ind$-security
(for the probabilistic setting) and IND$-security (for the nonce-based one). If we say that a
scheme is SemCPA secure, we mean that it is probabilistic or nonce-based and that it does well
with respect to achieving at least one of the formulations for semantic security with respect to
a SemCPA attack. For example, the scheme might do well with respect to the ind$ security
definition.

When we speak of a scheme aiming to achieve (only) privacy or confidentiality, or as being
a privacy-only or confidentiality-only scheme, what we mean is that it targets some SemCPA
security definition and not something stronger.

17

One could also speak of SemCCA notions for security. Such formulations invariably provide
the adversary a decryption oracle, in addition to whatever other oracles or capabilities the
adversary may have.

I.4. Quick preview. Very briefly, we will be seeing that CBC, CFB, and OFB are all SemCPA
secure as probabilistic encryption schemes. None of the methods are SemCCA secure as proba-
bilistic encryption schemes. We will see that none of them are SemCPA secure as nonce-based
schemes, either. The NIST spec suggests that a nonce can be used for the IV of OFB [61,
p. 13 and p. 20, paragraph 5], but this is not enough with respect to our definitions. The NIST
spec explains that CBC and CFB are not secure if the IV is merely a nonce and it spells out a
modification to those modes [61, Appendix C] that seems aimed at making them nonce-based.
We name these CBC and CFB variants �CBC and �CFB. We show that �CBC and �CFB are
SemCPA insecure as nonce-based encryption schemes. We will be explaining all of these claims
in Chapter 4.

CTR mode is the only mode we review that is SemCPA secure as a nonce-based encryption
scheme. But to fit CTR into this nonce-based mold we have to be pretty generous in how we
formalize our nonce-based notion: the nonce needs to be a vector of strings, one for each block,
and reuse of a nonce is understood to include reuse of any of the nonce’s blocks.

None of the confidentiality modes reviewed in this report are good in the sense one would
want of a tweakable blockcipher. Just the same, understanding tweakable blockciphers will be
necessary to understand our discussion of XTS.

It should be emphasized that there are security notions for an IV-based encryption scheme
that go beyond SemCPA security. We mentioned SemCCA security. Other goals include non-
malleability (NM) and an inability to create ciphertexts that decrypt to valid plaintexts (au-
thenticated encryption).

I.5. Syntax of an IV-based encryption scheme. We now formalize what an IV-based
encryption scheme actually is, as a syntactic object.

It has become traditional to regard blockciphers as fixed functions (or algorithms), but
to define more “complicated” kinds of encryption schemes as tuples of algorithms, as in Π =
(K, E ,D). To simplify and unify matters a bit we will instead formalize IV-based encryption
schemes more like blockciphers: as functions, not as tuples.

Formally, we will say that an IV-based encryption scheme is a function

E : K × IV × X → X . (2.8)

We will usually write E IVK (P) instead of E(K, IV , P). The sets K, IV , and X are called the
key space, the IV space, and the message space. The message space X ⊆ {0, 1}∗ must be
a set of strings. The key space K is usually a finite set, in which case it is understood to
have associated to it the uniform distribution. It would be fine for K to be infinite as long
as there is an understood distribution. Each IV ∈ IV is assumed to be a sequence of strings,
IV ⊆ ({0, 1}∗)∗. This generality is only needed for CTR mode; in all other case, the IV is a
single string, IV ∈ {0, 1}∗. We demand that, for any K ∈ K and IV ∈ IV, the function E IVK (·)
is a length-preserving permutation on X . As such, there is a unique function D corresponding
to E , the decryption function D = E−1 for the encryption scheme E , defined by DIV

K (C) = P
exactly when E IVK (P) = C.

It would not be a problem to weaken the “length-preserving permutation” requirement to
allow some arbitrary injective function—and such a relaxation would in fact be necessary if, for

18

example, mandatory 10∗ padding was assumed prior to CBC encryption, as described in [61,
Appendix A].

When time-complexity arises with respect to an IV-based encryption scheme one should
switch to regarding it as an algorithm, not just a function. Of course any practical IV-based
encryption scheme E will need to have an efficient algorithmic realization, and there should be
an efficient algorithmic realization for the decryption direction D = E−1 of E , too.

We note that for the receiver to recover the plaintext P from the ciphertext C under the
key K, she must present the same value IV as before; although we do not consider the IV to be
part of the ciphertext, it must be known to the party that wants to decrypt. So, in applications,
either it will need to be presented to the party that will decrypt alongside the ciphertext, or
else it must be recoverable by her by some other means.

As we have indicated, there are multiple security notions that can be overlaid on the syntax
of an IV-based encryption scheme. We will define two, and sketch more.

I.6. Security of a probabilistic encryption scheme. First we consider SemCPA security
notions for IV-based encryption schemes where the IV is taken to be a uniformly random string.
Here we assume, for simplicity, that IV = {0, 1}n consists of strings of some one fixed length.
While the syntax of an IV-based encryption scheme E shows three strings being provided to the
mechanism, in the current context the “user” is expected to provide only two of them, the key K

and the plaintext P . The mechanism internally selects the third string, sampling R
$←{0, 1}n

before it computes C ← ERK(P) and returns C = R ‖ C. We give a very strong notion of security
for this setting—the notion of indistinguishability from random bits.

Fix an IV-based encryption scheme E : K×{0, 1}n×X → X and let A be an adversary. We
consider two different oracles with which A may communicate:

Real. First, a random key K
$←K is selected. After that, the oracle behaves as follows. On

input of a plaintext P ∈ X , the oracle selects a random value R
$←{0, 1}n, defines C ←

ERK(P), and returns to the adversary C = R ‖ C. If P �∈ X the oracle responds with
Invalid. We denote this oracle EK(·).

Random. On input of a plaintext P ∈ X the oracle selects random strings R
$←{0, 1}n and

C
$←{0, 1}|P |, and returns C = R ‖ C. If P �∈ X the oracle responds with Invalid. We

denote this oracle $(·).

We define

Advind$
E (A) = Pr[AEK(·) ⇒ 1]− Pr[A$(·) ⇒ 1] (2.9)

as the difference in probabilities for A outputting 1 in the two settings. Informally, an IV-
based encryption scheme is secure in the ind$-sense if Advind$

E (A) is “small” whenever A is
“reasonable.” We will have no need to precisely define small or reasonable; concrete security
reductions give more precise assertions.

There are multiple weakenings of the ind$-security that have been considered in the litera-
ture. Let us sketch a few of these other SemCPA notions, as drawn from Bellare, Desai, Jokipii,
and Rogaway [14] and based, in part, on Goldwasser and Micali [74].

1. With the indistinguishability notion of security the adversary doesn’t have to distin-
guish ciphertexts from random bits—she has, instead, to distinguish ciphertexts from the

19

encryptions of random bits. Here one assumes that the message space X has the struc-
ture that if P ∈ X then so is every other string of |P | bits. In a slight variation of this
notion, what is given to the adversary is not the encryption of random bits (when not the
encryption of the actual query), but the encryption of 0-bits, the number of 0-bits being
the length of the adversary’s query. Here one assumes that the message space X has the
structure that, if P ∈ X , then so is 0|P |.

2. With the left-or-right notion of security, the oracle begins by randomly selecting a key

K
$←K, as before, and it also selects a bit b

$←{0, 1}. Adversary A now asks a sequence
of query pairs, each such pair of the form (P0, P1) where strings P0 and P1 are equal-

length messages in X . In response to any such query, the oracle computes C
$←EK(Pb),

as defined before, returning this string. When satisfied, the adversary outputs a bit b′.
The adversary’s advantage is defined the probability that b′ = b, minus 1/2 to account
for random guessing. Usually one further multiplies by two and subtracts one, just to
normalize advantage values to the range [−1, 1] (or [0, 1], if one takes the absolute value
or ignores negative advantages).

3. With the find-then-guess notion of security, the adversary A runs in two stages, Find
then Guess. During both it may access an oracle for EK(·) that works as above. The
result of the Find stage is a pair of equal-length strings P0, P1 ∈ X and some arbitrary
saved state s (capturing what the adversary wants to “remember”—we are regarding the
Find and Guess stages of A as two distinct algorithms). The experiment then chooses

a random bit b
$←{0, 1} and sets C

$←EK(Pb). During the adversary’s Guess stage, it is
provided as input (C, s). We look at the probability that the adversary ends its Guess
stage by outputting the bit b′ that is the same as b. The adversary’s advantage is this
probability minus 1/2 (or else this value re-normalized to [0, 1] or [−1, 1], just as before).

4. Under the semantic security notion, the adversary A runs in two stages, Select then
Predict. During both it may access an oracle EK(·) as above. The result of the Select
stage is a tuple (M, s) where s is a string andM encodes a probabilistic algorithm that
returns a sample within the domain X of the encryption scheme, all samples that may be
output having the same fixed length. After this tuple is output, the experiment selects

b
$←{0, 1}, samples P0, P1

$←M, computes C
$←EK(Pb), and returns to the adversary, now

running in its Predict stage, the pair (C, s). The adversary wants to figure out something
about the plaintext Pb that is the decryption of ciphertext C. To that end, it terminates
with an output of (f, y) where f encodes a string-valued function on X and y is a string.
The adversary’s advantage is the probability that f(Pb) = y minus the probability that
f(P1−b) = y. The definition just sketched is a little stronger than that in [14], insofar as
we have postponed the output of f .

The important thing to understand is not so much the details or intuition for each alternative
definition, but the fact that all of these alternative notions are implied by ind$-security—and
by tight reductions. As a consequence, if we want to show a strong SemCPA property for
a probabilistic (IV-based) encryption, it is enough to focus on just the ind$ notion—directly
establishing any of the other notions would then be pointless. In fact, the indistinguishability-
from-random-bits notion is properly stronger than all four of the alternative notions sketched
above.

NIST document SP 800-38A often refers to the IV as being unpredictable rather than
random. It is possible to weaken our notion of probabilistic encryption in exactly that direction,
taking the IV to be generated by a source that, after q samples, the next one can be correctly

20

predicted with probability at most ε(q, t) by any algorithm running in time (plus description
size) at most t. We do not pursue this added complexity, which would seem to add little
insight on any of the modes. We concur, without trying to formally show theorems, that all
of the SP 800-38A modes that are secure as probabilistic encryption schemes—namely, CBC,
CFB, and OFB—will remain secure if the IV is not perfectly random, but only unguessable.
A quantitative statement of such results would “give up” in the ind$ advantage an amount
proportional to the ε(q, t) value defined above.

I.7. Security of a nonce-based encryption scheme. We emphasize that, under our treat-
ment of IV-based encryption schemes, both probabilistic and nonce-based security notions apply:
these are alternative security notions for the same kind of object. What is different is what we
assume is done with the IV. In the ind$-security notion, we formalized that the IV is random
and not under the user’s control. In the nonce-based setting the opposite is assumed: the IV is
under the user’s control, but he must execute a modicum of restraint in its provisioning, never
providing the same IV twice. The formalization follows.

Once again fix an IV-based encryption scheme E : K×IV×X → X and let A be an adversary.
We consider two different oracles with which A may communicate:

REAL. First, a random key K
$←K is selected. After that, the oracle behaves as follows. On

input (N,P), an IV N ∈ IV and a plaintext P ∈ X , the oracle computes and returns
C ← ENK (P). If N �∈ IV or P �∈ X the oracle responds with Invalid. We denote this oracle
EK(·, ·).

RANDOM. On input (N,P), an IV N ∈ {0, 1}n and a plaintext P ∈ X , the oracle computes

C
$←{0, 1}|P | and returns C. If N �∈ {0, 1}n or P �∈ X the oracle responds with Invalid.

We denote this oracle $(·, ·).

We define

AdvIND$
E (A) = Pr[AEK(·,·) ⇒ 1]− Pr[A$(·,·) ⇒ 1] (2.10)

An adversary attacking the IV-based encryption scheme E is said to be nonce-respecting
if it never repeats any component of any IV-value N . In particular, if IV values are strings,
then a nonce-respecting adversary never repeats an IV; if IV values are vectors of string, then a
nonce-respecting adversary is obliged to do something more, to never repeats any component of
any IV. Informally, an IV-based encryption scheme is secure in the IND$-sense (note the change
in capitalization) if AdvIND$

E (A) is “small” whenever A is “reasonable” and nonce-respecting.

The IND$-security definition is one particular SemCPA notion. All the same weakenings
of ind$-security apply to IND$-security, too, giving other SemCPA security notions and analo-
gous results to those in the probabilistic setting; the adjustment in notions from probabilistic
to nonce-based makes no significant change in the landscape of the security notions nor the
implications among them. Just as before, showing IND$-security is the “best” one can do for
establishing positive results; the notion would seem to be the strongest SemCPA security notion
in the literature.

I.8. Nonce-based security is preferred. I have heard it claimed that the probabilistic and
the nonce-based notions of security for symmetric encryption are incomparable; neither notion
is “better” or “stronger” than the other, they are simply different. This statement is technically
true when the two kinds of objects are formalized using distinct syntax, as has always been done

21

in the past, although, at a “meta-level,” the statement feels false. Now that we have adopted
a common syntax for probabilistic and nonce-based schemes, it is no longer possible to claim
that probabilistic security is simply different from, not weaker than, nonce-based security.

Let E : K × {0, 1}n × X → X be an IV-based encryption scheme. Then if it is “good”
in the nonce-based framework—the IND$-definition—then it is also good in the probabilistic
setting—the ind$-definition. This is fairly obvious: apart from a q2/2n+1 term to account for
the collision of randomly generated IVs, the IVs that are randomly generated by the experiment
defining security in the probabilistic setting will generate IVs that qualify as nonces, and so
one will suffer a quantitative security degradation of just q2/2n+1. It is also obvious that the
converse claim is not true: a scheme can work well for random IVs, but fail completely when,
for example, a counter-realized nonce is used instead. In fact, CBC, CFB, and OFB are all this
way, as we soon shall see.

It is strongly preferred for an IV-based encryption scheme to be secure with respect to
the nonce-based notion, not just the probabilistic one. The reason is that a nonce-secure
scheme is less likely to be misused. Good approximations to randomness can be hard to achieve
in the highly deterministic world of digital computers, whereas statefulness—something like
a counter—is usually more easily achieved. In fact, in contemporary security practice good
approximations to randomness are usually achieved with the help of state, employing a process
in which a pool of unpredictable bits is harvested and then this is processed, by a stateful
process, to produce a stream of pseudorandom bits. A failure to provide a good approximation
to randomness is at the heart of many cryptographic vulnerabilities.

It is not hard to give CBC, CFB, and OFB variants that are secure in the nonce-based
sense—in particular, it always works to take a probabilistic scheme E and convert it to a nonce-
based one Ê by asserting that ÊNKK′(P) = ERK(P) where R = EK′(N). See [180] for the case
of CBC. Indeed NIST suggests doing this, except that they set K = K ′, which does not quite
work with respect to our definitions.

I.9. Security of a tweakable-blockcipher. The final notion of security for an IV-based
encryption is security as a good tweakable blockcipher. We will defer a discussion of tweakable
blockciphers to Chapter 6, when the idea will be needed. Here we simply note two things. First
we comment that tweakable blockciphers don’t have to have a “short” blocklength, like 128 bits;
as with blockciphers, we consider that possibility that tweakable blockciphers may take in long
strings, including strings of various lengths. Second, we comment that, having put tweakable
blockciphers on the same syntactic footing as probabilistic and nonce-based encryption schemes,
one can now compare all of these security notions. It it is easy to see that a “good” tweakable
blockcipher—good in the sense of a tweakable PRP, as we will describe—implies being a good
nonce-based encryption scheme (which, in turn, implies being a good probabilistic encryption
schemes). None of the reverse implications are valid.

I.10. The danger of privacy-only schemes. Fundamentally, all confidentiality-only modes—
especially CBC mode, since users seem to often assume otherwise—are highly vulnerable to
misuse. At issue is the fact that, at best, the modes only provide for SemCPA security, which
isn’t as strong as it sounds. As soon as one steps out of the SemCPA setting, even in a seemingly
“innocent” way, all bets are off.

A striking example of the limitations of SemCPA security is what happens if mandatory
padding is incorporated into CBC mode, as suggested in [61, Appendix A], and an oracle is
provided to the adversary, in addition to the usual one, that tells it whether or not the provided
ciphertext is the encryption of a correctly padded plaintext. Starting with Vaudenay [194] and

22

continuing with many follow-on works [42, 49, 165, 207], it has been convincingly demonstrated
that, for many padding schemes and modes, this is quite enough to destroy a mode’s security,
often permitting efficient decryption of arbitrary texts. (Note that, while the attack model does
go beyond indistinguishability under a chosen-plaintext attack, it still falls far sort of permitting
a chosen-ciphertext attack.)

The fact that a SemCPA-secure scheme like CBC can be utterly destroyed by something
so “innocent” and often feasible to realize suggests, to many, that SemCPA notions are too
weak, and that modes that only target such a goal are fundamentally dangerous. Weak security
notions are inimical to ease of correct use.

The weakness of privacy-only schemes is not a “theoretical” problem. In practical settings,
the deficiencies often matter. As a striking example, Degabriele and Paterson [56], following
Bellovin [28] and Paterson and Yau [166], detail fatal problems for privacy-only IPsec config-
urations. Such IPsec configuration are highly insecure even if the defining RFCs are perfectly
adhered to. The problem is, at heart, that SemCPA security—both as a notion and as a set of
commonly-used schemes—is just not rich enough to model attacks that arise when the schemes
are embedded in practical, real-world protocols.

Black and Urtubia convincingly argue that attacks like Vaudenay’s should be interpreted
as indicating that our blockcipher modes of operation ought to be providing a service that
goes well beyond what SemCPA security is guaranteed to do: good modes should provide for
authenticated encryption, the authors maintain. They write:

Authentication has long been thought of as a separate security goal [from privacy], used only
when one is concerned about such things as message integrity, authenticity of origin, and
non-repudiation. It is often regarded as unnecessary in systems which require only privacy.
But as we have seen, the ability to freely manipulate ciphertexts gives rise to a wide range of
possible attacks based on side-channels which presumably cannot be exploited without this
ability. These side-channels are demonstrably damaging and it is likely very difficult to avoid
constructing them in real systems. In light of this, perhaps it is time to view authentication
as a strongly-desirable property of any symmetric encryption scheme, including those where
privacy is the only security goal. [42, p. 336]

While I am loathe to recommend that no privacy-only mode be included in contemporary
cryptographic standards, I am not far from holding that opinion. By now, it should be well
recognized that privacy-only encryption modes are certain to be extensively misused if they are
extensively used at all.

23

Chapter 3

ECB Mode

3.1. Summary. This chapter looks at the Electronic Codebook (ECB) mode of operation, as
defined in NIST Recommendation SP 800-38A [61]. ECB is one of the four “classical” modes
of operation defined for DES more than 30 years ago, in FIPS 81 [153]. But classicism does
not correctness make; the mode has some fundamental and well-known problems. First among
these is that identical blocks of plaintext yield identical corresponding blocks of ciphertext.
This characteristic is already enough to imply that ECB will not achieve any desirable privacy
property that we know.

Now as a deterministic mode—no initialization vector, randomness, or state—ECB never
had any chance to achieve something like SemCPA security; at the very least, repetitions of
plaintexts must, in a deterministic scheme, be revealed as repetitions in the corresponding
ciphertexts. But what ECB “leaks” seems to run much deeper. Syntactically, ECB must be
considered as a blockcipher—a variable-input-length (VIL) one. But ECB does not do what
we usually imagine that a blockcipher “ought” to do—at least not if one takes the definition
of PRP-security as a normative goal. Nor does it seem to achieve any interesting relaxation of
this goal, like being an on-line cipher [12], that we know.

Because of its obvious leakage of potentially important information, ECB has never been
regarded as “interesting” scheme by serious cryptographers; the mode was simply dismissed as
being wrong. The book of Menezes, van Oorschot, and Vanstone says of ECB that

Since ciphertext blocks are independent, malicious substitution of ECB blocks (e.g., insertion
of a frequently occurring block) does not affect the decryption of adjacent blocks. Further-
more, block ciphers do not hide data patterns—identical ciphertext blocks imply identical
plaintext blocks. For this reason, the ECB mode is not recommended for messages longer
than one block, or if keys are reused for more than a single one-block message. ([139,
Remark 7.12], emphasis my own.)

A mode that should only be used once per key, and on a message of just one block, would seem
to be of insignificant utility.

Just the same, ECB has persisted for decades, getting replicated, (apart from changes like
allowing non-DES blockciphers) in multiple standards, including ANSI X3.106, ISO 8732, and
ISO/IEC 10116. It must do something of value, no? One might note:

• If plaintext are uniformly random and are multiples of n-bits (the block size of the block
cipher), than ECB will work just fine to provide confidentiality. In the context of trans-
porting a session key, this scenario is common. Privacy with respect to a “random”

24

EK EK EK

ECB
mode

P1 P2 P3

C1 C2 C3

EK

P4

C4

10 algorithm ECBK(P) ECB mode

11 //K ∈ K, P ∈ ({0, 1}n)+
12 P1 · · ·Pm ← P where |Pi| = n
13 for i← 1 to m do Ci ← EK(Pi)
14 C ← C1 · · ·Cm

15 return C

Figure 3.1: ECB mode. Only encryption is shown; decryption is the unique corresponding inverse.
The scheme is parameterized by a blockcipher E : K × {0, 1}n → {0, 1}n and each block of the input
is separately processed by E. The mode is not defined when the input string has length that is a
non-multiple of n.

message attack is an easy aim to formalize and prove that ECB enjoys.

• Criticisms that effectively speak to the absence of authenticity or integrity, or speak to the
malleability of ciphertexts, are largely off the mark, since none of the standard confiden-
tiality modes offer such protection. The first sentence from the quote above by Menezes,
van Oorschot, and Vanstone is infused with such concern.

• ECB makes a powerful building block for other schemes. For example, CTR mode
(Chapter 5) may be regarded as being “built” from ECB. The same can be said of OCB
mode [182], and Naor and Reingold’s NR-mode [150, 151]. ECB offers useful descriptive
language for describing more complex cryptographic modes.

• In cases like those just named, it is not only the descriptive value that ECB brings to
the table: implementations are often designed to fall along this abstraction boundary.
As an example, cryptographic hardware and cryptographic libraries often export an ECB
interface/API, and this interface can and is used to implement useful modes on top of
ECB. The ECB mode in such cases serves as an clean architectural boundary rather than
as a confidentiality mode in its own right.

Given the considerations just named, and given the extensive history of ECB, I would not be
opposed to including ECB in a portfolio of useful and important modes. At the same time,
ECB should not be regarded as a user-ready, general-purpose scheme.

In §3.3 we sketch an answer the following question: what privacy property does ECB achieve?
The answer we seek should fall along the following lines. We know that ECB leaks something,

25

namely, the equality of message blocks across distinct positions and time. We would like to
formalize this particular something, defining a “leakage function” LECB corresponding to it.
We call this leakage function the block-repetition leakage function. We define what it means to
leak only LECB (and, more generally, we define what it means to leak only L). The notion is
new.

Later, when we get to XTS mode in Chapter 6, we will lift the security-up-to-L notion to
that setting, too.

The idea of being private up to some function L lifts to other settings. In particular, one
could speak of being nonmalleable up to some function L. One would expect that ECB does
achieve some kind of nonmalleability up to LECB. The approach may prove to be useful for
comparing or speaking about “how nonmalleable” or “how close to private” a flawed scheme
may be.

3.2. Definition of the scheme. The ECB mode of operation is defined and illustrated in
Figure 3.1. It depends on a blockcipher E : K×{0, 1}n → {0, 1}n. The NIST Recommendation
asserts that the blockcipher must be FIPS-approved. At present there are three FIPS-approved
blockciphers: AES [154], TDEA [10], and Skipjack [156, 160]. The most popular of these, AES,
comes in three key lengths.

3.3. Leaking “only” block repetitions. Recall Goldwasser and Micali’s (GM’s) English-
language description of semantic security [74]: that which an adversary can compute about
the plaintext given the ciphertext it can also compute about the plaintext in the absence of
the ciphertext. We wish to refine this idea by saying that a scheme is semantically secure “up
to L” if that which an adversary can compute about the plaintext given the ciphertext it can
also compute about the plaintext given just the leaked information about the ciphertext, L(C).
The function L is what is understood to be leaked. It may be information that we don’t mind
relinquishing.

Despite the English-language description suggesting that the adversary in GM’s notion is
to be given nothing about the ciphertext, the formalization actually does give the adversary
something important about the ciphertext: its length. We wish to recover the symmetric-
setting notion of semantic security, or one of its equivalent formulations [14], not when the
leakage function is null, but when we leak just the message length, L(C) = |C|.

Now getting a bit more formal, we imagine a function L, the leakage function. Each invo-
cation of L takes in a ciphertext C ∈ {0, 1}∗ and the current state s. The function outputs a
string λ (the information that is being leaked) and a modified state s′, namely, (λ, s′)← L(C, s).
We will henceforth omit s and s′ from the notation, writing λ← L(s) but understanding that,
implicitly, state s is updated during the call. Note that the state s may “grow” during a se-
quence of calls to L, and that the saved state s following a sequence of calls L(C1), . . . ,L(Ct)
may encode C1, . . . , Ct.

The intent is that L(C) encodes information that the adversary inherently knows about P
given C and given the sequence of prior ciphertexts C1, . . . , Ct. In the case of ECB, L(C) needs
to encode information like

Block-3 and block-5 of the plaintext corresponding to C are identical; block-2 of its plaintext
is the same as block-1 of the plaintext corresponding to the prior ciphertext; and all other
plaintext blocks are different from each other, different from the two plaintext blocks we
have just mentioned, and different from all prior plaintext blocks.

Quite a mouthful.

26

20 algorithm LECB(C) Leakage function for ECB

21 C1 · · ·Cm ← C where |Ci| = n
22 for i← 1 to m do
23 if T [Ci] = undefined then T [Ci]← Cnt; Cnt ← Cnt + 1
24 λi ← T [Ci]
25 λ← 〈λ1, λ2, · · · , λm〉
26 return λ

Figure 3.2: Leakage function for ECB. The program formalizes that which we know leaks from ECB
mode. Given an arbitrary leakage function L, we can formalize what it means to leak only it.

To encode such information concisely, number the distinct blocks the adversary sees, in
order, by 0, 1, 2, Provide, in response to an m-block query C, the vector of numbers that
describes which numbered blocks appeared where. See Figure 3.2. For the pseudocode there
we implicitly initialize the associative array T to everywhere undefined, and the counter Cnt
to 0. These variables are static; they comprise the state s of which we earlier spoke. Leakage
function LECB for ECB implicitly depends on the block size n that will be used with ECB.

Having defined the information L about a ciphertext that we know ECB will leak, we must
define confidentiality up to this. We spoke earlier of semantic security, but let us first describe
an indistinguishability notion, which is simpler to deal with. Fix a blockcipher (possibly a VIL
one like ECB[E]) E : K × X → X . Now we define the behavior of two different oracles:

• Oracle REAL begins its life by selecting a random K
$←K. After that, on input of the

encoding of a sampling algorithm P (which probabilistically outputs a point in P), the
oracle selects P

$←P, computes C ← EK(P), and returns C. To be explicit in indicating
the oracle’s dependencies we would write REALE(·).

• Oracle FAKE begins its life by selecting a random K
$←K. After that, on input of

the encoding of a sampling algorithm P as above, the oracle selects P
$←P, computes

C ← EK(P), and then computes λ ← L(C). We now feed λ to a (possibly stateful

and probabilistic) simulator, S, obtaining a string C ′ $← S(λ). We return C ′. Explicitly
indicating the oracle’s dependencies we’d write FAKEE,L,S(·). The simulator S may be
stateful in the same sense that L may be; with each call, it implicitly updates its own
saved state.

We note that oracle REAL can do everything an encryption oracle EK can do: if the adversary
gives it the description of a sampling algorithm that (always) returns some particular point P ,
then the oracle will return EK(P). But the oracle can do more, in the sense that it can model the
return of ciphertext on which the adversary does not know everything about the corresponding
plaintext.

The point to note is that, regardless of what the simulator S does, regardless of how long it
computes, the (fake) “ciphertext” it produces does not depend on P , except so far as P influences
λ = L(EK(P)), the information about P that we know will be leaked in its encryption. So if
there is a simulator S that makes oracles REAL and FAKE indistinguishable, it means that
what the adversary sees in a (real) ciphertext amounts to no more than what it could get on
its own knowing just the information λ. We thus define

Adv
IND[L,S]
E (A) = Pr[AREALE(·) ⇒ 1]− Pr[AFAKEE,L,S(·) ⇒ 1] . (3.1)

To show a scheme private-up-to-L one would exhibit a (preferably simple and efficient) simu-

lator S such that Adv
IND[L,S]
E (A) is “small” regardless of what any “reasonable” adversary A

27

may do.

Only small changes are needed for a notion of semantically-secure-up-to-L. This time, the
adversary, after speaking to either REAL or FAKE, resulting in some vector of underlying
messages (one for each query) P = (P1, . . . , Pq), outputs a pair (f, y), the encoding of a func-
tion and a string, an assertion that the adversary “thinks” that f(P) = y. We compare the
adversary’s chance of being right about this assertion in the case where real ciphertexts have
been issued and the case where fake ciphertexts have been issued, again by some simulator S
that knows only the known-to-be-leaked information. We consider the event that

Adv
sem[L,S]
E (A) = Pr[(f, y)← AREALE(·) : f(P) = y]−

Pr[(f, y)← AFAKEE,L,S(·) : f(P) = y] (3.2)

where P , in each experiment, is the vector of internally selected plaintexts. To show a scheme
semantically-secure-up-to-L one would exhibit a (preferably simple and efficient) simulator S

such that Adv
sem[L,S]
E (A) is small regardless of what the adversary A may do.

Let us sketch the (easy) result that that ECB is private-up-to-L for the leakage function L
of Figure 3.2. One the i-th query (remember that the simulator S is allowed to be stateful) it
is passed some a vector 〈λ1, . . . , λm〉. The simulator itself maintains a list T = (T0, T1, T2, . . .).
For i running from 1 to m the simulator looks to see if there is already a λi-indexed element
of T . If there is not, then simulator creates one, giving it a uniform random value in {0, 1}n \T
(here regarding the elements in T as a set instead of as a sequence). When finished, simulator S
returns the (fake) ciphertext C ← Tλ1 ‖ Tλ2 ‖ · · · ‖ Tλm .

It is easy to see that the view imparted by simulator S in game FAKE is precisely the
view imparted by game REAL when the encryption scheme is ECB taken over a random
permutation. As a consequence, we have our adversary B for breaking the PRP-ness of E that

achieves advantage Adv
IND[L,S]
E (A). The simulation being efficient, the running time of B will

be about that of A, and the number of queries asked by B will be the total number of blocks
asked by A.

* * *

One unpleasant characteristic of the definition we have given is the presence of the simula-
tor S. It can be banished in an alternative formulation where one replaces the leakage function L
with a filter F . This map, once again implicitly stateful, takes in a ciphertext C and returns a
“canonical plaintext” P = F(C) that again captures that which an adversary will know about
the plaintext, but here assumed to take the form of something encodable by a point in the
message space. Use of a filter F amounts to an assertion that a ciphertext C resembles its
“real” plaintext P = DK(C) no more than it resembles the canonical plaintext P ′ = F(C). As
before, let us provide an indistinguishability-style definition, but now without the simulator.
Fix a deterministic encryption scheme E : K × X → X . Now we define the behavior of two
different oracles:

• Oracle Real begins its life by selecting a random K
$←K. After that, on input of a

message P ∈ X the oracle computes C ← EK(P), and then returns C. To be explicit in
indicating the oracle’s dependencies we would write RealE(·).

• Oracle Fake also begins its life by selecting a random K
$←K. After that, on input of a

message P ∈ X the oracle computes C ← EK(P), P ′ ← F(C), C ′ ← EK(P ′), and then
returns C ′. Explicitly indicating the oracle’s dependencies we’d write FakeE,F (·).

28

30 algorithm FECB(C) Filter function for ECB

31 C1 · · ·Cm ← C where |Ci| = n
32 for i← 1 to m do
33 if T [Ci] = undefined then T [Ci]← Cnt; Cnt ← Cnt + 1
34 λi ← T [Ci]
35 P ′ ← [λ1]n ‖ [λ2]n ‖ · · · ‖ [λm]n
36 return P ′

Figure 3.3: Filter for ECB mode. The (stateful) program again formalizes that which we know leaks
from ECB mode, but now by way of returning a canonical plaintext for each ciphertext, the plaintext
capturing the information that can be considered known and implicit when the ciphertext is given.

The filter FECB for ECB mode is defined in Figure 3.3. It is just like the leakage function LECB

except that the integer labels 0, 1, 2, . . . that used to be returned are replaced by corresponding
n-bit strings (recall that [i]n is the encoding of the number i and an n-bit string). We define

Adv
IND[F]
E (A) = Pr[ARealE (·) ⇒ 1]− Pr[AFakeE,F (·) ⇒ 1] . (3.3)

Only small changes are needed for a notion of semantically-secure-up-to-F .
Once again it is straightforward to show that ECB mode is secure up to the filter FECB

that we defined. While slightly less natural, the filter-function approach seems technically
cleaner than the leakage-function one. We prefer this notion, only defining the simulation-
based approach because this seemed a good pedagogic step.

Summarizing, when we say that a blockcipher E is secure up to the function F we are as-
serting that what the adversary learns from possession of an EK(·) oracle is indistinguishable
from that which it would learn from a EK(F(EK(·))). To recover a conventional PRP notion
of blockcipher security, one would have filter F “mark” repetitions of (entire) ciphertexts. To
formalize what ECB leaks, the filter marks repetitions of ciphertext blocks. Leaving determin-
istic encryption schemes behind, a SemCPA notion of security would be recovered with a filter
function F that returns, for any ciphertext C, the plaintext 0m where m is the length of the
decryption of C, assumed to be computable from C.

3.4. Comments. It is fair to ask if we have done anything in §3.3: the notion we built up to is of
unclear utility. The proof that ECB achieves the notion would be straightforward. Nonetheless,
I would suggest that it may be nice to have a formalized language that lets one explicitly speak
to just what is leaked in an enciphering scheme. It lets one say something, compactly and
rigorously, about ECB; it lets one rigorously compactly distinguish what is leaked in ECB from
what is leaked in a tweakable version of ECB [124], an on-line cipher [12], or a PRP-secure
blockcipher like EME [83]. It lets one say just what is leaked in each case, and emphasizes
that, even in the PRP setting, what is leaked is still not nothing. The viewpoint bolsters a
point of view that is not exactly that ECB is “wrong” which is the conventional, prescriptive,
and perhaps dogmatic view of matters. It is more that the mode leaks quite a large amount of
information—that which is captured by the filter function FECB. In a given application, leaking
this information may or may not be an acceptable thing to leak.

29

Chapter 4

CBC, CFB, and OFB Modes

4.1. Summary. This chapter looks at the three classical IV-based modes of operation: CBC
(Cipher Block Chaining), CFB (Cipher Feedback), and OFB (Output Feedback). The modes
were originally defined in FIPS 81 [153]. At that time the techniques were specific to DES, and
OFB was defined more generally that it is in SP 800-38A [61]. Along with ECB, these three
modes of operation have a distinguished status springing from their age.

We lump together CBC, CFB, and OFB because they share some basic characteristics.
All are secure, in the SemCPA sense, if the user employs a random IV. On the other hand,
none of the modes are secure, in the SemCPA sense, if one merely uses a nonce IV. All of the
mechanisms are dated, employing chaining for purposes unconvincing from a modern point of
view. Overall, it seems hard to find any good reason why one would prefer either CBC or
OFB over CTR, while the main characteristic of CFB mode that would usually underlie its
selection—self synchronization—has been shown to be achievable at far lower cost by a (not
standardized) alternative, OCFB, described by Alkassar, Geraldy, Pfitzmann, and Sadeghi [2].

We treat ECB separately from CBC/CFB/OFB because it is not IV-based and does not
enjoy SemCPA security. We treat CTR separately because it achieves a nonce-based notion
of security, its IV is not an n-bit string, and its historical context is different. We treat XTS
separately because it enjoys no sort of SemCPA security and its historical context is again
different from the rest.

We summarize the basic characteristics of CBC, CFB, and OFB in Figure 4.1. The table
serves as a concise distillation of much of what is said in this chapter.

Despite my rather negative appraisal of the CBC, CFB, and OFB modes, I fall short of
saying that these modes should not be included in a portfolio of modes. The main reason
for this is that widespread use can itself be an argument for standardization, and it is clear
that CBC, especially, is very widely used. Also, CFB does have an interesting property—self
synchronization—that may be important in some real-world applications and that is not shared
with any other standardized mode. All of that said, I am unable to think of any cryptographic
design problem where, absent major legacy considerations, any of CBC, CFB, or OFB would
represent the mode of choice.

4.2. Definitions of the schemes. We define and illustrate the CBC, CFB, and OFB modes
of operation in Figures 4.2–4.4.

CBC is shown in Figure 4.2. Its only parameter is a blockcipher E : K×{0, 1}n → {0, 1}n.
The message space for CBC is X = ({0, 1}n)+; in other words, plaintexts must be a positive

30

Characteristic CBC CFB OFB

SemCPA secure if the IV
is random.

Yes. Proof in [14]. The
ind$ security notion is
easy to establish.

Yes. Proof in [2]. The
ind$ security notion can
also be shown.

Yes. Follows directly
from ind$-security of
CBC.

SemCPA secure if the IV
is a nonce.

No. Enciphering nonce
under EK also incorrect.
Incorrect use is common.

No. Enciphering nonce
under EK also incorrect.

No. But secure with a
fixed sequences of IVs,
like a counter.

SemCCA secure. No. No. No.

Nonmalleable (cannot
manipulate ciphertexts to
create related plaintexts)

No. Often wrongly as-
sumed to provide some
sort of nonmalleability.

No. Trivially malleable. No. Trivially malleable.

Padding oracle (says if
the ciphertext is correctly
padded) is well tolerated.

No. Pad oracle destroys
SemCPA for most pad
methods [42, 165, 194].

Usually Yes (or NA) as
no padding is needed for
small enough s.

Usually Yes (or NA)
as no padding is ever
needed with OFB.

Error propagation: will
recover if a ciphertext bit
is flipped (a “bit error”).

Yes. Changes to Ci af-
fect two blocks, Pi and
Pi+1

Yes. Changes to Ci af-
fect about n/s data seg-
ments

Yes. Changes to Ci af-
fect only Pi

Self-synchronous: will
recover if insert / delete
ciphertext bits (a “slip”).

No, unless the slip is a
multiple of n-bits.

Yes for slips of s-bits (so
always if s= 1). No for
other slips.

No.

Maximal rate scheme:
processes n-bits for every
blockcipher call.

Yes (n bits processed
per blockcipher call).

No (when s < n). The
mode processes s bits
per blockcipher call.

Yes (n bits processed
per blockcipher call).

Parallelizable with re-
spect to encryption.

No. Can always use
interleaving to enhance
parallelizability.

Yes, but awkward. See
ISO 10116 for less awk-
ward generalization.

No.

Parallelizable with re-
spect to decryption.

Yes. Block Pi depends
only on Ci, Ci−1.

Yes, but awkward. No.

Inverse-free (blockcipher
inverse is unnecessary for
decryption).

No. Yes. Yes.

Preprocessing improves
encrypt/decrypt speed.

No. No. Yes.

Figure 4.1: Summary characteristics of three IV-based encryption schemes. We assume an n-
bit blockcipher and, for CFB mode, an s-bit data segment. We group together security properties (first),
synchronization and error-propagation characteristics (second), and efficiency characteristics (third).
The wording of mode characteristics has been selected so that a “yes” would generally be considered a
“desirable” characteristic.

multiple of n bits. The IV space is IV = {0, 1}n.

CFB is shown in Figure 4.3. This time the mode has two parameters: a blockcipher
E : K × {0, 1}n → {0, 1}n and a data-segment length, s, where 1 ≤ s ≤ n. The message
space for CBC is then X = ({0, 1}s)+; plaintexts must be a multiple of s bits. Typical
values for s are s = 1, s = 8, and s = n. The IV space is IV = {0, 1}n.

OFB is shown in Figure 4.4. The only parameter for the mode of operation is a blockcipher
E : K × {0, 1}n → {0, 1}n. The message space for OFB is X = {0, 1}∗; plaintexts of any
length may be encrypted. The IV space is IV = {0, 1}n.

For all of the modes, we define only the encryption direction of the scheme. As explained already
in §I.5, this is sufficient in the sense that the corresponding decryption algorithm is well defined
once the encryption direction E IVK (·) is specified.

31

EK EK EK
CBC
mode

P1 P2 P3

C1 C2 C3

IV

EK

P4

C4

10 algorithm CBCIV
K (P) CBC mode

11 //K ∈ K, IV ∈ {0, 1}n, P ∈ ({0, 1}n)+
12 P1 · · ·Pm ← P where |Pi| = n
13 C0 ← IV
14 for i← 1 to m do Ci ← EK(Pi ⊕ Ci−1)
15 C ← C1 · · ·Cm

16 return C

Figure 4.2: CBC mode. The scheme is parameterized by a blockcipher E : K × {0, 1}n → {0, 1}n.
The mode is not defined when the input string has length that is a non-multiple of n.

We remind the reader that, under our formulation of IV-based encryption, the IV is not
included as part of the ciphertext.

As per SP 800-38A, the blockcipher E is not arbitrary; it is required to be NIST-approved,
which means, at present, that the algorithm must be AES (either AES-128, AES-192, or
AES-256) [158]), Skipjack [156], or TDEA (either TDEA-112 or TDEA-168, corresponding to
keying options 2 and 1 of the defining spec [10]). A list of approved blockciphers is maintained
by NIST [155].

The hardest to understand of the modes is CFB. It can be explained as follows. First we
initialize a feedback buffer named X to the initialization vector IV . Then we process each s-bit
data segment Pi as follows: (1) apply EK to X of get the blockcipher output Y ; (2) use the
first s bits of Y to Vernam-style encrypt Pi and output the corresponding ciphertext Ci; (3) now
adjust the feedback buffer X by shifting off the leftmost s bits (the bits that were just used to
mask Pi), shifting in (as s new bits) the ciphertext Ci just produced. Because the contents of
feedback buffer X are shifted (by s bits) with each data segment processed, the feedback buffer
is often implemented by or regarded as a shift register.

4.3. Versions of CBC, CFB, and OFB. Modes CBC, CFB, and OFB have all been defined
differently—either in greater or in lesser generality—in alternative standards documents (that is,
alternatives to SP 800-38A [61]). These alternative standards include ANSI X9.52 [5], ISO/IEC
10016:2006 [92], and the “original” modes of operation specification, FIPS 81 [153]. Focusing
on the most recent of these standards, ISO 10016:2006, we find several important differences:

The ISO standard allows “interleaving” for CBC. One selects a “stride length” m ≥ 1
and separately applies m instances of CBC encryption, each application to blocks that are
separated by spans of m− 1 intervening blocks. One now needs m separate IVs for mode.

32

EKCFB
mode

EK

IV

P1

C1

C1

P2

C2

EK

C2

P3

C3

EK

C3

P4

C4

s

s

Y1 Y2 Y3 Y4

n – s sn

20 algorithm CFBIV
K (P) CFB mode

21 //K ∈ K, IV ∈ {0, 1}n, P ∈ ({0, 1}s)+
22 P1 · · ·Pm ← P where |Pi| = s
23 X1 ← IV
24 for i← 1 to m do
25 Yi ← EK(Xi)
26 Ci ← Pi ⊕MSBs(Yi)
27 Xi+1 ← LSBn−s(Xi) ‖ Ci

28 C ← C1 · · ·Cm

29 return C

Figure 4.3: CFB mode. The scheme is parameterized by a blockcipher E : K × {0, 1}n → {0, 1}n.
The mode is not defined when the input string has length that is a non-multiple of n.

The method may be considered a folklore approach for getting a measure of parallelizability.
The “poor-man’s parallelizability” one gets from interleaving CBC would work just as well
for interleaving other modes of operation, including OFB.

The ISO standard’s version of CFB is highly general—it is general to the point of being
rather difficult to understand. Besides the parameter s, two additional parameters are
included: the length r of the feedback buffer, which may now exceed n; and an additional
parameter k, where s ≤ k ≤ n. The CFB algorithm is generalized so that only the
leftmost n bits of the feedback buffer are fed into the blockcipher. The feedback buffer is
now updated by shifting off the leftmost k bits, rather than s, and inserting additional one-
bits, if needed, prior to the s-bit ciphertext block that will be shifted in on the right. The
standard suggests s = k [92, Section 8.1] and claims that security is best when this common
value is n [92, Section B.3.2(d)]. The justification provided for this added complexity is
that the mode permits pipelining if r ≥ n + k [92, Section B.3.2(f)]. We comment that,
while inelegant, any self-synchronous mode can already be pipelined. CFB as specified in
the NIST standard corresponds to the ISO standard’s definition with r = n and k = s.

The ISO standard’s version of OFB mode, following FIPS 81 [153], has an extra parame-
ter s. Only the leftmost s bits of each Yi are used to mask P in forming the ciphertext C.
The rate of the mode, meaning the number of plaintext or ciphertext bits processed per
blockcipher call, is therefore reduced when s < n. The SP 800-38A scheme coincides with

33

EK

OFB
mode

EK

IV

P

Y2

C

Y1

EKEK

Y4Y3

30 algorithm OFBIV
K (P) OFB mode

31 //K ∈ K, IV ∈ {0, 1}n, P ∈ {0, 1}∗
32 m← �|P |/n
33 Y0 ← IV
34 for i← 1 to m do Yi ← EK(Yi−1)
35 Y ← MSB|P |(Y1 · · ·Ym)
36 C ← P ⊕ Y
37 return C

Figure 4.4: OFB mode. The scheme is parameterized by a blockcipher E : K × {0, 1}n → {0, 1}n.
The mode is not defined when the input string has length that is a non-multiple of n.

the ISO 10116:2006 mechanism if s = n.

Finally, the ISO standard applies to blockciphers that need not be NIST-approved.

While all of the changes mentioned act to make the ISO-versions of the various modes more
general than the NIST versions, we comment that CTR mode, in contrast, is defined with
considerably less generality in the ISO spec: CTR values (what we will call Ni when we get
to Chapter 5) are assumed to be incremented by one (mod 2n) with each plaintext block. The
NIST standard, as we shall see, lets the vector of counter values be arbitrary, as long as all
counter values are distinct.

The discussion should make clear that it can be ambiguous what algorithm one is actually
speaking of in a discussion about CBC, CFB, OFB, or CTR. We shall always be meaning
the NIST SP 800-38A versions of the modes except, when we speak of provable security, we
necessarily think of the underlying blockcipher as being arbitrary.

4.4. Provable security of CBC, CFB, and OFB when the IV is random. All of these
modes achieves SemCPA security when the IV is random. Indeed they all do well with respect
to our (very strong) ind$ notion of security.

We begin with CBC mode. Its SemCPA security was first established by Bellare, Desai,
Jokipii, and Rogaway [14]. Here we are in the setting of probabilistic encryption—the IV is
selected uniformly at random with every message. See §I.6. The original security notion Bellare

34

et al. used was left-or-right indistinguishability. That security also holds in the (stronger) ind$
sense is widely known but is mentioned in not in any paper that I know. I have been teaching
this result in my own cryptography class for years.

Let me specify the result more explicitly. Let E be a blockcipher and let us consider the
CBC construction taken over E. The IV is random. Let A be an adversary attacking CBC[E].
As per §I.6, the adversary asks a sequence of queries P1, P2, . . . , Pq, each a positive multiple
of n bits. The adversary wants to guess whether the answers it receives are “real” ciphertexts,
Ci = Ri ‖ Ci where Ri is random and Ci = CBCRi

K (Pi), or “bogus” ones, ciphertext Ci consists

of n + |Pi| random bits. Suppose that adversary A gets advantage ε = Advind$
CBC[E](A) when

playing the defining game: this is the difference in the probabilities of the adversary outputting
one in the two different settings. Suppose that A asks queries that total σ blocks (that is,
σ =

∑
|Pi|/n). Then, finally, we can conclude that there is an adversary B for attacking E, the

description of B being simple and explicit in terms of the description of A, and for which

Advprp
E (B) ≥ ε− σ2

2n
. (4.1)

The running time of B is essentially the same as that of A, and B makes σ oracle queries.

We will not prove the result above, which is quite routine. One passes to the information-
theoretic setting where E is a family of random permutations; one employs the switching lemma
to regard E as, instead, a family of random functions; and one does the analysis in that simplified
setting, using a game-playing argument.

It took a few years until somebody—Alkassar, Geraldy, Pfitzmann, and Sadeghi—got around
to proving the security of CFB mode [2]. Again we are in the probabilistic setting; the IV
is random. The authors employed the left-or-right notion SemCPA security but, once again,
the stronger ind$ notion would seem to be even easier to establish. The result is analogous to
the CBC result; even the formula is the same, except that σ is now the number of r-bit data
segments.

We emphasize that the provable security of CFB by Alkassar et al. [2] in only broad enough
to cover the SP 800-38A formulation of the mode; it does not include the extra parameters r
and k of the ISO 10116:2006 formulation [92]. Including these parameters would not be trivial,
as there are clearly choices for the parameter set (k, r, s) that would be insecure; the security
formula will have to be sensitive to their interplay. The absence of provable security for the
ISO 10116:2006 formulation of CFB is an argument against replication of the mode with this
degree of generality.

As forOFBmode, its ind$-security follows immediately from the ind$-security of CBC. This
is because OFB can be regarded as a Vernam-style cipher made from a pad that is obtained by
CBC-encrypting the appropriate length string of zero-blocks. We know from the ind$-security
of CBC that all of the pads we will be generating will be indistinguishable from random bits,
and so this will remain so after we xor in the plaintexts Pi. Formalizing this is easy, so one
should regard OFB’s ind$-security as an obvious corollary of CBC’s ind$-security. Note that
we see here one of the advantages of using a very strong definition of SemCPA security: had we
used left-or-right security, or find-then-guess security, it would not be obvious that OFB would
inherit this property from its holding on CBC.

We emphasize that all of the results above are limited in important ways: the attack model is
strictly a chosen-plaintext one; the nonce must be uniform random bits; and security is “only”

35

to the birthday bound. While relaxations to unpredictable IVs would seem to be possible
for all three modes, many other strengthenings—including chosen-ciphertext attack (CCA)
security, nonmalleability, and nonce-based security—are not. The fact that results are in the
probabilistic/SemCPA setting is not some triviality that is mumbled to cover the scope of a
claimant’s exposure; it is a crucial limitation. In any application, one must ask if the setting is
actually one where ind$-security is going to be enough.

4.5. Birthday attacks. The SemCPA security bounds for CBC, CFB, and OFB with a
random IV all show a security degradation of σ2/2n where σ is the number of n-bit blocks (for
CBC), the number of s-bit data segments (for CFB), or the number of full or fractional n-bit
blocks (for OFB). It is worth pointing out that this bound is tight, a simple, folklore result.
As an example for a matching attack, consider CBC. One attack would have the adversary ask
a single long message of P = 0nσ, getting back a ciphertext C = C0C1 . . . Cσ. The adversary
would answer one (indicating that it believes it has a real encryption oracle) if all the Ci values
are distinct; otherwise, it would answer zero. That the advantage, when σ � 2n, grows with
σ2/2n follows from basic facts about the cycle structure of a random permutation: one expects
a random permutation on n-bits to have one “giant cycle” (length about 2n−1); another very
long cycle (length about 2n−2); and so on.

If one prefers not to ask a single long message, let the adversary split into q queries random
queries of plaintexts having m = �σ/q blocks. Let the adversary infer the corresponding
plaintext/ciphertext pairs (X,Y) for the underlying blockcipher. If an inconsistency is seen,
this proves possession of a “random” oracle instead of a valid CBC-encryption oracle. The
advantage will again be about σ2/2n for σ ≤ 2n/2.

Equally simple attacks can be launched against CFB with s = n and OFB modes. For
CFB with s � n, I do not know an attack with advantage Ω(σ2/2n), nor have I seen any
beyond-birthday-bound proof of security.

Security formalizations weaker than ind$-security can also be broken with σ ≈ 2n/2 queries.
In general, unless special efforts are taken, almost any mode of operation based on an n-bit
blockcipher will admit attacks that employ σ = 2n/2 blocks. Privacy-only encryption schemes
achieving beyond-birthday-bound security have been investigated by Bellare, Krovetz, and Ro-
gaway [21], Iwata [95], Jaulmes, Joux and Valette [101], and Minematsu [142],

Do birthday-bound attacks on CBC, CFB, and OFB actually matter? They are of relatively
little concern when the blockcipher has a blocksize of n = 128 bits, but the attacks can be a
serious concern when employing a blockcipher of n = 64 bits, requiring relatively frequent
rekeying to keep σ � 232.

4.6. Attacks on CBC, CFB, and OFB when the IV is a nonce. All three modes we are
considering in the chapter are trivial to break if the IV is only a nonce. Focusing on the IND$
definition, since that is the only one we have given in full, here are attacks on each of the three
modes:

4.6.1 To break nonce-based CBC. Consult Figure 4.2. The adversary asks its oracle to encrypt
(N1, P 1) and (N2, P 2) whereN1 = P 1 = 0n andN2 = P 2 = 1n. The adversary outputs
one (it thinks it has a genuine encryption oracle) if C1 = C2. Otherwise it outputs
zero.

4.6.2 To break nonce-based CFB. Consult Figure 4.3. Assume s = n. The adversary asks its
oracle to encrypt (N1, P 1) where N1 = 0n and P 1 = 02n, getting back the two-block
ciphertext C1 = C1

1C
1
2 . Next the adversary asks its oracle to encrypt (N2, P 2) where

36

N2 = C1
1 and P 2 = 0n. It gets the one-block response C2. The adversary outputs one

(it thinks it has a genuine encryption oracle) if C2 = C1
2 . Otherwise it outputs zero.

4.6.3 To break nonce-based OFB. Consult Figure 4.4. The attack just given on CFB also
works, but let us instead give a slight variation. The adversary asks its oracle to
encrypt (N1, P 1) where N1 = 0n and P 1 = 03n, getting back the three-block ciphertext
C1 = C1

1C
1
2C

1
3 . Next the adversary asks its oracle to encrypt (N2, P 2) where N2 = C1

2

and P 2 = 0n. It gets the one-block response C2. The adversary outputs one (it thinks
it has a genuine encryption oracle) if C2 = C1

3 . Otherwise it outputs zero.

The NIST Recommendation does recognize that a nonce IV is not sufficient for CBC and
CFB modes, indicating, at least twice, that the IV must be unpredictable [61, Section 5.3 and
Appendix C]. For OFB the Recommendation seems to permit an arbitrary nonce. We hear that
“The OFB mode requires that the IV is a nonce, i.e., the IV must be unique for each execution
of the mode under the given key” [61, Section 6.4]; and “the IV need not be unpredictable, but it
must be a nonce that is unique to each execution of the encryption operation” [61, Appendix C].
Yet we also hear that “IVs for the OFB mode should not be generated by invoking the block
cipher on another IV,” which begins to sound like we are straying from the idea that any nonce
is alright. Note, however, that this language is still not strong enough to banish attack 4.6.3;
we did not generate one IV by invoking the block cipher on another IV.

NIST provides some advice on the generation of IVs [61, Appendix B]. Given the frequency
with which “wrong” things are used as IVs in CBC mode, this was a good thing to do. In
language whose context makes it apparently targeted just to CBC and CFB, the NIST document
says:

There are two recommended methods for generating unpredictable IVs. The first method is
to apply the forward cipher function, under the same key that is used for the encryption of
the plaintext, to a nonce. The nonce must be a data block that is unique to each execution
of the encryption operation. For example, the nonce may be a counter, as described in
Appendix B, or a message number. The second method is to generate a random data block
using a FIPS-approved random number generator. [61, Appendix C, emphasis added]

We focus on the first recommendation: to apply EK to the nonce to make the IV, where K is
the key underlying the mode. In effect, this is a new mode—a way to turn CBC and CFB (and
possibly OFB) into nonce-based schemes �CBC and �CFB (and possibly �OFB). See Figures 4.5
and 4.6.

The modes are not correct as nonce-based schemes. Attacks on �CBC and �CFB no more
complicated than the corresponding attacks on CBC and CFB:

3.5.4 To break nonce-based �CBC. Consult Figure 4.5. Let the adversary ask a query
(N1, P 1) where N1 = 0n and P 1 = 02n, getting back the two-block ciphertext ci-
phertext C1 = C1

1C
1
2 . Next the adversary asks a query (N2, P 2) where N2 = C1

1 and
P 2 = 0n. The adversary outputs one (it thinks it has a genuine encryption oracle) if
C2 = C1

2 . Otherwise it outputs zero.

3.5.5 To break nonce-based �CFB. Consult Figure 4.6. Assume s = n. The attack just
describes works to break this mode of operation as well.

An explanation for the insecurity of �CBC is given by Rogaway [180] (although I did not at that
time realize that the mode had been suggested in an Appendix of SP 800-38A). The alternative
suggested in that paper is simple: use a different key to map the nonce to an IV, setting
IV = EK′(N) where K ‖ K ′ becomes the key of the mode of operation. In other words, one
just replaces the phrase the same, in the quoted material from the standard, by a different.

37

EK EK EK

#CBC
mode

P1 P2 P3

C1 C2 C3

N

EK EK

P4

C4

40 algorithm �CBCN
K(P) �CBC mode

41 //K ∈ K, N ∈ {0, 1}n, P ∈ ({0, 1}n)+
42 IV ← EK(N)

43 C ← CBCIV
K (P)

44 return C

Figure 4.5: �CBC mode. This NIST-suggested variant of CBC is intended for nonce-based encryption.
But the mechanism does not achieve the nonce-based notion of security that we have defined.

EK

#CFB mode
with data segments of s = n bits

EK

IV

P1

C1

P2

EK

C2

P3

EK

C3

P4

C1 C2 C3 C4

N

EK

50 algorithm �CFBN
K(P) �CFB mode

51 //K ∈ K, N ∈ {0, 1}n, P ∈ ({0, 1}s)+
52 IV ← EK(N)

53 C ← CFBIV
K (P)

54 return C

Figure 4.6: �CFB mode. This NIST-suggested variant of CFB is intended for nonce-based encryption.
But the mechanism does not achieve the nonce-based notion of security that we have defined. The
illustration is for the case where data segments have s = n bits.

The attacks on nonce-based CFB and OFB, and on �CBC and �CFB, can be criticized as
requiring IVs that depend on prior ciphertexts. One might claim that no “real” IV—something
generated in the encryption process—would have this structure. One could find an interme-
diate notion, something between nonce-based and probabilistic-encryption, where the IVs are
guaranteed distinct and are generated by a process that is independent of the underlying key.
If such an exercise is be carried out it seems likely that one could establish a security result for
�CBC, CFB, and OFB.

38

4.7. Ubiquitous confusion about IV requirements. As the last section suggests, there
are, in SP 800-38A, quite a few questionable assertions about what should be true of modes’
IVs. Let me enumerate them. (a) For CBC mode, we have a claim that “the integrity of the IV
should be protected” [61, Section 6.2]. I cannot figure out what this claim might mean. Who is
supposed to do what with the IV? If that suggestion is that one should transmit to a receiver the
string C = R ‖ C in such a way that the R portion is unforgeable, this would seem to be both
unreasonable (if you are going to integrity protect the portion R, why not the whole thing?)
and unnecessary (nothing in the SemCPA security notion envisions such a requirement). (b) It
is said that CFB IVs should be unpredictable. While the only provable-security result we have
described for CFB is for the case of a random IV, the status of CFB and OFB appear to be
the same with respect to relaxing this constraint: a nonce IV is not enough, but a fixed and
predictable sequence of IVs, like a counter, looks to be adequate. (c) There are suggestions
that a nonce IV is enough for OFB. We have explained, this is not the case. (d) It is claimed
that nonce-based schemes for at least CBC and CFB can be obtained by enciphering the nonce
to make the IV, using the same key. We have explained that this is not the case.

Other standards also get these matters wrong. While ISO/IEC 10116:2006—especially its
Appendix B—is useful and mostly very well-informed, still it seems full of errors or odd com-
ments on IV requirements for CBC, CFB, and OFB modes. The ISO spec does recommend
a “randomly chosen statistically unique” IV for these schemes [92, Sections B.2.1, B.3.1, and
B.4.1] (we do not know what “statistically unique” might mean), but it suggests that many
other choices for the IV are fine, explicitly including the use of an counter or a message address
for CBC or CFB [92, Sections B.2.1 and B.3.1]. This is easily seen to be wrong, and it is quite
well-known that it is wrong. Here, for example, is a reference from 1995:

[It] is not true that CBC encryption can use an arbitrary nonce initialization vector: it is
essential that the IV be unpredictable by the adversary. (To see this, suppose the IV is a
sequence number: 0, 1, 2, Then a (first) encryption of 0x0000000000000000 followed by
an encryption of 0x0000000000000001 is recognizably distinct from a (first) encryption of
0x0000000000000000 followed by an encryption of 0x0000000000000000. Clearly this violates
the notion of a secure encryption . . . [176, p. 8].

Sanctioning a counter IV for CBC is worse than anything in the NIST spec, which never suggests
any such thing. Also with respect to CBC, the ISO spec rather elliptically indicates that “[to]
prevent information leakage[,] an integrity-protected [and] secret [IV] is recommended” [92,
Section B.2.1]. We are aware of no scientific basis for keeping the IV secret and, as before, we
cannot guess what integrity protection is supposed to entail, nor what “information leakage”
the authors may have in mind.

In fairness to NIST and to the author of SP 800-38A—and also to place things in their
appropriate historical context—it is important to emphasize and to appreciate that nonce-based
security notions weren’t even defined until 2004 [180]—some three years after the publication
of NIST SP 800-38A. It should be acknowledged too that numerous cryptography books and
papers also get wrong what they say about the requirements for the IV in schemes like CBC.
Finally, I suspect that I myself did not provide a careful review of NIST SP 800-38A during
its period of public review, despite having “lobbied” for the inclusion of CTR mode [122]. The
document’s author, Morris Dworkin, would no doubt have been receptive to addressing any
issues I might have known to point out about the use of nonces in IV-based schemes.

4.8. Malleability of CBC, CFB, and OFB. We do not need to formalize nonmalleability to
make it clear just how badly CBC, CFB, and OFB fail with respect to achieving this potential

39

goal.1 Recall that, informally, an encryption scheme is malleable if the adversary can modify a
ciphertext C for the (possibly unknown) plaintext P to create a ciphertext C ′ whose plaintext P ′

is “meaningfully related” to the plaintext P . As an example, with OFB mode, we can take a
ciphertext (IV , C) for plaintext M and produce from it the ciphertext (IV , C) where C is the
bitwise complement of C. The plaintext for this ciphertext is of course P , the complement of P .
Closely related to P , we have show that OFB is trivially malleable.

It is easy to play such games with CBC, too. Some attacks are trivial; other are somewhat
more complex. As an example of the former, note that if (IV , C1C2 · · ·Cm) is a ciphertext,
each Ci an n-bit block, the message having ciphertext P1P2 · · ·Pm, then (IV , C1 · · ·C�) is a
ciphertext with plaintext P1P2 · · ·P� for any
 < m. We have “mauled” a ciphertext to create
related plaintext. Alternatively, runs of ciphertext blocks can be reordered, this resulting in some
corruption along the “edges” of each run of blocks but the rest of the corresponding plaintext
blocks being similarly rearranged. For a more complicated, and possibly more useful, attack,
note that if an adversary possesses a collection of CBCK-encrypted plaintext/ciphertext pairs
then it also has a collection of plaintext/ciphertext blocks T = {(Xi, Yi) : Yi = EK(Xi)}, the
number of these depending on the lengths of the underlying messages. Given T , the adversary
can create an infinite number of known plaintext/ciphertext pairs, many of which may be
“meaningful.” It does this by simply “cutting and pasting” points in T , adding offsets as
needed. For example, if (Xi, Yi) ∈ T for all 1 ≤ i ≤ q then all (q + 1)m sequences i0, i1, . . . , im
of numbers in [1, q] specify a plaintext/ciphertext pair that the adversary A can “know”—the
one with IV = Xi0 and ciphertext C = Yi1 · · ·Yim , which has plaintext P = P1 · · ·Pm where
Pi = Xij ⊕ Yij−1 for all j ≥ 1. Some of these plaintext/ciphertext pairs may be “meaningful,”
and it may be easy for the adversary to find them. See, for example, Stubblebine and Gligor
[192] and Bellovin [28] for early work demonstrating the real-world dangers springing from the
malleability of CBC encryption.

To show that ciphertexts produced by CFB are malleable, consider, for example, the case
where s = n. Observe that if (IV , C) is a ciphertext for plaintext P with |C| = n, then
(IV , C) is a ciphertext for plaintext P . Numerous other attacks showing CFB’s failure to
achieve nonmalleability are just as easy. Note that no self-synchronous cipher can achieve
nonmalleability; when we “maul” part of a ciphertext, we can be sure that far-removed portions
of plaintext are not impacted.

When authors speak of the absence of message integrity in a mode like CBC encryption,
what they invariably seem to mean is the absence of nonmalleability. True message integrity
would coincide with the message authenticity goal: the receiver would know that the ciphertext
received (or else the plaintext recovered from it) had to have been sent, in this exact form, by
his intended communication partner. Since none of the modes CBC, CFB, or OFB are length-
increasing and, correspondingly, all ciphertexts are valid, achieving message authenticity is out
of reach. The best that can be hoped for in this direction is that, when a ciphertext is received,
if it has been created by an attack, then the plaintext it corresponds to is “junk”—nothing that
is predictable or related to other plaintexts received. This is precisely the nonmalleability aim.
It is my contention, then, that talk of message integrity, in the contexts of modes like CBC,
invariably is talk about a failure to achieve nonmalleability.

4.9. Chosen-ciphertext attacks on CBC, CFB, and OFB. Just as it is easy to break the
nonmalleability of CBC, CFB, and OFB modes, it is just as easy to break these schemes in

1 See Rogaway [180], building on Dolev, Dwork, and Naor [60], for a definition of nonmalleability in the setting
of nonce-based symmetric encryption. The chosen-plaintext setting that we here assume is obtained by dropping
mention of the decryption oracle.

40

the CCA (chosen-ciphertext attack) sense. For CBC with a random IV, for example, a simple
attack could work as follows. The adversary asks to encrypt a random three-block message
M = M1M2M3, getting back (IV , C1C2C3). Next the adversary asks to decrypt (IV ′, C ′

1C2C3),
for random IV ′, C ′

1, getting back M ′
1M

′
2M

′
3). If M3 = M ′

3 then the adversary guesses that it is
speaking to a “real” encryption oracle; otherwise it knows that it is not.

It is difficult to overstate the importance of the absence of nonmalleability and CCA secu-
rity of the IV-based encryption modes; many higher-level protocols go astray from an implicit
assumption that the security guarantee from these modes is stronger than it is.

4.10. Padding attacks on CBC and other modes. In an interesting and well-known
paper, Vaudenay shows how possession of a “valid-padding oracle” lets one decrypt arbitrary
ciphertexts that were encrypted under what one might call the “PAD-then-CBC” mode of
operation [194]. The mode of operation encrypts a plaintext P (which need not be a multiple
of n bits) by CBC-encrypting the string Pad(P), where Pad is a parameter of the mode. The
n-bit blockcipher E remains a parameter as well, and one requires that Pad(P) be a multiple
of n bits and that P be recoverable from Pad(P). The envisaged attack model, formalized
by Paterson and Watson [164], enriches the usual one by giving the adversary not only an
encryption oracle but also an oracle ValidPadding that, given C = IV ‖ C, computes P ′,
the CBC-decryption of C with respect to the underlying key K. If P ′ = Pad(P) for some
plaintext P , then the oracle returns 1, indicating a valid ciphertext—the CBC-encryption of a
properly padded plaintext—was provided. Otherwise, the oracle returns 0, indicating an invalid
ciphertext.

Vaudenay focuses on the PAD-then-CBC scheme where the Pad function takes in a byte
string P and appends to it either 0x01, 0x0202, 0x0303030, and so on, as needed, so that
Pad(P) will be a multiple of n bits. For this padding function, Vaudenay shows how, given
a ValidPadding oracle, one can decrypt an arbitrary ciphertext with a reasonable number of
queries. The attack can be seen as a symmetric-setting analog to Bleichenbacher’s attack [43]
on RSA encryption as realized by PKCS #1.

Black and Urtubia followed-up on Vaudenay’s idea and demonstrated that the problem is
ubiquitous: they looked at seven additional padding methods, breaking five of the resulting
PAD-then-CBC schemes [42]. Canvel, Hiltgen, Vaudenay, and Vuagnoux used Vaudenay’s idea
to recover passwords in SSL/TLS [49]. Paterson, in a series of works with various coauthors,
gives attacks on PAD-then-CBC encryption for ISO padding method #3 [165], for the setting of
random and secret IVs [207], and for PAD-then-CBC as realized in IPsec [56, 166]. Mister and
Zuccherato [143] and Wen, Wu, and Wen [202] looked at padding-oracle attacks on CFB. (Note,
however, that CFB requires no padding if its parameter s is small enough that all messages in
the message space will have a multiple of s bits). And one could go on. In general, it is fair to
say that, for several years after Vaudenay’s paper [194], there was a bit of a cottage-industry
investigating how padding attacks on modes of operation could be extended, strengthened,
formalized, or made more practical.

Various reactions are possible to this body of work. (1) One might assert that there is no
problem here: the user was promised SemCPA security and he messed up in expecting something
more. Padding-oracle attacks are not outlawed under SemCPA security notions, and one is
foolish to think that they won’t arise if you start with a malleable scheme. This is the theorist’s
knowing shrug—correct but not so useful. (2) One might assert that one ought, with a mode
like CBC, select a padding method for which a ValidPadding oracle will be guaranteed useless,
perhaps because the oracle will always return an indication of validity [42, 164]. (3) Relatedly,
one might try to declare, by fiat, that every ciphertext should be regarded as encoding a valid

41

plaintext, letting decryption return some fixed value when all else fails. In fact, our chosen
syntax for an IV-based encryption scheme implicitly demands that something like this be done:
we didn’t allow for decryption to return something other than a point from the message space
(see §I.5). But patching decryption in such a way may be infeasible; there may not exist a fixed
plaintext that the receiver could pretend to have recovered such that the behavior of a system
after recovery of this particular plaintext will not be adversarially recognizable. (4) Finally,
one might conclude that the problem is ultimately a manifestation of our privacy-only security
notion being too weak, as discussed in §I.10. This is the conclusion voiced most often by those
who have worked in this domain [42, 56, 146, 165, 166].

4.11. Error-propagation and self-synchronization. In the early days of blockcipher modes,
a central operational property of a mode was what would happen if some ciphertext bits get
messed up. If a bit gets flipped, we say that there was a bit error. A bit error might arise
due to transmission across a noisy channel. Or it might occur due to a hardware-failure on a
mass storage device. An inconveniently arriving alpha particle could, for example, cause a bit
error. Alternatively, some bits might get inserted into or deleted from a ciphertext. Following
Alkassar, Geraldy, Pfitzmann, and Sadeghi [2], we call problems of this sort slips. As before,
a slip might happen during message transmission across a noisy channel. One would usually
think of bit errors and slips as being caused by non-adversarial events.

If the occurrence of a bit error will cause only a temporary disruption in the recovery of
correct plaintext bits, we say that the mode has limited error-propagation. Similarly, if the
occurrence of a slip will cause only a temporary disruption in the recovery of correct plaintext
bits, we say that the mode is self-synchronous, likewise a desirable property in setting where one
would be concerned about slips. If one is in a setting where bit errors or slips matter, probably
one is hoping for limited error propagation and self-synchronization.

Return to Figure 4.1 for a summary of error propagation and synchronicity properties of
CBC, CFB, and OFB modes. The interesting mode is CFB, which not only recovers from bit
flips but also slips of s bits where, recall, the parameter s is the data segment size. In particular,
a choice of s = 1 lets one recover from slips of any number of bits, and a choice of s = 8 lets
one recover from slips of any number of bytes.

For years I was quite unconvinced that error propagation and self-synchronization were
things worth thinking about. In any “modern” design, one might reasonably argue, problems
with noisy channels should be corrected outside of the cryptography. The architecturally “cor-
rect” solution is to first build a reliable channel, perhaps using techniques from the theory of
error-detecting or error-correcting codes, and then implement the cryptography on top of the
channel. Different concerns, to be handled at different architectural levels by different commu-
nities using different techniques. Even thinking about something like self-synchronization felt
like a failure to respect an important and desirable abstraction boundary.

While there may be merit to the opinion just expressed, reading Alkassar et al. has challenged
my intransigence [2]. Those authors explain that there are settings, say in telephony (ISDN is
actually the authors’ main example), where bit errors or slips do arise, but where there is no
need to build a reliable channel, because the occasional bit error or slip simply does not matter.
For example, a single bit error or slip might result in an inaudible degradation of sound quality.
To deal with such settings in a clean way, a mode like CFB would be attractive—were it not
for the inefficiency associated to the scheme.

Here, roughly, is how one might try to understand error-propagation and self-synchronization
from a modern perspective. For some parameter w ∈ {1, 2, . . .}, the “locality” of the scheme, one
seeks a mode of operation for which, on decryption, each bit P [i] of the plaintext depends only

42

on the key K and some advancing, width-w “window” into the ciphertext, C[j]C[j+1] · · ·C[j+
w − 1]. CFB with s = 1 provides a solution to the problem just named where w = n. The
“optimized” CFB mode of Alkassar et al. provides an alternative solution, one less profligate in
its use of the underlying blockcipher [2].

For various reasons, the formulation sketched above is not yet precise. But it is suggestive
of a rational approach to studying error-propagation and self-synchronization. It would appear
that natural questions in this setting have not been answered, questions like: What is the
strongest achievable security notion with locality w? Or: How efficient can we make good
schemes with locality w?

I remain skeptical that issues of error propagation or self-synchronization arise in modern
designs with any substantial frequency. But I am willing to believe that they arise, and perhaps
more often I imagined before.

4.12. Efficiency characteristics. Figure 4.1 enumerates several key efficiency characteristics
for CBC, CFB, and OFB. We enumerate some.

4.12.1 While CBC and OFB are “maximal-rate” modes, in the sense that they process n bits
of plaintext for every (n-bit blocksize) blockcipher call, CFB processes just s bits per
blockcipher call. As a consequence, for n = 128, a value of s = 1 would mean making
128 times the number of blockcipher calls as CBC, while s = 8 would mean making 16
times the number of blockcipher calls as CBC. These is major cost, made all the worse
by the awkwardness of paralleling CFB encryption.

4.12.2 Neither CBC nor OFB are parallelizable for encryption, although the first does support
parallelizable decryption. CFB does support parallelizable encryption and decryption—
any self-synchronizing mode must—but achieving parallelizability is inefficient, involv-
ing extra blockcipher calls and latency that depends on the parameter s.

4.12.3 While CFB and OFB decryption can be implemented without ever needing the block-
cipher’s decryption direction, this is not true for the most popular of the three modes,
CBC.

4.12.4 With OFB one can precompute the “pad” that will be xor’ed with the plaintext once
it is known. On the other hand, precomputation does not benefit CBC or CFB.

The lack of parallelizability can have a dramatic impact on software performance. In Chapter 5
we will give some data to compare the speed of CTR mode with that of CBC, CFB, and OFB.
Figure 5.2 tabulates encryption and decryption speeds for the OpenSSL implementation of the
modes running on a recent x86 processor, one supporting fast AES computations. For 1 Kbyte
messages,for example, CBC is some 2.8 times slower than CTR mode. Modes CFB (even with
s = 128) and OFB are slower still.

In short, when efficiency characteristics matter, nothing comes close to CTR: it has better
performance characteristics, in multiple dimensions, than any of CBC, CFB, and OFB.

4.13. Concluding remarks. In a 2005 paper by Chris Mitchell [146] provocatively subtitled
Is there a future for CBC mode encryption?, the author reviews the padding attacks on CBC
and the reactions that these attacks have raised. Mitchell maintains that, most of the time, an
authenticated-encryption scheme or CTR mode is going to be a better choice than CBC. He
writes:

[O]ur conclusion is that there would appear to be two main choices for the user of a symmetric
encryption system: an authenticated-encryption system . . . or a stream cipher [eg, CTR].

43

This prompts the suggestion in the title of this paper that, except for legacy applications,
naive CBC encryption should never be used, regardless of which padding method is employed.
[146, pp. 255–256, emphasis added].

In short, Mitchell’s answer to the question “is there a future for CBC?” is a polite no. This
would be my answer, too. And the same answer for CFB and OFB. The modes have much
legacy value, but relatively little value other than that.

44

Chapter 5

CTR Mode

5.1. Summary. This chapter looks at the Counter (CTR) mode of operation, as defined in
NIST Recommendation SP 800-38A [61]. The mode is the simplest and most elegant of the
confidentiality-only schemes. It was suggested by Diffie and Hellman as early as the basic-four
modes [58], yet it was not included in the initial batch of FIPS-approved modes [153]. While
I cannot give a definitive explanation for this omission, it may have something to do with a
(largely antiquated) belief that a confidentiality mode should provide some sort of nonmal-
leability guarantee—or else a (completely antiquated) belief that a mode should work to deny
adversaries access to chosen plaintext/ciphertext pairs for the underlying blockcipher. NIST
added CTR mode to the stock of “Recommended” schemes in December of 2001 [61].

I regard CTR as easily the “best” choice among the set of the confidentiality modes (meaning
the set of schemes aiming only for message privacy, as classically understood). It has unsur-
passed performance characteristics and provable-security guarantees that are at least as good
as any of the “basic four” modes with respect to classical notions of privacy. The simplicity, ef-
ficiency, and obvious correctness of CTR make it a mandatory member in any modern portfolio
of SemCPA-secure schemes.

The only substantial criticisms of CTR center on its ease of misuse. First, it is imperative
that the counter-values that are enciphered are never reused. What is more, these values
are “exposed” to the user of CTR, offering ample opportunity to disregard the instructions.
Second, the mode offers absolutely no authenticity, nonmalleability, or chosen-ciphertext-attack
(CCA) security. Users of a symmetric scheme who implicitly assume such properties of their
confidentiality-providing mode are, with CTR, almost certain to get caught in their error.

In 2000, at a workshop sponsored by NIST, I presented a note written with Helger Lipmaa
and David Wagner [122] arguing for the inclusion of CTR mode in the anticipated freshening
of standard FIPS Publication 81 [153] (1980). Some of the comments made in this chapter are
adapted from that note.

5.2. Definition of CTR mode. Fix a blockcipher E : K × {0, 1}n → {0, 1}n. This is the
only parameter on which CTR mode depends. Our formalization of the mode is then given
in Figure 5.1. Regarding CTR as an IV-based encryption scheme (§I.5), we need, as usual,
to describe only the encryption direction for the mode; decryption is whatever it “has to be”
to be the inverse. CTR mode takes in a key K, a nonce N , and a plaintext P . It outputs a
ciphertext C. The message space is X = {0, 1}∗, the key space is the key space as that for the
underlying blockcipher, and the IV space is IV = ({0, 1}n)+, sequences of n-bit strings. The

45

EK

CTR
mode

EK

N2N1

P

C

Y1 Y2

EKEK

N4N3

Y3 Y4

N =

10 algorithm CTRN
K(P) CTR mode

11 //K ∈ K, N ∈ ({0, 1}n)+, P ∈ {0, 1}∗, |N | = �|P |/n
12 m← �|P |/n
13 (N1, . . . , Nm)← N
14 for i← 1 to m do Yi ← EK(Ni)
15 Y ← MSB|P |(Y1 · · ·Ym)
16 C ← P ⊕ Y
17 return C

Figure 5.1: CTR mode. The mode is parameterized by a blockcipher E : K × {0, 1}n → {0, 1}n. A
vector of nonces N must be provided to encrypt a plaintext, the vector having as many components has
as the plaintext is long (measured in n-bit blocks). The confidentiality property of CTR will require of
any attacking adversary A that all of the blocks of all of its N -queries be distinct.

number of components of N must be �|P |/n.
It is worth remarking that the decryption algorithm for CTR is precisely the encryption

algorithm for CTR, a rather pleasant property. It is also important that the decryption direction
of the underlying blockcipher E is never used and that, in fact, the mode makes perfect sense
if E is only a PRF, meaning that we drop the requirement of EK(·) being a permutation.

According to the NIST specification [61], the blockcipher E must be NIST approved, which
means, at present, that it must be AES (with any of its three permitted key lengths), Skipjack,
or TDEA. The blocksize n used by E will, accordingly, be either n = 64 or n = 128.

The NIST spec further demands that, as one encrypts or decrypts strings, all of the Ni

value—the components of N—must be distinct (across all invocations with the underlying
key). For us, this requirement shows up in the security assertion about CTR rather than in the
definition of the scheme.

5.3. About the chosen syntax. Rather precisely mirroring the SP 800-38A specification
[61], what is input for CTR-mode encryption is not, for example, a single n-bit string, used to
indicate where to begin “counting” with this message, but, instead, a whole vector of nonces.
This is not the only possible formalization; one might, instead, have conceptualized what is in

46

the NIST spec by saying that, implicitly, CTR mode has some “hidden” parameter, a counter-
generation algorithm, Count. The user is free to choose it. The Count algorithm—possibly
probabilistic or stateful—would produce the sequence of Ni-values that the encryption scheme
will need. The CTR mode would be completely specified once a user specifies both E and
Count.

While the “implicit-Count-perspective” may well match what actually happens in a system
that employs CTR-mode encryption, it is a bit of a reach to say that the spec implicitly demands
the existence of such a routine. Our own approach is we think, simpler, stronger, and closer in
spirit to the spec. It is simpler because one is never compelled to speak of how counter-values are
to be determined; it is simply “not our job.” The user will be doing this. It is stronger insofar
as we will build into our security notion that any counter-generation mechanism is fine—even
one that is adversarially influenced—as long as it never creates “colliding” nonce components.
And it is truer to the spec insofar as the spec does speak of encryption as needing a sequence
of counters (denoted T1, T2, . . . in the spec) but is silent, apart from a non-binding suggestion
[61, Appendix B], about how these values might arise.

The decision to not have any sort of built-in counter-generation mechanism means that our
formalization of CTR mode is quite different from that of Bellare, Desai, Jokipii, and Rogaway
[14]. Those authors assume that the first counter (nonce) (N1) will be 0, encoded as an n-bit
string, and that each successive nonce would be the prior nonce plus one. When the next
message comes along, the counter values that will be used for it continue from where the first
message left off. Here “plus one” means ordinary integer addition by one, with all integers
encoded as n-bit strings. If encrypting a message would entail counting beyond the 2n possible
counter values, the mechanism will refuse to encrypt the message. Thus the BDJR-description
of CTR mode was prescriptive, or at least concrete and illustrative, on how counter-values were
to arise. This is fine, but it is at odds with the NIST Recommendation, which is intentionally
not prescriptive about how counter-values are to be chosen.

Despite having to re-formalize the syntax and security property for CTR mode, we like
NIST’s generality in this setting, which in fact follows our earlier recommendation [122, pp. 1–
2].

5.4. Provable security of CTR mode. We already defined our security notion for a nonce-
based scheme: indistinguishability from random bits (§I.7), denoted IND$. We also explained
the strength of that notion. We remind the reader that, in the context of CTR mode, a nonce-
respecting adversary not only does not repeat nonces—now vectors of n-bit strings—it never
repeats any (n-bit) component of nonces.

It is simple to lift the result of Bellare, Desai, Jokipii, and Rogaway [14] to our modified
syntax and our notion of indistinguishability-from-random-bits. It is an easy exercise to prove
the desired result from scratch. Let A be a nonce-respecting adversary that attacks CTR[E], for
some n-bit blockcipher E. Suppose adversary A achieves advantage ε = AdvIND$

CTR[E](A) while
expending time t and asking queries that total σ blocks. Here “time” should be understood,
as usual, to encompass the description size of A, as well as the adversary’s running time,
while the total number of blocks σ means σ =

∑q
i=1�|P i|/n when the adversary asks queries

(N1, P 1), . . . , (N q, P q). Then there is an adversary B, with a simple and fixed specification in
terms of the adversary A, that attacks the underlying blockcipher E and that achieves advantage

Advprp
E (B) ≥ ε− σ2/2n+1 (5.1)

where B asks σ queries and runs in time insignificantly exceeding t (namely, t + λnq for some
absolute constant λ depending only on details of the model of computation).

47

The proof of the result above is based on the observation that CTR mode would be “perfect”
(zero adversarial advantage) with respect to the IND$ definition when it is based on a random
function instead of a random permutation. This is then combined with an application of the
PRP/PRF “switching lemma” (already mentioned in §2.2) and the usual passage between the
information and complexity-theoretic settings.

The result above is not only simple; it is also strong, in multiple dimensions.

5.4.1 As we have already explained, we are employing a confidentiality notion that is ex-
tremely strong (for an SemCPA notion). Indeed some would argue that indistinguisha-
bility from random bits is pointlessly or inappropriately strong—that it attends to
something that is fundamentally irrelevant to privacy when it asks for ciphertexts to
look random. This may be true, but when going about the business of giving posi-
tive results it is perfectly fine to be using an “overly strong” definition. Indeed it is a
good thing to do if that notion is actually simpler to work with than more “precise”
weakenings, which is the setting we are in.

5.4.2 The provable-security of CTR mode is strong in the sense that the σ2/2n+1 loss is tight:
there are trivial attacks that do this well. In is strong insofar as we see the exact same
sort of quadratic security degradation in every other provably-secure confidentiality
mode within this report. Not that we are suggesting that one cannot come up with
blockcipher-based confidentiality modes that do better than this, as suggested by the
following point.

5.4.3 Finally, the provable-security of CTR mode is strong in the sense that the σ2/2n+1

security degradation can be regarded as an artifact of using the Advprp
E -measure of

blockcipher security instead of theAdvprf
E -measure; if if we switch to the latter, the term

goes away. Said differently, we pay the birthday-bound security loss “just” because we
started with a blockcipher, rather than a good PRF. While the NIST standard does not
allow it, one could, in principle, select a map for E that had excellent PRF-security (it
wouldn’t be blockcipher) rather than excellent PRP security. Investigations of this idea
include [1, 21, 84, 95, 129]. The provable-security of CTR mode provides a simple means
of going beyond the birthday bound security loss by processing a blockcipher E : K ×
{0, 1}n → {0, 1}n into a PRF F : K×{0, 1}n → {0, 1}n that intentionally destroys EK ’s
permutivity and lets F have better PRF-security than would E. Then, of course, one
uses CTR[F] instead of CTR[E].

5.5. Desirable features of CTR mode. CTR mode encryption has a number of desirable
features. We enumerate some of them below, building on our earlier critique of CTR [122].

5.5.1 Software efficiency. Modern processors support some or all of the following archi-
tectural features: aggressive pipelining, multiple instruction dispatch per clock cycle, a
large number of registers, and SIMD instructions. By eliminating the need to compute
Ci prior to Ci+1 when one encrypts, CTR-mode encryption can achieve major efficiency
improvements compared, say, to CBC. In a bitsliced implementation of AES, a mode
like CBC is simply impractical; only CTR mode offers up enough parallelism for the
technique to be productive [108]. Finally, the “locality” of counters one typically sees
with CTR mode—that high-order bits of successive input blocks are usually unchanged
(we are assuming a “conventional” increment function) can be used to improve software
speed, an observation first exploited by Hongjun Wu [30]. Given all of the above, it is
not surprising that, for many blockciphers, a well-optimized implementation of CTR-
mode encryption will be considerably faster than a well-optimized implementation of,

48

+16 −16 +64 −64 +256 −256 +1K −1K +8K −8K
CBC 4.38 4.43 4.15 1.43 4.07 1.32 4.07 1.29 4.06 1.28

CFB 5.73 5.85 5.56 5.62 5.48 5.56 5.47 5.55 5.47 5.5

OFB 5.42 5.42 4.64 4.64 4.44 4.44 4.39 4.39 4.38 4.38

CTR 5.42 5.42 1.92 1.92 1.44 1.44 1.28 1.28 1.26 1.26

Figure 5.2: The speed advantages of CTR mode on an x86 “Westmere” processor. The data
is reported on the OpenSSL implementations [162] of the SP 800-38A modes. Positive labels are used for
encryption speeds (numbers are byte lengths), negative labels for decryption speeds. The parameter s
for CFB mode is s=128; smaller values of s will dramatically increase the time.

for example, CBC. Lipmaa finds CTR mode sometimes four times as fast as CBC [121].
This is greater than the gain obtained from switching from the slowest to the fastest
AES finalist on most platforms [7].

As a concrete and recent data point, consider OpenSSL’s performance for CTR
mode encryption compared against CBC [162]. See Figure 5.2 for encryption and de-
cryption speeds using the best-reported speeds on a “Westmere” processor, a machine
supporting Intel’s AES New Instruction (NI) [77]. For 1 KB messages, CTR mode
encryption runs at 1.28 cpb, while CBC encryption runs at 4.07 cpb — about 3.2 times
slower. The difference is almost entirely due to the inherently serial nature of CBC
compared to CTR, as can be inferred by looking at CBC’s decrypt time for messages
of the same length, which are essentially the same as CTR’s encryption and decryption
speed. We note that on on Intel’s recently shipped “Sandy Bridge” architecture, CBC
performance is going to get still worse relative to CTR, since, even though AES instruc-
tion may be issued at twice the rate as they could before, their latency will actually go
up by 25%, and latency is what kills CBC and is almost irrelevant to CTR.

5.5.2 Hardware efficiency. Modes such as CBC encryption are limited in their hardware
speed by the latency of the underlying blockcipher. This is because one must complete
the computation of ciphertext Ci before one can begin to compute Ci+1. Thus the
maximal throughput, in hardware, will be about the reciprocal of the latency for the
underlying blockcipher E. In contrast, CTR model is fully parallelizable; one can be
computing blocks C1, C2, C3, . . . all at the same time, limited only by the amount of
hardware that one throws at the problem. This can result in enormous speedups; in
hardware, it would not be at unusual to see CTR mode encrypting at more than 10
times the speed of CBC.

5.5.3 Preprocessing. Because the cryptographic work in enciphering a message P is inde-
pendent of P , preprocessing can be used, in some environments, to increase speed. That
is, one can compute the “pad” Y in “spare cycles” even before one knows the plain-
text P . When P becomes known, it need only be xor’ed with the already-computed
pad Y .

5.5.4 Random-access. The ith ciphertext block, Ci, can be encrypted in a random-access
fashion. This is important in applications like hard-disk encryption, where bulk data
needs to be encrypted quickly. When using CBC mode, properly encrypting the ith
block requires one to first encrypt the i− 1 prior blocks.

5.5.5 Provable security. The above efficiency characteristics are not obtained at the ex-
pense of security. As explained in §5.4, the “standard” cryptographic assumption about

49

a blockcipher’s security—that it is a pseudorandom permutation—is enough to prove
the security of CTR-mode encryption. This is a simple and by now completely stan-
dard result [14]. The concrete security bounds one gets for CTR-mode encryption,
using a blockcipher, are no worse than what one gets for CBC encryption. Indeed
there are approaches to get better security bounds with CTR-mode encryption than
with CBC mode, as we have explained, although these do not involve directly using the
blockcipher E. The security of CTR mode is well-analyzed and well-understood.

5.5.6 No deciphering. With CTR mode, both encryption and decryption depend only on
E—neither depends on the inverse map D = E−1, so D need not even be implemented.
This matters most when the inverse direction of the blockcipher is substantially different
from the forward direction, as it is for AES. Not having to implement D in hardware
can save considerable hardware costs. Not having to implement D in software can
reduce the key scheduling time and the context size.

5.5.7 Arbitrary-length messages. Unlike other common modes of operation, handling
messages of arbitrary bit length is trivial. No bits are wasted in doing this—there is
no padding, and the ciphertext C is of the same length as the plaintext M .

5.5.8 Encryption = decryption. Encrypting and decrypting under CTR mode are identi-
cal, potentially simplifying the amount of code, its runtime size, and the size of hardware
embodiments on both FPGAs and ASICs.

5.5.9 Simplicity. While inherently subjective, CTR seems, to me, the simplest of the con-
fidentiality modes of operation.

5.6. Objections to CTR mode. The following concerns are sometimes raised with respect
to CTR mode encryption. While each objection is valid to some degree, I also counter each
objection, minimizing the complaint to a significant extent.

5.6.1 Malleability; no message integrity. While we have not here formalized any notion
for message authenticity, integrity, or non-malleability, it is clear that CTR-mode en-
cryption offers absolutely no such guarantees. Ciphertexts are completely malleable,
in the sense of Dolev, Dwork, and Naor [60]. In particular, given the ciphertext C for
some plaintext P , an adversary can produce a ciphertext C ′ for an arbitrary plain-
text P ′ simply by xoring C with Δ = P ⊕ P ′. This attack is obvious and, sometimes,
highly damaging.

That said, it is not normally considered the goal of a confidentiality scheme—
certainly none of the schemes in NIST SP 800-38A [61]—to offer up integrity or non-
malleability guarantees. CBC mode, the nominal “alternative” to CTR mode, also fails
to provide any meaningful message authenticity, integrity, or nonmalleability guaran-
tee. These problems can often be exploited in real-world protocols [192]. If there is any
meaningful notion of message authenticity, integrity, or nonmalleability that a scheme
like CBC enjoys, it has never been formalized or demonstrated, while attacks demon-
strating the absence of any strong notion for message authenticity, integrity, or the
malleability are, in contexts like CBC, quite trivial to provide.

When message integrity is desired, the usual approach is to accompany the cipher-
text by a MAC (message authentication code), computed under a separate key [23].
When this is done, CTR mode, used in consort with the MAC, achieves the desired
authenticity and nonmalleability goals. Alternatively, message integrity or nonmal-
leability can be guaranteed by using a dedicated authenticated-encryption scheme like

50

CCM (Chapter 11) or GCM (Chapter 12).

The obvious failure of CTR to achieve message integrity or nonmalleability may in
fact contribute to its likelihood of correct use: here more than in CBC mode, it is clear
that one is not going to have beyond-confidentiality guarantees.

5.6.2 Error propagation. If a bit-flip error occurs in some block of ciphertext, after de-
cryption, the error is localized to the corresponding bit of the corresponding block of
plaintext. This is neither good nor bad; it just is. In most applications, it is simply
irrelevant. If detection or correction of errors is desired, this should be accomplished
at a different architectural level, using appropriate tools, like error-correcting codes. In
the modern conception of our field, this simply isn’t part of cryptography’s role.

5.6.3 Stateful encryption. In practice, the vector of nonces to be provided for CTR mode
will usually be provided by making the encryption process stateful—the party encrypt-
ing message will, for example, maintain an n-bit counter.

But the proper use of CBC—or any other IV-based encryption schemes—will typ-
ically also entail state being maintained, this state further processed to produce the
“random” IV. If desired, CTR mode can be implemented with randomness—just like
CBC and its cousins. In short, the situation with respect to statefulness in CTR mode
is essentially the same as with CBC mode—but the correct use of maintained state is
simpler with CTR mode than with CBC.

5.6.4 Sensitivity to usage errors. It is crucial in CTR-mode encryption that no component
of a nonce-value may be reused. What if a user inappropriately does reuse a nonce?
Then all security is lost for that second message. But catastrophic errors can arise in
any mode of operation if the “directions” are ignored. And, it might be pointed out, the
nonce-reuse failure for CTR mode is actually less catastrophic than it is in a context like
CCM (Chapter 11), where reuse of a nonce destroys not only that message’s privacy,
but also all future message’s authenticity. The recommendations in Appendix B of
the NIST document [61] goes some distance to help users understand good ways to
construct counters and avoid counter-reuse. And the Recommendation is extremely
clear on the perils of reused nonces in CTR-mode encryption.

If one wants a scheme with some genuine robustness to nonce-reuse, one has to go
fairly far afield from any of the schemes surveyed in this report. SIV mode, by Rogaway
and Shrimpton [183], is a simple scheme designed to provide strong security properties
whether or not the provided IV is a nonce (a stronger guarantee is provided if it is).

5.6.5 Interaction with weak ciphers. When nonces (counters) are updated in the usual
way, as in N,N + 1, N + 2, . . ., pairs of domain points to which we are applying our
blockcipher will usually have small Hamming difference. This may lead to a concern
that an attacker can obtain many plaintext pairs with a small and known plaintext
difference, which could facilitate differential cryptanalysis [32]. However, this concern
is only a valid concern if the underlying cipher is differentially weak. It is not the
responsibility of a mode of operation to try to correct—likely without success—for
weaknesses in the underlying blockcipher’s basic security; that concern should have
been addressed when designing the blockcipher.

Another concern we have heard is that since using a counter for the IV in CBC
mode is a bad idea (see Chapter 4), maybe CTR mode itself is suspect. This is just
sloppy thinking; the problem with using a counter IV in CBC has nothing to do with
using counters in CTR mode.

51

5.6.6 The standard is too open-ended. The NIST Recommendation could be criticized
for being inadequately prescriptive in how the user should construct the sequence of
nonces he will use. There is again some legitimacy in this complaint; without indicating
just what sequences of nonces should be used, it is more likely that users will provide
sequences that do not enjoy the nonce property. Also, interoperability suffers, as does
compliance testing and even the providing of good test vectors, when a nonce sequence
is not mandated. That said, the advantages to open-endedness are considerable in
terms of the versatility of the scheme. When assuming PRP-security for the under-
lying blockcipher, it is irrelevant what sequence of nonces will be used. Applications
of counter mode, including GCM (Chapter 12), exploit the open-endedness of nonce
selection in their design.

5.7. Closing comments. In a conversation with Dan Bernstein in 2009, I suggested that it
would be useful if the public-domain code associated with his 2008 paper with Peter Schwabe [30]
included a similarly optimized implementation for AES decryption; the authors had released
their code without implementing the “backwards” direction for AES. Exactly why?, Bernstein
asked, would someone want to decrypt under AES? Bernstein was suggesting that CTR mode
is all that one should ever be doing with AES. While I do not share Bernstein’s view—there
are good uses for the reverse direction of a blockcipher—the basic sentiment that it embodies,
that CTR mode is the “right” way to achieve message confidentiality, has a good deal of merit.
It is hard to think of any modern, bulk-privacy application scenario where any of the “original
four” blockcipher modes—ECB, CBC, CFB, or OFB—make more sense than CTR.

52

Chapter 6

XTS Mode

6.1. Summary. This chapter looks at the XTS mode of operation. The mode is defined in
NIST Recommendation SP 800-38E [65] by reference to IEEE Standard 1619-2007 [90]. The
latter standard was developed by the IEEE P1619 Security in Storage Working Group, the
SISWG. They call XTS a scheme for narrow-block encryption. This contrasts to schemes for
wide-block encryption, which the SISWG is standardizing in a closely related project known as
P1619.2 [86].

The intended use of XTS is for encrypting data on a storage device; indeed the mode is not
approved for any other use. (We note that XTS is the only mode reviewed in this report for
which a particular application domain is mandated.) For this application, some data resident
on a mass storage device is divided into a sequence of N -bit strings, for some fixed constant N ,
the bit length of the data unit. For example, the data unit may be a 512-byte disk sector,
whence N = 4096 bits. Each data unit has a location, with locations understood to be given
by consecutive 128-bit numbers, beginning with some first location i0. The data units are
encrypted using a key K that is twice the length of the key of the underlying blockcipher, which
must be AES-128 or AES-256. The K-encrypted ciphertext for the plaintext P at location i
will be C = XTS i

K(P). This string will again have |P | = N bits, so that C can replace P on
the mass-storage device without disrupting underlying assumptions about how information is
located where.

My overall assessment of XTS is mixed. The mode offers significant advantages over “tradi-
tional” techniques such as CBC-encrypting each data unit on the disk. That XTS has substantial
practical value is attested to by its rapid adoption in at least nine disk-encryption products [205].
In addition, the core idea of partitioning the storage device into fixed-size chunks and applying
a tweakable blockcipher, one secure in the sense of a strong PRP, is exactly the right thing to
do. Finally, there are significant speed savings for the “narrow block” XTS compared to “wide
block” schemes like EME2 [80]: one can expect the former to be about twice as fast as the latter,
a difference that might, in some settings, be enough to compensate for the comparatively worse
security. All that said, I some have some serious complaints about XTS. The complaints focus
on the poor handling of partial final blocks, the small size of the chunks (128 bits) to which
we just referred, the paucity of scholarship on the mode, and the absence of well-articulated
cryptographic goals for the scheme. I suspect that, for most situations, use of a wide-block
encryption scheme, like those soon-to-be standardized by P1619.2, is strongly preferred.

I appreciate and concur with Halevi’s sentiment that there is no fundamental difference
between what is provided by well-designed narrow-block and wide-block schemes; the difference
is quantitative, not qualitative [81]. Yet a quantitative difference in a matter like this may

53

EK EK EK

P0 P1 P2

C0 C1 C2

EK

P3

C3

i,0 i,1 i,2 i,3 EK EK EK

P0 P1 P2

C0 C1

EK

P3

C2

i,0 i,1 i,2 i,3

C3 D

D

XTS
Full final block

XTS
Partial final block

10 algorithm XTS i
K(P) XTS mode

11 //K ∈ K, i ∈ {0, 1}128, P ∈ {0, 1}N
12 P0P1 · · ·Pm ← P where m = �|P |/n − 1 and |Pj | = n for all 0 ≤ j < m, 1 ≤ |Pm| ≤ n
13 b← |Pm|
14 for j ← 0 to m− 1 do Cj ← XEX2 i,j

K (Pj)
15 if b = n then Full final block

16 Cm ← XEX2 i,m
K (Pm)

17 else Partial final block

18 Cm ‖ D ← Cm−1 where |Cm| = b

19 Cm−1 ← XEX2 i,m
K (Pm ‖ D)

20 endif
21 return C0 · · ·Cm

30 algorithm XEX2 i,j
K (X) Two-key version of XEX

31 K1 ‖ K2← K where |K1| = |K2|
32 L← EK2(i)
33 Δ← L · αj

34 return EK1(X ⊕Δ)⊕Δ

Figure 6.1: The XTS mode of operation. The scheme is parameterized by blockcipher E : K ×
{0, 1}n → {0, 1}n and a number n ≤ N ≤ n220, where n = 128 and E is AES-128 or AES-256. The
value i is a 128-bit string that is typically used to encode the sector index.

induce qualitative differences in what security vulnerabilities are not realizable.

When XTS was proposed by NIST, I reviewed it and returned some comments on the mode
[181]. After a more thorough review now, for CRYPTREC, I stand by those old comments, and
believe that they serve as a good summary of what I will explain, more extensively now, in the
current chapter.

XTS is the two-key version of my XEX construction (Asiacrypt 2004), but operating in
ECB mode and with ciphertext stealing for any short final block. While I have no serious
objection to NIST approving XTS by reference, I would like to make a couple of points.

First, it is unfortunate that there is nowhere described a cryptographic definition for what
security property XTS is supposed to deliver. When the data unit (sector) is a multiple of
128 bits, each 128-bit block within the data unit should be separately enciphered as though
by independent, uniformly random permutations. That part is clear. But what security
property does one expect for partial final blocks? One might hope, for example, that the
final 128 + b bits (b < 128) would likewise be enciphered as if by a strong PRP. That would
seem to be the cleanest natural notion, and it’s not too hard to achieve. But XTS does
not achieve such an aim (because, for example, Cm does not depend on Pm). One is left to
wonder if ciphertext stealing actually works to buy you any strong security property for the
final 128 + b bits.

Second, I would like to express the opinion that the nominally “correct” solution for (length-

54

preserving) enciphering of disk sectors and the like is to apply a tweakable, strong PRP (aka
wide-blocksize encryption) to the (entire) data unit. That notion is strong, well-studied,
easy to understand, and readily achievable. There are now some 15+ proposed schemes
in the literature for solving this problem. If NIST approves the “lite” enciphering mode
that is XTS, this should not be understood to diminish the utility of standardizing a (wide-
blocksize) strong PRP. In the end, because of its much weaker security properties, I expect
that XTS is an appropriate mechanism choice only in the case that one simply cannot afford
the computation or latency associated to computing a strong PRP. [181]

6.2. Definition of the scheme. The XTS mode of operation is defined and illustrated
in Figure 6.1. The construction turns the blockcipher E that operates on n-bit blocks into
a tweakable blockcipher XTS that operates on N -bit blocks, where n ≤ N ≤ n220. We will
define in the the next section just what a tweakable blockcipher is. The blockcipher, E, and
the data-unit’s size, N , are the only two parameters of XTS. The NIST and IEEE specs require
that blockcipher E operate on n = 128 bits. The blockcipher must be AES with a key length
of either 128 or 256 bits.1

The XTS cipher takes as input a key K, a tweak i, and the plaintext P , where |P | = N and
|i| = 128. The length of K is twice the length of a key for E. The constructed cipher returns
the ciphertext C = XTS i

K(P) where |C| = |P | = N . In short, then, the XTS construction with
parameter N builds a function

XTS: K2 × T × {0, 1}N → {0, 1}N

where T = {0, 1}128 out of a blockcipher

E : K × {0, 1}128 → {0, 1}128

where E is AES with either 128-bit or 256-bit keys. As a tweakable blockcipher, XTS i
K(·) is

permutation on {0, 1}N for any i and K; it can be computed in either the forwards or the
backwards direction. Fitting into the syntax of §I.5, the syntax of XTS is that of an IV-based
encryption scheme; the IV has just been renamed as a tweak.

In defining XTS we make use of a subsidiary construction, XEX2, defined in lines 30–33 of
Figure 6.1. The subsidiary construction is related to a mode called XEX described by Rogaway
and derivative of work from Liskov, Rivest, and Wagner [124, 179]. The XTS mode can be
regarded as an ECB-like mode over XEX2, but something special—ciphertext stealing [139]—
is employed for any fractional final block and its predecessor. We select XEX2 to name the
algorithm of lines 30–34, rather than XEX, because the latter construction used one key, not
two [179]; the “2” of XEX2 can be understood as a gentle reminder of this difference.

The multiplication operator one sees at line 33, and the implicit (repeated) multiplications
in the exponentiation of α on the same line, is multiplication in the finite field GF(2128). The
value α is a particular constant in this field, the same constant elsewhere denoted u in this
report, or 2 or 2 or 012610 elsewhere. For the representation of field points mandated by the
standard [90], one can define the needed “repeated doubling” operation for line 33 by

L · αj =

{
L if j = 0, and
L� 1⊕ [135 MSB1(L)]128 if j > 0

(6.1)

1 That AES-192 is not allowed is not explicitly stated in either specification document [65, 90], but the
requirement can be inferred from the fact key lengths for XTS must be 256 or 512 bits, and that this is twice the
length of the underlying AES key.

55

where L � 1 denotes the left shift of the 128-bit string L by one position, namely, L � 1 =
LSB127(L) ‖ 0. The multiplication of 135 and a bit is just ordinary multiplication, generating
the result 0 or 135, which is then regarded as a 128-bit string, either 0128 or else 012010000111.
There is actually a byte-swap further involved in the standard’s definition of multiplication,
done so that little-endian machines will not normally need to do a byte-swap operation. The
byte-swap has no security implications, so we ignore it. (My preference, however, would have
been to omit the byte swap; other NIST FIPS and Recommendations offer no such favoritism
towards little-endian machines.)

NIST indicates that the XTS acronym stands for XEX Tweakable Block Cipher with Ci-
phertext Stealing [65, p. 2]. The SISWG website recites the acronym a bit differently, as XEX
TCB with ciphertext stealing [86]. Here XEX stands for XOR-Encrypt-XOR, and TCB for
Tweakable CodeBook mode [86]. The XEX mode of operation is, in turn, due to Rogaway
[179], building on work by Liskov, Rivest, and Wagner [124]. As the NIST and IEEE standards
are both specific to AES, the full name of the standardized mode is actually XTS-AES (or
perhaps XTS-AES128 or XTS-AES256).

6.3. Tweakable blockciphers. Before proceeding with our discussion we should describe
tweakable blockciphers and their security. The notion was first formally defined and investigated
by Liskov, Rivest, and Wagner [124]. The idea had earlier been described and used within a
blockcipher construction by Schroeppel [187].

Recall that a conventional blockcipher E has signature E : K × {0, 1}n → {0, 1}n and
each EK(·) = E(K, ·) is a permutation on {0, 1}n. In contrast, a tweakable blockcipher Ẽ has
signature Ẽ : K × T × {0, 1}n → {0, 1}n and each ET

K(·) = E(K,T, ·) is a permutation on

{0, 1}n. The set T , the tweak space, is a nonempty set. We let Ẽ−1
K (T, Y) be the unique X such

that ẼK(T,X) = Y .

The most desirable and useful security notion for a tweakable blockcipher generalizes the
strong-PRP security notion for a conventional blockcipher; the adversary must distinguish an
oracle for ẼK(·, ·) and its inverse from a family of uniformly random permutations, each one
named by its tweak, and the corresponding inverse oracle:

Adv±prp
˜E

(A) = Pr[K
$←K : A

˜EK(·,·), ˜E−1
K (·,·)]− Pr[π

$← Perm(T , n) : Aπ(·,·),π−1(·,·)] (6.2)

where Perm(T , n) denotes the set of all permutation on {0, 1}n indexed by T , so that π(T, ·) is a
uniform random permutation on {0, 1}n for each T ∈ T , all of these permutations independent
of one another. Here we re-use the ±prp label in the Adv superscript (eg, not bothering to put
a tilde over it to distinguish it from the conventional blockcipher setting) because the “type” of
argument Ẽ will make it clear whether or not this is the tweakable version of the notion.

The idea captured by the ±prp-definition is as follows: fixing the key, you effectively get
a “new” permutation for each tweak, and, despite the common key, all of these permutations
behave as though independent. They all look like random permutation, even in the presence of
a decryption oracle. Unlike the key, the tweak is not expected to be kept secret.

In applications that use tweakable blockciphers, it is often important that it is fast to change
the tweak—faster than changing the blockcipher’s key would be. It is desirable if it is especially
fast to change the tweaks if the tweaks are being generated in whatever natural sequence arises
in the utilizing mode.

6.4. VIL tweakable blockciphers. Tweakable blockciphers as defined in §6.3 to take in a
plaintext of some one, fixed length, the blocksize of the blockcipher. There is no problem in

56

extending the notion to allow inputs of multiple different lengths. (This may sound unnecessary
for us to do because n and N are fixed. But be patient.) As a simple example, one might image
a tweakable blockcipher that can operate on blocks of either 128 bits or blocks of 192 bits.
Syntactically, a tweakable blockcipher will have signature Ẽ : K×T ×X → X where X ⊆ {0, 1}∗
and each ET

K(·) = E(K,T, ·) is a length-preserving permutation. Our ±prp-notion of security
can easily be modified to accommodate such an enlarged notion of a tweakable blockcipher: in
the reference experiment, one simply defines the idealized object, Perm(T ,X), to include all
length-preserving permutations on X , one for each tweak T ∈ T .

A blockcipher that can operate on strings of multiple lengths is called a variable-input-length
(VIL) blockcipher. When we speak of VIL-security, as opposed to FIL (fixed-input-length)
security, we mean that the blockcipher’s operation across these different input lengths do not
“interfere” with one another, in the sense that, in the adversary’s attack, we allow it to make
queries of assorted lengths, whatever is found in domain X . We see no harm in continuing to
use the term blockcipher in this VIL setting, but we note that sometimes people prefer to avoid
the term (saying “cipher” or “enciphering scheme” instead) since, to many cryptographers, the
term blockcipher is routinely assumed to mean a conventional blockcipher, one that operates
on strings of some one fixed length.

We note that XTS itself is not intended to be VIL-secure; its blocklength N is fixed.

See [6, 26, 82] for papers and conceptualizations that run along the lines of this section.

6.5. Three tweakable blockciphers associated to XCB. In the context of XTS there are
three tweakable blockciphers that we would would like to name, distinguish, and discuss.

6.5.1 The first tweakable blockcipher is XTS itself, as defined on lines 10–21 of Figure 6.1.
The XTS cipher takes in a key, an N -bit plaintext block P , and a 128-bit tweak i.

6.5.2 The second tweakable blockcipher associated to XTS is XEX2, defined on lines 30–34
of Figure 6.1. The XEX2 cipher takes in a key, an n = 128 bit plaintext block X, and
a tweak T = (i, j) that includes both a 128-bit string i and an integer j ∈ [0 .. 220 − 1].

6.5.3 The third tweakable blockcipher that we associate to XTS is what we call XEX3.
See Figure 6.2, where one will find the definition of this VIL blockcipher, and also a
description of XTS in terms of it. The XEX3 blockcipher takes in a key, a plaintext
block X of 128–255 bits (that is, |X| ∈ [n .. 2n− 1]), and a tweak T = (i, j) that, once
again, includes both a 128-bit string i and a number j ∈ [0 .. 220 − 1].

The view of XTS associated to its description in Figure 6.2—a scheme that is built on top of
XEX3—is, we think, the simplest way to conceptualize what is going on in the mode. In effect,
XTS is XEX3 in ECB-mode. Each block gets passed “its” tweak, but all the blocks are treated
independently. When XEX3 is called by XTS, only m-indexed blocks can be “long”—they will
have n + b bits, where b = N mod n, while all other blocks will have n bits. Note that in the
pseudocode of Figure 6.2 we have changed the indexing so that Pm is a possibly-long final block,
as opposed to a possibly-short final block.

One might call XTS, XEX2, and XEX3 the wide-block, narrow-block, and narrow∗-
block blockciphers associated to the XTS construction. To be clear: while the SISWG calls
XTS a narrow-block encryption scheme, the XTS construction itself is not a narrow-block
scheme; it is a wide-block one.2 It is, apparently, XEX2 that the SISWG is implicitly referring

2 The distinction is not a formal one—we never defined “narrow” and “wide”—but, in the context of XTS,
one can understand narrow-block schemes as operating on n = 128 bits, and wide-block schemes as operating on
N > 128 bits.

57

X

YXEX2

i j

EK1EK2 ∗ α∗

X’ X’’ D

EK
i, j

Y’ D

EK
i, j+1

Y’’XEX3

i j

Y’

40 algorithm XTS i
K(P) XTS mode, equivalent description

41 //K ∈ K, i ∈ {0, 1}128, P ∈ {0, 1}N
42 P0P1 · · ·Pm ← P where m = �|P |/n� − 1 and |Pj | = n for all 0 ≤ j < m, n ≤ |Pm| ≤ 2n− 1

43 for j ← 0 to m do Cj ← XEX3 i,j
K (Pj)

44 return C0 · · ·Cm

50 algorithm XEX3 i,j
K (X) VIL-tweakable blockcipher underlying XTS

51 //K ∈ K, i ∈ {0, 1}128, 0 ≤ j < 220, 128 ≤ |X| < 256
52 if |X| = n then Ordinary block

53 return XEX2 i,j
K (X)

54 else Extended block

55 b← |X| − n
56 X ′ ‖ X ′′ ← X where |X ′| = n

57 Y ′ ‖ D ← XEX2 i,j
K (X ′) where |Y ′′| = b

58 Y ′′ ← XEX2 i,j+1
K (X ′′ ‖ D)

59 return Y ′′ ‖ Y ′

60 endif

Figure 6.2: Alternative definition of XTS, and definition of XEX3. The message is partitioned
into n-bit blocks and a possibly long blocks. Both are processed by the tweakable blockcipher XEX3.

to when speaking of XTS as a narrow-block encryption scheme. Implicit in thinking of XTS
as a narrow-block encryption scheme would seem to be a conflation of the syntax or security
properties of XEX2 with the syntax or security properties of XTS itself.

We suspect that the (partly notational) issues that we have tried to straighten out in this
section are at the heart of a difficulty to talk carefully about XTS: it is bound to be confusing
that there are, implicitly, narrow-block and wide-block tweakable blockciphers on the table at
the same time, as well as tweaks of two different forms. And now we have augmented this
confusion by describing a third tweakable blockcipher, XEX3, which we regard as implicitly
underlying XTS as well.

6.6. Provable security of XEX2. The XEX2 blockcipher on which XTS is built has a good
provable-security result. As a reminder, the XEX2 construction (lines 30–34 of Figure 6.1)
has tweak space T = {0, 1}128 × [0 .. 220 − 1] and the blockcipher E must be AES. But for
thinking about the provable security of XEX2, we will be more general: we will understand
the construction as having a tweak space T = {0, 1}n × [0 .. 2n − 2] and think of it as using an
arbitrary blockcipher E : K × {0, 1}n → {0, 1}n.

The security claim about XEX2 is that it is good according to our ±prp-notion. This result
follows easily from Liskov, Rivest, and Wagner (LRW) [124, Theorem 2] and the fact that α

58

is a primitive element of GF(2n). (Saying that α is primitive means that it generates the
entire multiplicative subgroup of this field.) More specifically, consider first the information-
theoretic setting, where EK1 and EK2 are random independent permutations, π′ and π. Then
the XEX2 construction coincides with the LRW construction [124, Theorem 2] Ẽπ′,h(X) =
π′(X ⊕ h(T))⊕ h(T) where the universal hash function employed is

h(i, j) = π(i) · αj (6.3)

and the multiplication and exponentiation is in GF(2n), the finite field with 2n points. To apply
the theorem cited we must only assess how good is h as an AXU (almost-xor-universal) hash
function, which means asking to bound

ε = max
c∈{0,1}n

(i1,j1) �=(i2,j2)

Pr
π

[
π(i1) · αj1 ⊕ π(i2) · αj2 = c

]
. (6.4)

Now if i1 �= i2 then it is easy to verify that ε ≤ 1/(2n − 1), and if, instead, i1 = i2 and j1 �= j2
then, once again, the same bound holds. As a consequence, [124, Theorem 2] says that, when
using a pair of random permutations to underlie XEX2,

Adv±prp
XEX2[Perm(n),Perm(n)](A) ≤ 3q2

2n − 1
(6.5)

if the adversary A makes at most q queries. Passing to the complexity-theoretic analog, where
one assumes uses a “real” blockcipher E and adds in a term for twice the ±prp-insecurity, is
standard. We comment that it is straightforward to drop the ugly −1 in (6.5) by noting that the
proof of [124, Theorem 2] in the paper’s appendix already gives up more than that in simplifying
the theorem statement.

For results closely related to the strong-PRP security of XEX2, or to improve the constant
“3” in (6.5), see Minematsu [141] and Rogaway [179]. But part of the point of the description
above is to emphasize that, when using two keys, things are simpler than with XEX, and one
need look no further than Liskov, Rivest, and Wagner [124] to find the needed proof.

6.7. Security of XEX2 is not enough. Does it follow from the result just given—the fact
that XEX2 is a “good” tweakable blockcipher—that XTS does what it should do (assuming
AES itself is good as a strong-PRP)? The answer is no, for two related reasons. The first is that
we haven’t said what XTS is supposed to do. It might have nothing to do with XEX2 being
“good.” The second is that XTS is not XEX2; it is a tweaked-ECB-with-ciphertext-stealing
construction that is based on XEX2. Whatever properties XEX2 might, we’d have still to show
that XTS correctly uses XEX2 for whatever its aims may be.

6.8. Security goals for XTS. What is it that XTS should achieve? There are no easy answers
to be found in the IEEE or NIST documents [65, 90], only suggestive hints.

The “syntactic” expectation for XTS is clear and explicit in the IEEE spec [90]: the SISWG
sought a tweakable blockcipher, the tweak being the data-unit’s location. This makes good
sense. But what security property of this object? There are multiple indications that the goal
reaches beyond confidentiality. Recounting points from [90, Appendix D.2], we know that, in
designing XTS,

6.8.1 CTR mode (implicitly, the counter values depending on the data-unit’s location) was
dismissed because of its being trivially malleable: the ciphertext C having plaintext P
can be modified to a ciphertext C ′ having any desired plaintext P ′ by xoring C with
Δ = P ⊕ P ′.

59

6.8.2 CBC mode (implicitly, the IV based on the data-unit’s location) was dismissed because
a ciphertext stored at one location could be moved to another, and the newly relocated
ciphertext will now decrypt to the same value as the original ciphertext, apart from
the first block. (Recall that, with CBC mode, the plaintext block corresponding to
ciphertext block j depends only on the key and ciphertext blocks j − 1 and j.) This
kind of attack should again be considered as a nonmalleability attack [60, 82].

6.8.3 CBC mode (implicitly, the IV based on the data-unit’s location) was also dismissed
because an adversary can intentionally flip a bit of a plaintext by flipping the corre-
sponding it of the ciphertext. This also side-effects one other block of plaintext, but
this side effect might not always matter. Once again, this attack can be considered an
attack on the nonmalleability of the tweakable blockcipher that one aims to construct.

In consideration of the attacks above, one might think that privacy and nonmalleability are the
twin goals of XTS. But such a claim would be too facile, for a number of reasons.

6.8.4 To begin, it’s not even clear what privacy means in this setting. We have in XTS
a deterministic ECB-like mode of operation, so we know that it will leak not only
repetitions of (N -bit) plaintext blocks, but even repetitions of particular (n-bit) chunks
of them.

6.8.5 Similarly, it is not clear what nonmalleability means in this setting; there are inherent
nonmalleability attacks for any ECB-like scheme. Concretely, nonmalleability is sup-
posed to capture the idea that an adversary cannot modify a first ciphertext to create
a second ciphertext whose underlying plaintext is meaningfully related to the underly-
ing plaintext of the first ciphertext. But, with a scheme like XTS, one most certainly
can modify a ciphertext in such a manner: for example, flip a bit of the first block of
ciphertext and you will, with certainty, change the first block of plaintext, but nothing
else. This is a nonmalleability attack of the cipher.

6.8.7 Finally, as we will explain in a moment, the privacy and nonmalleability goals are not
exhaustive of XTS’s security aims.

We can conclude that whatever might be meant by XTS achieving privacy and nonmalleability,
the definition for such notions would be thoroughly contingent on the fact that XTS is an
ECB-like scheme; privacy and nonmalleability would be understood to mean that the scheme
is somehow as private and as nonmalleable as you could hope to get in such a setting. But, in
fact, this won’t be true; XTS will not be as private or as nonmalleable as one might hope to get
in an ECB-like mode. The problem has to do with the handling of the partial final blocks—the
ciphertext-stealing solution that was employed. The technique is too weak to achieve a strong
notion of privacy or nonmalleability, as we will later sketch out.

* * *

We have, so far, only indicated that there are privacy and nonmalleability goals for XTS. But
it should also be acknowledged that there are other, still less rigorously explained or understood
goals for XTS.

As an example of a potential goal, consider the Wikipedia article “Disk Encryption Theory”
[205], which complains that CBC suffers from a “watermarking problem” wherein an adversary
can choose to write some data units (disk sectors) whose ciphertexts in some way “spell out”
some particular, adversarially-chosen value—the adversary has “watermarked” the disk despite
its being encrypted. But this is always possible, under the sort of attack model provided by
our adversary. One uses the folklore trick for creating a covert channel; for example, write a

60

70 algorithm FXTS(i, C) Filter for XTS

71 C1 · · ·Cm ← C where |Cj | = n
72 for j ← 1 to m do

73 if T [i, j, Cj] = undefined then T [i, j, Cj]← Cntij , Cntij ← Cntij + 1
74 Pj ← [T [i, j, Cj]]n
75 P ← P1 · · ·Pm

76 return P

Figure 6.3: Filter function for XTS mode. The program formalizes that which we know to leak by
the mode—for each tweak i, repetitions of each message blocks. See Chapter 3 for a fuller description.
We assume here that all messages are a multiple of n bits.

sequence of random plaintext sectors whose first bits of ciphertext “spell out” whatever message
one wants to send. Use trial-and-error to find such plaintext blocks. As best I can determine,
there is no achievable substance to this adversary-can-watermark complaint; this “vulnerability”
is implicit as soon as one imagines that an adversary can read ciphertexts sectors and write
plaintext sectors.

While the can’t-leave-a-watermark goal may seem to be reaching in terms SISWG’s goals
for XTS—nothing along these lines is mentioned in the spec [90]—it is clear that privacy and
nonmalleability aims do not exhaust the Working Group’s cryptographic goals for XTS. Most
significantly, the XEX2-based method within XTS replaced what had been called the LRW
scheme [8, Slide 13] because of what happens in the latter mode if one encrypts part of the key.
In particular, with LRW (an instantiation of what is in [124]) one has a tweakable blockcipher
Ẽ i

K1 K2(X) = EK1(X ⊕Δ)⊕Δ where Δ = i ·K2 and i ∈ {0, 1}128 is the tweak (the value i an
n-bit string specifying a location on the storage device). The SISWG made the LRW→XEX2
transition after it was recognized that, with LRW, the encryption of key X = K2 would cause
the scheme to completely fail [81, Slides 18–19]. The irony is that XEX too has no provable-
security property along these lines; if it enjoys some sort of KDM (key-dependent message)
security [40, 48], that would be purely by accident. In fact, such an accident does take place: at
least in the ideal-cipher model, it seems possible to prove that XEX and XEX2 are KDM-secure.

Summarizing, at this point we have at least three informally-understood cryptographic goals
for XTS: (1) (limited) privacy (that which is achievable given for an ECB-like tweakable blockci-
pher); (2) (limited) non-malleability (again, that which is achievable for an ECB-like tweakable
blockcipher); and (3) some sort of KDM-security—at least something strong enough to allow
the encryption of ones own key, or parts thereof. Of these three properties, none has been for-
malized in a way appropriate to the current context, and none has been shown to be achieved
by XTS. In short, there is a fairly large gulf between the security of XEX2 as a tweakable
blockcipher and the security of XTS.

6.9. The analytic dilemma. What would next happen in a rigorous treatment of XTS or,
more generally, the problem that XTS aims to solve? One natural path would run about like
this:

One might begin by formalizing the best-achievable-privacy for a tweakable ECB-like
scheme, where one assumes that messages are a multiple of the blocksize n. In Chapter 3
we showed how to formalize this sort of thing for ECB; in our preferred approach, we de-
fined a “filter” F that effectively captures what we know a ciphertext to leak, encoded in
the form of a canonical plaintext that is associated to each ciphertext. We then talk about
being private up-to that which F reveals. The approach is easily adapted to our setting

61

using the filter FXTS defined in Figure 6.3.

One could go on to formalize the best nonmalleability achievable by a tweakable ECB-like
scheme, where one assumes that messages are a multiple of the blocksize n. This does
not appear overly difficult; one takes a definition for nonmalleability in the tweakable-
blockcipher setting [82] and blends this with the filter-function idea, using the same filter
FXTS associated to privacy.

One could then work out a notion for KDM-security in the context of an ECB-like tweakable
blockcipher. This begins to sound rather esoteric and ungainly; it makes more sense to
first develop KDM-security in the context of a PRP-secure (tweakable) blockcipher (KDM-
security is a notion normally spoken of with respect to probabilistic encryption schemes,
either in the symmetric or asymmetric setting [9, 40, 44, 48]).

One would show that applying a tweakable blockcipher secure as a strong-PRP works to
achieve the now-defined notions. One would expect this to be routine, if good definitions
were in place.

To cover the problem XTS aims to solve, one would now have to generalize all of the above
to the case of ciphers that act on messages that are not multiples of n bits. This sounds
highly unpleasant, something that would lead to technical and unconvincing definition.

The original conception for this chapter actually envisaged doing all of the work outlined above.
But the effort amounts to writing a rather substantial academic paper on XTS and, ultimately,
one that would probably not be very interesting. Fundamentally, the source of unpleasantness
is that one simply shouldn’t have to go here, where the “here” entails focusing on an ECB-like
mode-of-operation instead of the mode’s central constituent part. We explain it as follows:

The analysis-of-XTS dilemma: XTS is defined, syntactically, as a particular wide-block,
AES-based mode of operation, so an analysis of XTS is in some sense obliged to focus on
this mode. But specifying security properties for this kind of object, properties achievable
for an ECB-like mode, is something both awkward and new. It would be cleaner—and more
responsive to the commonality between wide-block and narrow-block schemes—to focus
just on the narrow-block “part” embedded in XTS. But what is this narrow-block part? It
doesn’t work to think of it as XEX2, since fractional blocks and their predecessors are not
directly processed by XEX2. It would seem that XEX3 is the “real” constituent part of
XTS. Yet XEX3 does not have strong security properties—in particular, it is not a strong
PRP. Thus when one draws the abstraction boundary where it seems that it “should” be
drawn, all one can say is that the constituent part does not do what it ought to do. This is
not a very satisfying answer.

In the next section we explain what XEX3 “ought” to have achieved, and why.

6.10. What the embedded narrow∗-block scheme “should” have achieved. In order
for one to say something simple and meaningful about XTS, it would be desirable to make
the proclamation that all of the separately-encrypted “chunks” on the mass-storage device are
enciphered by a strong, tweakable-PRP. Perhaps this was the SISWG’s idea, but they didn’t
attend well to fractional final blocks. What we would like to say is that XEX3 is a strong-PRP
on its domain, where its domain has strings of two lengths: n bits (n = 128) and n + b bits
(where b = n+(N mod n)). Things would be pretty simple and clear if this claim were true. In
particular, one could go on to establish that a tweakable strong-PRP achieves good privacy and
non-malleability properties, if one wanted to do so. For a well-designed scheme, one could even

62

establish KDM-security, in the ideal-cipher model. We note, in particular, that it seems true—
and straightforward to prove—that XEX2 achieves KDM-security in the ideal-cipher model.
Thus, by postulating a simple abstraction boundary—a (slightly) VIL blockcipher, one that
works on either n bits or n + b bits—and by constructing a strong-PRP that fits this syntax,
we would be able to say something reasonably simple and strong.

Why is XEX3 not a strong-PRP? Of course it is a strong-PRP if N is a multiple of n (which
may well be the customary case). This was the result discussed in §6.6. But when we are dealing
with an extended block, it is trivial to break XEX3 as a strong-PRP, or even an ordinary PRP.
Simply note that, given an n+ b bit plaintext block, the last bit of ciphertext does not depend
on the last bit of plaintext, a property that trivially allows one to distinguish XEX3 from a
random permutation on n + b bits. The attack should not be viewed as artifactual, flowing
from a too-strong notion of security: if one defines privacy and nonmalleability goals for our
(n+ b)-bit blockcipher, it’s going to be possible to break them for XEX3.

Would it have been possible to redesign XEX3 so as to make it was a strong-PRP? Sure;
there are multiple approaches in the cryptographic literature, although there is nothing that we
would regard as a refined and maximally-efficient scheme. Here are some “canned” approaches
for how to encipher messages of either n or n + b bits (where b ∈ [0 .. n − 1]) starting from an
n-bit blockcipher.

Use the Luby-Rackoff construction (a Feistel network with, here, an AES-based round
function) with four or more rounds [127, 163].

Use the XLS construction from Ristenpart and Rogaway, which would employ three block-
cipher calls and a simple mixing function based on a pair of “orthogonal Latin squares”
[175].

Use the EME* (aka, the EME2) construction from Halevi for this (n + b)-bit string [80].
The mode is poised to be standardized under IEEE P1619.2.

Use some fully-instantiated version of the NR-mode [150, 152]

Note that it is important in some cases to use separated keys for the n-bit enciphering setting
and the n + b bit one. And, for all of these starting points, we are not suggesting that it is
trivial to go from what is in the literature to a nice, standardized scheme. For one thing, it
should be acknowledged that all of the solutions above are going to come out more complex and
less efficient than what XTS does, a simple two-blockcipher-call solution based on ciphertext
stealing. For example, the first of the suggestions will need at least four blockcipher calls,
rather than two. I suspect that there are relatively simple two-blockcipher-call constructions
for enciphering a string of between n+1 and (2n−1) bits, achieving strong-PRP security if the
underlying n-bit blockcipher does. Indeed I comment on this in a recent paper [185, Footnote 4],
but fail to offer up a concrete solution.

Possibly SISWG participants were aware of the possibility of providing a “strong” solution
for enciphering the final n + b bits, but either viewed this case either as unworthy of much
attention or as unworthy of extra computational work. And I cannot assert with any certainty
that such a decision is wrong. All I can say is that what was done leaves one in a bit of a
quandary for saying anything simple, strong, and rigorous about XTS.

6.11. Weakness of ciphertext-stealing in the context of XTS. More concretely, let us
suppose we will be enciphering data-units of one full block and one fractional blocks using XTS.
For clarity, let us omit the swap of the final full and partial blocks of ciphertext (that is, replace

63

the return of Y ′′ ‖ Y ′ by a return of Y ′ ‖ Y ′′ at line 59 of Figure 6.2), which has no security
significance and is explicitly not required in the NIST standard [65].

In the following adversarial attack the data-unit location will be fixed in all adversarial
queries, so we ignore it. We assume N = 255 = 2n − 1. Let the adversary ask an encryption
query of A ‖ a where |A| = 128 and |a| = 127 for random A, a. The adversary gets back a
ciphertext of b ‖ B where |b| = 127 and |B| = 128. Now let adversary asks a decryption query
of b ‖ B′ where |B′| = 128, for a random B′. The adversary gets back a plaintext A′ ‖ a′ where
|A′| = 128 and |a′| = 127. We observe that, half the time, A′ = A.

Is this an attack on privacy? At some level, it is impossible to answer such a question; as
we have already belabored, XTS has no formalized security goal. Maybe this is just a “mix-
and-match” attack of the sort that one knows that any ECB-like scheme will be vulnerable
too. But note that we have mixed-and-matched strings with a granularity of less than 128-
bits, which doesn’t sound like it “ought” to be possible. We’re trying to get some sort of
minimum-granularity of at least 128 bits.

The above is worded to sound like a chosen-ciphertext attack on privacy. We can play
the same sort of games with malleability. The adversary is not supposed to be able to create
ciphertexts that have plaintexts that are “meaningfully related” to the plaintexts for other
ciphertexts, where “meaningfully related” would somehow have to capture something that is
not unavoidable with an ECB-like scheme. But suppose the adversary asks plaintext A ‖ a,
just as before, getting back ciphertext b ‖ B. The adversary creates ciphertext b ‖ B′, just as
before. Its plaintext is, often, quite closely related to the plaintext for a different ciphertext:
half that time, the plaintext begins with A.

This section should perhaps bolster the belief that worrying about notions like privacy and
nonmalleability of ECB-like modes is the wrong way to go; it is going to be clearer and more
compelling to deal only with strong-PRP security.

6.12. Comments to NIST from others. Liskov and Minematsu prepared rather extensive
comments on XTS for NIST [123]. Their main criticism was the choice to using two keys:
XTS’s selection of XEX2 rather than the original XEX. We agree that this choice is not well
justified by the spec [90], but we have never regarded the reduction in the number of blockcipher
keys as a clear or important win. The key-reduction tricks complicate proofs and conceptual
complexity while they improve an efficiency characteristic—key length—of unclear importance.
We comment that recent SISWG meeting minutes (2 Dec 2010) show that the group is working
to add-in a one-key version of XTS. We don’t know why.

The more important critique from Liskov and Minematsu, as far as we are concerned, is
the comment that “There is insufficient analysis of the mode of operation, that is, of the use of
sequential-tweak ECB with ciphertext stealing” [123, p. 4]. This is one of our points, but here
said quite a bit more compactly. Liskov and Minematsu nonetheless suggest that the ciphertext
stealing approach is sound [123, Section 3.4]. My own conclusion is different, but it is bound to
depend on the security notion one (implicitly or explicitly) aims for.

The NIST specification document for XTS [65] is the only NIST Recommendation I have
ever read that is not self-contained: it defines XTS by reference to the IEEE specification
document [90]. This would be undesirable but not a big deal if the IEEE specification were
simply and freely available from NIST and the IEEE. Instead, the only on-line versions of the
IEEE spec that I can locate on the web may well be in violation of the IEEE’s copyright. Vijay
Bharadwaj, David Clunie, Niels Ferguson, and Rich Schroeppel all comment to NIST on the
undesirability of having a NIST standard defined in a way that its only legal acquisition is at

64

cost [31, 52, 174]. I concur.

Vijay Bharadwaj and Neils Ferguson make a number of insightful comments on XTS [31], the
most interesting of which speaks to how the narrowness of the tweakable tweakable blockcipher,
just 16-bytes, can give rise to practical attacks. First the authors sketch how to manipulate
the code for an encrypted program so that its decryption will, with reasonable-probability,
provide a security vulnerability, not just a crash or exception. With a wide-block encryption
scheme, this would appear to be considerably more difficult. The authors similarly explain
how the narrowness of the tweakable blockcipher lets one more accurately and usefully corrupt
encrypted data. Overall, the thrust of their comments is that, even if narrow-block and wide-
block schemes are only quantitatively different, the practical impact of ECB’s malleability in
the two settings is very different.

6.13. Closing remarks. A crucial question we have only just skirted is whether or not it
actually makes sense to use a narrow-block scheme, XTS, instead of a wide-block one, like
EME2, because the former needs less computational work. The computational savings is real—
one can expect EME2 to run at about half the speed of XTS. But the security difference is
real, too, and harder to quantify. The question of whether the tradeoff is “worth it” is more a
security-architecture question than a cryptographic one, and the answer is bound to depend on
the specifics of some product. Yet if one is going to be reading or writing an entire data-unit,
spending more work than to ECB-encipher it already, it seems likely to be preferable to “do the
thing right” and strong-PRP encipher the entire data unit. Were I consulting for a company
making a disk-encryption product, I would probably be steering them away from XTS and
towards a wide-block scheme. “Too expensive” is a facile complaint about bulk encryption, but
often it’s not true.

If the latency issue is actually a problem in some application setting, a well-designed on-line
cipher [12, 185] might be only marginally slower than XTS. It would sit logically between a
narrow-block scheme and a wide-block one in terms of the security property that is delivered.
But it seems likely that an online cipher will still represent an unnecessary security-property
compromise for most application settings.

In the end, XTS is probably a useful mode, one that offers significant advantages to previous
prevailing practice. But were one to standardize only one mechanism for length-preserving,
data-at-rest encryption, a wide-block enciphering scheme would be a better choice. Probably
it is just “historical accident” that a narrow-block scheme is available before a wide-block one,
making it harder to ignore the former and go with the latter.

65

Part II

Authenticity Modes

66

Part II

Authenticity Modes

The following four chapters will evaluate some message authentication codes (MACs), treating,
in turn, the CBC-MAC variants of ISO 9797-1, CMAC, HMAC, and GMAC. Here we bring
together common preliminaries for this material.

II.1. Syntax of a MAC. For our purposes, a message authentication code (MAC) is an
algorithm that takes as input two arguments: a key K and a message M . Both are binary
strings. The algorithm outputs a tag (or, giving the word a second meaning, a MAC). The
tag is another binary string. It’s length is some fixed number of bits, τ , which we call the tag
length. We can thus write the signature of MAC F as F : K ×M→ {0, 1}τ .

The syntax just described is for a deterministic MAC. There are also MACs that are prob-
abilistic, stateful, or nonce-based. They do not concern us in this report except for GMAC,
which is a nonce-based MAC. We will defer an explanation of that wrinkle until Chapter 10;
here we focus on deterministic MACs.

For some MACs, values like that tag length are regarded as parameters of the scheme.
Such values are expected to be fixed within some application, so they are not considered to be
arguments of the MAC so much as deferred choices for arriving at the (fully-specified) algorithm.
Sometimes we may write parameters in brackets, following the name of the MAC. When we
speak of a MAC we may, depending on context, either be thinking of the object with the
parameters specified or unspecified. The former view is used when we need to have a MAC
match the formal syntax we’ve described; the latter view is used when we need to have a MAC
match the description one sees within a specification document.

Besides the tag length, the underlying blockcipher is a parameter on which any blockcipher-
based MAC will depend. The MACs reviewed for this report are all blockcipher-based except
for HMAC, which is based on a cryptographic hash-function instead. In fact, most crypto-
graphic hash functions are also based on blockciphers, so one may, in fact, look upon HMAC as
blockcipher-based, if its underlying hash function is. Classically, though, one thinks of HMAC
as having a different starting point than CMAC, GMAC, or any of the CBC-MACs.

II.2. Security of a MAC. The standard security notion for a MAC is quite simple: it is
security against an adversary that would like to find a single forgery (“existential forgery”)
after it carries out an adaptive chosen-message attack (ACMA). Let F be a MAC, meaning,
again, an algorithm with signature F : K×M→ {0, 1}τ that maps a key K and message M to
its tag T = FK(M). To define security, first, a key K is chosen at random from the key-space K.
Then an adversary A is given oracle access to a pair of oracles:

67

MAC Verification

A

Mi

Ti=FK (Mi)

(Mj, Tj)

MAC Generation

if Tj=FK (Mj)
then 1 else 0

Figure 6.4: Model for MAC security. The adversary A may ask a sequence of MAC-generation
queries interleaved with MAC-verification queries. It’s goal is to forge—to ask a “successful” (1-returning)
MAC-verification query (Mj , Tj) for a message Mj never asked to the MAC-generation oracle.

• A MAC-generation oracle takes as input a messages M ∈ M. The oracle returns
T = FK(M), the MAC of the queried string.

• A MAC-verification oracle takes as input a pair of strings (M,T) ∈ M× {0, 1}τ . The
oracle returns 1 if MACK(M) = T and 0 otherwise.

See Figure 6.4. Note that, as the adversary asks its sequence queries, each query may depend
on the results of prior ones. It is in this sense the adversary is adaptive.

The adversary’s aim is to ask its MAC-verification oracle a query (M,T) that causes it to
output 1 even though the query M was no previously made to the MAC-generation oracle. Such
a pair (M,T) is called a forgery. The adversary wants to forge.

Equivalent to the above, one can say that the adversary’s goals is to ask its MAC-verification
oracle a query (M,T) that causes it to output 1 even though there was no previous query M
to the MAC-generation oracle that produced a response of T . These notions equivalent, in our
context of deterministic MACs, because, for any message M and key K, there’s just one tag T
that’s going to cause the MAC-verification oracle to output 1.

We refer to the adversary’s probability of finding a forgery as its advantage. We may write
Advmac

F (A) for the probability that adversary A finds a forgery when it attacks the MAC F .
The resources of importance are: the number qgen of MAC-generation queries; the number qver
of MAC-verification queries; and the adversary’s running time t, usually assumed to include it’s
description size.

It should be acknowledged that the MAC definition given above is just one possible notion;
there are notions that are stronger, weaker, or incomparable. Among these:

• One could focus on key-recovery attacks instead of forgery attacks. In some sense, key
recovery “misses the point”—the purpose of MAC is not to make keys unrecoverable, but
to make a message’s origin determinable. The difference is seen mostly clearly in examples
like the MAC FK(M) = 0τ , an obviously insecure MAC whose key is never recoverable
with probability exceeding 1/|K|. That said, any MAC can be forged on any message if
the key can be recovered, so key-recovery attacks represent a particularly egregious way
for a MAC to fail.

• One can restrict attention to known-message attacks instead of (adaptive) chosen-

68

message attacks. Here one requires that MAC-generation queries Mi are sampled uni-
formly from some specified distribution on strings. Standards like ISO 9797-1 attempt to
distinguish, in discussing attacks, how many messages are “known” verses “chosen.” The
notion can be formalized, although rarely has it been. To allow both known and chosen
messages, the model is like that in our definition of MAC security except that one would
also support “sample” queries. Such a query returns a pair (M,FK(M)) for a message M
uniformly sampled from some fixed message space X associated to the attack.

• One could discard the MAC-verification oracle and make the adversary output a single
forgery attempt (M,T). Equivalently, one can restrict the adversary to asking the
MAC-verification oracle just qver = 1 query. This notion is actually the “original” one,
going back to [17, 18] following [75]). See Bellare, Goldreich, and Mityagin for a discussion
(reaching beyond deterministic MACs) of the relationship between this notion and our
own [16].

• One can deny credit for guessing by numerically adjusting the advantage according to
the tag length; one would set Advmac

F (A) = Pr[A forges]−2−τ . Or one can go further and
re-normalize advantage to the interval [0, 1] by multiplying the entire right-hand side above
1/(1−2−τ). We are not sure where such tag-length adjusted measures first appeared, but
see [197] for profitable use of such adjusted accounting.

II.3. All PRFs are MACs; all our MACs, except GMAC, are PRFs. All secure and
deterministic MACs considered in this report are not just good as MACs, but, also, good as
pseudorandom functions (PRFs). Syntactically, a PRF looks just like a MAC: it is a map
F : K ×M → {0, 1}τ . The game defining a PRF’s security envisions placing the adversary
into one of two environments. In the first, choose the key K at random from K and then give
the adversary A oracle access to FK(·). In the second, choose a uniformly random function ρ
fromM to {0, 1}τ and give the adversary oracle access to ρ. The adversary tries to predict in
which environment it operates. One defines its advantage in doing this to be

Advprf
F (A) = Pr[K

$←K : AFK(·) ⇒ 1]−
Pr[ρ

$← Func(M, {0, 1}τ) : Aρ(·) ⇒ 1]

the difference in the adversary’s ability to output “1” in each of these two settings. Here
Func(X,Y) denotes the set of all functions from X to Y and endowed with the uniform distri-
bution.

It is a simple and standard fact that if F is secure as a PRF then it is also secure a MAC.
A quantitative formulation of this statement asserts that if there is an adversary A that breaks
F : K × M → {0, 1}τ as a MAC then there is an adversary B that breaks F as a PRF,

where Advprf
F (B) ≥ Advmac

F (A)− 2−τ and where adversary B runs in about the same time as
adversary A and asks a single additional query. Note the additive 2−τ term. Even a “perfect”
PRF will be forgeable with probability 2−τ .

Because of the result above, when one is interested in analyzing a MAC one sometimes
elects to analyze it as a PRF, instead. Effectively, one is showing more in this way—that the
scheme is not only a good MAC, it is also a good PRF. It happens to be the case that all
secure, deterministic MACs that have been analyzed in this report are secure as PRFs, and are
analyzed in just this way.

II.4. Short tags. We mention one of the disadvantages of our notion for MAC-security:
declaring the adversary successful as soon as it forges, the notion is simply not precise enough

69

to deal with the case of short tags (eg, τ = 8), where one expects the adversary to occasionally
forge, and may not be concerned about its doing so. As long as we are proving PRF-security,
short outputs are definitionally treated just fine; if we switch to the MAC notion, however, the
definition effectively fails to capture what one would want to say, that one can’t forge more
often than one “expects” to be able to forge.

II.5. FIL vs. VIL attacks. In describing our notions for MAC security we allowed the
adversary to ask MAC-generation and MAC-verification queries on messages of any length.
Similarly, for our PRF notion of security, the queries could have any length, as long as the
messages were in the domain of the PRF. We can therefore term all of these adversaries as
performing variable input length (VIL) attacks. One achieves VIL-security if one is immune to
such attacks. We could, however, make a restriction and demand that all MAC-generation and
MAC-verification queries use messages of the same length; or all queries to an adversary’s PRF
oracle have the same length. Such attacks would be called fixed input length (FIL) attacks.
Achieving security with respect to this weaker class of attacks would be achieving FIL-security.

Why bother to think FIL-security when VIL-attacks are simple and natural, and defending
against them is not hard? First, because there are simple MACs—the “raw” CBC-MAC being
the outstanding example—that are secure in the FIL-sense but not in the VIL-sense. Second,
it can be computationally cheaper to achieve FIL-security than VIL-security, and, sometimes,
FIL-security is enough, because the receiver knows a priori how long valid messages must be.
Finally, FIL PRFs can be used as a building block for making VIL PRFs, and this is often a
reasonable strategy for their construction.

II.6. Ideal-cipher model for MACs. While we are primarily interested in the “standard”
complexity-theoretic model for MACs, the fact is that many attacks implicitly assume the
ideal-cipher model for stating their results. In addition, assertions like “there’s an effective
attack of 2k time and 2n/2 queries”—or an assertion that there is no such attack—are best
understood in the ideal-cipher model. As a consequence, we explain what the ideal-cipher
model for blockcipher-based MACs entails, even though this model seems not, explicitly, to
have ever been used.

The ideal-cipher model is often credited to Shannon [188], although this is a rather generous
reading of his work. An explicit use of the model, in the setting of constructing a blockcipher
rather than a MAC, is due to Even and Mansour [66], and then Kilian and Rogaway [110].

In our setting, the model would look like this. There is some construction F : {0, 1}k∗ ×
{0, 1}∗ → {0, 1}τ for a MAC based on a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n. We
imagine instantiating the blockcipher with an ideal cipher—a uniformly chosen family of random
permutations on n bits, each one named by a k-bit key K. A random key K∗ ∈ {0, 1}k∗ is
selected for the MAC, likely determining one or more keys for E. The adversary is given oracle
access to E(K,X), E−1(K,Y), and FK∗(M). The adversary’s goal is, as usual, to forge. One
looks at Advmac

F (t, qgen, qver), the maximum probability of forgery over all adversaries that ask
at most t queries to E or E−1 (total) and qgen and qver queries to the MAC-generation and
MAC-verification oracles for F .

The notion can be further refined, as in the complexity-theoretic setting, by distinguish-
ing known-message queries and chosen-message queries. One can also switch the goal to key
recovery, or to forging some randomly chosen message. In short, use of the model permits
rigorous upper and lower bounds, including ones that speak about the impact of key length.
Unfortunately, that has not been the tradition in this setting, and attempting to work out
ideal-cipher-model results for different MACs is beyond the scope of this review.

70

The ideal-cipher model has been seen as moot for goals like message authentication since
secure MACs are easily achieved in the standard model of computation. This thinking is wrong
at two levels: ideal-cipher-model results would better reflect most of the described attacks, and
ideal-cipher-model results would better capture key-length tradeoffs. We see the ideal-cipher
model as a potentially useful adjunct to traditional provable-security analyses in this domain.

71

Chapter 7

CBC-MAC Algorithms 1–6

7.1. Summary. Document ISO/IEC 9797-1:1999 [91] (henceforth ISO 9797-1) is said to define
some six different MAC algorithms, all CBC-MAC variants, referred to in the specification as
MAC Algorithms 1–6. Each scheme takes as input a key and a string of essentially arbitrary
length and produces a tag T . The standard should be praised for its carefully describing
the desired security property [91, Section 3.2.6], which is existential unforgeability under and
adaptive chosen-message attack, the security notion we defined in §II.2.

Many of the ISO 9797-1 schemes are of considerable historical importance. The standard
follows but extends ANSI X9.9, ANSI X9.19, ISO 8731-1, and ISO/IEC 9797. Some algorithms
in ISO 9797-1 enjoy widespread use, particularly in the banking sector.

In analyzing the ISO 9797-1 schemes the first issue to contend with is that the number of
modes defined in the spec is not actually six, but considerably more. This is because the modes
are parameterized not only by the underlying blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n and
tag length τ , where 1 ≤ τ ≤ n, but on one or two further parameters: the padding method and,
in some cases, implicitly, the key-separation method, too.

In Figure 7.1 we summarize the status of the various ISO 9797-1 MACs. Much of this chapter
revolves around explaining the contents of this table. A check mark (�) in column “Pf” of this
table means that we regard the mode as having provable-security results that substantially
establishes the scheme’s goals; the meaning of “provably secure” varies here according to what
are the scheme’s goals. The key goals are summarized in column “Goals.”

Considering the long history of the MACs in ISO 9797-1, our overall assessment is not
very positive. To begin with, there are simply too many schemes. Several of them have been
shown not to achieve their cryptographic objectives. Other schemes have no provable-security
results in support of their design aims, or else have provable-security results that only partially
establish what is wanted. There are no proofs in evidence of constructions for enhanced key-
length, while the first provable-security result for beyond-birthday-bound security has only just
arrived. Some of the schemes target an overly weak cryptographic goal—VIL security—an
invitation to mechanism misuse. Beyond all this, the motivation underlying the design and
selection of the schemes is somewhat out-of-date: while it would be an overstatement to assert
that 64-bit blockciphers are dead, the prevalence of 128-bit designs, particularly AES, and
diminishing support for 64-bit blockciphers, particularly the no-longer-FIPS-approved DES,
combine to make enhanced-key-length or beyond-birthday-bound designs of marginal practical
utility. Finally, the ISO 9797-1 schemes were simply not designed with a provable-security
viewpoint in mind, leading not only to some bad schemes and to problems in how key-separation
is envisioned to work. All of these issues conspire to create a standard that comes across rather

72

Alg Pad Sep Klen Mlen #Calls Goals Proof Attack Ref

1 1 — k [0 ..∞) �μ/n B F � — [18]

1 2 — k [0 ..∞) �μ′/n B V — � folklore

1 3 — k [0 .. 2n−1] �μ/n+ 1 B V � — [167]

2 1 opt k, 2k [0 ..∞) �μ/n+ 1 B F � — [167]

2 2 opt k, 2k [0 ..∞) �μ′/n+ 1 B V � — [167]

2 3 opt k, 2k [0 .. 2n−1] �μ/n+ 2 B V � — [167]

3 1 — 2k [0 ..∞) �μ/n+ 2 B F K � � [18]

3 2 — 2k [0 ..∞) �μ′/n+ 2 B V K � � [39]

3 3 — 2k [0 .. 2n−1] �μ/n+ 3 B V K � � [167]

4 1 � 2k [n+1 ..∞] �μ/n+ 2 B F K � � [55]

4 2 � 2k [n ..∞] �μ′/n+ 2 B V K � � [55]

4 3 � 2k [0 .. 2n−1] �μ/n+ 3 B V K � � [54]

5 1 � k [0 ..∞) 2�μ/n C F — � [105]

5 2 � k [0 ..∞) 2�μ′/n C V — � [105]

5 3 � k [0 .. 2n−1] 2�μ/n+ 2 C V — — —

6 1 � 2k [n+1 ..∞] 2�μ/n+ 4 C F K � — [206]

6 2 � 2k [n ..∞] 2�μ′/n+ 4 C V K � — [206]

6 3 � 2k [0 .. 2n−1] 2�μ/n+ 6 C V K � — [206]

Figure 7.1: MAC Algorithms of ISO 9797-1. The six algorithms (Alg) depend on blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n, tag length τ , and padding method i ∈ {1, 2, 3} (Pad). Column Sep
indicates if the mode depends on a key-separation algorithm (opt for optional). ColumnsKlen andMlen
give the key length and permitted message lengths. Column #Calls gives the number of blockcipher
calls to process a μ-bit string. Here μ′ = μ+1. Column Goals defines the “intended” security goals:
B for provable security up to the birthday bound; C for provable security beyond the birthday bound;
F for proofs in the FIL (fixed input length) setting; V for proofs in the VIL (variable input length)
setting; K for enhanced key-length security. Column Pf indicates if there are provable-security results
to evidence the specified goals—excluding goal K, for which no proofs are known. In the presence of
key-separation, some of the provable-security results would be in the ideal-cipher model, or would assume
an all-distinct-keys variant. Column Atk indicates if there are “damaging” attacks. This is inherently
subjective, and not truly binary; for example, I indicate that there are attacks on all of Algorithms 3
and 4 because one can recover the key with time complexity substantially less than one would expect—
not because the attacks are necessarily practical. The attacks vary in effectiveness. Column Ref gives
the most important reference.

73

as a relic from another age, even though it’s not so very old.

For the reasons just described, I recommend against blanket adoption of the ISO 9797-1
schemes. Considerably fewer options should be supported for MAC Algorithms 1–4, if any of
these modes are to be supported at all, while MAC Algorithms 5–6 should be avoided as spec-
ified. The “best” algorithms in the too-big basket of ISO 9797-1 MACs are: MAC Algorithm 1
with padding schemes 1 or 3; the two-key version of MAC Algorithms 2 with padding scheme 2
and two independent keys; MAC Algorithm 3 with padding scheme 2; and a 6-key version (which
is not actually permitted in the spec) of MAC Algorithm 6 with padding scheme 2. For each
of these algorithms, more than with the rest, one could argue for inclusion based on simplicity,
widespread usage, historical importance, cryptanalytic history, or provable-security results.

Alternatively, one doesn’t have to go the route of picking and choosing among the many
ISO 9797-1 CBC-MAC variants; one could reject the batch in toto, in spite of their historical
importance. The raison d’être for all this complexity is, fundamentally, to overcome the small
blocksize and short key length of DES. The extent of support for ISO 9797-1 schemes would
probably depend on how committed on is to legacy 64-bit blockciphers and modes.

Overall, the CMAC algorithm represents a cleaner choice as a CBC-MAC variant, and it
does all that a CBCMAC-variant should if one is assuming a modern 128-bit blockciphers
underneath. What that algorithm does not do is to provide good protection when the key
length or block length are short.

7.2. The ISO/IEC 9797-1:2010 final draft. A few days before this report was due I learned
from Bart Preneel that an effort has been underway, since 2007, to revise ISO/IEC 9797-1:1999.
The final draft of the revision, ISO/IEC FDIS 9797-1:2010 [93], has just been approved, so it is
likely that the revised standard will be published this year. The main changes in 9797-1 are as
follows:

1. MAC Algorithms 5 and 6 have been eliminated (beyond-birthday-bound security is no
longer a supported goal for any of the 9797-1 schemes);

2. A new MAC Algorithms 5 has been added. It is the CMAC algorithm (see Chapter 8).

3. A new MAC Algorithm 6 has been added. It is a scheme similar to but more efficient
than MAC Algorithms 2 and 3 (one just switches keys for the final blockcipher call).

4. Key separation is handed better than before. It is much more explicit than before, and
a conventional and provable-security-friendly method (an approach using a master key,
CTR mode, and a blockcipher) has now been pinned down.

It is beyond the scope of this review to provide a proper evaluation of the updated ISO standard.
Revision ISO/IEC FDIS 9797-1:2010, which has been available to ISO members since at least
2010-12-01, might well have been a better target for my evaluation than the 1999 edition of the
standard. But I learned of the coming edition of the standard too late to suggest substituting
it for my evaluative target.

7.3. Some surveys. Quite a bit has been written on attacks of the various MAC Algorithms
of ISO 9797-1 (rather less has been written on relevant provable-security results). We point the
reader to Brincat and Mitchell [47] and Joux, Poupard, and Stern [105] for nice summaries of
existing attacks (as well as those authors’ new results). See too the lecture slides from a talk
by Bart Preneel [169].

74

7.4. New notation. We now move on to describing the schemes of the ISO standard. While the
spec is not long—a total of 16 pages, with all the algorithms defined in just the first six—it is not
described along conceptual lines or notation that we like. (For example, the key-derivation maps
that are crucial to some of the techniques are never explicitly named; the initial transformation
would be better conceptualized before the first block is processed; and we don’t like notational
choices that include calling the underlying blockcipher e (and sometimes “e”), using Hq and G
for strings, and so on. What we describe in this chapter is fully equivalent to what is in the
specification document, but we have tried to clean it up, produce nice diagrams, and so on.

7.5. Padding methods. Each of the ISO 9797-1 algorithms depends on a padding method.
One can consider the padding method as a parameter of the schemes, although changing this
parameter so changes the nature of the scheme—including its domain—that one may prefer to
think of each padding method as determining a fundamentally different scheme.

Fix the blocklength n of the underlying blockcipher. We will refer to the three padding
methods as Pad1, Pad2, and Pad3. Each is a map from strings to strings. Each of these maps
may be used with each of the six specified MAC algorithms, creating, it would seem, some 18
different MAC schemes. (We will see soon why this remains an under-accounting.) The three
padding methods are defined as follows:

7.5.1 Pad1 is the 0
∗-appending padding technique. The messageM is mapped toM 0i where i

is the least nonnegative number such that |M |+ i is a positive multiple of n.

7.5.2 Pad2 is the 10∗-appending padding technique. The message M is mapped to M 10i

where i is the least nonnegative number such that |M | + i + 1 is a positive multiple
of n.

7.5.3 Pad3 is the length-prepending padding technique. The message M is mapped to LM 0i

where i is the least nonnegative number such that |M | + i is a positive multiple of n
and where L is the binary encoding of |M | into a field of n bits. To make the encoding
of |M | fit into L one insists for Pad3 that the message M satisfy 0 ≤ |M | ≤ 2n − 1.

The idea is that one first applies the padding method and then applies the MAC Algorithm.
The composite mechanism is the actual MAC, the object interest.

7.6. Truncation. Each of the ISO 9797-1 MAC algorithms depends on a blockcipher E :
{0, 1}k×{0, 1}n → {0, 1}n and a padding method Pad from among those in {Pad1,Pad2,Pad3}.
Beyond this, each mode is parameterized by a tag length, an integer τ ∈ [1 .. n]. The output of
all schemes is truncated to this number of bits (take the first, or most significant, τ bits). In
short, the technique is to: (i) pad, (ii) apply the “core” algorithm (that is, Algorithm 1–6), and
then (iii) truncate the output to τ bits.

The purpose of truncation is normally imagined to be the reduction of communications
complexity; one sends 64-bits instead of 128 bits, say, because it saves eight bytes and a forging
probability of 2−64 is, usually, quite adequate. All ISO 9797-1 MACs are, presumably, PRFs,
and truncation of a PRF gives a PRF that is, with respect to the Advprf -notion, just as good.
In other words, truncation of a MAC to τ bits never harms the PRF-security already enjoyed
by a construction beyond the 2−τ risk of forgery that one inherently incurs by the adversary
simply guessing a τ -bit tag.

7.7. Key-separation. As a final parameter, some of the ISO 9797-1 MAC Algorithms employ a
key-separation algorithm, which we denote by Sep. We will describe later what are the inputs and

75

Raw CBC-MAC

EK EK EK EK

M1 M2 M3 M4

T

00 algorithm CBCMACK(M) Raw CBC-MAC

01 if |M | is not a positive multiple of n then return Invalid
02 M1 · · ·Mm ←M where |Mi| = n
03 C0 ← 0n

04 for i← 1 to m do Ci ← EK(Mi ⊕ Ci−1)
05 return Cm

Figure 7.2: The raw CBC-MAC. The algorithm is parameterized by an n-bit blockcipher E. The
string being processed must have mn bits for some m ≥ 1.

outputs to these key-separation maps. Key separation is an area where the standard is especially
bad: the key-separation maps are never even named, nor are their significant cryptographic
properties specified. The omission means that the standard’s MAC Algorithms 4, 5 and 6,
as well as the key-length-k version of MAC Algorithm 2, are all underspecified; one can’t, for
example, publish test vectors for any of these modes, since no definitive method is indicated to
produce the internal keys. Beyond this, the example key-separation methods described in the
standard would destroy any blockcipher-based provable-security claims, as they depend on ad
hoc ways to derive keys, ways that interact badly with the PRF and PRP notions of security,
which do not guarantee unrelated maps EK and EK′ for related but distinct keys K and K ′.

7.8. Raw CBC-MAC. We have not yet defined any of the ISO 9797-1 MACs. Before we do
so, it is useful to define and review the MAC from which they spring—what we call the “raw”
CBC-MAC.

The raw CBC-MAC, which we also denote as CBCMAC, is specified in Figure 7.2. The
algorithm is classical, underlying the techniques described not only in ISO 9797-1 but also
ANSI X9.9, ANSI X9.19, FIPS 81, FIPS 113, ISO 8731-1, ISO 9807, and ISO 9797. The raw
CBC-MAC can be considered as a derivative of the CBC encryption scheme (Chapter 4): the
message M that we wish to MAC is CBC-encrypted, but only the final block of ciphertext is
returned as the MAC.

While useful and classical, the raw CBC-MAC has some major restrictions, some of which
underlie the many choices offered in ISO 9797-1. We single out five different issues:

7.8.1 Restricted domain. The input to the raw CBC-MAC must be a positive multiple of n
bits, where n is the blocklength of the underlying blockcipher E : {0, 1}k × {0, 1}n →
{0, 1}n; the algorithm is not defined for other input lengths. Since real-world messages
may have other lengths, for a generally-useful standard the raw CBC-MAC is combined
with additional technique—for example, padding techniques like those defined before—

76

to make it fully usable.

7.8.2 Cut-and-paste attacks. When the adversary may ask messages of varying lengths,
the raw CBC-MAC is simply wrong : it is easy for the adversary to forge. As a simple
example, suppose the adversary obtains T = CBCMACK(M) for some arbitrary single-
block M . Then the adversary can forge the message M ‖ (M ⊕ T) with a tag of T .
Recalling the discussion from §II.5 we say that the raw CBC-MAC is not VIL (variable
input length) secure; it is only FIL (fixed input length) secure. What is fixed or
variable is the length mn of queries the adversary may ask—including the length mn
of its forgery attempt.

7.8.3 Birthday attacks. Even if we fix all strings to have the same message length, there will
be birthday attacks on the CBC-MAC, meaning attacks that need about

√
N queries,

where N = 2n, to forge a string. This is not much of a problem when the underlying
blockcipher is AES, with its n = 128 bit blocks, but it is a potential problem when
the blockcipher is DES, or some other n = 64 bit blockcipher. Birthday attacks are
not limited to the raw CBC-MAC; they arise in any CBCMAC-like mode where one
chains ones way through a sequence of blocks using an n-bit blockcipher; Preneel and
van Oorschot [172] and Preneel [171]. Recent birthday-bound attacks on CBCMAC-like
constructions are more damaging still [102], since they allow selected forgeries.

7.8.4 Key-guessing attacks. When k is the length of the underlying blockcipher, the
underlying key for the raw CBC-MAC can be recovered—and arbitrary messages then
forged—if the adversary spends 2k time and has a handful of plaintext/ciphertext pairs
(at least n/k, say). This is not much of a problem when the underlying blockcipher is
AES, with its keys of k ≥ 128 bits, but it is a problem when the blockcipher is DES,
or some other blockcipher with an overly short key.

7.8.5 Efficiency issues. First, the number of blockcipher calls needed to MAC a message M
is proportional to the message length—|M |/n calls are used. Second, these calls must be
computed serially, one after another. The latter characteristic can slow down modern
processors, not just dedicated crypto-hardware. Neither restriction is essential to a
blockcipher-based MAC. In some applications, either of these efficiency restrictions can
be problematic.

In response to these concerns,

7.8.1∗ All algorithms in ISO 9797-1 aim to overcome the limited-domain restriction. They do
so by beginning the message authentication process with a mandatory padding step,
using one of the three mechanisms Pad1, Pad2, or Pad3.

7.8.2∗ Many of the ISO 9797-1 schemes aim to overcome cut-and-paste attacks. We will assert
that the “intent” of using Pad2 or Pad3 instead of Pad1 includes overcoming this attack
and achieving VIL security. Use of type-1 padding leads to, at best, FIL security over
{0, 1}∗ since strings M and M 0i will have identical MACs as long they have the same
number of blocks, meaning �|M |/n = �(|M |+ i)/n. This was understood to the ISO
9797-1 designers, as made clear in [91, Annex B].

7.8.3∗ The designers of ISO 9797-1 thought that their MAC Algorithms 5 and 6 would over-
come birthday attacks [91, Annex B]. We will see shortly that this belief was false for
MAC Algorithm 5 (there is an attack by Coppersmith, Knudsen, and Mitchell [54, 55])
and true for MAC Algorithm 6 (there is a recent proof by Yasuda [206]).

7.8.4∗ The designers of ISO 9797-1 thought that their MAC Algorithms 4 and 6 would over-

77

come key-guessing attacks [91, Annex B]. For MAC Algorithm 4, we will see, this has
been shown to be false [54, 55]. For MAC Algorithm 6 the question remains open;
no attacks or provable-security results exist to support or rule-out the conjecture. A
random-oracle-model result ought to be possible in this case.

7.8.5∗ The designers of ISO 9797-1 did not try to overcome the CBCMAC efficiency issues (lack
of parallelizability and proportional-to-message-length blockcipher use). This makes
sense; overcoming these limitations would take one outside the realm of any CBCMAC-
like scheme.

7.9. Key provable-security results. The following results underlie some of the comments we
make on the ISO 9797-1 schemes. While we will repeat some of this material when the relevant
schemes are defined, it seems desirable to bring together in one place the most significant
provable-security results on the CBCMAC and CBCMAC-like schemes that arise in ISO 9797-1.

7.9.1 Bellare, Kilian, and Rogaway [18] have proven the FIL-security of the raw CBC-MAC
The quantitative theorem statement shows that an adversary that asks q queries, each
having a length of m blocks, can forge with probability that is bounded above by
2−τ +2q2m2/2n plus the insecurity of the underlying blockcipher, Advprp

E , as a random
permutation. (Here and elsewhere, we sometimes assume a single forgery attempt.)
What is actually demonstrated of the raw CBC-MAC is security as a (fixed-input-
length) PRF, not just as a MAC.

7.9.2 Petrank and Rackoff [167] extended the results above to show that the raw CBC-MAC
retains its provable-security in the VIL setting if the message space is prefix free. Say-
ing that the message space is prefix-free means is that the adversary may not ask
messages M and M ′ where one is a prefix of the other. One way to obtain a prefix-free
encoding is the length-prepending method Pad3. There are other prefix-free encoding-
schemes too. One problem with the length-prepending approach is that it is not on-line:
one needs to know the length of M before one can begin the process of MACing it.
Petrank and Rackoff also prove security for the encrypted CBCMAC, “EMAC,” where
the CBCMAC result in enciphered using the same blockcipher with a separate and
independent key. As we will see, this is essentially MAC Algorithm 2 of ISO 9797-1.
The encrypted CBCMAC is online. For both Petrank-Rackoff results, security is in
the VIL PRF-sense, and it falls off in σ2/2n plus the PRF-insecurity of the underlying
blockcipher. Here σ is the total number of n-bit blocks asked by the adversary.

7.9.3 Black and Rogaway [39] proved VIL security for CBCMAC variants that include MAC
Algorithms 2 and 3 with padding method 2. Their work also simplifies the proof of
Petrank and Rackoff [167], connecting the method used in MAC Algorithms 2 and 3 to
Carter-Wegman universal hashing [50, 201].

7.9.4 Nandi [149], following earlier work by Bellare, Pietrzak, and Rogaway [24], Bernstein
[29], and Nandi [148], has provided the best bounds to date for the CBCMAC: on
a prefix-free message space, an adversary that asks q queries that total σ blocks will
achieve PRF-advantage of at most 11σq/2n provided each query is of 2n/3−1 or fewer
blocks.

7.9.5 Pietrzak [168], following Bellare, Pietrzak, and Rogaway [24], provides the best bound
on MAC Algorithm 2 (EMAC), bounding an adversary’s PRF-advantage by q2/2n,
when messages are of m ≤ 2n/8 blocks. The best prior bound had a low-order depen-
dency on m, taking the form q2mo(1)/2n.

78

EK EK EK EK

TAG

MAC Algorithm 1

M1 M2 M3 M4

T

MSBτ

10 algorithm ALG1K(M) MAC Algorithm 1

11 M ← Pad(M)
12 Tag← CBCMACK(M)
13 T ← MSBτ (Tag)
14 return T

Figure 7.3: MAC Algorithm 1. The scheme ALG1 depends on parameters Pad, E, and τ . Our
definition employs the raw CBC-MAC, as defined in Figure 7.2.

7.9.6 Yasuda [206] has recently provided the first beyond-the-birthday bound provable-security
results for a CBCMAC-like scheme. He focuses his attention on a MAC that consists
of the xor of two independent copies of EMAC. But, as Yasuda himself points out, the
results also apply to MAC Algorithm 6 (with any form of padding).

Conspicuously missing from the provable-security results on the CBC-MAC is anything demon-
strating that there is cryptographic value in truncation. Also absent is any result on the effective
key-length of CBCMAC-like schemes—results that, presumably, would be in the ideal-cipher
mode.

7.10. Bracket-notation for attacks. Appendix B of ISO 9797-1 employs a compact notation
to summarize the efficiency of an attack on a MAC: one writes a bracketed four-tuple [t, a, b, c]
where t represents the running time, a represents the number of known message/MAC pairs,
b represents the number of chosen message/MAC pairs, and c represents the number of on-
line verification queries. A good deal of follow-on work has adopted this same notation, or
simplifications of it. The notation is never formally defined, although it certainly could be if
one assumes an ideal-cipher model and defines separate known, chosen, and verification queries
for the adversary. We will occasionally use a simplified version of the notation, retaining just
[t, a+ b+ c]: time and number of queries. To make this rigorous, one would assume the ideal-
cipher model and say that a [t, q] attack asks at most t blockcipher queries, q MAC-generation
queries, and achieves forging advantage of at least, say, 1/4.

7.11. MAC Algorithm 1. We are now ready discuss each of the ISO 9797-1 schemes in turn.
This first algorithm, the “basic” CBC-MAC, is the raw CBC-MAC except for the inclusion of
padding at the beginning and truncation at the end. See Figure 7.3. The method seems to begin

79

with ANSI X9.9 (1982 for the original version) [4], where E = DES, τ = 32, and Pad = Pad1.

Assuming that E is a PRP, the VIL security of ALG1 depends on the choice of Pad and τ .
We recall first that Pad = Pad1 will never give rise to a VIL-secure scheme, as already described;
messages 0 and 00, for example, will have identical MACs. The value of τ is not relevant.

Let’s assume τ = n, the blocksize of E. One might be tempted to think that Pad2 may
fare better than Pad1, as no two messages pad to the same string. This would be wrong. As
an example, let the adversary query (n − 1)-bit strings until it finds one, M , where the tag
T = EK(M ‖ 1) ends in a 0-bit. The adversary will need just two expected trials. Then the
adversary can forge a tag for M ‖ 1 ‖ T [1 .. n − 1], as the MAC of this string will once again
be T .

If τ is sufficiently small, like τ = n/2, then the simple attacks we have just described on
ALG1/Pad2 do not work. But Knudsen has shown [113] that truncation doesn’t help nearly as
much as one would hope; there remains an attack of complexity 2(n−τ)/2 queries. Concretely,
using MAC Algorithm 1 with a 64-bit blockcipher (say DES or triple-DES) and truncating to
32-bits will admit forgeries with just 217 queries. Using the (streamlined) bracket notation, one
would assert that there’s a [0, 217] attack. In short, while truncation doesn’t “damage” a PRF,
it does not, as one might hope, transform this particular FIL-secure PRF into a just-as-sound
VIL-secure one.

Use of ALG1 with padding Pad3 does give rise to a VIL-secure MAC. This is an instance of
the Petrank and Rackoff result [167]: length-prepending is a prefix-free encoding.

The provable security results for MAC Algorithm 1 (FIL-security with padding method-1,
or VIL-security with padding-method 3) go only as far as the birthday bound: the PRP-
advantage falls off in σq/2n if the adversary asks σ blocks worth of queries, meaning that there
is no provable-security assurance at around 2n/2 queries (or 2k time) [18, 149]. These bounds
are tight: there are simple “birthday attacks” on MAC Algorithm 1 (padding methods 1 or 3)
that forge with about 2n/2 blocks. Indeed this is true for any iterated MAC with an n-bit
pipe. Such attacks are described, for example, by Preneel and van Oorschot [171]. The idea is
easy. Assuming still that τ = n, let the adversary ask three-block messages, for example, with
a fixed third block and random blocks 1 and 2. When a collision is found, MACK(ABC) =
MACK(A′B′C), we will also have that MACK(ABD) = MACK(A′B′D) for any D. So asking
for the MAC of ABD lets one forge the MAC for A′B′D. More sophisticated and productive
birthday attacks also exist. See [102], for example, for recent work in this direction.

It is unfortunate that ALG1’s basic security properties depend in a complicated way on the
values of Padi and τ , even assuming that the blockcipher E is a good PRP. One cannot make
simple statements, like “ALG1 is a good PRF assuming the underlying blockcipher is a good
PRP” since the statement is not always true.

7.12. MAC Algorithm 2. The schemes—we regard there as being two—are defined in
Figure 7.4. In the more “basic” variant, ALG2A, the MAC key has 2k bits; keys are of the
form K ‖ K ′ where K,K ′ ∈ {0, 1}k are keys for the underlying blockcipher. The key K ′ is used
to encrypt the raw CBC-MAC prior to truncation. Mode ALG2B is identical except that some
key derivation function, which we call Sep, defines K ′ from K.

MAC Algorithm 2 with type-1 padding emerged during the EU’s RACE project, where,
when used with DES, it is named the RIPE-MAC1 [45]. Petrank and Rackoff [167] studied the
variant of ALG2A with no padding and restricted to strings that are a multiple of n bits. They
called the method EMAC, for the Encrypted (CBC-)MAC. When Black and Rogaway looked
at the scheme, they renamed it ECBC [38], as three names weren’t yet enough.

80

EK EK EK EK

MAC Algorithm 2

Tag

EK’

TAG

M1 M2 M3 M4

T

MSBτ

20 algorithm ALG2AK K′(M) MAC Algorithm 2A

21 M ← Pad(M)
22 TAG← CBCMACK(M)
22 Tag← EK′(TAG)
24 T ← MSBτ (Tag)
25 return T

26 algorithm ALG2BJ(M) MAC Algorithm 2B

27 K ‖ K ′ ← Sep(J)
28 return ALG2.2K K′(M).

Figure 7.4: MAC Algorithm 2. Parameters are Pad, E, and τ . In variant-A (my terminology) the
underlying key is a pair of k-bit strings K,K ′ where the blockcipher is E : {0, 1}k × {0, 1}n → {0, 1}n.
In variant-B there is an additional parameter, Sep, and K K ′ is determined by applying this to the k-bit
key J .

Let us begin with ALG2A. As always, VIL security is not achieved with Pad1 padding.
But it is achieved (up to the birthday bound) with Pad2 padding. The result follows from
the Petrank and Rackoff result [167], which was quantitatively improved by Bellare, Pietrzak,
and Rogaway [24] and Pietrzak [168]. Even though those authors assumed all messages were
a multiple of n bits and no padding is used, it is easy to establish that that any PRF that is
VIL-secure on ({0, 1}n)+ will become a VIL-secure PRF on all of {0, 1}∗ when composed first
with Pad2. The reduction is tight (meaning there is no significant loss in quantitative provable
security).

Simplifying the Petrank-Rackoff proof, it is easy to see why ALG2A is VIL-secure to the
birthday bound. The idea is contained in Black and Rogaway [38]. In the proof one is working
in the information-theoretic setting, passing to the complexity-theoretic setting only at the
end. So mentally replace each EK in Figure 7.4 by a random permutation π, and mentally
replace EK′ by an independent random permutation π′. Conceptually group together all that

81

goes on in the CBCMAC portion of the scheme. One establishes that it, the raw CBC-MAC
over a random permutation, is an almost-universal hash-function. Here this means that, for
M �= M ′, Prπ[CBCMACπ(M) = CBCMACπ(M

′)] is small—about m2/2n. Here M and M ′

have m or fewer blocks and the probability is taken over a random n-bit to n-bit permutation π.
One then observes that enciphering the output of any almost-universal hash-function with an
independently chosen random permutation makes a good PRF—and hence a good MAC. This
is the basic idea of the Carter-Wegman approach to making a MAC [50, 201] (although those
authors did not imagine using a blockcipher; they thought to use a one-time pad).

As for the use of Pad3 padding in MAC Algorithm 2, this would seem to be a poor choice,
insofar as the extra blockcipher call at the end is already designed to provide VIL security. Still,
since one obtains VIL PRF-security without the extra blockcipher call using type-3 padding (see
the discussion of MAC Algorithm 1), its inclusion does nothing to compromise the VIL PRF
property; with type-3 padding, MAC Algorithm 2 would be secure (to the birthday bound) even
were K ′ made public.

As for ALG2B, a fundamental question to ask is what property the key-separation algorithm
Sep needs to have. The ISO standard says nothing in this direction—and what it does say goes
against achieving provable-security guarantees, and is even self-contradictory. The spec begins
by saying [91, p. 5, column 1] that the value of K ′ (inexplicably named K ′′′ in the original spec)
may be derived from K in such a way that the two are different. This would suggest that line 27
of Figure 7.4 misrepresents the mode’s key separation; it should say K ′ ← Sep(K), with K,
not some (invented) J , as the key at line 26. But [91, Section 7.2, note 1] goes on to say that
another way to do the key-separation is to derive both K and K ′ from a common master key.
As this way is more general—and more closely hits the mark on what one should do—we have
generously elevated this remark into a description of how ALG2B works.

Also in [91, Section 7.2, note 1] there is a concrete suggestion illustrating the sort of key
separation the authors have in mind: they say to let K = L and let K ′ be L after complementing
every other run of four bits, beginning with the first. If key separation like this is used, there
will be no chance for a provable-security guarantee regardless of the padding method used—
not under the PRP assumption on E. This is because we will produce related keys and the
PRP-assumption says nothing about how the blockcipher E will behave on related keys—one
may well have related behaviors. To be concrete, assume we have a PRP-secure blockcipher
E : {0, 1}k × {0, 1}n → {0, 1}n. From it one can define the blockcipher E′ : {0, 1}k × {0, 1}n →
{0, 1}n by asserting that E′

K(X) = EK(X) if the first bit of K is 0, and E′
K(X) = DK′(X) if

the first bit of K is 1, where K ′ is K with every other run of four bits complemented, beginning
with the first. It is easy to see that if E is a secure PRP then so is E′. But using E′ in the
suggested construction is trivial to break, since the final pair of encryptions, E′

K ◦ E′
K′ , is just

the identity map.

A better approach for key separation would have been to use a more standard and provable-
security-friendly key-separation technique, like K = EJ(C1) and K ′ = EJ(C2) for distinct n-bit
constants C1 and C2. Use of such a technique would allow one to claim provable security for
ALG2B under the corresponding conditions on ALG2A.

One can also obtain provable-security results even for ad hoc techniques like the spec’s bit-
flipping method if one switches to regarding the blockcipher as an ideal cipher—in other words,
if one switches to the ideal-cipher model. But one should not need to be making such a strong
assumption (or model) in the setting of providing a secure MAC. We believe that the designers
of the ISO 9797-1 spec often did regard the underlying blockcipher as ideal. One sees this, for
example, in statements like “It is assumed that the block cipher has no weaknesses” [91, p. 13,
column 1], a sentence that is hard to make sense of except to say that one is thinking in terms

82

of the ideal-cipher model.

Note that, instead of moving to the ideal-cipher model in the presence of key-separation,
one could remain in the blockcipher-as-a-PRP world but model the key separation itself as a
random oracle. The problem with this viewpoint is that the suggested key-separation schemes
are clearly not RO-like: one flips some bits, say, rather than applying a hash function.

The under-specified and ad hoc key-separation mechanisms of ISO 9797-1 are a place where
once sees quite clearly the absence of a provable-security informed design.

The benefit MAC Algorithm 2 compared to MAC Algorithm 1 is to achieve VIL-security
when combined with type-2 padding. Type-2 padding is preferable to type-3 padding not only
because it saves a blockcipher call but, also, because it is on-line: one does not need to know
the length of the message M in advance before beginning to compute its MAC. Where the spec
goes wrong is in allowing too many additional options—type-1 padding, type-3 padding, and
key separation.

Provable-security to the birthday bound [24] is once again tight; regardless of the padding
method used; there are known attacks that employ q queries to get forging advantage of about
q2/2n. Such attacks are described, for example, by Preneel and van Oorschot [171].

If one is using DES as the underlying blockcipher, or any other blockcipher with a too-short
key, then key-guessing attacks will continue to be an issue with MAC Algorithm 2, despite its
option for a length-2k key. With the mode, using a standard meet-in-the-middle attack and
assuming τ = n, one can recover the length-2k key in 2k time, using just one message/tag pair.
The attack is classical (it’s essentially the meet-in-the middle attack of Merkle and Hellman
[140]); see Mitchell [145] for some discussion. Nor does truncation help; for example, there
remains a [0, 234] attack when n = 64 and τ = 32 [169]. The existence of a meet-in-the-middle
attack on MAC Algorithm 2 helps explain the existence of MAC Algorithm 3.

7.13. MAC Algorithm 3. This method dates to ANSI X9.19 [3] (1986), a standard for
retail banking; consequently, the blockcipher mode has been called the “retail MAC.” It is like
MAC Algorithm 2 but, rather than “seal” the last block by enciphering the raw CBC-MAC,
the designers instead switch to triple encryption for sealing it. Key-separation is no longer a
permitted option; the underlying key must be 2k bits. See Figure 7.5.

Assuming the underlying blockcipher is a secure PRP, MAC Algorithm 3 is VIL-secure, again
to the birthday bound, assuming type-2 padding. To explain why this is so we again consider
the variant of the algorithm that omits padding and correspondingly restricts the domain to
({0, 1}n)+. As commented on earlier, VIL-security in this setting implies VIL-security on all of
{0, 1}∗ once type-2 padding is thrown back in. Now we use the idea from Black and Rogaway
[38]. In proving ALG3 secure one would be working in the information-theoretic model until
the very end, so mentally replace each EK by some first permutation π and mentally replace
DK′ by some second permutation π′. Then the EK ◦ DK′ ◦ EK encipherment for the final
block amounts to a π ◦ π′ ◦ π encipherment, and so, when π and π′ are uniformly random
permutations, this composed permutation is just another random permutation, independent of
the other permutations used. That is true whether the final permutation is realized as π ◦π′ ◦π,
as in MAC Algorithm 3, or π′ ◦ π, as in MAC Algorithm 2; once in the information-theoretic
setting, MAC Algorithms 2 and 3 are the same. So the security of MAC Algorithm 3 follows
from the security of MAC Algorithm 2, both enjoying the same bounds.

MAC Algorithm 3 with type-1 padding inherits FIL-security from the raw CBC-MAC: the
application of EK ◦DK′ to the CBCMAC does no harm, in the information-theoretic setting of
the analysis, since the composed permutation will be independent of EK . Similarly, it inherits

83

EK EK EK EK

MAC Algorithm 3

DK’

TAG

T

MSBτ

M1 M2 M3 M4

EK

Tag

30 algorithm ALG3K K′(M) MAC Algorithm 3

31 TAG← CBCMACK(M)
32 Tag← EK(DK′(TAG)
33 T ← MSBτ (Tag)
32 return T

Figure 7.5: MAC Algorithm 3. The method is similar to MAC Algorithm 2.2 but now triple
encryption of the last block is used to break for the final block. It too can be seen as symmetry-breaking
device to address VIL-attacks.

provable-security to the birthday bound with type-3 padding. Neither result is “interesting”;
these padding schemes make little sense for MAC Algorithms 2 or 3.

Why was MAC Algorithm 3 included, given its similarity to MAC Algorithm 2 and its
needing one extra blockcipher call? One answer is the apparently improved resistance to ex-
haustive key search. We have already commented that, with 2k time (but large space) and
just a single message/MAC pair, one can recover the underlying key with MAC Algorithm 2,
even in its two-key persona. But this is not known to be the case for MAC Algorithm 3; MAC
Algorithm 3 seems “better” with respect to exhaustive key search than MAC Algorithm 2 just
as triple-encryption appears better in this regard than double-encryption [140]. Just the same,
forgery, or even key recovery, are not as well protected against in MAC Algorithm 3 as one might
naively think: Preneel and van Oorschot [170] describe a key-recovery attack with complexity
[3 · 2k, 2n/2]. Concretely, when MAC Algorithm 3 is instantiated with DES one can, with good
probability, not only find forgeries but even recover the underlying 112-bit key with 232.5 known
message/MAC pairs and 257.6 time.

Let us describe the Preneel and van Oorschot attack—for concreteness, with DES as the
underlying blockcipher and padding scheme 2. First we collect 232 message/tag pairs, say for
random 127-bit messages. With probability about 1 − e−1/2 > 39% one will have a pair of
messages X, X ′ that give rise to the same MAC. Trying all 256 keys, enciphering two blocks
with each, find a key K such that the input to the final CBCMAC enciphering call is the same

84

for X and X ′. Because the key length of DES is shorter than its block length, there will usually
be a unique such key. Now, spending another 256 time, recover K ′ using the data in hand. It
too will usually be uniquely determined.

Mitchell shows that substantial truncation of the MAC Algorithm 3 harms security; he gives
a key-recovery attack with complexity [2k+1, (�n/τ + 1)2(n+τ)/2−1] [144]. For example, use of
MAC Algorithm 3 with DES and truncating to 32 bits will give an algorithm susceptible to
exhaustive key search after 245 queries.

Resistance to key-search attacks lies outside of the conventional provable-security model.
Still, one could potentially prove upper and lower bounds on Advprf

Π[k,n](t, q), the maximal

advantage of an (information-theoretic) adversary attacking construction Π based on an ideal
blockcipher with key-length k and blocklength n that makes t E-or-E−1 queries and q MAC
queries.

Beyond the reasons given above for including both MAC Algorithms 2 and 3 of ISO 9797-1
was apparently trying to be inclusive in its choice of modes, maintaining backward compatibility
with ISO 9797 and ANSI banking standards. Switching from single DES-encryption to triple
DES-encryption for the final block would, in the thinking of 1980’s, have been as natural a
symmetry-breaking device as adding an additional encipherment.

7.14. MAC Algorithm 4. This next mode of operation is shown in Figure 7.6. The method
was designed by Knudsen and Preneel for use when the underlying blockcipher is DES [114]. In
that setting, the algorithm goes by the name MacDES.

MAC Algorithm 4 is meant to get around the [3 · 2k, 2n/2] key-recovery attacks of MAC
Algorithm 3—and the more efficient key-recovery attacks still for MAC Algorithms 1 and 2.
The intent is to be able to use DES in settings where 256 computation is not out of the question.
Of course one could say use one of MAC Algorithms 1–3 on triple-DES instead of single-DES, but
MAC Algorithm 4 is more efficient—it aims to buy enhanced key length with two blockcipher
calls more than the raw CBC-MAC.

Even before ISO 9796-1 was published, Coppersmith and Mitchell described attacks on its
MAC Algorithm 4 [55] when using either type-1 or type-2 padding. Let us describe the first of
these attacks, assuming type-1 padding. We further assume that there is no truncation—that
τ = n. The attack begins by having the adversary ask arbitrary messages of at least three
blocks: say the adversary asks random message of three blocks each. It does this until it finds a
pair of messages a ‖ b ‖ c and d ‖ e ‖ f that yield the same tag T . By the birthday phenomenon,
this will take about 2n/2 queries. Now the adversary strips off the final block of each of the two
message, asking for the corresponding MACs; it learns the tag Tab for a ‖ b and it learns the
tag Tbc for d ‖ e. Now observe that that, from the first part of the attack,

EK(x⊕ c) = EK(y ⊕ f)

where x is the output of the blockcipher call that processed b (when MACing a ‖ b ‖ c) and,
similarly, string y is the output of the blockcipher call that processed e when MACing d ‖ e ‖ f .
From the second part of the attack, x = DK′(Tab) and y = DK′(Tbc), and so

EK(DK′(Tab)⊕ c) = EK(DK′(Tcd)⊕ f).

This means that we has a simple equation that lets one verify a correct guess of K ′. The
adversary therefore tries all keys K ′ until it finds a candidate. For a case like DES, where the
key length k is less than the blocklength n, a candidate will usually be correct. Having now
found K ′ it is easy to follow up with 2k additional work to recover K; and then another 2k work

85

EK EK EK EK

MAC Algorithm 4

Tag

EK’EK’’

T

MSBτ

M1 M2 M3 M4

40 algorithm ALG4K K′(M) MAC Algorithm 4

41 K ′′ ← Sep(K ‖ K ′)
42 M ← Pad(M)
43 if |M | < 2n then return Invalid
44 C1 ← EK′′(EK(M1))
45 for i← 2 to m do Ci ← EK(Mi ⊕ Ci−1)
46 Tag← EK′(Cm)
47 T ← MSBτ (Tag)
48 return T

Figure 7.6: MAC Algorithm 4. The method is like MAC Algorithm 2 but is intended to enhance the
effective key length of the underlying blockcipher. In fact, it does not.

to recover K ′′. All in all, time complexity is about 4 · 2k and the number of known message/tag
pairs is about 2n/2.

Coppersmith and Mitchell go on to give a second attack that assumes a MAC verification
oracle that is queries 2k times, but needs only two message/tag pairs.

The authors suggest that “probably the most effective” countermeasure is to use type-3
padding instead of type-1 or type-2 padding. But, within a year, the same authors, joined now
by Knudsen, had broken this scheme, too [54]. The second attack described in their paper
recovers keys (K,K ′,K ′′) in time of 3 · 2k and using a number of chosen message/tag pairs of
around 3 · 20.75n. We omit a description of the rather complex attack. Forgery attacks are more
efficient still, requiring as few as one chosen message/tag pair and 2n verification queries.

Using the bracket-notation to describe attack efficiency and assuming the underlying block-
cipher is DES, using the attacks already referenced, we have a a [0, 232] forgery attack and
a [259, 250.6] key-recovery attack when τ = 64, and a [0, 233.6] forgery attack and a [264, 263]
key-recovery attack when τ = 32. (All of these bounds are adapted from Preneel [169].) These
attacks are not encouraging While they do not establish that there is no added value to the
extra blockcipher calls of MAC Algorithm 4 (compared to MAC Algorithms 2 and 3), they do

86

make clear that they buy a disappointing amount of added security—far less than tolerating
[22k−ε, 2n/2−ε] attacks that one might, in principle, hope for in an iterated MAC that is designed
to enhance the effective key length of the underlying idealized cipher.

An alternative approach to trying to obtain improved resistance to key-guessing attacks
would be to use the DESX construction [110] as the underlying blockcipher in the context of,
say, MAC Algorithm 2. Recall that the DESX construction takes a blockcipher E : {0, 1}k ×
{0, 1}n → {0, 1}n and maps it to a blockcipher E′ : {0, 1}k+n × {0, 1}n → {0, 1}n by way of
setting E′

KK′(X) = K ′ ⊕ EK(X ⊕K ′). If E′ = DESX[E] is used as the blockcipher for MAC
Algorithm 2 the additional XORs cancel except for at the beginning and end. We have not
investigated how the security of this construction compares to MAC Algorithm 4.

In the end, there appear to be no known results establishing improved effective key length
for any CBCMAC-like construction. Are such results possible? We have no reason to think
that they are not; it is probably just “accident” that such results have never been worked out.
Such schemes would normally be in the ideal-cipher model. Cryptographers may have failed to
notice that even when a result has a standard-model provable-security result there can still be
good purpose to re-establishing the result in the ideal-cipher model. At issue is observing how
the advantage degrades also as a function of the key length k. Were there tight formulas, in the
ideal-cipher model, for both MAC Algorithm 2 and MAC Algorithm 4 one would be able to see
to what extent the added initial blockcipher call was of value.

Continuing our critique of MAC Algorithm 4, we note that key separation in the mode, and
even the definition of what keys are supposed to be, is quite poorly done. The spec asserts [91,
page 6, column 1] that K and K ′ are chosen independently—the underlying key is therefore
K ‖ K ′—and that they are never to coincide. The spec also asserts that key K ′′ is to be
derived from K ′ yet different from both K and K ′′. Achieving this set of requirements is of
course impossible: if K and K ′ are independent k-bit strings than obviously they can coincide,
and if K ′′ is derived from K ′ then obviously it might coincide with the (independent) key K
randomly chosen from the same set. The most natural explanation for these conflicting demands
is to imagine that the intended meaning of “different” is not the literal difference of bits strings,
but something more formalistic and symbolic—the informal English-language use of a phrase
like “we take three different keys” meaning that, for example, one isn’t defined as being the
other.

When the spec gives an example of what the authors have in mind for key separation, the
example is to define K ′′ by complementing every other run of four bits in K ′. The use of
such a key-separation method would extinguish any attempt to obtain provable security under
standard assumptions. A second suggestion is given that K ′ and K ′′ are to be derived from an
underlying master key, which is more consistent with provable-security requirements. But using
this approach would mean that the underlying key is not K ‖ K ′, contradicting the sentence
spanning pp. 5–6 of the spec. The same issues were seen in MAC Algorithm 2.

We comment that MAC Algorithm 4 does at least enjoy about the same provable security
guarantees MAC Algorithm 2; the extra blockcipher call doesn’t make things worse—at least if
one ignores the key-separation problems and pretends all keys as distinct. This is because the
key K ′′ could be made public, the first and second blockcipher conceptually reversed (which
amounts to the same in the information-theoretic setting), and then one is simply permuting
the first block by a public map. MAC Algorithm 4 fails to earn a “check” in Figure 7.1 because
the semantics of a check is that one has shown the “intended” security result, not simply some
security result, and here we regard enhanced key-length as a central part of the algorithm’s
goal.

87

We point out that there the convention of using keys K and then K ′′ for the first block is
uglier than the opposite convention, which would have allowed MAC Algorithm 4 to coincide
with MAC Algorithm 2 with an additional blockcipher call as preprocessing. It would also have
facilitated the better use of CBCMAC-enabled hardware or library calls, as the algorithm would
more precisely consist of the CBCMAC “with additions.” The pseudocode of Figure 7.6 would
have been simplified had this better abstraction boundary been used. Security would have been
equivalent; we have already argued that, in the information-theoretic setting, the two modes
coincide.

Our overall conclusion is that attempts to enhance key-length by the mechanism of MAC
Algorithm 4 remain poorly studied, with no provable security results, and of unclear merit.
Key-separation is handled with considerable clumsiness. Combined with the decline in use of
DES, there is no reason to support MAC Algorithm 4 in a modern standard. Somewhat more
generally, we find that the state-of-the-art in provable-security for MACs is effectively unable
to distinguish the “correct” MAC Algorithm 1 with padding scheme 3, MAC Algorithm 2 with
padding schemes 2 or 3, MAC Algorithm 3 with padding schemes 2 or 3, and MAC Algorithm 4
with padding schemes 2 or 3. While the history of attacks suggests that there are significant
differences here, there are no results refined enough to distinguish among these seven schemes.

7.15. MAC Algorithm 5. The next MAC algorithm represents an interesting attempt to get
beyond the birthday-attack seen in CBCMAC-like schemes. See Figure 7.7. Two “independent”
repetitions of MAC Algorithm 1 are used and the results are xor’ed together.

Recall that Preneel [171] and Preneel and van Oorschot [172] explain that any iterated
cipher with an n-bit “pipe” will have forgery attacks, at least, of 2n/2 queries. All of the MAC
Algorithms 1–4 are of this sort. MAC Algorithm 5 breaks out of this mold by using a 2n-bit
pipe.

Unfortunately, not only are desirable provable-security bounds absent for MAC Algorithm 5,
but damaging attacks are known. For padding schemes 1 and 2, Joux, Poupard, and Stern
provide a forgery attack that uses 21+n/2 queries [105]. The hope would have been to require
retain security to 2n−ε queries. Key recovery has similar complexity to this, followed a single
exhaustive key-search for the underlying blockcipher.

Let us sketch how a forgery attack works, which is quite cute. Start by searching for one-
block messages M and N that yield the same tag T = EK1(M)⊕EK2(M) = EK1(N)⊕EK2(N).
This requires about 2n/2 queries, assuming n-bit tags. Next compute MACs TA for messages
of the form M ‖ A and MACs TB for messages of the form N ‖ B for random A, B. If it so
happens that A⊕B = EK1(M)⊕ EK1(N) = EK2(M)⊕ EK2(N) then we will get collisions in
the upper and lower chains, and TA = TB. When we detect the later equality, we can check if
its cause was indeed collisions in the upper and lower chains and, if so, it is easy to forge. The
total complexity is about [0, 2n/2+1].

This is a rather spectacular failure. It works for type-1 or type-2 padding. To the best of
our knowledge, a good attack for type-3 padding remains open.

Were the keys K1 and K2 actually independent it would be easy to see that one has at
least FIL security to the birthday-bound for with padding scheme 1, and at least VIL security
to the birthday bound for padding scheme 3. Both would follow by “giving away” key K2,
say. On the other hand, it is not obvious how to make any sort of VIL provable-security claim,
even just to the birthday bound, for MAC Algorithm 5 and padding scheme 2. This seems
to be an “error” in design; a mechanism aiming for beyond-birthday-bound security ought to
transparently achieve at least birthday-bound security. The problem could have been remedied

88

EK2 EK2 EK2 EK2

Tag2

MAC Algorithm 5

EK1 EK1 EK1 EK1

Tag1

T1

T2
MSBτ

MSBτ

TM1 M2 M3 M4

50 algorithm ALG5K(M) MAC Algorithm 6

51 K1 ‖ K2← Sep(K)
52 M ← Pad(M)
54 T1 ← ALG1K1(M)
55 T2 ← ALG1K2(M)
56 T ← T1 ⊕ T2

57 return T

Figure 7.7: MAC Algorithm 5. The algorithm consists of two “independent” executions of MAC
Algorithm 1. The aim is improve security beyond the birthday bound—more than 2n/2 queries should
be needed to find a forgery. The attempt fails.

by using two independent copies of MAC Algorithms 2 or 3, either of which would have made
a more sensible design choice if one is trying to at least “heuristically” augment the birthday-
bound security of those schemes. As we will see in a bit, the choice would have been wise.

There are key-separation problems for MAC Algorithm 5 that exactly parallel those earlier
problems with key-separation in MAC Algorithms 2 and 4.

7.16. MAC Algorithm 6. The final ISO 9797-1 is like MAC Algorithm 5 but, instead of
xoring two copies of MAC Algorithm 1, two copies of MAC Algorithm 4 are xor’ed together.
We once again have the usual key-separation issues, here made all the more acute since three
key-separation schemes must be employed: the one we have named SEP at line 61 of Figure 7.8,
and the two that are implicitly parameters in the our calls to ALG4 at lines 64 and 65. Basic
questions like whether the last two algorithms are expected to be the same are not answered.
Note 2 of [91, Section 7.6] recommends verifying that the six keys K1,K1′,K2′,K2,K2′,K2′′

are all distinct—a constraint that cannot be guaranteed for any algorithms SEP and Sep,
and contrary to the concrete recommendation in [91, Note 1, Section 7.6]. Once again, key-

89

EK2’’

EK2 EK2 EK2 EK2

MAC Algorithm 6

EK1 EK1 EK1 EK1

T2

EK1’’

Tag2EK2’

EK1’
Tag1

T1

MSBτ

MSBτ

M1 M2 M3 M4 T

60 algorithm ALG6K ‖ K′(M) MAC Algorithm 6

61 K1 ‖ K1′ ‖ K2 ‖ K2′ ← SEP(K ‖ K ′)
62 M ← Pad(M)
64 T1 ← ALG4K1K1′(M)
65 T2 ← ALG4K2K2′(M)
66 T ← T1 ⊕ T2

67 return T

Figure 7.8: MAC Algorithm 6.

separation seems to have been added as a careless afterthought. We prefer to think of the six
keys as random and independent, although such a choice would seem to be explicitly forbidden
by the language of the standard.

Pretending the keys to be independent, MAC Algorithm 6 would at least enjoy provable-
security to the birthday bound, with any of the three padding regimes: give away the key K2,
say, and we are back to Algorithm 4, which, for all its problems, does at least enjoy provable
security to the birthday bound.

Quite recently—and rather unexpectedly—Kan Yasuda proved that MAC Algorithm 6 does
achieve provable-security beyond the birthday bound [206]. The lovely result builds on work of
Lucks and others [129] about creating an n-bit PRF by xoring together two n-bit PRPs. Let
Π = ALG6 with type-2 padding but using six random and independent n-bit permutations.
Let A be an adversary that asks at most q queries, each having m − 1 or fewer blocks. Then
Yasuda shows [206, Theorem 1] that

Advprf
π (A) ≤ 12m4q3

22n
(7.1)

90

and, if m ≤ 22n/5, then

Advprf
π (A) ≤ 40m3q3

22n
. (7.2)

While the bounds are somewhat disappointing when one sticks in DES parameters (the 22n/5

cutoff is only 225.6 when n = 64) the work is the first to show a beyond-birthday-bound result
for any (deterministic, stateless) CBCMAC-like scheme.

While encouraging, the new result does not suggest that ALG6 itself is a particularly good
choice. First, there is the problem of key-separation, which should be completely redone, either
demanding all independent keys or providing an explicit and provable-security-friendly mech-
anism. Second, the key-length extension idea of using the initial extra blockcipher call was
essentially discredited by Coppersmith, Knudsen, and Mitchell [54, 55] in the context of MAC
Algorithm 4, so one should be skeptical that it will work in the context of MAC Algorithm 6.
More work is needed to give any significant evidence that the MAC achieves both of its stated
goals—beyond-birthday-bound security and increased effective key length.

7.17. Concluding remarks. The known attacks, the conjectured properties, and the provable-
security results associated to the ISO/IEC 9797-1:1999 algorithms comprise a complicated
patchwork. It is, frankly, a bit of a mess. Brincat and Mitchell interpret the sate of affairs
by saying that

it is important for users to carefully assess the significance of the various MAC attacks in
the context of the environment in which the resulting MAC algorithm is to be used. There
may be no benefit from using certain sophisticated MAC systems in an environment which
has other security features in operation which make attacks against simpler MAC schemes
impossible to carry out. [47, Section 7].

We would draw essentially the opposite conclusion. It is just too difficult for even a sophisti-
cated user to properly navigate the myriad of algorithms of ISO 9797-1, understanding what
is known about each and what would make for a sensible algorithmic choice for some partic-
ular application. For multiple algorithms and intended properties, nobody has provided any
proof-based guarantees evidencing that the algorithm has the intended property. Many of the
algorithms have been found to have significant weaknesses, the discoveries sometimes happening
long after the algorithms were first put forward. The underspecification of key-separation makes
it impossible to retain standard-model provable security claims, or even to produce good test
vectors. Taken together, these criticisms suggest, to me, that there is something rather wrong
with the standard. It admitted too many techniques, included deficient ones, and left things
overly open-ended.

91

Chapter 8

CMAC Mode

8.1. Summary. This chapter looks at the CMAC mode (Cipher-based MAC) of NIST Recom-
mendation SP 800-38B [63].

CMAC is a simple and clean variant of the CBC-MAC. Used with a strong 128-bit blockci-
pher, the scheme enjoys good provable-security properties—reasonable bounds under standard
assumptions—with no significant identified flaws. In recent years its provable security bounds
have improved, furthering our understanding of this mode. Especially when set against the
morass of ISO/IEC 9797-1:1999, NIST’s document seems clear, concise, and informative.

The biggest security issue with CMAC is that relatively frequent key changes are advis-
able if one uses a 64-bit blockcipher. This is true for most blockcipher modes of operation.
Also, the mode is not a desirable choice to use with DES, as key-search attacks will then be
computationally easy.

There are some efficiency issues with CMAC, issues shared with any CBCMAC-based
scheme: the inherently serial nature of CMAC will limit its performance on blockcipher-enabled
hardware, and software speeds will be limited to that which is achievable by the underlying
blockcipher. Mechanism misuse is certainly possible, particularly if, overlooking the spec’s re-
quirements, a user uses EK(0n) for some purpose other than deriving subkeys K1 and K2.
According to Preneel [169], this particular value has been used by banks as a key-confirmation
token. But this is not really CMAC’s “fault,” and NIST’s Recommendation is careful to warn
against this and other usage errors.

8.2. Definition of the scheme. The CMAC mode of operation is defined and illustrated in
Figure 8.1. CMAC depends on two parameters: a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n
and a tag length τ ∈ [1..n]. Fixing these parameters, CMAC maps a key K ∈ {0, 1}k and
a message M ∈ {0, 1}∗ to a τ -bit tag T = CMACK(M). Assuming subkeys K1 and K2
have been precomputed (their computation takes one blockcipher call), CMAC authenticates
message M using max{1, �|M |/n} blockcipher calls. This is better than all of the ISO 9797-1
schemes, and is in some sense optimal for a CBCMAC-like scheme. According to the spec, the
blockcipher underlying CMAC must be NIST approved, which limits the choices to AES, TDEA
(triple-DES), and Skipjack.

The definition we give for CMAC depends on a function dbl(·) that maps n-bit strings to
n-bit strings. The routine realizes a multiplication in GF(2n) of its input X ∈ {0, 1}n by the
constant u = 2 = 0n−110. A fixed irreducible polynomial g(u) is used to represent field points.
The selected polynomial is the lexicographically first one among all irreducible polynomials of
degree n with a minimum number of nonzero terms. Here, lexicographically-first entails writing

92

EK EK EK

CMAC
Full final block

M1 M2 M3

EK

M4

T

K1

EK EK EK

M1 M2 M3

EK

M4

K2

10*

MSBτ

Tag

T

MSBτ

Tag

CMAC
Partial final block

10 algorithm CMACK(M) CMAC mode

11 K1← dbl(EK(0n))
12 K2← dbl(K1)
13 if |M | ∈ {n, 2n, 3n, . . .}
14 then K ′ ← K1, P ←M
15 else K ′ ← K2, P ←M10i where i = n− 1− (|M | mod n)
16 M1 · · ·Mm ←M where |M1| = · · · = |Mm| = n
17 for i← 1 to m do Ci ← EK(Mi ⊕ Ci−1)
18 T ← MSBτ (Cm)
19 return T

Figure 8.1: CMAC Mode. The scheme is parameterized by a blockcipher E : K × {0, 1}n → {0, 1}ns
and a tag length τ ∈ [1..n]. Left: the case where the message length is a positive multiple of n bits.
Right: the case when it is not. The values K1 and K2 are derived from K by “doubling” once or twice,
where, here, to “double” means to multiply by the point in GF(()2n) whose representation is u = 0n−110.

of the polynomial, omitting its high-order term, from degree n − 1 term (leftmost) on down.
Concretely, for n = 128 we use the irreducible polynomial g(u) = u128 + u7 + u2 + u+ 1 while
for n = 64 we use g(u) = u64 + u4 + u3 + u+ 1. There are no NIST-approved blockciphers for
any other blocklength. Using these two polynomial, we have that

dbl(X) =

{
X � 1 if MSB1(X) = 0, and
X � 1⊕ 012010000111 if MSB1(X) = 1

(8.1)

when X ∈ {0, 1}128, while

dbl(X) =

{
X � 1 if MSB1(X) = 0, and
X � 1⊕ 05911011 if MSB1(X) = 1

(8.2)

when X ∈ {0, 1}64. Here X � 1 is the left-shift of X by one bit position, the bit 0 entering in
at the right.

The specification document speaks of MAC generation and MAC verification as separate
algorithms, but remember that the way we have defined MACs there is only one function
to deal with: verification consists of recomputing the anticipated MAC and comparing. The
specification also speaks of a separate subkey-generation procedure, but we have folded this into
our definition for the scheme.

8.3. History. There is a clear evolution of ideas leading to the CMAC algorithm. We sketch
it as happening in four steps.

8.3.1 Basic CBC-MAC. We begin with the basic CBC-MAC of ANSI X9.9 [4], which has
two fundamental problems: (a) it is only defined on strings that are a multiple of n

93

bits; and (b) it does not achieve VIL security, only FIL security. Both issues were
discussed in §7.8 of this report. The same issues motivate many of the ISO 9797-1
MAC Algorithms 1–6.

8.3.2 EMAC. We fix the problems just mentioned by evolving to MAC Algorithm 2, padding
method 2, of ISO 9797-1. The scheme adds obligatory 10∗-padding, applies the raw
CBC-MAC, then enciphers the result, using the same blockcipher with a new key. As
described in Chapter 7, the algorithm was first described under the RACE project [45],
and was first proven secure, in the provable-security tradition, assuming the underlying
blockcipher is a PRP, by Petrank and Rackoff [167].

8.3.3 XCBC. Next we trim the extra blockcipher calls by using a little trick. First, instead
of obligatory 10∗-padding we refrain from using any padding at all if the message is
already a positive multiple of n-bits. We continue to use 10∗-padding otherwise. Second,
instead of enciphering the last block with the permutation EK′(EK(·)) we encipher the
final block with the permutation EK(K1 ⊕ ·) for the case where we used no padding,
and EK(K2 ⊕ ·) for the case where we used 10∗ padding. The underlying MAC key
is now K ‖ K1 ‖ K2 ∈ {0, 1}k+2n. This “three-key construction” was invented by
Black and Rogaway and named XCBC [38, 39]. We proved the mode secure, up to the
birthday bound, if the underlying blockcipher is a PRP.

8.3.4 OMAC. Finally, to minimize the length of the needed key, the cost of key-setup, and
to make sure one is not misrepresenting the algorithm’s strength with a misleadingly
long key, we define keys K1 and K2 from the single underlying key K by using a bit of
finite-field arithmetic. This step was designed by Iwata and Kurosawa [96] (following
a prior reduction from three keys to two, TMAC [119]). After implementing a minor
tweak suggested by Rogaway [98], the algorithm was slightly revised by the authors and
renamed OMAC1. NIST’s CMAC mode is OMAC1, apart from its details like what
blockciphers may be used.

Subsequent standardization of CMAC includes RFC 4493 and RFC 4494 [99, 100].

8.4. Provable-security results. We consider the information-theoretic setting where the
underlying keyed blockcipher EK for CMAC is replaced by a uniformly random permutation π.
An adversary A, then, is trying to distinguish CMACπ(·), for a random permutation π on n
bits, from a random function ρ(·) from {0, 1}∗ to {0, 1}n. One aims for a formula f that
tightly upper-bounds the distinguishing advantage that the adversary can get in terms of the
resources of the adversary may use—resources that include the total number q of oracle queries
the adversary makes; the total block length σ for all of those queries (round up the bit length
to the next positive multiple of n, then divide by n); and the maximal block length m of any
query (use the same rounding as before).

The initial bounds for CMAC’s security, by Iwata and Kurosawa [96, Lemma 5.2], took the
form blockcipher,

Advprf
CMAC(m, q, σ) ≤ 5m2q2

2n
. (8.3)

Here and subsequently we ignore lower order terms (eg, the “actual” formula in the paper has
(5m2+1)q2 in the numerator). In follow-on work, the same authors slightly improve and recast
their bounds in terms of σ instead of m and q [97], obtaining

Advprf
CMAC(m, q, σ) ≤ 4σ2

2n
. (8.4)

94

Since σ ≤ mq, the new bound is always better, and the difference can be substantial if message
length substantially vary.

The best provable-security bounds on OMAC to date are due to Nandi [147], who shows
that

Advprf
CMAC(m, q, σ) ≤ 5σq

2n
. (8.5)

The improvement is to trade a σ for a q ≤ σ. Recent work by the same author generalizes his
proof technique [149].

The bounds above are all for the information-theoretic setting. For the complexity-theoretic
setting one just adds in an extra term measuring the PRP-insecurity of the underlying blockci-
pher.

Let us see what the quantitative bounds mean in practice, using the last formula as our guide.
When the underlying blockcipher has a 128-bit blocksize, say AES, Appendix B of SP 800-38B
recommends using CMAC for no more than 248 messages. If each of 248 messages is 1 MB
in length, we would know that the maximal adversarial advantage in distinguishing CMAC
from a random function would be at most 5 · (109/16) · 248 · 2−128 < 2−51 plus the insecurity
of the underlying blockcipher, a very strong guarantee. The same appendix suggests that, for
a 64-bit blockcipher, say TDEA, one change keys after 221 messages. If this recommendation
is followed and messages are again 1 GB or less, the maximal advantage will be bounded by
5 · (109/16) ·221 ·2−128 < 2−14 plus the insecurity of the blockcipher, still an excellent guarantee.
Of course all bets are off if the additive term we have ignored quantifying the PRP-insecurity
of AES or TDEA as a PRP is not insignificant, but the likelihood of this is extremely low.

8.5. Attacks. The birthday-bound attack on CMAC is tight in the sense that any iterated
hash function with an n-bit pipe will have forgery attacks that involve asking about q = 2n/2

queries, each of short length. The attack is often credited to Preneel and van Oorschot [172];
see §7.11 for a description. The gap, then is only insofar as the best existing security bounds
that drop off in σq/2n while the natural forgery attack gets advantage q2/2n. Note that the
birthday attacks can be more damaging than “just” identifying a forgery; particular forgeries
can be targeted, as described by Jia, Wang, Yuan, and Xu [102].

In public comments to NIST, Mitchell points to the birthday attack on CMAC [145], de-
scribing it in a couple of forms, and he describes key-recovery attacks on the mode as well.
He regards OMAC as weaker than MAC Algorithm 2 (§7.12) and concludes that the former
mode should not be adopted by NIST. But Mitchell’s conclusions are not supported by his
accompanying analysis, which only demonstrates rather standard attacks, of comparable com-
plexity, on CMAC, EMAC, and other modes. As Iwata reasonably responds [94], he and his
coauthor “did not show [attacks] achieving advantage Ω(σ2/2n) because every standard mode
of operation (including XCBC, TMAC, OMAC, EMAC, . . .) has been susceptible to attacks of
this (in)security. It is what everyone expects.”

As with MAC Algorithm 2, key-guessing attacks on CMAC will be effective if the under-
lying blockcipher admits reasonable key-guessing attacks; in 2k time, using a couple of known
plaintext/MAC pairs, the underlying key can be recovered. This should not be considered a
damaging attack; the mode was not designed to increase the effective key length of the under-
lying blockcipher.

8.6. Minor comments on the spec itself. As indicated earlier, NIST Recommendation
800-38B is a well executed document. Perhaps the worst complaint we might make is to note

95

that the document ascribes two different meanings to the term message span [63, Appendix B].
First we are told that this is the number of messages MACed and should be limited to 248 when
n = 128, and limited to 221 when n = 64. Then we are told that the message span may instead
be understood as the number of blocks of that will get MACed—“[f]or applications where higher
confidence in the security is required.” This sends mixed signals. Note that the latter notion of
message span more closely comports with the provable-security results; in principle, MACing
a single extremely long message could be insecure. In fact, as with other CBCMAC-variants,
one can give a pair of messages M,M ′ that would generate the same tag under CMAC—the
problem is that the two messages would be absurdly long.1

The prescribed name of the algorithm, “Cipher-based MAC” [63, p. 1], is rather vacuous.
Indeed I had always assumed that the name “CMAC” was meant to suggest a CBC-based MAC,
which is at least a bit more narrowly prescribed.

I might mention that subkeys K1 and K2 are regarded as “perquisites” for MAC Verification
[63, p. 10] (but not for MAC Generation). They don’t belong here. More generally, the notion of
“prerequisites,” here including the key, seems flimsy. It might be better to regard the arguments
of the MAC as what is needed in a security definition, and to regard anything else as a parameter.
Finally, there I would mention a typo in [63, footnote 3, p. 13]: Cm should be Cn.

Overall, NIST SP 800-38B is an elegant specification document for a simple and provably-
sound mode.

1 For example, let M consists of N zero blocks, and let M ′ consist of twice this number of zero blocks, where N
is the product of all prime factors less than 2n. It is not hard to see that these messages have the same tag under
CMAC, namely T = EK(K1).

96

Chapter 9

HMAC Mode

9.1. Summary. HMAC provides a simple way to key a cryptographic hash function to create
a message authentication code. It is used both as a PRF and as a MAC. The simplicity and
strength of the construction has lead to widespread standardization and use; the mechanism
is not only standardized in NIST FIPS 198-1 [159] but is also specified in RFC 2104, IEEE
802.11, SSL 3.0, TLS 1.0–1.2, SSH, and S-HTTP. The mode was designed by Bellare, Canetti,
and Krawczyk [13].

Somewhat confusingly, the term HMAC is used to refer to several algorithms that share
a common core but differ in their keylengths and the way they derive their subkeys. We will
distinguish HMAC0 [11], HMAC1 [13], and HMAC2 (FIPS 198-1 and RFC 2104), referring
to the family collectively as HMAC. Each HMAC algorithm is itself derived from the NMAC
algorithm of [13] via a key-derivation function (KDF).

The NMAC algorithm is supported by a proof that guarantees it is a good PRF under the
assumption that the compression function underlying the hash function it uses is itself a good
PRF [11]. Each HMAC algorithm inherits this security under the additional assumption that
its KDF is a good PRG (pseudorandom generator).

Being iterated constructions, the (untruncated) HMAC algorithms are subject to the usual
birthday attack [172]. The proof-based bounds effectively assert that this is best possible attack
as long as the compression function is a good PRF.

Is this last assumption true? Obviously, it depends on the hash function. Right now, we
have no attacks refuting this assumption, not only for SHA1 but even for MD5.

Extensive efforts have been made to attack HMAC directly [53, 70, 111, 173, 196, 200]. They
have, however, made hardly a dent; PRF attacks more effective than the birthday remain
unknown for HMAC-MD5 and HMAC-SHA1. This is evidence of the pseudorandomness of the
compression functions.

An intriguing part of HMAC’s story has been its strength even when implemented with
hash functions whose collision-resistance is compromised. Thus, collisions have been found
for MD5 [36, 190, 191, 199] but this has not given rise to better-than-birthday PRF-attacks on
HMAC-MD5. An explanation for this phenomenon is that finding a compression function not
to be collision-resistant should in no way be construed as evidence that it is not a good PRF.

Overall, HMAC remains a sound choice for a PRF and MAC. It is easy to implement and
its security has held up very well.

97

MSBτ

M

H

X

K1

K2

H

Y T

ipad

opad

K

HMAC 0

000 algorithm NMACL1 ‖ L2(M)
001 X ← h∗

L1(M ‖ pad(b+ |M |)
002 Y ← hL2(X ‖ pad(b+ c))
003 return Y

000 algorithm HMAC0K(M)
001 K1← K ⊕ ipad
002 K2← K ⊕ opad
003 X ← H(K1 ‖M)
004 Y ← H(K2 ‖ X)
005 T ← MSBτ (Y)
006 return T

010 algorithm KDF0(K)
011 L1← hIV (K ⊕ ipad)
012 L2← hIV (K ⊕ opad)
013 return L1 ‖ L2

020 algorithm HMAC0K(M)
021 L1 ‖ L2← KDF0(K)
022 Y ← NMACL1 ‖ L2(M)
023 T ← MSBτ (Y)
024 return T

100 algorithm HMAC1K(M)
101 K ← K ‖ 0b−c

102 T ← HMAC0K(M)
103 return T

110 algorithm KDF1(K)
111 K ← K ‖ 0b−c

112 L1 ‖ L2← KDF0(K)
113 return L1 ‖ L2

120 algorithm HMAC1K(M)
121 L1 ‖ L2← KDF1(K)
122 Y ← NMACL1 ‖ L2(M)
123 T ← MSBτ (Y)
124 return T

200 algorithm HMAC2K(M)
201 if |K|>b then K←H(K)
202 K ← K ‖ 0b−|K|

203 T ← HMAC0K(M)
204 return T

210 algorithm KDF2(K)
211 if |K|>b then K←H(K)
212 K ← K ‖ 0b−|K|

213 L1 ‖ L2 ← KDF0(K)
214 return L1 ‖ L2

220 algorithm HMAC2K(M)
221 L1 ‖ L2← KDF2(K)
222 Y ← NMACL1 ‖ L2(M)
223 T ← MSBτ (Y)
224 return T

Figure 9.1: HMAC mode. The HMAC family of algorithms is parameterized by an iterated hash
function H : {0, 1}≤d → {0, 1}c and a tag length τ ∈ [1..c]. HMAC0 is the version of [11], which takes a
b-bit key. HMAC1 is the original construction [13], which uses a c-bit key. HMAC2 is its extension, as
in FIPS 198-1; it that takes a key of any length. In each case, we first show how the mode is defined in
terms of H and then show how to define it from NMAC via a key-derivation function. NMAC takes a
2c-bit key L1 ‖ L2 which it views as c-bit halves. Above, h : {0, 1}c×{0, 1}b → {0, 1}c is the compression
function, h∗ is its iteration, pad is the padding function, and IV is the initial vector defining H. The
picture illustrates HMAC0.

98

9.2. Iterated hash functions. A hash function is a map H : {0, 1}≤d → {0, 1}c that takes as
input a string of length at most d bits and returns a c-bit string, for values d, c associated to
the function. The function is keyless and has an associated blocklength b such that b > c and b
is divisible by 8. Examples of hash functions are MD5 (b = 512, c = 128, d = ∞) and SHA1
(b = 512, c = 160, d = 264 − 1).

The HMAC algorithm uses an iterated hash function. This means H is built by iterating
an underlying compression function h as we now describe.

A compression function is a map h : {0, 1}c×{0, 1}b → {0, 1}c that takes a chaining variable
and a message block and returns an updated chaining variable. The blocklength b must be
greater than c and must be a multiple of 8, and it will become what we referred to above as
the blocklength of the hash function. Let B = {0, 1}b be the set of all possible blocks and let
B+ be the set of all strings whose length is a positive multiple of b. Fix a maximum message
length d < 2b and a padding function pad that takes input an integer and returns a string.
The function pad must have the following properties (1) M∗ = M ‖ pad(|M |) ∈ B+ for all M ;
(2) M1 �= M2 implies M1 ‖ pad(|M1|) �= M2 ‖ pad(|M2|); and (3) pad(b + c) ∈ {0, 1}b−c. For
X ∈ B+ and L ∈ {0, 1}c we define

algorithm h∗L(X)
C[0]← L
X[1] . . . X[m]← X where |X[i]| = b
for i← 1 to m do C[i]← h(C[i− 1], X[i])
return C[m]

Here X[1] . . . X[m] ← X means we parse X into b-bit blocks. Finally, the hash function H is
defined via H(M) = h∗IV (M∗) for all M of length at most d, where IV is a fixed c-bit string
associated to the hash function.

Hash functions MD4, MD5, SHA1, and RIPEMD are all of this type. In these cases,
d = 264 − 1. (For the first two examples, it has been conventional to regard d as “infinite”—
there is no bound on the length of the string to be hashed—and to annotate the length as
|M | mod 264 rather than |M |.) Some SHA3 candidates are not iterated, however.

According to FIPS 198-1, the hash function must be an approved, iterated one. At present,
there are five NIST-approved hash functions (all of them iterated): SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512. The last four are collectively referred to has the SHA-2 family. While US
federal agencies must stop using SHA-1 for digital signatures, digital time stamping, and other
applications that require collision resistance, SHA-1 may continue to be used for HMAC and
various other applications.

9.3. Definition of the scheme. Figure 9.1 first defines NMAC [13], which takes a 2c bit key
regarded as the concatenation of two c-bit keys. Note that condition (1) on pad, namely that
M ‖ pad(|M |) ∈ B+ for all M , also ensures that M ‖ pad(b + |M |) ∈ B+, so that the input
to h∗L1 at line 001 is indeed in B+. Also condition (3) on the padding function, namely that
pad(b+ c) ∈ {0, 1}b−c, ensures that the input to hIV at line 002 of NMAC is indeed b bits long.

The figure goes on to define HMAC0 [11], which has a b-bit key; HMAC1 [13], which has
a c-bit key; and HMAC2 (FIPS 198-1, RFC 2104), which has a key of any length. The strings
ipad and opad are distinct b-bit constants. Specifically, ipad is the byte 0x36 repeated b/8 times
and opad is the byte 0x5C repeated b/8 times. Recall that the function MSBτ (Y) returns the
first τ bits of the string Y where τ , along with the iterated hash function H, are parameters of

99

Mode Keylength Assumption under which the mode is a good PRF

NMAC 2c h is a good PRF

HMAC0 b NMAC is a good PRF and KDF0 is a good PRG

HMAC1 c NMAC is a good PRF and KDF1 is a good PRG

HMAC2 any NMAC is a good PRF and KDF2 is a good PRG

Figure 9.2: Provable-security of HMAC. The table provides a summary of known results.

the scheme.

The HMAC algorithms can be implemented directly and in a blackbox way from the hash
function, and the first-column definitions present the schemes this way. The third column is
an alternative and equivalent formulation of the algorithms, showing how they can be viewed
as first applying a key-derivation function (KDF) to the key and then applying NMAC, the
KDF being depicted in the second column. This more intrusive view is more conducive to the
analysis.

Let us briefly explain why the third column formulations of the algorithms are in fact equiva-
lent to the first column formulations. It suffices to show that HMAC0K(M) = NMACL1 ‖ L2(M)
for any b-bit K, where L1 = hIV (K1) and L2 = hIV (K2). Indeed, in the computation X ←
H(K1 ‖M), the subkey K1 is b-bits long and hence X = h∗L1(M ‖ pad(b+ |M |)). Now X is c-
bits long and K2 is b-bits long, so Y = H(K2 ‖ X) = h∗L2(X ‖ pad(b+c)) = hL2(X ‖ pad(b+c)),
the last equality because pad(b+ c) ∈ {0, 1}b−c.

It causes some confusion that “HMAC” refers to different things in the literature. As the
above illustrates, the differences relate to the key-length. See Figure 9.2.

9.4. Security proofs. HMAC is used not only as a MAC but also as a PRF (for example, for
key derivation). Proofs accordingly aim to establish that HMAC is a PRF. They assume the
underlying hash function H is iterated.

Before we state results, we recall that when F : {0, 1}k×D → R is said to be a PRF, it is being
keyed by its first input. In particular, when the compression function h : {0, 1}c × {0, 1}b →
{0, 1}c is assumed to be a PRF, it is keyed by its c-bit chaining variable. Also recall that
G : {0, 1}k → {0, 1}s is a PRG if its output on input a random key is indistinguishable from
a random string of length s. Formally, the prg-advantage of an adversary A is defined via
Pr[A(G(K)) ⇒ 1] − Pr[A(S) ⇒ 1] where K is chosen at random from {0, 1}k and S is chosen
at random from {0, 1}s.

The following discussion assumes there is no truncation. We discuss the effects of truncation
later.

Each HMAC variant can be proven to be a PRF under two assumptions. The first is that
NMAC : {0, 1}2c × {0, 1}≤d−b → {0, 1}c is a PRF. The second is that the KDF corresponding
to this HMAC variant is a PRG. In more detail, HMAC0 : {0, 1}b × {0, 1}≤d−b → {0, 1}c can
be proved to be a PRF assuming NMAC is a PRF and KDF0 : {0, 1}b → {0, 1}2c is a PRG.
HMAC1: {0, 1}c×{0, 1}≤d−b → {0, 1}c can be proved to be a PRF assuming NMAC is a PRF
and KDF1 : {0, 1}c → {0, 1}2c is a PRG. For HMAC2 we must first fix some (any) keylength
k. Then, HMAC2: {0, 1}k ×{0, 1}≤d−b → {0, 1}c can be proved to be a PRF assuming NMAC
is a PRF and KDF2: {0, 1}k → {0, 1}2c is a PRG. See Figure 9.2.

The PRG assumptions on the KDFs are relatively mild since there are no adversary-chosen

100

inputs. The core, security-wise, is thus NMAC. Let us now talk of its security.

Letting h : {0, 1}c × {0, 1}b → {0, 1}c denote the compression function underlying the hash
function H, Bellare, Canetti and Krawczyk (BCK) [13] prove that NMAC is a secure PRF
under two assumptions. The first assumption is that h is a PRF. The second assumption is
that H is collision resistant (CR).

At the time BCK was written, in 1996, the assumption that H was CR seemed eminently
reasonable; collision resistance was the design goal of hash functions. But, in 2004, collisions
were found for MD5 [199]. Now MD5 is considered broken from the point of view of collision
resistance [36, 190, 191, 199], and SHA1 is considered weak [198].

Interestingly, the collision-finding attacks on MD5 and SHA1 did not give rise to any PRF
or forgery attacks on HMAC or NMAC with either of these hash functions. However, the BCK
result [13] was rendered void since one of its assumptions had been falsified. In 2006, Bellare [11]
provided an alternative proof, showing that NMAC is a PRF assuming only that h is a PRF.
The assumption that H was CR was thus shown to be unnecessary. This helps explain why
CR-finding attacks did not translate into attacks on NMAC or HMAC.

To get a sense of the numbers, we take a closer look at Bellare’s result [11]. Continue to let
h : {0, 1}c × {0, 1}b → {0, 1}c be the underlying compression function. Let A be an adversary
attacking the PRF security of NMAC. Assume A makes at most q oracle queries (assume q ≥ 2),
the i-th of which has length at most mi (1 ≤ i ≤ q). Let σ = m1 + · · · + mq be the sum of
the lengths of the queries and m = max(m1, . . . ,mq) be the length of a longest query. Then
Bellare’s result shows that there are adversaries A1,A2 such that

Advprf
HMAC(A) ≤ Advprf

h (A1) + (q − 1)(σ − q/2) ·Advprf
h (A2) +

q(q − 1)

2c+1
. (9.1)

The running times of A1,A2 are about the same as that of A. However, while A1 makes at
most q oracle queries and A2 makes only two.

If t is a running time then let t = t/Th where Th is the time to compute h. Assume that the
best attack against h as a PRF is exhaustive key search. (Birthday attacks do not apply since h

is a family of functions, not a family of permutations.) This means that Advprf
h (A) ≤ t · 2−c

for any prf-adversary A of time complexity t making q ≤ t queries. Plugging this into (9.1) and
simplifying, the upper bound on the prf-advantage of any adversary against NMAC that has
time-complexity t and makes at most q queries is O(t+m2q2Th) ·2−c. If we ignore the Th term,
then this hits 1 when q ≈ 2c/2/m. This means that the bound justifies NMAC up to roughly
2c/2/m queries.

9.5. Additional remarks on proven security. Define h̄ : {0, 1}b × {0, 1}c → {0, 1}c by
h̄(x, y) = h(y, x) for all x ∈ {0, 1}b and y ∈ {0, 1}c. To say that h̄ is a PRF is to say that h is a
PRF when keyed by the message block rather than the chaining variable.

Bellare [11] points out that KDF0 can be proved a PRG under the assumption that h̄ is a
PRF under a form of related-key attack [20]. This assumption, however, is stronger than merely
and directly assuming PRG security of the KDF, and this assumption has been shown to fail for
MD5 [53]. Accordingly, we recommend the PRG assumption on the KDFs, which still stands,
even for MD5. The difference is that the attack relies on having values of h(x,K) for chosen
values of x, where K is the key, while the PRG assumption fixes x to be IV .

There are a few other security proofs that aim to establish MAC (but not PRF) security of
NMAC under assumptions that are different from, or weaker than, the PRF assumption on the
compression function [11, 69]. These provide fallback guarantees for MAC security in the case
the compression function is found to not be a PRF.

101

Mode Type q t RKA? Who

NMAC-MD4 recover K1,K2 277 277 No [196]

HMAC-MD4 DH 258 No [53]

HMAC-MD4 recover K1 263 No [53]

HMAC-MD4 forgery 258 No [111]

HMAC-MD4 recover K1,K2 272 277 No [196]

NMAC-MD5 recover L1 247 Yes [53]

NMAC-MD5 recover L1 ‖ L2 251 2100 Yes [70]

NMAC-MD5 recover L1 ‖ L2 276 277 Yes [70]

HMAC-MD5 DH 297 297 No [200]

Figure 9.3: Attacks on NMAC and HMAC. The HMAC versions to which they apply would
appear to be 0 and 1. We indicate the type of attack, the number of queries q, the running time t in
hash computations, whether or not it is a related-key attack (RKA), and the source. The advantage is
in all cases at least 0.5. Blanks indicate we do not know.

As the above indicates, security proofs view the compression function h : {0, 1}c×{0, 1}b →
{0, 1}c as the base primitive. Typically (in particular, for MD5 and SHA1), the function h is
built from an underlying blockcipher E : {0, 1}b × {0, 1}c → {0, 1}c in Davies-Meyer modes
[138], so that h(x, y) = Ey(x)⊕ x. It is thus natural to consider basing the security of NMAC
on some assumption on the blockcipher. The most attractive would certainly be the standard
assumption that E is a PRP.

That said, the PRF property of h does not follow from the PRP assumption on E. We do
not merely mean that nobody knows how to do this but that it is impossible because one can
give an example of a PRP E for which h is not a PRF. Intuitively, the difficulty is that the key
for E is y, which is under the attacker’s control when attacking h as a PRF, while the key x
for h is used as a data input for E. One might ask, then, whether there is an alternative, direct
security proof for NMAC based on the PRP assumption on E but this again would not appear
to be possible. What is true, however, is that if E is modeled as an ideal cipher then h will be
a PRF [41]. Thus NMAC is secure in the model where E is an ideal cipher.

9.6. Attacks. When the hash function is iterated, HMAC is an instance of what Preneel and
Van Oorschot call an iterated MAC [172]. Their birthday attack then applies to break HMAC
as a MAC with about 2c/2/

√
m queries of at most m blocks each. This means the security

guaranteed by the above proof is close to best possible (the two differ by a factor of
√
m).

The birthday attack is generic, meaning that it applies equally well for any hash function, be
it MD5, SHA1, or something else. Cryptanalysts have also attempted to find dedicated attacks,
meaning to break HMAC for particular choices of H. The terrain is complex, with attacks of
many different kinds, but the bottom line is that none of them currently threaten HMAC-MD5
or HMAC-SHA1 relative to the central PRF goal, and none appear to refute the assumption
that the compression functions underlying MD5 or SHA1 are PRFs.

Taking a closer look, we attempt to summarize known cryptanalytic attacks in Figure 9.3.
Let us now discuss the Figure and its implications.

The entries in the attack-type column should be self-explanatory except for the label DH.
This stands for “Distinguishing-H.” Here one attempts to distinguish the construct (NMAC or

102

HMAC), with the stated hash function, from the same construct with a random compression
function. The interest of this model is apparently that birthday attacks do not apply and hence
beyond-birthday cryptanalytic attacks are cryptanalytically interesting. From an application
perspective, however, the goal is moot, and if one views the security goal as being a PRF, as
we think one should, none of the shown DH attacks are significant, since they do not improve
on the 264 time birthday attack.

Even for MD4, the attacks are beyond birthday. It is potentially significant that beyond-
birthday effort can recover the key, not just forge. Some attacks only recover half the key, which
would not appear damaging.

Many attacks on NMAC are related-key attacks (RKAs), meaning they attack NMAC when
it is being used simultaneously with different keys related in attacker-chosen ways. Related-key
attacks are standard in the cryptanalytic literature, but related keys are rare and frowned upon
in “correct” usage of a PRF, making the practical utility of such attacks moot. Also, it is unclear
how to lift RKAs on NMAC to HMAC. Paradoxically, the reason is that in HMAC, the keys
K1,K2 are related and derived from K in some particular way. We clarify that this internal
use of related keys is very different from external use, where the issue is several instances of
HMAC, each with its own key K, but these keys are related. This simply should not happen
when HMAC is appropriately used.

We have not discussed attacks involving reduced-round hash functions, of which many are
known [111, 120, 173].

9.7. Truncation. HMAC truncated to τ bits is, inevitably, subject to an attack that forges
with probability qv/2

τ in qv verification attempts; as a consequence, the parameter τ should,
in most cases, be kept fairly large. Why, then, truncate at all? One reason for allowing
MAC truncation is the obvious one, to lessen bandwidth or storage costs. More interestingly,
truncation appears to make the birthday attack less effective, because internal collisions can no
longer be identified by collisions in the HMAC outputs. A little truncation may thus improve
security. We emphasize, however, that while there are proofs that truncation will not degrade
security by more than the addition of the term that we just mentioned, there is no known
proof that truncation can improve security—not even in the random-oracle model. We suspect,
however, that this is more indicative of technical difficulties in the proof—or the lack of a really
serious effort—than the absence of a quantifiable improvement.

We emphasize that the concrete security loss from truncation is “only” the qv/2
τ term that

one “must” be for truncation; we are not speaking of the more severe drop in security as one
sees when truncating tags with GMAC (§10.6) or GCM (§12.6).

9.8. Beyond-PRF goals. HMAC has been shown to have good randomness-extraction prop-
erties in the model where the compression function is random [59, 72]. This supports its use
for key-derivation. The security of HMAC under various kinds of side-channel attacks has been
considered in [130, 161].

9.9. Perspective. We have discussed both proofs and attacks, outcomes from very differ-
ent communities with very different cultures. Lacking in the literature is anything that helps
understand how they relate. We aim here to provide a bit of perspective on this.

Recall that HMAC is a secure PRF assuming the underlying compression function h is
a PRF [11]. From the proof perspective, the natural next step is to validate or refute this
assumption for specific hash functions. We would look to cryptanalysts to cryptanalyze the

103

compression functions of MD4, MD5, and SHA1 as PRFs.

Cryptanalysis has, indeed, shown that md4, the compression function of MD4, is not a PRF,
indicating we should drop HMAC-MD4 even in the absence of direct attacks on it. Beyond this,
however, cryptanalysts seem to attack HMAC itself, directly, for the above or other choices of
hash functions, rather than attack the compression function. When they fail to break it as a
PRF, we have direct evidence of the PRF security of HMAC, but also indirect evidence that
the compression functions are PRFs.

Cryptanalysis of HMAC shows a trend common to other primitives. When breaking relative
to the main target goal (here, PRF) is hard, the models are extended until attacks become
possible. Thus, we see the distinguishing-H attacks noted above. Alternatively, attackers are
allowed more capabilities. Thus we see related-key attacks. The cryptanalytic perspective is
perhaps that finding attacks in variants of the model of interest may help to find “real” attacks
later. If so, for HMAC, it has not yet borne fruit.

Why do cryptanalysts attack HMAC rather than the compression functions? Perhaps it is
just a difference in cultures. Cryptanalysts gain confidence in a design only via a history of
failed attacks, and so attacking the design is their goal. But one might also note that while the
compression function being a PRF is sufficient for PRF security of HMAC, it is not necessary, in
the sense that HMAC may be a PRF even if its compression function is not. Put another way,
suppose tomorrow someone finds an attack on the compression function of MD5, breaking it as
a PRF. This may break HMAC-MD5 — or it may not. This may contribute to cryptanalytic
interest focusing on HMAC rather than the compression function. Cryptanalysts are after the
bigger prize. By way of analogy, collisions were found in the compression function of MD5 some
time ago [57]. This nullified the proof-based guarantees for the collision-resistance of MD5, yet
had little impact since it did not yield MD5 collisions. Attacks on MD5 itself got more attention
and prestige.

9.10. Conclusions. HMAC remains strong, as we find that compression functions that are
not collision-resistant still appear to be good PRFs, which is enough to guarantee HMAC’s
security. Still, caution should be exercised. HMAC-MD4 should be avoided (no effective at-
tacks are known, but the compression function is not a good PRF). Schemes HMAC-MD5 and
HMAC-SHA1 are holding up well, but HMAC-SHA256 is seen as a more conservative choice
for long-term security. Beyond that, we look to HMAC-SHA3.

Basing a MAC on an unkeyed cryptographic hash function—what HMAC looks to be doing—
might seem like a conceptually wrong turn. First, the fundamental property of a cryptographic
hash function—collision resistance—is not a good basis for making a MAC [189]. Second,
mechanisms like the “envelope” approach for turning a hash function into a MAC [193]—the
kind of construction from which HMAC evolved—can be seen, historically, as “engineering”
attempts to avoid US export controls and maximize the utility of a single, well-known tool. But
HMAC need not be viewed as being based on an unkeyed cryptographic hash function: instead,
it is based on a keyed compression function. A keyed compression function is a good starting
point for creating a MAC/PRF. In some sense, the troublesome step in hash-function design
has always been in getting rid of the secret key. It is here that problems arise, as suggested
by the fact that MD5 has known collisions, but its keyed compression function is perfectly fine.
Regarding HMAC as transforming a keyed compression function into a variable-input-length
PRF, the mode avoids the elimination (and re-insertion) of a cryptographic key.

Basing a MAC on a cryptographic hash function seems to place significant limits on the
speed it can be expected to deliver. Traditionally, MD4-family cryptographic hash functions
were seen as being faster, in software, than blockciphers. But this is no longer an accurate

104

view, for two reasons. First, attacks on cryptographic hash functions have steadily pushed
us towards selecting more conservative, less efficient designs. As these get incorporated into
HMAC—the evolution of HMAC-MD4 �→ HMAC-MD5 �→ HMAC-SHA1 �→ HMAC-SHA2 �→
HMAC-SHA3—speed gets worse.1 The turmoil in hash functions has nothing to do with HMAC,
but it ends up going along for the ride, and in some sense suffering for it. Beyond this, as AES
gets increasingly provided with hardware support, the time to compute an AES-based MAC
improves, but HMAC is not positively impacted. As a current snapshot, the fastest reported
time for SHA1 on an Intel x86 processor is 5.8 cpb [125]. In contrast, CBC encryption, and
therefore the CBC MAC and its relatives, runs at about 4.1 cpb on a recent Intel x86 processor
[162]. And the 30% difference in speed understates the discrepancy: the coarse granularity
of HMAC (the fact that, minimally, one must perform two compression functions, each on 64
bytes) means that the x86 cost for HMAC-SHA1 will start at about 700 cycles, whereas the AES
CBC-MAC of a short string, in the presence of hardware AES support, will take just a handful
of cycles. In brief, the original conception of HMAC—“build a MAC out of a cryptographic hash
function in a black-box manner”—is a conception that has lead to a popular and well-designed
construction, but it is not the most efficient approach.

1 Of course the speed impact of the final step in this chain remains unknown.

105

Chapter 10

GMAC Mode

10.1. Summary. The Galois/counter MAC (GMAC) is a nonce-based message authentication
code that is defined alongside of the authenticated-encryption scheme GCM (Chapter 12); it is
a special case of that mode [64]. Specifically, GMAC is defined by asserting, in the notation
that we will adopt, that

GMACN
K(M) = GCMN,M

K (ε). (10.1)

In words, the MAC of a string M ∈ {0, 1}∗ relative to the key K and nonce N is the GCM-
encryption of the empty string under the same key and nonce, but M as the associated data.

As a special case of GCM, GMAC inherits many of the latter mode’s strengths and weak-
nesses, and much of what is said about GCM in Chapter 12 applies ipso facto to GMAC. Still,
there are a few specific things that should be said with respect to (just) GMAC, and this chapter
says those things.

GMAC is a very different MAC from all the others reviewed in Part II of this report: it is the
only MAC that is nonce-based. Cryptographers don’t usually speak of nonce-based MACs, but
we sometimes speak of stateful ones, which are almost the same thing. The difference is that, in
a nonce-based MAC, the user, not the mechanism, is responsible for maintaining the state, and
all that the users is expected to do is to ensure that the state—the nonce—is ever-changing.

Why did NIST decide to give GMAC its own name and individual stature, instead of just
implicitly defining it as a special case of GCM? The answer is hinted at in [64, Section 10]:
GMAC is considered as a separate “category” of an object that can claim conformance to the
NIST standard. As such, a GMAC implementation may, apparently, be separately validated
under FIPS Publication 140-2 [157].

GMAC has several things going in its favor—mostly the same things as with GCM. Still, I
am rather more critical of explicitly standardizing it.

10.1.1 GMAC is stateful (or nonce-based), where MACs need not be, creating opportunity for
misuse. This would be OK if there were significant benefits from the included nonce.
But, in this case, there are not.

10.1.2 While there should be a provable-security benefit—better bounds—by virtue of the
nonce, GMAC largely squanders this benefit, delivering bounds that are sometimes
even worse than what one expects to get from a conventional deterministic MAC. One
could prove strong bounds if |N | = 96 and there is no truncation of the MAC, but such
bounds have not be explicitly proved [133].

106

GMAC
when |N | = 96

N

EK

1

M1 M2 0 |M | 0
MSBτ

T

M3

H• H• H• H•

10 algorithm GMACN
K(M) GMAC

11 // |M | < 264, |N | > 0, |N | < 264, M ∈ ({0, 1}8)∗, N ∈ ({0, 1}8)∗
12 H ← EK(0128)
13 if |N | = 96 then Cnt ← N ‖ 031 1
14 else Cnt ← GHASHK(N ‖ 0i ‖ |N |128) for minimal i ≥ 0 s.t. 128

∣∣ (|N |+ i)
15 Y1 ← EK(Cnt)
16 X ←M ‖ 0i ‖ |M |64 ‖ 064 for minimal i ≥ 0 s.t. 128

∣∣ (|M |+ i)
17 Tag← Y1 ⊕GHASHH(X)
18 T ← MSBτ (Tag)
19 return T

20 algorithm GHASHH(X) Used internally

21 X1 · · ·Xm ← X where |Xi| = 128
22 Y ← 0128; for i← 1 to m do Y ← (Y ⊕Xi) •H
23 return Y

Figure 10.1: Definition of GMAC. The mode depends on blockcipher E : {0, 1}k × {0, 1}128 →
{0, 1}128 and the tag length τ ∈ {32, 64, 96, 104, 112, 120, 128}. The illustration is specific to the case of
|N | = 96; longer or shorter nonces are processed as specified in the code.

10.1.3 Tag-truncation in GMAC has the same problems as tag-truncation in GCM; forgeries
can be accomplished after about 2τ/2 queries, or 2τ total blocks. Correspondingly, it
is essential to obey NIST’s (rather severe) restrictions when using GMAC to generate
32-bit or 64-bit nonces.

10.1.4 There is a well-entrenched expectation and tradition for truncating MACs down to 32-
bits, which has, after all, been the standard in retail banking for decades. A general-
purpose MAC should provide the expected service when so truncated.

10.1.5 The idea of permitting arbitrary-length nonces seems to make still less sense with
GMAC than it did with GCM.

10.1.6 One cannot say that these accommodations were necessary for speed; the software speed
of GMAC is nothing special compared to alternative constructions.

All in all, the gap between what GMAC delivers and what a “good” MAC should deliver feels
larger than the gap between what GCM delivers and what a “good” AEAD scheme should

107

deliver, which is why I am more critical of it.

I believe that GMAC is a good choice for an application if, for that applications, you have
already implemented GCM, will not be be truncating the MAC, don’t need to minimize the
MACs length, are quite certain of the nonce property of the provided IVs, and want to minimize
the footprint of any additional code. This is a rather specific set of circumstances.

10.2. Definition of the mode. GMAC is defined and illustrated in Figure 10.1. The mode
is parameterized by a 128-bit blockcipher E : {0, 1}k × {0, 1}128 → {0, 1}128 and a tag length
τ ∈ {32, 64, 96, 104, 112, 120, 128}. Following SP 800-38D [64], the underlying blockcipher must
be AES. The requirement follows from assertions that the blockcipher must be NIST-approved
and have a 128-bit block size.

Quantity-of-use restrictions are placed on GMAC if using either of the smallest two permitted
tag lengths [64, Appendix C]. Specifically, for 32-bit tags, an implementation must ensure that
when the maximal permitted message length is 25 (or 26, 27, 28, 29, or 210) bytes, the maximal
permitted number of applications of the MAC-verification function does not exceed 222 (or 220,
218, 215, 213, 211, respectively). Limits are not specified if the maximal permitted message
length exceeds 210 bytes; we assume that such messages must not be allowed. Similarly, for
64-bit tags, if the maximal permitted message length is 215 (or 217, 219, 221, 223, or 225) bytes,
the maximal permitted number of applications of the MAC-verification function must be no
more than 232 (or 229, 226, 223, 220, 217, respectively). Limits are not specified if the maximal
permitted message length exceeds 225 bytes; we assume that such messages are disallowed.

10.3. Desirable characteristics. Many of the nice features of GCM are shared by GMAC:
provable security guarantees; only the forward direction of the blockcipher being used; unsur-
passed hardware performance; parallelizability (although it is not so obvious from the chained
description); reasonable software efficiency; on-line status (one does not need to know the length
of M before authenticating it); ability to precompute the (one) AES call if the next nonce is
known; incrementality with respect to appending and substituting 128-bit blocks; hardware
support in “Westmere” (and later) Intel processors via PCLMULDQ; and general absence of
patents by the scheme’s inventors. I will not dwell on any of these benefits; see §12.3.

10.4. Nonce-based message authentication. In §II.2 we defined MACs as stateless, de-
terministic functions: given a key K and a message M , we produce a tag T = FK(M) that
depends only on these two things. There is also a tradition for stateful MACs. One usually
conceives of them as pair of function, a MAC-generation algorithm and a MAC-verification one,
the first of which generates a tag T and updates its internal state, and the second of which,
which is stateless, verifies a tag T for a message M . The tag would include any necessary state
information. Both algorithms take in the underlying key.

We will describe a variant of the above where the state is provided by the user and is only
expected to be unique across the different calls; this is nonce-based message authentication. Here
it is adequate to consider a single algorithm, Mac, as with a conventional MAC. Algorithm Mac
takes in three arguments—a key K, a nonce N , and a message M—and returns an τ -bit string.
Function Mac will have signature Mac: K × N ×M → {0, 1}τ and we’ll write the arguments
as in MacNK(M).

To define security for a nonce-based MAC, we’ll carry out the following experiment. We
begin by choosing a random key K ∈ K from the key space. We now give the adversary two
oracles, a MAC-generation oracle and a MAC-verification oracle.

108

• The MAC-generation oracle, on a query of (N,M) ∈ N ×M, returns T = MacNK(M).
The adversary is not allowed to repeat a nonce-value (an N) in any of these queries.

• The MAC-verification oracle, on a query of (N,M, T) ∈ N ×M×{0, 1}τ , returns the
bit 1 if MacNK(M) = T , and the bit 0 otherwise. There are no restrictions about what
nonce-values (N -values) may be used.

While the phrase “nonce-based MAC” is not routinely used, the notion is not really new.
The standard Carter-Wegman MAC [50, 201], as it has been adapted to the complexity-theoretic
setting [46, 177], can be considered as a nonce-based MAC. Here the idea is to start with
an almost-xor-universal hash-function family (ε-AXU) [116] Hash: K × M → {0, 1}n and a
pseudorandom function Prf : K′ ×N → {0, 1}n. Saying that Hash is ε-AXU means that, for all
distinct M,M ′ ∈ M and all Δ ∈ {0, 1}n, we have that PrK [H(M) ⊕ H(M ′) = Δ] ≤ ε. One
defines the MAC from Hash and Prf by setting

MacNK,K′(M) = PrfK′(N)⊕HK(M) . (10.2)

Typically, we let Prf be a blockcipher E.

This Carter-Wegman construction, as above, is close to what is done in GMAC, but there
are a couple of important differences. The first is that, in GMAC, the keys K and K ′ are not
independent. The second is that, when the nonce N is not 96 bits, the pseudorandom function
Prf is not simply the blockcipher E. Instead, it is a rather complex construction that involves
applying a polynomial-based hash to a padded and length-annotated N , keyed by the same key
that is used for the hash Hash, and then applying the blockcipher E.

10.5. Provable security. The paper on GCM offers no results specific to GMAC; instead, the
scheme inherits its provable-security claim from GCM [133]. We explain what that claim would
be. Let B be an adversary that asks its oracle a sequence of queries where

•
 upperbounds the block length for each and every message that will be authenticated,
and

•
N upperbounds the block length of each and every nonce that will be used,

• q upperbounds the total number of queries (either MAC-generation or MAC-verification
queries).

Then McGrew and Viega’s [133, Theorem 2] implies that

Advauth
GCM[Perm(n),τ](B) ≤ q2
N + 3q2 + 0.5q
N + 0.5q

2n
+

q(
+ 1)

2τ
. (10.3)

Simplifying and giving up a constant, for readability, we have that

Advauth
GCM[Perm(n),τ](B) ≤ 5q2
N

2n
+

q(
+ 1)

2τ
. (10.4)

This is not a good bound, for two reasons:

10.5.1 The first problem is that the addend in the first term of (10.4) is growing in σ3/2n,
where σ is the total number of blocks that adversary asks during the attack. (To get
this worst-case behavior, given a budget of σ blocks, use half of them for a single long
nonce with the empty message, and use the rest with one-block messages and a one-
block nonces). In any modern MAC, we want and expect to see security results no
worse than σ2/2n.

109

10.5.2 The second problem is the quadratic behavior of the second addend. The purpose of
a stateful MAC, since at least Bellare, Guérin, and Rogaway [17], is to get security
that degrades only linearly in the number of queries. More specifically, when using the
Carter-Wegman construction with an ε-xor universal hash function, if qver verification
queries are made by the adversary, then its chance to forge is going to be bounded by
ε qver, something linear in qver, if we think of ε as a small constant.

Now one might answer: “Right. And here ε = (m+ 1)2−τ , the value one gets from
polynomial hashing.” But this is not the value one would want or expect to see from a
truncated-to-τ -bit hash function: one wants to see a bound for ε that is something like
ε = 2−τ + (
+ 1)2−n. It may sound like a technically-insignificant detail, but it is not:
in the one case, truncation by 32-bits is reasonable and carries with it a fine guarantee;
in the other case, this is not so.

While issue 10.5.1 (the σ3/2n issue) is probably just a bit of sloppiness in the analysis, is-
sue 10.5.2 (short tags) is not; it’s a problem with the scheme. If the authors were envisioning
allowing truncation they should have processed the polynomial-hash differently, for example,
composing it with a variationally-universal hash function [117], as Krovetz and Rogaway taught,
or composing it with a variationally-xor-universal hash function, as Wang, Feng, Lin, and Wu
have more recently explained [197].

In conclusion, there are provable-security bounds for GMAC, but they are weaker than what
one wants and can reasonably expect.

10.6. Forging GMAC with truncated tags. An attack by Ferguson [67] on GCM with
32-bit tags asks for the encryption of a single 217-block message (and associated data of the
emptystring) and then, with an expected 216 forgeries, finds a valid 32-bit tag. Soon after, the
subkey H is completely compromised, and the adversary can forge anything.

While Ferguson does not point this out, his attack can be adapted to attack GMAC. In that
setting, the method would work like this.

Begin by selecting an arbitrary nonce N and message M = am · · · a3a2 consisting of m =
217 − 1 blocks ai ∈ {0, 1}128. After padding, this will become a 217-block string am · · · a2a1
where a1 encodes |M |. For concreteness, we take all of the blocks indexed aj , where j ≥ 3,
to be zero; the other 17 blocks can be 1, say, or can be selected at random. Note that when
we hash the message M in GMAC by evaluating the polynomial gM (x) = amxm + · · ·+ a1
at H, the observation that x �→ x2 in GF(2128) is linear when regarded as an operation
on bit vectors implies that gM (H) = AM · H can be regarded as the multiplication of the
128-bit vector H by a 128× 128 binary matrix AM that the adversary can compute.

Let the adversary ask the oracle for T = GMACN
K(M). We now seek some alternative

message B having the same length and structure as M such that GMACN
K(B) is also T .

For each such alternative string B we will do a verification query with message B and
unchanged N and T . We will succeed if the padded-B hashes to something that has the
same first 32-bits as what the padded-M hashed to. Saying that B has the same structure
as M means that we will select B to likewise have the form B = bm · · · b2 where bi is zero
for nonzero powers of i. We have 17× 128 random bits to play with in choosing B.

Now for any candidate B we can once again compute the matrix AB such that message B
hashes to AB · H prior to xoring it with with EK(N ‖ 0311). We hope that AB · H and
AM ·H agree on their first 32 bits, which is to say we would like to find B-values such that
(AB − AM) · H always begins with 32 zeros, regardless of H. This will be ensured if we
select B such that the matrix ΔB = AB − AM begins with 16 zero rows. Well, we have
128× 16 constraints we would like to satisfy and we have 128× 17 variables at our disposal,
so we can sample in the space of random B-vectors such that ΔB begins with 16 zero-rows.

110

When we do so, we expect to forge in an expected 216 queries.

A bit more generally, the method above lets us forge τ -bit GMAC tags in an expected 2τ/2

queries, each of 2τ/2+1 blocks. The total number of blocks used is thus about σ = 2τ+1. This
is not excessive when τ is small.

The attack demonstrates that issue 10.6.2 is a “real” problem, not just a gap between what
is proven and what is true.

As I have indicated, there are reasonably cheap ways to “fix” the short-tag problem; for ex-
ample, one could have multiplied the polynomial-hash result by another, independent field point
[197]. But such suggestions come too late for GMAC or GCM, which are stable, standardized
schemes.

I believe that, for MACs, one ought to be able to truncate down to 32-bits, and even below.
It is not just that retail banking has used 32-bit tags for decades, finding tags of that length,
properly created, to be adequate for protecting billions in transactions. The fact is that human
beings routinely take “risks” that are orders of magnitude larger than 2−32. Such risks are
a necessary and sensible thing to do. It is worth keeping in perspective that ones chance of
being struck by lightning, in a given year, is perhaps 1000 times greater than 2−32. Escalation of
computing speed is typically irrelevant in ascertaining how long MACs should be, while network
bandwidth is only sometimes a relevant factor.

10.7. Against nonce-based MACs. Returning to one of the criticisms voiced in §10.1, I
comment that there is relatively little precedent for stateful MACs. The only other standardized
MAC that I know is the NESSIE-standard UMAC scheme [37]. But in that case the use of the
nonce was strongly tied to improvements in speed and bounds compared to what a comparable
stateless scheme could deliver. For GMAC, there are no such gains. And while encryption
schemes need nonces, state, or randomness to achieve strong security goals, MACs simply do
not, and so there should be a clear benefit for demanding a nonce. I would note too that the
frequency of misuse of the IV in CBC encryption (people using a fixed, counter, timestamp, or
last-prior-block-of ciphertext IV) is already suggestive that IVs are subject to misuse. And here,
IV reuse is catastrophic: for the reasons already described by Joux in the context of GCM, but
which are no less applicable here, GMAC will completely fail when an IV is used twice [104].
Authenticity will be forfeit from that point on.

In the end, we “forgave” GCM its various deficiencies and suggested that it is fine to stan-
dardize it. I am less charitable with GMAC, because of its “unnecessary” requirement for a
nonce, its failure to use it well, and the problems it encounters creating safe, short tags.

111

Part III

Authenticated-Encryption Modes

112

Part III

Authenticated-Encryption Modes

III.1. Background. Over the past few years, considerable effort has been spent to construct,
employ, and standardize cryptographic schemes for authenticated encryption (AE). One reason
for this is recognition of the fact that a scheme that delivers both privacy and authenticity may
be more efficient than the straightforward amalgamation of separate privacy and authenticity
techniques. A second reason is the realization that an AE scheme is less likely to be incorrectly
used than an encryption scheme designed to deliver privacy alone.

While other possibilities exist, it is natural to build AE schemes from blockciphers, employing
them in some mode of operation. There are two approaches. In a composed AE scheme one
conjoins essentially separate privacy and authenticity modes. For example, one might apply
CTR-mode encryption and then compute some version of the CBC MAC. In an integrated
AE scheme the parts of the mechanism responsible for privacy and for authenticity are tightly
coupled.1 Composed AE schemes are rooted in cryptographic folklore, with the first systematic
study carried out by Bellare and Namprempre [22]. Integrated schemes emerged about a decade
ago, with the work of Jutla [106, 107], Katz and Yung [109], and Gligor and Donescu [73].

The two AE schemes considered within this evaluation report, CCM [62, 203] and GCM
[64, 137], are both composed schemes. The first is built from CTR mode and the CBC-MAC,
the second, from CTR mode and a Carter-Wegman MAC—one created from the universal hash
function that is polynomial evaluation over GF(2128) [50, 201].

Both CCM and GCM are nonce-based, meaning that, on encryption or decryption, one must
present a nonce, N . When encrypting, the nonce must be changed with each message. A counter
of some sort would most typically be used, although it is not necessary that one understands
“increment” as incrementing in the realm of integers. On decryption one must present the same
nonce N that was used to encrypt the message. We do not consider the nonce to be part of the
ciphertext. How it is communicated to the party that will decrypt is not the business of the
formalization; the nonce might be flowed with the ciphertext, or it might be communicated by
some other means, like the sender and receiver maintaining some state, like a counter, that is
kept in-step.

Both CCM and GCM encryption take as input not only the key, nonce, and plaintext
but, also, a string called the associated data (AD). The AD is authenticity-protected by the
ciphertext. It is not included as part of the ciphertext and is not expected to be recoverable
from it. Sometimes one sees the acronym “AEAD”—authenticated-encryption with associated-
data—to emphasize the presence of the AD. In this report, however, AE means AEAD; the AD

1 Integrated and composed schemes are sometimes called “one-pass” and “two-pass” schemes. These names
are misleading, however, as both types of schemes can typically be implemented in a single pass over that data.

113

is always provided for. A typical use of the AD is to encode header information in a networking
context. Non-changing parts of the header should be authenticated but must not be encrypted,
since the information will be needed for routing at intermediate nodes that do not have the
underlying key. The first formalizations for AE in the presence of AD is due to Rogaway [178],
but the notion of AD, and some ways of dealing with it, our clearly folklore.

Ciphertexts produced by an AE scheme must be sparse in the sense that “most” ciphertexts
should decrypt to Invalid. When the receiver receives a ciphertext C and, using the key K,
nonce N and associated data A, it decrypts to some string M—a value other than Invalid, the
receiver can take this as proof—or at least strong evidence—that this ciphertext C actually was
produced and sent by the sender, the result of encrypting its plaintext M using the nonce N
and AD A.

In CCM, GCM, and other AE schemes, the ciphertext C has the structure C = C ‖ T for
a fixed-length tag T , |T | = τ . Given the key K, nonce N , and AD A the receiver can recover
from C, the ciphertext core, a prospective plaintext M and an anticipated tag T ′. The receiver
accepts C as authentic, having corresponding plaintext M , if the received tag is the anticipated
one, T = T ′. Otherwise, the receiver is expected to return Invalid, ignoring the prospective
message M . We call an AE scheme of this structure a tag-based one. CCM and GCM are
tag-based AE schemes.

We comment that, while CCM uses the term “ciphertext” in the way we have, encompassing
both the ciphertext core and the tag, the GCM specification uses the term “ciphertext” to mean
just the ciphertext core.

III.2. Definition of authenticated encryption. We provide a formalization for (nonce-
based, AD-employing) AE. We conceptually follow [178, 182], but we substantially revise the
“syntax” of an AE scheme, in order to increase the family-resemblance to our treatment of
blockciphers and IV-based encryption schemes.2

A scheme for (nonce-based) authenticated encryption (with associated-data) is a function

E : K ×N ×A×X → X . (10.5)

Nonempty sets K, N , A, and X are called the key space, nonce space, AD space, and message
space. We assume N ,A,X ⊆ {0, 1}∗ are all sets of strings. The key space is either finite or
otherwise endowed with a probability distribution. The encryption function takes in a key
K ∈ K, a nonce N ∈ N , a string of associated data A ∈ A, and a plaintext P ∈ X . It returns a
ciphertext C = EN,A

K (P) = E(K,N,A, P) ∈ X ⊆ {0, 1}∗. We demand that, for all K,N,A, the

function EN,A
K (·) is injective. Given this requirement, we may associate to any AE scheme E a

unique decryption function D = E−1 with signature

D : K ×N ×A×X → X ∪ {Invalid} (10.6)

and defined by saying that DN,A
K (C) = P if C = EN,A

K (P) for some P , while DN,A
K (C) = Invalid

if there is no P ∈ X such that C = EN,A
K (P).

We make the following assumptions on any AE scheme E : that |EN,A
K (P)| = |EN,A

K (P ′)| if
|P | = |P ′|. If this value is always |P |+ τ , as it is for CCM or GCM, we call τ the tag length of
the scheme.

2 In particular, AE schemes have normally been defined as a triple Π = (K, E ,D) consisting of a key-generation
algorithm, an encryption algorithm, and a decryption algorithm. We here select a simpler syntax, where the
scheme is specified only by the encryption function E .

114

While we have defined an AE scheme as a function E , any practical AE scheme will need to
have an efficient algorithm for implementing it, as well as one for implementing its inverse D.
When we speak of computational complexity matters associated to an AE scheme, we must
have in mind a particular algorithmic realization.

We now formalize security of an AE scheme E , beginning with privacy. Given an adversary
(an oracle-calling algorithm) A, we let

Advpriv
E (A) = Pr [K

$←K : AEK(·,·,·) ⇒ 1]− Pr [A$(·,·,·) ⇒ 1] (10.7)

where queries of $(N,A, P) return a uniformly random string of length |EN,A
K (P)|. In other

words, the adversary is given either a “real” encryption oracle or else a “fake” encryption oracle
that simply returns the same number of bits that the real encryption oracle would return. We
demand that A never ask two queries with the same first component (the N -value); such an
adversary is said to be nonce-respecting. We also demand that the adversary never ask a query
outside of N ×A×X , and that it never repeats a query. The notion we have defined is termed
indistinguishability from random bits. It is just like the IND$-notion dealt with earlier in this
report, the only real difference being the addition of the AD.

Next we define authenticity for an AE scheme E having inverse D. For that, let

Advauth
E (A) = Pr [K

$←K : AEK(·,·,·),DK(·,·,·) forges] (10.8)

where we say that the adversary forges if it asks a decryption (second-oracle) query of (N,A,C) ∈
N×A×X such that the oracle returnsDN,A

K (C) �= Invalid yet there was no prior query (N,A, P)
that returned C. We demand that A never ask two encryption (first-oracle) queries with the
same first component (the N -value): it is nonce-respecting. We also demand that the adversary
never asks a query outside of N ×A×X , that it never repeats a query, and that it never asks a
decryption query of (N,A,C) after having asked an encryption query (N,A, P) that returned C.

The authenticity definition above “strengthens” the definitions in [178, 182] by allowing the
adversary multiple chances to forge—every decryption attempt can be regarded as a forgery
attempt. Informally, one expects security in the multiple-forgery-attempt definition to be qdec
times security in the single-forgery-attempt definition where qdec is the number of decryption
calls the adversary makes. The multiple-forgery-attempt definition is more consistent with other
notions of security employed in this report, which is why I selected it.

III.3. Not bothering to define decryption. In describing GCM and CCM mode, we define
encryption but don’t bother with defining decryption. Our chosen syntax has made clear that,
in general, defining the decryption function of an AE scheme is unnecessary in the sense that
it is uniquely determined by the encryption function. Mathematically, decryption is whatever
it “has to be” to be the inverse of encryption. We are not, however, suggesting that, in a spec,
one shouldn’t separately specify the decryption algorithm: it is certainly useful for those that
will implement the scheme to see it, and its specification is important in addressing efficiency
questions.

III.4. Short tags. Our definition of AE-security “gives up”—gives the adversary credit for
“winning” in the experiment associated to defining Advauth

E (A)—as soon as it achieves its first
forgery. While this notion is perfectly good when we don’t expect the adversary to ever forge—
as is likely to be the case when tags are 64–128 bits—the definition shows its limitations if
we want to consider tag-based AE with short tags, say tags of a single byte or, perhaps, tags
of 32-bits. While there has been some recent academic work on MAC “reforgeability” and

115

dealing with short tags, especially Black and Cochran [35] and Wang, Feng, Lin, and Wu [197],
we know of no definitional work addressing the problem for authenticated encryption. This
limitation comes up in trying to understand and address Ferguson’s criticism the GCM doesn’t
do well when tags are short not only because the first forgery is too easy but because, also,
reforgeability is too easy [67]. We do not dispute this claim—we think it is true—but giving a
provable-security-grounded discussion is made difficult because of the absence of a worked-out
treatment.

116

Chapter 11

CCM Mode

11.1. Summary. The CCM mode of operation—Counter with CBC-MAC—achieves AEAD
(authenticated-encryption with associated-data) by combining CTR-mode encryption and the
raw CBC-MAC. The amalgamation is in the style of MAC-then-Encrypt, but important changes
make it differ from generic composition [23]. CCM was invented by Whiting, Housley, and Fer-
guson [203] and submitted to NIST. The initial motivation was to replace the OCB mechanism
[182] that was in the draft IEEE 802.11i standard [87] by a patent-unencumbered scheme. While
CCM was designed with that particular purpose in mind, it has, by virtue of its widespread
standardization, become a general-purpose scheme.

Overall, CCM has many things in its favor. It enjoys a good provable-security guarantee.
It has adequate performance for most applications. It is simple to implement—simpler than
GCM. It is widely used, including its use in 802.11 (Wi-Fi networks), 802.15.4 (Low-Rate
Wireless Personal Area Networks) (ZigBee), IPSec’s ESP (RFC 4309), CMS (RFC 5084), and
IKEv2 (RFC 5282), and RFC 3610. Critiques of CCM have pointed largely to efficiency issues
(for example, the mode is not “on-line”) and have not found anything damaging with respect
to security [184]. Thus, despite deficiencies that I will detail, CCM probably should be included
in any portfolio of important and provably-secure AEAD schemes.

In my analysis I re-express concerns about efficiency characteristics of CCM. I complain
about the extremely low-level and ad hoc nature of its default “formatting function.” I question
NIST’s decision to “isolate” the formatting and counter-generating functions to a non-binding
appendix; as ungainly as these functions may be, I believe that their selection must, in the
interest of interoperability and assurance, be considered as an intrinsic part of the standard,
something that is fixed and mandated in any follow-on standardization. I also recommend that
randomly-chosen IVs be explicitly disallowed (from my reading of the spec, this is somewhat
ambiguous).

11.2. Definition of the mode. CCM is defined and illustrated in Figure 11.1. The mode is
parameterized by a blockcipher E : K × {0, 1}n → {0, 1}n with an n = 128 bit blocksize, a tag
length τ ∈ [32 .. 128], a formatting function Format, and a counter-generation function Count.
The functions Format and Count (which are not provided with any actual names in the spec)
determine the message space, nonce space, associated-data space, and restrictions on the tag
length.

One particular (Format,Count) pair is described in SP 800-38C; it is specified within [62,
Appendix A]. I call it the canonical formatting and counter-generation functions and denote
the pair of functions by (Format,Count). The functions are themselves parameterized by

117

PA

Count

CCM

N

Format

ECBK

Y0

C

B0 B1 … Br

CBCMACK

MSBτT

N1 N2 N3 … Nm N0

Len

Y1 Y2 Y3 … Ym

10 algorithm CCMN,A
K (P) CCM Encryption

11 m← �|P |/128
12 N0N1 · · ·Nm ← Count(N,m)
13 Y0Y1 · · ·Ym ← ECBK(N0N1 · · ·Nm)
14 C ← P ⊕ Y1Y2 · · ·Ym

15 B0B1 · · ·Br ← Format(N,A, P)
16 Tag← CBCMACK(B0B1 · · ·Br)
17 T ← MSBτ (Tag)⊕ Y0

18 return C ‖ T

20 algorithm ECBK(X0 · · ·Xm) 30 algorithm CBCMACK(X0 . . . Xm)
21 for i← 0 to m do Yi ← EK(Xi) 31 Y ← 0n

22 return Y0Y1 · · ·Ym 32 for i← 0 to m do Y ← EK(Y ⊕Xi)
33 return Y

Figure 11.1: Definition of CCM. The mode depends on blockcipher E : {0, 1}k×{0, 1}128 → {0, 1}128,
a tag length τ ∈ [32..128], a formatting function Format, and a counter-generation function Count. The
formatting function determines the message space, nonce space, associated-data space, and the allowed
tag lengths. At lines 14 and 17, the xor of unequal-length strings returns a string of the shorter length,
ignoring the least-significant (rightmost) bits of the longer string.

a pair of numbers t ∈ {4, 6, 8, 10, 12, 14, 16} and q ∈ {2, 3, 4, 5, 6, 7, 8}, which we might call
the byte length of the tag, t, and the byte length of the byte length of the message, q. I write
Formatq,t(N,A, P) and Countt(N,m) to explicitly name the parameters (function Count

does not depend on q). When Formatq,t is used with CCM, the mode’s message space is the
set of strings having 28q − 1 or fewer bytes, its nonce space is the set of strings having (15− q)
bytes, and the tag length is τ = 8t bits. Under the canonical formatting and counter-generation
function, the associated data must, independent of q and t, be a byte string of fewer than 264

bytes.

Given the structure of the spec [62], with its Format- and Count-parameterized “core” and
its canonically defined (Format,Count), one “should,” in principle, separate discussion about
CCM from discussion about CCM-with-(Format,Count). Still, to the best of my knowledge,

118

no formatting or counter-generation functions other than the canonical pair have ever been
specified or used. In addition, all of the other standards specifying CCM, including RFC 3610
[204], fold the definition of the canonical formatting function and counter-generation function
directly into the scheme that they too name CCM. In general, given the relatively complex
requirements that the (Format,Count) pair must satisfy, given the complex engineering-tradeoffs
implicit in selecting a definition for these objects, given the easy opportunity for error, and given
that the goal of interoperability that is one of the aims of a cryptographic standard, I find it
untenable to think that CCM is ever going to be used with anything other than the canonical
formatting function and counter-generation function. I will, therefore, be somewhat cavalier in
distinguishing CCM and CCM-with-(Format,Count); in practice, the former is, it seems, the
latter.

Following SP 800-38C [64], the underlying blockcipher for CCM must be AES. The require-
ment follows from assertions that the blockcipher must be a NIST-approved and have a 128-bit
block size; only AES satisfies these requirements. (The only other NIST-approved blockciphers,
Skipjack and TDEA, operate on 64-bit blocks.)

Quantity-of-use restrictions are placed on CCM, but they are quite liberal: the underlying
blockcipher may be used for a total of no more than 261 invocations. No special restrictions are
placed on the use of “short” tags, in the spec defined as 64-bits or less, but there is a warning
that the use of such tags needs to be be accompanied by a security analysis.

11.3. Canonical formatting function. Canonical formatting function Formatt,q(N,A, P)
is complex; Appendix A of the NIST specification [62] comprised the most detailed and low-level
pages I reviewed for this report. It might be noted, however, that the complexity is not the sort
that would bother an implementer: realizing Format in code is certainly simpler, for example,
than realizing an efficient GF(2128) multiply.

Function Format is not named in the spec; this was my own attempt to rationalize what is
going on. Here is the definition of Formatq,t(N,A, P), as previously extracted from the CCM
specification in joint work with David Wagner [184].

Formatq,t(N,A, P) = (11.1)

0 ‖ if A = ε then 0 else 1 endif ‖ [t/2− 1]3 ‖ [q − 1]3 ‖ (11.2)

N ‖ [|P |8]8q ‖ (11.3)

if A = ε then ε elseif (11.4)

|A|8 < 216 − 28 then [|A|8]16 (11.5)

elseif |A|8 < 232 then 0xFFFE ‖ [|A|8]32 else 0xFFFF ‖ [|A|8]64 endif ‖ (11.6)

A ‖ (11.7)

if A = ε then ε elseif |A|8 < 216 − 28 then (0x00)(14−|A|8) mod 16 (11.8)

elseif |A|8 < 232 then (0x00)(10−|A|8) mod 16 else (0x00)(6−|A|8) mod 16 endif ‖ (11.9)

P ‖ (11.10)

(0x00)(−|M |8) mod 16 (11.11)

Above, the nonce N ∈ {0, 1}8(15−q) must comprise 15−q bytes. Note that the string B returned
as Formatq,t(N,A, P) will always have a positive multiple of 128 bits.

The complexity underlying Format is clearly meant to promote concision; the inventors
want that the value B returned formatting N , A, and P should not be unnecessarily bigger
than the sum of the length of those arguments. The encoding is also required to have some

119

particular properties, relative to Count, explicitly named in [62, Section 5.4] and coming out
of the proof of Jonsson [103]. I will return later to those properties.

11.4. Canonical count-generation function. The function Countq(N,m) is comparatively
trivial; we define Countq(N,m) as N1 ‖ N2 ‖ · · · ‖ Nm where

Ni = 05 ‖ [q − 1]3 ‖ N ‖ [i]8q (11.12)

Recall that N is 15− q bytes and each Ni is a 16-byte block.

11.5. Provable-security results. The CCM mode of operation enjoys good provable-security
results due to Jakob Jonsson [103]. Let’s begin with privacy. Jonsson employs the privacy and
authenticity definitions of §III.2. For privacy, a nonce-respecting adversary A makes a sequence
of (N,A, P) calls, trying to tell if it is speaking to a CCMK oracle or an oracle that returns the
same number of random bits. During the attack, let

• σ bound the total number of blockcipher calls that the mode would make on the sequence
of queries, following the CCM specification.

Then Jonsson [103, Theorem 2] proves that

Advpriv
CCM[Perm(n),τ](A) ≤ σ2

2n
. (11.13)

Here we write CCM[Perm(n), τ] for the CCM scheme as it would be instantiated with an ideal
n-bit blockcipher (that is, EK is a uniformly random permutation) and tag-length τ . The result
holds for any (Format,Count) functions satisfying specified properties. In particular, it holds
for (Formatq,τ/8,Countq).

Passing to the complexity-theoretic setting is easy and standard; when a “real” blockci-
pher E is used, the privacy advantage increases by an amount that is at most Advprp

E (B) for an
adversary B that asks σ oracle queries to its blockcipher, the adversary running in essentially
the same amount of time as did A.

Since we require n = 128 in CCM, formula (11.13) provides a good privacy bound up to
nearly 264 queries. In particular, given that the standard mandates use of the PRP for no more
than σ = 261 blockcipher calls, an adversary’s privacy advantage can never exceed 0.016 plus
the PRP-insecurity of the underlying blockcipher (AES)—with far smaller information-theoretic
offset for more realistic values of σ.

For authenticity, recall that the adversary asks a series of encryption or decryption queries,
the former nonce-respecting, and its aim is to ask a decryption query that’s a forgery : it returns
something other than Invalid even though this is not an (N,A,C) query that follows an earlier
(N,A,M) query that returned C. As the adversary A caries out its attack, let

• qdec bound the total number of decryption queries that it asks, and let

• σ bound the total number of blockcipher calls that the mode would make on the adversary’s
sequence of queries, both to encrypt all the encryption queries and to decrypt all the
decryption ones.

Then Jonsson [103, Theorem 1] shows that

Advauth
CCM[Perm(n),τ](A) ≤ qdec

2τ
+

σ2

2n
. (11.14)

120

This is a good bound: the probability of forgery grows linearly in 2−τ , which is unavoidable,
with an additional term that stays tiny until σ ∼ 264. As an example, if we truncate tags
to 32-bits, and let the adversary ask at most 10, 000 forgery attempts before the key must be
changed or the connection dropped, and if the total amount of plaintext or ciphertext that
the adversary attempts to encrypt or decrypt corresponds to 250 blocks, then the adversary’s
probability of forging will be at most 10000/232 + 2−28 ≈ 10000/232 < 0.000003.

For the complexity-theoretic version one simply adds the usual Advprp
E (B) term.

As we will see in Chapter 12, the authenticity bound of CCM, equation (11.14), stands in
sharp contrast to the authenticity bound for GCM, equation (12.2), where security falls off in
σ2/2τ instead of σ2/2n. What is more, the difference is actually due to an attack on GCM. The
upshot is that CCM is a perfectly acceptable AEAD mechanism to use with truncated tags—
and the standard quite reasonably permits truncation to as few as 32-bits. In contrast, GCM
cannot be used with such a tag length without making unreasonably restrictive assumptions as
to amount of material that the scheme will act upon.

The privacy bound of CCM is tight, up to a constant; there are simple attacks to show this.
It is not known if the authenticity bound is tight, a problem that Jonsson himself points to as
being of interest [103, Problem 1]. Progress on this question was made by Fouque, Martinet,
Valette, and Zimmer [71]. They show that a two-independent-key variant of CCM has a better
authenticity bound than (11.14)—the second addend is reduced, at least in some cases—if one
measures security of the underlying blockcipher with respect to the PRF-measure instead of the
PRP measure. In other words, they assume a random function instead of a random permutation
in carrying out the analysis, and sometimes get a better bound. Still, the improvement is minor,
still showing birthday-bound behavior—or worse—in the worst case. (Here I am referring to
Theorem 4 of [71] having the term 256qv((s+ 1)2/2n)2, which can be even worse than σ2/2n.)
Besides the small improvement, it is not clear that the result has any significance with respect
to the “real” CCM, where there is one key and one starts from a good PRP rather than a good
PRF. In conclusion, we do not know if the authenticity bound for CCM is tight, but in some
sense it does not matter, as the existing bound is already quite good.

11.6. Efficiency issues. I discuss three efficiency problems with CCM: (a) CCM is not on-
line, (b) CCM disrupts word-alignment, and (c) CCM can’t pre-process static associated data.
These comments are adapted from an earlier note I prepared with David Wagner [184].

11.6.1 CCM is not on-line. An algorithm is on-line if it is able to process a stream of data as it
arrives, with constant (or at most logarithmic) memory, not knowing in advance when
the stream will end. Observe then that on-line methods should not require knowledge
of the length of a message until the message is finished. CCM fails to be on-line in both
the plaintext and the associated data: one needs to know the length of both before one
can proceed with encryption or decryption.

It is true that, in many contexts where one is encrypting or decrypting a string, one
does know its length from the beginning of the process. But there are also contexts
where one does not know the length of the message in advance of getting an indication
that it is over. In inability to handle on-line message arrivals makes it impossible to
support a good incremental API.

11.6.2 CCM disrupts word-alignment. Most modern machines perform operations much more
efficiently when pointers into memory fall along word-boundaries (which typically occur
every 4 or 8 bytes). A typical software implementation of a CBC MAC, for example,
will exhibit much worse performance if it is called on an argument that is not word-

121

aligned. The canonical formatting function Format does not ensure that, as we MAC
the formatted string B, the constituent part for A will be aligned on a word boundary.
If it is not, expect the performance to suffer.

11.6.3 Can’t pre-process static AD. In many scenarios the associated data A will be static over
the course of a communications session. For example, the associated data may include
information such as the IP address of the sender, the receiver, and fixed cryptographic
parameters associated to this session. In such a case one would like that the amount
of time to encrypt or decrypt a string should be independent of |A| (disregarding the
work done in a preprocessing step). The reason that CCM fails to allow pre-processing
of associated data is that the canonical formatting function encodes the nonce N and
the message length |P |/8 before A rather than after it.

I do not suggest that any of these performance issues is devastating. What I do suggest is that
all of these problems can be significant, in some settings. What is more, none of these problems
were necessary—all of them could have been avoided by alternative designs.

11.7. Paramaterization. The user of CCM (assume, as usual, its canonical formatting func-
tion) must select a parameter “q”, the byte length of the byte length of the longest message.
The user has no business seeing or selecting such a low-level parameter. While it is reasonable
and customary to fix a suitably large maximum message length, such as 264 − 1 bytes, it seems
unreasonable to force the user to think about choosing small values, like q = 2, or to under-
stand the CCM details that are needed in order to select the value q. Worse still, the definition
of CCM involves a tradeoff between two things that are conceptually unrelated: the maximal
message length and the length of the scheme’s nonce. Bizarrely, from a user’s point of view,
the nonce length will be defined as 15− q. What, conceptually, is the relationship between the
nonce length and the length of longest plaintext one may encrypt or decrypt? There is none.
It is just an artifact of trying to shove a nonce and a length encoding into 15 bytes.

11.8. Complexity. While human-perceived complexity is inherently subjective, I find CCM—
particularly its canonical encoding function—to be quite complex.

A glimpse of CCM’s complexity can be seen from the fact that correctness crucially depends
on the encoding convention. For example, the spec disallows the possibility of t = 2 (two-byte
tags), which means that at least one of bits 3, 4, or 5 of the first block of B, which holds
[t/2− 1]3 is non-zero, while these bits are always zero in the initial counter value. If one had
allowed a tag of t = 2 bytes, the scheme would be utterly insecure. In short, CCM’s correctness
is integrally wrapped up in encoding-scheme details.

As another way to evidence CCM’s complexity, ask the question: how many block cipher
calls does CCM use? For most modes—indeed for all of the other modes looked at within this
report—one can write down a simple and understandable formula. For CCM, the answer is

NumCalls(A,P) = 2

⌈
|P |
128

⌉
+

⌈
|A|
128

⌉
+ 2 + δ(|A|)

where δ(a) ∈ {0, 1} is defined by letting

λ(a) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a = 0
16 if a ∈ [8, 8 · (216 − 28 − 1)]
48 if a ∈ [8 · (216 − 28), 235 − 8]
80 if a ∈ [235, 264 − 8]

122

and setting δ(a) = 0 if (a mod 128) + λ(a) ≤ 128, and δ(a) = 1 otherwise.1

In reading the spec, the obvious contributor to complexity is all of the “bit twiddling” that
CCM does within its formatting function Format. While I find this bit-twiddling ungainly, this
is ultimately a matter of taste, and I am sympathetic to the argument that this is a “shallow”
sort of complexity. Fouque et al. goes so far as to assert that “[t]he security of CCM is very
interesting since it relies on some padding or formatting functions. Such requirements are not
appreciated in general and cryptographers try to avoid such properties” [71, p. 412].

A more fundamental kind of complexity in CCM stems from the absence of a clean abstrac-
tion boundary within the scheme: the mode is not an instance of generic composition [23], and
it is not designed to use any VIL-secure message authentication code. Even though the scheme
is “based” on CTR mode, I myself found it overly awkward to even express the pseudocode
that way: in Figure 11.1 I expressed the scheme in terms of ECB.

Ferguson points out that, for all CCM’s apparently complexity, “it takes only a handful
lines of code to perform the CCM encoding. That should be compared to hundreds of lines of
code for the full CCM mode (excluding the AES), so the ‘extra’ complexity is actually quite
small. Something like GCM is hugely more complicated to implement, because of the GF(2n)
arithmetic” [68]. Ferguson goes on to suggest that there would seem to be “a tradeoff between
engineering simplicity and mathematical simplicity. And given that a successful mode will be
analyzed by dozens of mathematicians and many hundreds of engineers, I still maintain that
engineering simplicity is preferable over mathematical simplicity” [68]. There is truth, I think,
to all of these comments.

There seems to be little that CCM achieves that a generic composition of CTR and CMAC
could not also have achieved—more simply and, probably, with greater efficiency. Concretely,
an Encrypt-then-MAC amalgamation of CTR mode and CMAC would make for a simple and
efficient scheme, albeit one with two separate keys. If one were concerned about that issue, it
alone could have been the target of violating the abstraction boundary. I note that the implicit
“proposal” of this paragraph ignores the historical reality that CCM was standardized by NIST
a full year prior to CMAC’s standardization [62, 63].

11.9. Random nonces? There are some problems with the NIST document itself [62] that I
should mention. To begin, I simply cannot determine if nonces may be random. On my first
reading, the answer seemed clearly to be no. The spec asserts that a nonce is a value that is
used only once within a specified context [62, p. 4]. Later, the spec says again that [the] nonce
shall be non-repeating [62, p. 8]. There are absolute statements, not probabilistic ones, so it
seemed clear that random nonces could not be used. This seemed further supported by common
sense, as nonces under CCM may be as short as seven bytes, which is too small for safely using
a random value. Yet immediately following the second quote is an assertion that [the] nonce is
not required to be random—which certainly seems suggest that the nonce may be random. It
should be clarified if nonces may or may not be random. Given that CCM be used with quite
short nonces, and given the difficulty of verifying that “random” nonces actually are, I would
suggest that random nonces should not be used with CCM.

Niels Ferguson, co-inventor of CCM, concurs with the interpretation that nonce-requirement
is absolute; a uniformly random nonces is not allowed. He interprets [the] nonce is not required
to be random [62, p. 8] to mean only that the nonce need not to be unpredictable—a counter,
for example, is just fine [68].

1 As per communication from Niels Ferguson, there would seem to be an error in the definition just given
for δ(a). The exact formula is not really important; the point is only that it is quite complex.

123

11.10. Decryption checks and timing attacks. There would seem to be another issue in the
spec of the algorithm in the vague assertion of Step 7 in the “Decryption-Verification Process”
[62, Section 6.2], which instructs that “If N , A, or P is not valid, as discussed in Section 5.4, then
return INVALID, else apply the formatting function to (N,A, P) to produce B0, B1, . . . , Br.”
No INVALID-returning event is specifically described in Section 5.4 of the spec, but apparently
this has to do with the generation of domain points outside of those allowed by the formatting
function. Regardless, there is no corresponding checks in the Generation-Encryption Process,
and the two processes must match in terms of any such checks. Finally, the spec asserts that an
“implementation shall ensure that an unauthorized party cannot distinguish whether the error
message results from Step 7 or from Step 10, for example, from the timing of the error message”
[62, p. 11]. This is wrong at multiple levels. First, it is not clear what other “examples” are
in scope of this “for example.” More fundamentally, it is strange that a functional spec—
that any function-centered spec—should suddenly turn towards describing an implementation
requirement to resist side-channel analyses. Not only may such attacks be irrelevant in many
contexts where CCM might be used, but if one is going to try to resist side-channel attacks, it
is going to require a discussion that extends far beyond a 32-word sentence that seems to have
dropped, without foundation, into the spec.

All that said, CCM is a mode that probably can be implemented efficiently in a manner
that resists timing attacks, assuming the underlying AES implementation is so implemented as
well. This is one of its advantages over a table-based GCM.

11.11. Software performance. The inherently sequential nature of CBC mode, and the need
for two passes with AES, can make CCM-AES a slower scheme, in software, then GCM or other
AEAD modes. That said, the difference are often not large, and are often not relevant. I defer
a discussion to §12.7.

11.12. Concluding remarks. While I have, as usual, been quite critical, we should keep
the following in perspective. First, CCM is already widely used. Second, CCM achieves good
provable-security results, even with truncated tags. While it is not a terribly fast or pretty mode,
it does the job, and it’s been doing the job for some time. The most “important” suggestion, in
the end, may be to mandate use of the canonical formatting and counter-generation functions.
It would also be good to clarify if random nonces are or are not allowed.

124

Chapter 12

Galois/Counter Mode

12.1. Summary. Galois/Counter Mode (GCM) achieves AEAD (authenticated-encryption
with associated-data) by combining CTR-mode encryption and Carter-Wegman message au-
thentication [50, 201]. The amalgamation is in the style of encrypt-then-MAC, but important
differences make it differ from generic composition [23]. The universal hashing underlying the
Carter-Wegman authentication is based on polynomial evaluation over GF(2128), a classical
construction rooted in folklore.

GCM was invented by David McGrew and John Viega [133, 137]. It was offered as an
improvement to the similarly-conceived CWC mode of Kohno, Viega, and Whiting [115], whose
universal hashing was based on integer rather than finite-field multiplication. The change
particularly benefits hardware embodiments. GCM is standardized by NIST as SP 800-38D
[64], on which this evaluation is based.

Overall, GCM has many things in its favor. It has a number of desirable performance
characteristics, soon to be detailed. It enjoys a good provable-security guarantee, assuming
that its tags are left long. It is becoming widely used, including its use in IPsec, MACSec,
P1619.1, and TLS, and [88, 89, 136, 186, 195]. The mode can be quite efficient in both hardware
and software, and direct hardware support is now being offered on new Intel microprocessors
[79]. Critiques of GCM, particularly Ferguson’s [67], raise significant issues, but have not been
fatal. Thus, despite deficiencies I will detail, GCM ought to be included in any portfolio of
important and provably-secure AEAD schemes.

In my analysis I express concerns about the use of GCM with short tags (anything fewer
than 96 bits); I recommend disallowing this. I also favor mandating or otherwise encouraging
the use of 96-bit IVs, the use of both shorter and longer tags increasing conceptual complexity,
implementation complexity, and proof complexity. For table-based implementations of GCM,
timing attacks cannot be discounted as a real possibility. Finally, there are some issues with
NIST’s spec, which would have done well to confine its body to defining the algorithm, isolating
further information to a (better written) informational annex.

12.2. Definition of the mode. GCM is defined and illustrated in Figure 12.1. The mode
is parameterized by a 128-bit blockcipher E : {0, 1}k × {0, 1}128 → {0, 1}128 and a tag length
τ ∈ {32, 64, 96, 104, 112, 120, 128}. Following SP 800-38D [64], the underlying blockcipher must
be AES (with any of its three key lengths). The requirement follows from assertions that the
blockcipher must be a NIST-approved and have a 128-bit block size; only AES satisfies these
requirements. (The only other NIST-approved blockciphers, Skipjack and TDEA, operate on
64-bit blocks.)

125

EK

GCM
when |N| = 96EK

P1 P2

EK

P3

EK

P4

C1 C2 C3 C4

N

EK

12 N 3 N 4 N 5

0A1 A2 0 | A | | C |
MSBτ

T

A3

N

H• H• H• H• H• H• H• H•

10 algorithm GCMN,A
K (P) GCM Encryption

11 // |P | ≤ 239 − 256, |A| < 264, |N | > 0, |N | < 264, 8
∣∣ |P |, 8

∣∣ |A|, 8
∣∣ |N |

12 H ← EK(0128)
13 if |N | = 96 then Cnt ← N ‖ 031 1
14 else Cnt ← GHASHK(N ‖ 0i ‖ |N |128) for minimal i ≥ 0 s.t. 128

∣∣ (|N |+ i)
15 m← �|P |/128; for i← 0 to m do Yi ← EK(Cnt + i)
16 C ← P ⊕ (Y2 ‖ Y3 ‖ Y4 ‖ · · ·)
17 X ← A ‖ 0i ‖ C ‖ 0j ‖ |A|64 ‖ |C|64 for minimal i, j ≥ 0 s.t. 128

∣∣ (|A|+ i) and 128
∣∣ (|C|+ j)

18 Tag← Y1 ⊕GHASHH(X)
19 T ← MSBτ (Tag)
20 return C ‖ T

30 algorithm GHASHH(X) Used internally

31 X1 · · ·Xm ← X where |Xi| = 128
32 Y ← 0128; for i← 1 to m do Y ← (Y ⊕Xi) •H
33 return Y

Figure 12.1: Definition of GCM. The mode depends on blockcipher E : {0, 1}k×{0, 1}128 → {0, 1}128
and tag length τ ∈ {32, 64, 96, 104, 112, 120, 128}. At line 15, addition of string Cnt and integer i adds
the number into the last 32-bits of the string, ignoring any carry. At line 16, the xor of unequal-length
strings returns a string of the shorter length, ignoring the least-significant bits of the longer string.

Quantity-of-use restrictions are placed on GCM if using either of the smallest two permitted
tag lengths [64, Appendix C]. Specifically, for 32-bit tags, an implementation must ensure that
when the maximal permitted message length is 25 (or 26, 27, 28, 29, or 210) bytes, the maximal
permitted number of applications of the decryption function does not exceed 222 (or 220, 218,
215, 213, 211, respectively). Limits are not specified if the maximal permitted message length
exceeds 210 bytes; one would guess that the intent was that such messages not be allowed.
Similarly, for 64-bit tags, if the maximal permitted message length is 215 (or 217, 219, 221, 223,
or 225) bytes, the maximal permitted number of applications of the decryption function must
be no more than 232 (or 229, 226, 223, 220, 217, respectively). Limits are not specified if the
maximal permitted message length exceeds 225 byte;. one would guess that the intent was that
such messages not be allowed.

12.3. Desirable characteristics. Among GCM’s prominent and generally desirable charac-
teristics, I would enumerate the following:

12.3.1 Assuming tag lengths equal to the blocklength, GCM enjoys provable security up to the
usual birthday bound [133]. The underlying cryptographic assumption is the standard

126

one, that the blockcipher is a good PRP. See §12.5 for further discussion on McGrew
and Viega’s bounds.

12.3.2 Ciphertext expansion in GCM is minimal: when encrypting a plaintext one gets back
a ciphertext having identical length to that of the plaintext, plus an authentication tag
of 4–16 bytes.

12.3.3 All that is expected of the IV is that it be as a nonce (each value used at most once
in a given session); it is not required to be random or unpredictable. See §III.2 for the
notion of nonce-based AEAD. To emphasize the minimal expectations on the IV, we
routinely refer to it as a nonce, N , rather than as an IV.

12.3.4 Only the forward direction of the blockcipher is used in the mode. This saves chip area
compared to AEAD constructions (eg, OCB [179, 182]) that require the backwards
direction of the blockcipher for AEAD-decryption.

12.3.5 GCM is fully parallelizable, enabling hardware throughput that is not limited by
blockcipher-latency, and benefiting software embodiments as well. At high data rates,
stalls introduced by a mode of operation reduce the rate at which the implementation
can process data. There is a significant opportunity cost if a mode needs to stall before
some invocations of the blockcipher.

12.3.6 On decryption, the authenticity of the protected data can be verified independently
from the recovery of the confidential data, a fact that can have desirable architectural
or performance implications. For example, invalid messages can be ignored without
CTR-mode decrypting them.

12.3.7 GCM is efficient for hardware, since the CTR mode portion of GCM is simple and it
is efficient, in hardware, to construct a GF(2128) multiplier, assuming multiplication is
broken down over several (eg, four or eight) clocks. (On the other hand, if one wanted
a single combinatorial circuit that did the entire GF(2128) multiply at once, it would
not be so small.) See Zhou, Michalik, and Hinsenkamp for recent FPGA hardware
estimates [208]. Overall, in hardware, GCM is unsurpassed by any authenticated-
encryption scheme.

12.3.8 GCM can be quite efficient for software as well. I will return to a discussion of software
performance in §12.7, as the story here is somewhat nuanced.

12.3.9 Unlike CCM (Chapter 11), GCM is on-line: one does not need to know the length of
the message (nor the length of the AD) in advance of processing it. (One does, however,
need to know the AD and its length before processing the plaintext.) This makes the
mode suitable for some streaming and networking applications where CCM cannot be
used. It also enables an incremental API (Application Programmers Interface), where
the plaintext, ciphertext, or associated data is provided incrementally in chunks.

12.3.10 If the AD is static (it changes rarely or not at all across a session), then it can be
pre-processed so that there is effectively no per-message cost to providing the AD’s
authenticity.

12.3.11 If the nonce is predictable and the message length is known or reasonably bounded, the
AES-enciphering operations can also be precomputed. After subkey-generation, AES is
used in the mode exclusively for generating the pad EK(N)EK(N +1)EK(N +2) · · · .

12.3.12 Like any AEAD mode, GCM can be used for authenticity (no encryption) as a nonce-
based MAC. For this setting the MAC has been given a separate name, GMAC, and is

127

regarded by SP 800-38D as a distinct mode of operation. See Chapter 10.

12.3.13 When used for message authentication, GCM in incremental, in the sense of Bellare,
Goldreich, and Goldwasser [15], with respect to appending and substituting 128-bit
blocks.

12.3.14 GCM is a permitted option for IPsec’s ESP and AH, and for TLS [136, 186, 195]. GCM
author McGrew has been active in supporting GCM’s standardization and use, au-
thoring multiple related IETF RFCs (namely, RFC 4106, 4543, 5116, 5282, 5288, and
6054). GCM is effectively “guaranteed” to be well-aligned with McGrew’s higher-level
AEAD proposed standard RFC 5116 [131].

12.3.15 Beginning with Intel “Westmere” processors, the company is producing microprocessors
that natively support not only AES computations but also what they call carryless
multiply, PCLMULDQ. The NI (new instruction) is aimed at GCM. Its use, along with
the AES NIs, greatly speeds up GCM computation [79].

12.3.16 The GCM algorithm is not itself covered by any known patents (but see 12.4.11 for
some pending and granted patents that have emerged).

Many of the advantages named above are identified in McGrew and Viega’s papers on GCM
[133, 137] and in the NIST standard itself [64].

12.4. Undesirable characteristics. I now list some unpleasant characteristics of GCM and
the NIST Recommendation in which it is embedded.

12.4.1 When GCM tags are truncated to τ bits, Ferguson describes a message-forgery attack
that uses an about 2τ (n-bit) blocks to succeed [67]. The adversary asks for the MAC of
a single message having 2τ/2+1 blocks and then forges after about 2τ/2 expected tries,
on messages again of 2τ/2+1 blocks. Focusing on the case of 32-bit tags, for example,
the attack begins by asking for the MAC of a single message of 217 blocks. After that,
it needs about 216 verification messages, again of 217 blocks each, until the first forgery
is expected. After that, a comparable number of further queries leads to a complete
authentication failure—recover of the key H. For eight-bit tags (something that is not
allowed by the standard) the problem would be even worse; here, Ferguson estimates
that an attacker can recover the subkey H with about 1000 forgery attempts, each of
48 bytes [67, Section 5.1].

There are actually two halves of the problem. One is that the first forgery comes
too quickly—not after something close to 2τ forgery attempts (of σ = 2n/2 blocks
of messages), as one might expect, but after 2τ/2 forgery attempts (and 2τ blocks of
messages). The second problem is that, once the first forgery happens, additional
forgeries happen too fast. After the first failure, all authenticity is completely forfeit.

The attack described is not a concern if long tags are used—say 96–128 bit tags—but
it is a problem if short tags are used. Correspondingly, the NIST spec mandates rather
aggressive re-keying for 32-bit and 64-bit tags [64, Appendix C]. The requirements are
fairly onerous (see §12.2) and their realization could be awkward or even infeasible.1

I do not “take sides” between Ferguson [67] and McGrew and Viega [135] as to how
common short tags may be for contexts that might like to use GCM. I do not know.
But I side with Ferguson in believing that truncating tags to τ bits ought to deliver

1 Under a typical API, an encryption subsystem will typically not know what is the maximal length that a
combined ciphertext and AD may have. Nor do systems routinely keep track of the number of blocks that have
been decrypted. Nor will the aggregation of such information necessarily be architecturally feasible.

128

forgery probabilities of about 2−τ plus the insecurity of the underlying blockcipher. A
bit more precisely, the expected number of verification queries until the first forgery
should be about 2τ−1 plus an error term that grows with something that is quadratic
in the adversary’s communications resources divided by 2n. Not something that is
quadratic in the adversary’s communications resources divided by 2τ .

I disagree with McGrew and Viega [135] that it is “unfair” to criticize GCM for
failing to deliver forgery probabilities close to 2−τ [135, p. 2]. The authors cite one of my
own paper [19] to explain that forging probability is expected to fall off with parameters
like the number of queries and their lengths. That much is true, but they fail to explain
that, in that very example they cite, the decline in security tracks something inverse
exponential in the blocklength, not something inverse-exponential in the tag length.
The difference is important.

It is worth nothing that 32-bit MACs have been the norm in retail banking for
decades [3]. When used in a construction like the “retail MAC” (§7.13), forgeries with
query-complexity near ∼ 2τ blocks are not known. In fact, they demonstrably cannot
arise if the underlying blockcipher is a good PRP; our provable-security bounds are
better than that.

As suggested above then, the relative ease of forging a short tag with GCM is
not a necessary feature of MACs or AEAD schemes. The problem cannot arise if
one authenticates a message with a good PRF (rather than something that is merely
a good MAC). Nor can the problem arise in the AEAD setting if one accomplishes
authentication with the encrypt-then-PRF paradigm [23] and one is using a good PRF.
In both settings one will get authenticity bounds that are approximately the insecurity
of the PRF (which is not weakened by truncation and never depends on τ) plus 2−τ .

The ease-of-first-forgery issue does arise if one truncates the raw CBC-MAC (§7.11)
in an attempt to turn it into a VIL PRF. This is the substance of Lars Knudsen’s
nice attack [113]. Note that there is no contradiction between the existence of this
attack and the fact that the CBC-MAC is a provably-good PRF (and good PRFs never
exhibit first-forgery degenerate behavior when truncating to make a MAC) since the raw
CBC-MAC is only secure in the FIL setting, and there is no guarantee that truncation
of an FIL-secure PRF will yield a VIL-secure MAC of any particular quality.

One also sees the short-tag problem arise if one truncates a conventional Carter-
Wegman MAC (which is what happened with GCM). Yet the problem can be avoided
relatively easily [117, 197]. The papers just cited provide a clear discussion of the forgery
issue for the truncated-tag message-authentication setting.

No papers in the literature that have specifically taken up this tag-truncation prob-
lem in the setting of AEAD, and there is nothing to generically guarantee that a
“good” AEAD scheme remains good when its tags are truncated. There are simple
counterexamples to show that no such result is possible under our definitions. Nor
do our definitions of AEAD deal with the ease-of-additional-forgeries issue; the AEAD
notion is too coarse for that, effectively “giving up” when the first forgery happens,
declaring the adversary victorious. See Black and Cochran [35] for a provable-security
treatment of MAC reforgeabilty, and see Handschuh and Preneel[85], following McGrew
and Fluhrer [132], for a more attack-centric view of the problem.

Summarizing, the ease-of-first-forgery issue shows up in the bounds; the definitions
are fine. The ease of re-forgery issue lies outside of our notions used for AEAD. I
personally feel a share of the responsibility for this; it is my own definition of AEAD

129

that fails to deal well with very-short tags. This could be regarded as a “defect” in the
definitions; one might like to have a sensible definition of AEAD security that makes
sense even if tags are, say, a single bit.

See §12.5 and §12.6 for further discussion on this topic.

12.4.2 Closely tied to short-tag problem is the fact that the provable security bounds for GCM
are disappointing, showing a degradation in authenticity (and also privacy) that falls
off with qm2−τ where q is the number of queries and m bounds a longest message
(measured in blocks and including the AD’s length, too). Of course the poor bound is
better than a wrong one, and, as McGrew and Viega correctly point out [135], all that
Ferguson’s attack ultimately does is to establish that their bound is tight. Still, one
would prefer to have AEAD schemes with authenticity bounds that fall off in qv2

−τ

(plus additional terms not depending on τ), where qv < q is the number of verification
queries. See §12.5.

12.4.3 While GCM may seem similar to Bellare and Namprempre’s favored encrypt-then-MAC
approach to generic composition [23], with the MAC realized as a PRF, it is not an
encrypt-then-PRF scheme. The most obvious difference is the non-independence of
the keys K and H. More subtle and more important, however, is that the tag is not
computed by applying a PRF (a nonce-dependent Carter-Wegman MAC is not one).
Nor is the MAC even taken over the “right” fields, which, in the nonce-based setting,
should have included the nonce [180]. Using a true encrypt-then-PRF approach might
have gone a good ways to conceptually simplifying the scheme, and would have resulted
in something without the short-tag vulnerability as well. That said, it is true that there
would have been a cost. For example, one could not have claimed efficiency 12.4.11 if
one had to encipher a computed hash to make the PRF, including or not including the
nonce (see [35] and options 2 and 3 of [85, p. 150]).

12.4.4 Having the field point a127u
127 + · · · + a1u + a0 correspond to the 128-bit string

a0a1 · · · a127 [64, p. 11] instead of a127a126 · · · a1a0 was not a good idea.2 The GCM
inventors call their choice the “little endian” convention [134, p. 20], as does the NIST
Recommendation [64, p. 12], but the convention really has nothing to do with the
customary meaning of endianness, which speaks to the ordering of bytes in external
memory and how they are mapped into the machine’s registers on LOADs and STOREs.
When instead speaking of the arrangement of bits within a register (or whatever log-
ical units an ALU is operating on), big-endian and little-endian machines do exactly
the same thing: most-significant-bits come first. Indeed the convention is so entrenched
that Intel declined to use GCM’s reflected-bit representation (my term) for defining car-
ryless multiplication (PCLMULDQ) despite this instruction being targeted for GCM.
Using the reflected-bit convention would have resulted in a “unique” representation of
numbers. As a result of the mismatched conventions, a GCM implementation based
on the PCLMULDQ instruction must go through clever gyrations to match GCM’s
conventions without sacrificing too much speed [79].

Another consequence of the reflected-bit convention is an inability to use addition
to emulate “doubling,” here meaning multiplication by u. With the GCM convention,
doubling corresponds to a (logical) right-shift instead of a left-shift. On existing proces-
sors, a right-shift by one is never, to the best of my knowledge, faster than a left-shift
by one accomplished by way of the common idiom Ri ← Ri +Ri. It can be slower.

2 Some of the observations made in this item are due to Ted Krovetz (2010). Many thanks, Ted, for explaining
these points to me.

130

McGrew and Viega do offer an explanation for their convention. “We chose to use
a ‘little endian’ definition of the field,” they write, because it “allows a multiplier to
process data as it arrives . . . whenever the width of the data bus is less than 128 bits.” I
doubt this comes up very often at all, and suspect this is a case of “over-optimization,”
subverting common practice for marginal and questionable gain.

Note that the reflected-bit convention makes the representation of field points differ
across the NIST standards for CMAC [63] and GCM [64]. It is unfortunately that NIST
flipped representation conventions for GF(2128) after already making an initial choice.
But the choice had already been embedded in prior standards.

12.4.5 GCM plaintexts are limited to about 68.7 Gigabytes (236−32 bytes). While the limit is
of debatable practical importance, it is, at the very least, unaesthetic and artifactual. It
arises out of the need to ensure that, when |N | = 96, we never increment the four-byte
block counter that is appended to the nonce until it would wrap to 032.

12.4.6 GCM works very differently when |N | is or is not 96 bits. Not only is the mechanism
less “natural” for the |N | �= 96 setting, but security is harder to see and to prove. And
since nonce-lengths can vary in a session (tag lengths are fixed for a context, but nonce
lengths are not) the proof must carefully attend to demonstrate the lack of “interaction”
between the two ways of dealing with the nonce N . While such an analysis is provided
by McGrew and Viega’s proof [133, 137], tricky proofs are infrequently verified, while
simplicity in design is full of hidden merits. I recommend restricting GCM to 96-bit
nonces.

It is not just that permitting |N | �= 96 runs contrary to simplicity of design and
proof; it is that it does so with very little benefit. Allowing an arbitrary-length nonce
in an AEAD scheme is nice, but it is not a sufficiently valuable benefit that one should
be willing to pay for it with substantial added complexity.

I note that McGrew’s own RFC 5116 [131] asserts that nonces should by 12 bytes.
I do not think it unreasonable to more forcefully require this choice in the context of
GCM, where nonces of other lengths are already treated as an unpleasant special case.
And, in the end, everyone sticking to 12-byte nonces may help promote interoperability.

12.4.7 Even if the underlying AES mechanism is resistant to side-channel attacks, the use of
tables to implement GCM’s finite-field multiplication could potentially lead to cache-
based timing attacks. See Käsper and Schwabe for work on trying to overcome this
vulnerability by creating a constant-time GCM [108] (meaning fixed-time for strings
of any particular length). While those authors are able to devise a reasonably fast
(bitsliced) constant-time implementation of GCM, it runs at about 22.0 cycles/byte on
their target x86-family platform—compared with (an impressive) 10.7 cycles/byte for a
table-based GCM (using the same authors’ bitsliced AES). The authors’ work suggests
that, in the absence of hardware-support for constant time GF(2128) multiplication
(something like Intel’s NIs), one will pay a substantial price, with GCM, for trying to
resist timing attacks.

Concern for timing-attacks has resulted in OpenSSL choosing to support GCM (on
non-Intel-NI platforms) using small tables only—256 bytes. This is a reasonable (if
heuristic) measure to reduce the possibility of timing attacks [162].

In contrast to GCM, one would expect implementations of CCM to be constant-
time (for messages of a given length) as long as the underlying blockcipher is; it is the
use of large, key-dependent tables in a GCM implementation that makes it potentially

131

CTRK

P

C

S

N

Cnt

A MSBτ T

GHASH2H

Pad’ Pad1

Tag

GHASH2H

ε

GCM

N 1

Cnt

EK

0

H

if | N | = 96
if | N | = 96

50 algorithm GCMN,A
K (P) GCM Encryption

51 // |P | ≤ 239 − 256, |A| < 264, |N | > 0, |N | < 264, 8
∣∣ |P |, 8

∣∣ |A|, 8
∣∣ |N |

52 H ← EK(0128)
53 if |N | = 96 then Cnt ← N ‖ 031 1 else Cnt ← GHASH2K(ε,N)
54 m← �|P |/128; for i← 0 to m do Yi ← EK(Cnt + i)
55 C ← P ⊕ (Y2 ‖ Y3 ‖ Y4 ‖ · · ·)
56 Tag← Y1 ⊕GHASHH(A,C)
57 T ← MSBτ (Tag)
58 return (C, T)

60 algorithm GHASH2H(A,C) Used internally

61 X ← A ‖ 0i ‖ C ‖ 0j ‖ |A|64 ‖ |C|64 for minimal a, c ≥ 0 s.t. 128
∣∣ (|A|+ i) and 128

∣∣ (|C|+ j)
62 X1 · · ·Xm ← X where |Xi| = 128
63 Y ← 0128; for i← 1 to m do Y ← (Y ⊕Xi) •H
64 return Y

Figure 12.2: Alternative decomposition of GCM.We abstract away details of the hash function and
revert to McGrew and Viega’s original abstraction of it, renamed as GHASH2. Algorithm GCM.Decrypt
(omitted) is unchanged. Value Y ′ in the illustration corresponds to Y2Y3Y4 · · · in the pseudocode.
Routine CTRK(Cnt) in the illustration returns EK(Cnt)EK(Cnt + 1)EK(Cnt + 2) · · · .

vulnerable.

All that said, we have not seen timing attacks demonstrated against any actual GCM
implementation. In addition, if the underlying blockcipher resists timing attacks, then
a timing attack on GCM might reasonably be expected to undermine authentication
but not confidentiality.

12.4.8 Moving on to more expository matters, the original GCM documents [133, 137] defined
a function GHASH that took in a key and a pair of strings and produced a 128-bit
hash value. See Figure 12.2, where GCM is re-defined in terms of its “original” hash
function, renamed as GHASH2 to distinguish it from NIST’s version.

McGrew and Viega show that GHASH2 is xor-universal: for (A,C) �=(A′, C ′) and
Δ∈{0, 1}τ , the claim is that PrH [GHASH2H(A,C)⊕GHASH2H(A′, C ′)=Δ] ≤ ε with

132

ε = �(m+1)/128/2128 andm = max{|A|+|C|, |A′|+|C ′|}. There are further important
claims connected to GHASH2 and how it relates to the alternative construction of the
initial counter value Cnt = N ‖ 0311 [133, Appendix A]. This non-interaction is at
the heart of GCM’s correctness, and one see it relatively easily with the GHASH2
abstraction.

In creating the SP 800-38D [64], NIST decided to redraw this abstraction boundary,
regarding GHASH and not GHASH2 as the central abstraction boundary, the former
a function of one string. The padding, concatenation, length-annotation are all done
outside of this boundary. The result, as NIST recognizes [64, Footnote 1], is something
that is no longer an xor-universal hash function.

I dislike this change. In drawing the abstraction boundary of GHASH2 the authors
were not only trying to find a convenient boundary for modularizing GCM’s descrip-
tion (which NIST’s GHASH does fine); they are also laying into place the conceptual
boundaries for understanding why the scheme work. At this level, the new abstraction
works less well than the original one.

12.4.9 Getting to complaints more persnickety still, the name “GCM”—Galois/Counter Mode—
has the word “mode” already contained within. As a consequence, one can’t say “GCM
mode” without implicitly saying “Galois/Counter-Mode mode.” This has made for
sometimes awkward discourse. Other unfortunate names include H for the subkey
derived from K (an H looks like a hash-function—and there is one in GCM—not a
string or key), J0 for the initial counter value (can’t explain that one at all), and addi-
tional authenticated data (AAD) (but sometimes associated data, the “standard” term
and that of SP 800-38C [62]), sometimes additional data, and sometimes additional,
non-confidential data—all for the exact same thing).

12.4.10 More serious, the exposition in the NIST spec seems to kind of “fall apart” in Sections 8
and 9, and in Appendix C. These sections stray from the goal of defining GCM, and
make multiple incorrect or inscrutable statements. Here are some examples. Page 18 :
The probability that the authenticated encryption function ever will be in-
voked with the same IV and the same key on two (or more) sets of input
data shall be no greater than 2−32 (here and later in this paragraph, imperatives
are preserved in their original bold font). The probabilistic demand excludes use of
almost all cryptographic PRGs (including those standardized by NIST), where no such
guarantee is known. And I have no idea what the second part of the requirement
(sets of input data) might mean. Page 19 : Any GCM key that is established
among its intended users shall, with high probability, be fresh. Freshness,
while not having a single formal-model or computational-model definition, is rarely
given a probabilistic interpretation; a key is not regarded as un-fresh, on a particular
run, because of a rare probabilistic event. Page 20 : It is impossible to determine if
the (oddly named) invocation field can be empty. Additionally, notions like devices or
contexts are fundamentally without foundation in this document. Page 21 : The total
number of invocations of the authenticated encryption function shall not
exceed 232, including all IV lengths and all instance of the authenticated
encryption function with the given key. This is incoherent. The request is to sum
the number of encryption (and decryption?) calls and the IV lengths? David McGrew
indicates [personal communications, 2/2011] that the spec should have said that “The
total number of invocations of the authenticated encryption function shall not exceed
232, including [invocations with] all IV lengths and all instance[s] of the authenticated
encryption function with the given key.” The meaning of implementation a couple of

133

sentences later is also mysterious. Page 22 : “In order to inhibit an unauthorized party
from controlling or influencing the generation of IVs, . . .”. This statement seems to
overlook that the nonce-based notion of AEAD is specifically designed to model the
adversary having the ability to influence the IVs (subject to no-reuse). In real-world
settings, there is often nothing one can do to stop the adversary from influencing the
generation of IVs, which is what the formal model aims to address. Page 23 : Discus-
sions like what Section 9.2 has degenerated into belong in information appendices, not
within the body of the specification document. Pages 28–29 : An uneasy mix of formal
requirements (the two tables) and informal recommendations (the rest). The policy
suggested as item 1 on p. 28 (silently discard packets that decrypt to Invalid) is a
reasonable policy in some settings, but tearing down the connection is also, sometimes,
the right thing to do. Item 2 is not something the authors should be passing recom-
mendations on: for a well-designed scheme, regardless of tag length, the user should
feel free to place whatever he wants into the AD.

12.4.11 While the GCM mechanism is not itself covered by any known IP, there is at least one
US patent [112] and three pending US patents [51, 76, 78] for GCM implementation
techniques and basic usage of the mode. While the claims of these provisional and
utility patents look, at a glance, rather suspect relative to the existing art to non-
obviousness requirements, this is not always relevant in the disposition of patents and
patent applications. The emergence of IP associated to natural implementations of
GCM diminish one of its key advantages over OCB. We have not investigated the
presence of IP outside the USA.

Looking now at some other authors’ critiques, besides the tag-truncation attack already
described, Ferguson raises a number of engineering-style concerns [67]. I have folded into the
critique above those criticisms found to be of greatest merit.

Joux too writes critically of GCM, providing a key-recovery attack that works (it recoversH)
if—contrary to requirements emphasized by SP 800-38D—an IV gets reused [104]. The attack
probably motivated some of the strong language focused on avoiding IV-reuse. Joux points out
that the consequences here of IV-reuse are worse than with CTR mode: IV reuse doesn’t only
compromise a particular ciphertext, it silently destroys all future authenticity. I concur, but do
not find this surprising or overly problematic; Joux’s attack is more at the level of a cautionary
tale for what happens when one does not do as the instructions say to do. Joux also explains
why an apparent optimization-attempt made by NIST in a draft version of the GCM spec was
wrong. The optimization was “un-made” in NIST’s final spec.

12.5. Provable security of GCM. The GCM authors make the following provable-security
claims. For simplicity, we will assume the underlying blockcipher realizes a family of random
permutations (passing to the complexity-theoretic setting is standard). Let’s begin with privacy.
McGrew and Viega assume a model in which an adversary A has either a GCM encryption oracle
and a GCM decryption oracle, or else a random-bits oracle and a GCM decryption oracle.
Nonces may not be repeated in encryption-oracle queries. The authors look at the difference
in probabilities with which the adversary outputs “1” in each setting. The authors attribute
this notion to Rogaway [178], but that work did not include the decryption oracle for defining
privacy, effectively relying on equivalence results to banish it. The inclusion of decryption
queries means that the privacy ends up inheriting the unpleasant tag-length dependency that
one might expect to be associated only to the authenticity failure. This is purely artifactual.

Let A be an adversary that asks its oracles a sequence of queries where

134

•
N bounds the blocklength of every nonce N that is queried,

•
 bounds the sum of the block lengths for each (A,C) pair that arises during the adversaries
queries,

• q bounds the total number of queries (either encryption or decryption queries), and

• σ bounds the total blocklength of all plaintext blocks processed (either queried or re-
turned).

Then McGrew and Viega show that [133, Theorem 1]

Advpriv
GCM[Perm(n),τ](A) ≤ 0.5(σ + 2q)2 + 0.5q(σ + 2q)(
N + 1)

2n
+

q(
+ 1)

2τ
. (12.1)

Here we write GCM[Perm(n), τ] for the GCM scheme as it would be instantiated with an ideal
n-bit blockcipher (EK is a uniformly random permutation) and tag-length τ .

There are a couple of problems with this bound. One is that the q2
N addend in the
numerator is contributing Ω(σ3/2n) worst-case behavior. One instead wants an overall privacy
bound of O(σ2/2n) (ignoring the τ -dependency, which stems from the inclusion of decryption
queries). Almost certainly this is an artifact of the analysis and the decision to express the
bounds with respect to the particular parameters named above. The second problem is that the
bound is bad if one is going to allow small τ . In particular, for τ having a value like τ = 32 or
even τ = 64, it takes only a modest-sized q and
 to make q
 > 2τ , whence there is no provable
security remaining. We have already seen that the problem is not just a deficiency in the bound;
the Ferguson attack shows this [67]. This is the reason underlying the restrictions on
 and q
in [64, Appendix C].

As for authenticity, the authors’ definition coincides with our own (§III.2). Using notation
as before, the claim [133, Theorem 2] is that

Advauth
GCM[Perm(n),τ](A) ≤ 0.5(σ + 2q)2 + 0.5q(σ + 2q + 1)(
N + 1)

2n
+

q(
+ 1)

2τ
. (12.2)

The same comment applies: forgeries can—in principle and in practice—come quickly with
short tags, when q
 ≈ 2τ . One also sees the same cubic dependency on σ: the first addend
above is, at worst, about σ3/2n.

In short, there are provable security bounds for GCM, but they do not really say what
one would wish them to say. And this is not entirely a weakness in the demonstrated bounds;
there are, in part, corresponding attacks. Comparing the CCM bounds with the GCM bounds
(see equations (11.13) and (11.14) from Chapter 11), the CCM bounds are much better. While
the privacy bounds do not make a fair compassion, because of differing definitions used, the
authenticity bounds end up different because of genuine differences in how the schemes do when
tags are not the full 128-bits.

12.6. Truncating the tag. We have already treated this quite extensively in 12.3.1 and §12.5
but we wish to make a few additional comments. First, truncating message-authentication codes
is a common thing to do. Arbitrary truncation is allowed for all of the ISO 9797-1 CBCMAC-
derived mechanisms (Chapter 7) and for CMAC (Chapter 8). Tag truncation is likewise allowed
in CCM (Chapter 11) and GCM. Unfortunately, the extent to which it is “safe” to truncate a
MAC or AE-tag is not a simple story.

Second, when we speak of whether or not it is safe to truncate a tag, we are not simply
speaking of the obvious matter that one can forge a τ -bit tag with probability 2−τ by just

135

x86 i5-650 AES-NI

Mode T4K TIPI Size Init

CCM 4.17 4.57 512 265

GCM 3.73 4.53 656 337

OCB 1.48 2.08 544 251

CTR 1.27 1.37 244 115

x86 i5-650 Käsper-Schwabe

Mode T4K TIPI Size Init

GCM-bitsliced 22.4 26.7 1456 3780

GCM-8K 10.9 15.2 9648 2560

OCB 8.28 13.4 3008 3390

CTR 7.74 8.98 1424 1180

ARM Cortex-A8

Mode T4K TIPI Size Init

CCM 51.3 53.7 512 1390

GCM-256 50.8 53.9 656 1180

OCB 29.3 31.5 672 1920

CTR 25.4 25.9 244 236

Figure 12.3: Empirical performance of some AE modes. The data is extracted from Krovetz and
Rogaway [118]. The findings are very different what McGrew and Viega report [133, 134, 137]. Top:
Speed (cpb) verses message length (1–1000 bytes) on an Intel x86 i5 processor, using code that makes
use of Intel’s NIs. Bottom: For each architecture we give speed (cpb) to encrypt 4096 byte messages,
time to encrypt a weighted basket of message lengths (IPI, also in cpb), size of the implementation’s
context (in bytes), and time to initialize key-dependent values (in CPU cycles).

guessing a random tag. That “attack” is easily understood, and the security architect is able to
ascertain whether, in a given context, a 2−τ probability of an adversary guessing a correct tag
is a problem. What we are speaking of here is whether or not truncation of tags is guaranteed
to have the “expected” effect, where this entails that the chance of succeeding in forging, in
each and every forgery attempt, shouldn’t stray much from 2−τ until the adversary has asked
an unreasonable number of queries or material, or has computed for an unreasonable amount
of time. This is not a formal definition. See Wang, Feng, Lin, and Wu [197] (following Krovetz
and Rogaway [117]) and Black and Cochran [35] for a more systematic treatment.

Third, we would emphasize that, to date, there has been no published definition for AEAD
that guarantees that arbitrarily truncating tags does what one wants. Thus when we say
that encrypt-then-PRF generic composition does the job, or that a mode like CCM seems to
be correct in this regard, the statements can only be informal, for now, lacking the needed
justification.

NIST was clearly mindful of the short-tag issue; the tables of [64, Appendix C], especially
for 32-bit lengths, mandate rather severe requirements for re-keying. I suggest, however, that
disallowing 32- and 64-bit tags is a more reasonable approach for dealing with the problem.

12.7. Software performance. While the software performance of GCM can be quite good, it
can also be quite bad. This statement may sound vacuous (every algorithms can be implemented
poorly or well), but the intended meaning is not: I am suggesting that the software performance
of GCM is particularly sensitive to nontrivial implementation choices. Among these choices:
how large one wants to make internal tables; how much time one wants to spend on key-setup;
the extent to which one aims for timing-attack resistance; and to what extent one is willing to
assume that most messages are long.

136

One of the selling-points for GCM was McGrew and Viega’s claim [133, 134, 137] that, in
software, the mode is considerably faster than CCM, and about as fast OCB. In a careful multi-
platform timing study done with Ted Krovetz [118], we arrive at quite different findings: that
CCM and GCM performance are usually similar, while OCB is usually much faster than both.
For summary performance findings from our paper, see Figure 12.3. We compare CCM, GCM,
OCB and, as a baseline, CTR. The OCB version that we report on here is the original one [182].
A still faster variant now exists as well [118].

In the leftmost table at Figure 12.3, an x86 i5 platform is used and the code employs Intel’s
new AES and carryless multiply NIs. This obviates issues of table size. The CCM and GCM
implementations are from a developmental version of OpenSSL, which has the fastest times
known [162]. For the middle table we report how well one can do, on the same platform,
without the NIs, using either a bitsliced (constant-time) or a table-based GCM, and a bitsliced
AES, all of which were authored by Käsper and Schwabe [108]. We add in our own OCB code
(which calls down to the Käsper-Schwabe AES). CCM is not included in this test, but would
perform terribly, since the bitslided AES-code needs to compute eight AES ECB computations
at a time, and, when CBC-chaining in CCM, we have only one AES we can do at a time. The
rightmost table, giving ARM data, uses OpenSSL assembly code for CCM, CTR, and GCM,
plus our own C code for OCB. The GCM code is designed to be timing-attack resistant, and
is therefore somewhat slow. This does not make comparisons irrelevant; CCM (and OCB) are
also timing-attack resistant, making the playing field level.

We used a Debian Linux 6.0 with kernel 2.6.35 and GCC 4.5.1. Compilation is done with
-O3 optimization, -mcpu or -march set according to the host processor, and -m64 to force 64-bit
compilation when needed. The IPI measure (“Internet Performance Index”), due to McGrew
and Viega [137], is a weighted sum of performance figures for messages of some specified lengths.
The intent is to have a measure that dissuades one from focusing just on peak performance, as
speed on short messages can matter a lot in shaping real-world performance.

12.8. Concluding remarks. While much of this chapter has been critical of GCM, one
should keep things in perspective: the mode is popular, efficient, and enjoys good provable-
security results if tags are long. The most serious problem—the use of short tags—can be
outlawed. Another important issue—the danger that the user will, contrary to instructions,
reuse a nonce—is certainly a valid concern, but it is endemic to many modes of operation, and
it is costly to deal with well, as two passes will then be needed over the data [183]. Ultimately,
we find Ferguson’s advise—“Do not use GCM” [67, p. 9]—as rather too strident given what he
shows and what is currently know. Instead, we would say that the mode—like most—needs to
be used with some care.

137

Bibliography

[1] Abdalla, M., and Bellare, M. Increasing the lifetime of a key: a comparative analysis
of the security of re-keying techniques. In Advances in Cryptology – ASIACRYPT 2000
(Kyoto, Japan, Dec. 3–7, 2000), T. Okamoto, Ed., vol. 1976 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 546–559.

[2] Alkassar, A., Geraldy, A., Pfitzmann, B., and Sadeghi, A.-R. Optimized self-
synchronizing mode of operation. In Fast Software Encryption – FSE 2001 (Yokohama,
Japan, Apr. 2–4, 2001), M. Matsui, Ed., vol. 2355 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 78–91.

[3] American National Standards Institute. ANSI X9.19. Financial institution retail
message authentication. American National Standards Institute, Aug. 1986.

[4] American National Standards Institute. ANSI X9.9-1986 (revised), Financial in-
stitution message authentication (wholesale). American Nationalal Standards Institute,
Apr. 1986.

[5] American National Standards Institute. ANSI X9.52. Triple Data Encryption
Algorithm Modes of Operation. American National Standards Institute, Jan. 1998.

[6] An, J. H., and Bellare, M. Constructing VIL-MACs from FIL-MACs: Message
authentication under weakened assumptions. In Advances in Cryptology – CRYPTO’99
(Santa Barbara, CA, USA, Aug. 15–19, 1999), M. J. Wiener, Ed., vol. 1666 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 252–269.

[7] Aoki, K., and Lipmaa, H. Fast implementations of AES candidaates. In AES Candidate
Conference 2000 (2000), pp. 106–120.

[8] Ball, M. Cryptographic protection of data on block-oriented storage devices. CRYPTO
2008 rump-session talk, slides available from http://siswg.net, 2008.

[9] Barak, B., Haitner, I., Hofheinz, D., and Ishai, Y. Bounded key-dependent
message security. In Advances in Cryptology – EUROCRYPT 2010 (French Riviera,
May 30 – June 3, 2010), H. Gilbert, Ed., vol. 6110 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 423–444.

[10] Barker, W. NIST Special Publication 800-67, version 1.1. Recommendation for the
Triple Data Encryption Algorithm (TDEA) block cipher, May 2008.

[11] Bellare, M. New proofs for NMAC and HMAC: Security without collision-resistance.
In Advances in Cryptology – CRYPTO 2006 (Santa Barbara, CA, USA, Aug. 20–24,
2006), C. Dwork, Ed., vol. 4117 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 602–619.

138

[12] Bellare, M., Boldyreva, A., Knudsen, L., and Namprempre, C. Online ciphers
and the hash-CBC construction. In Advances in Cryptology – CRYPTO 2001 (Santa
Barbara, CA, USA, Aug. 19–23, 2001), J. Kilian, Ed., vol. 2139 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 292–309.

[13] Bellare, M., Canetti, R., and Krawczyk, H. Keying hash functions for message
authentication. In Advances in Cryptology – CRYPTO’96 (Santa Barbara, CA, USA,
Aug. 18–22, 1996), N. Koblitz, Ed., vol. 1109 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 1–15.

[14] Bellare, M., Desai, A., Jokipii, E., and Rogaway, P. A concrete security treatment
of symmetric encryption. In 38th Annual Symposium on Foundations of Computer Science
(Miami Beach, Florida, Oct. 19–22, 1997), IEEE Computer Society Press, pp. 394–403.

[15] Bellare, M., Goldreich, O., and Goldwasser, S. Incremental cryptography and
application to virus protection. In 27th Annual ACM Symposium on Theory of Computing
(Las Vegas, Nevada, USA, May 29 – June 1, 1995), ACM Press, pp. 45–56.

[16] Bellare, M., Goldreich, O., and Mityagin, A. The power of verification queries in
message authentication and authenticated encryption. Cryptology ePrint Archive, Report
2004/309, Nov. 2004.

[17] Bellare, M., Guérin, R., and Rogaway, P. XOR MACs: New methods for mes-
sage authentication using finite pseudorandom functions. In Advances in Cryptology –
CRYPTO’95 (Santa Barbara, CA, USA, Aug. 27–31, 1995), D. Coppersmith, Ed., vol. 963
of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 15–28.

[18] Bellare, M., Kilian, J., and Rogaway, P. The security of cipher block chaining.
In Advances in Cryptology – CRYPTO’94 (Santa Barbara, CA, USA, Aug. 21–25, 1994),
Y. Desmedt, Ed., vol. 839 of Lecture Notes in Computer Science, Springer, Berlin, Ger-
many, pp. 341–358.

[19] Bellare, M., Kilian, J., and Rogaway, P. The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences 61, 3 (2000),
362–399.

[20] Bellare, M., and Kohno, T. Hash function balance and its impact on birthday attacks.
In Advances in Cryptology – EUROCRYPT 2004 (Interlaken, Switzerland, May 2–6,
2004), C. Cachin and J. Camenisch, Eds., vol. 3027 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 401–418.

[21] Bellare, M., Krovetz, T., and Rogaway, P. Luby-Rackoff backwards: Increasing
security by making block ciphers non-invertible. In Advances in Cryptology – EURO-
CRYPT’98 (Espoo, Finland, May 31 – June 4, 1998), K. Nyberg, Ed., vol. 1403 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 266–280.

[22] Bellare, M., and Namprempre, C. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In Advances in Cryptology –
ASIACRYPT 2000 (Kyoto, Japan, Dec. 3–7, 2000), T. Okamoto, Ed., vol. 1976 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 531–545.

[23] Bellare, M., and Namprempre, C. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. Journal of Cryptology 21, 4
(Oct. 2008), 469–491.

139

[24] Bellare, M., Pietrzak, K., and Rogaway, P. Improved security analyses for CBC
MACs. In Advances in Cryptology – CRYPTO 2005 (Santa Barbara, CA, USA, Aug. 14–
18, 2005), V. Shoup, Ed., vol. 3621 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, pp. 527–545.

[25] Bellare, M., and Rogaway, P. Entity authentication and key distribution. In Ad-
vances in Cryptology – CRYPTO’93 (Santa Barbara, CA, USA, Aug. 22–26, 1994), D. R.
Stinson, Ed., vol. 773 of Lecture Notes in Computer Science, Springer, Berlin, Germany,
pp. 232–249.

[26] Bellare, M., and Rogaway, P. On the construction of variable-input-length ciphers.
In Fast Software Encryption – FSE’99 (Rome, Italy, Mar. 24–26, 1999), L. Knudsen, Ed.,
vol. 1636 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 231–244.

[27] Bellare, M., and Rogaway, P. The security of triple encryption and a framework for
code-based game-playing proofs. In Advances in Cryptology – EUROCRYPT 2006 (St.
Petersburg, Russia, May 28 – June 1, 2006), S. Vaudenay, Ed., vol. 4004 of Lecture Notes
in Computer Science, Springer, Berlin, Germany, pp. 409–426.

[28] Bellovin, S. Problem areas for the ip security protocols. In Proceedings of the Sixth
USENIX Security Symposium (1996), USENIX.

[29] Bernstein, D. A short proof of unpredictability of cipher block chaining, 2005. Unpub-
lished manuscript available from the author’s webpage.

[30] Bernstein, D. J., and Schwabe, P. New AES software speed records. In Progress
in Cryptology - INDOCRYPT 2008: 9th International Conference in Cryptology in India
(Kharagpur, India, Dec. 14–17, 2008), D. R. Chowdhury, V. Rijmen, and A. Das, Eds.,
vol. 5365 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 322–336.

[31] Bharadwaj, V., and Ferguson, N. Public comments on the XTS-AES mode. Col-
lected email comments released by NIST, available from their web page, 2008.

[32] Biham, E., and Shamir, A. Differential cryptanalysis of Snefru, Khafre, REDOC-II,
LOKI and Lucifer. In Advances in Cryptology – CRYPTO’91 (Santa Barbara, CA, USA,
Aug. 11–15, 1992), J. Feigenbaum, Ed., vol. 576 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 156–171.

[33] Biryukov, A., and Khovratovich, D. Related-key cryptanalysis of the full AES-192
and AES-256. In Advances in Cryptology – ASIACRYPT 2009 (Tokyo, Japan, Dec. 6–10,
2009), M. Matsui, Ed., vol. 5912 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 1–18.

[34] Biryukov, A., Khovratovich, D., and Nikolic, I. Distinguisher and related-key
attack on the full AES-256. In Advances in Cryptology – CRYPTO 2009 (Santa Barbara,
CA, USA, Aug. 16–20, 2009), S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 231–249.

[35] Black, J., and Cochran, M. MAC reforgeability. In Fast Software Encryption –
FSE 2009 (Leuven, Belgium, Feb. 22–25, 2009), O. Dunkelman, Ed., vol. 5665 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 345–362.

140

[36] Black, J., Cochran, M., and Highland, T. A study of the MD5 attacks: Insights
and improvements. In Fast Software Encryption – FSE 2006 (Graz, Austria, Mar. 15–
17, 2006), M. Robshaw, Ed., vol. 4047 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, pp. 262–277.

[37] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P. UMAC:
Fast and secure message authentication. In Advances in Cryptology – CRYPTO’99 (Santa
Barbara, CA, USA, Aug. 15–19, 1999), M. J. Wiener, Ed., vol. 1666 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 216–233.

[38] Black, J., and Rogaway, P. CBC MACs for arbitrary-length messages: The three-key
constructions. In Advances in Cryptology – CRYPTO 2000 (Santa Barbara, CA, USA,
Aug. 20–24, 2000), M. Bellare, Ed., vol. 1880 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 197–215.

[39] Black, J., and Rogaway, P. CBC MACs for arbitrary-length messages: The three-key
constructions. Journal of Cryptology 18, 2 (Apr. 2005), 111–131.

[40] Black, J., Rogaway, P., and Shrimpton, T. Encryption-scheme security in the
presence of key-dependent messages. In SAC 2002: 9th Annual International Workshop
on Selected Areas in Cryptography (St. John’s, Newfoundland, Canada, Aug. 15–16, 2003),
K. Nyberg and H. M. Heys, Eds., vol. 2595 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, pp. 62–75.

[41] Black, J., Rogaway, P., Shrimpton, T., and Stam, M. An analysis of the
blockcipher-based hash functions from PGV. Journal of Cryptology 23, 4 (Oct. 2010),
519–545.

[42] Black, J., and Urtubia, H. Side-channel attacks on symmetric encryption schemes:
The case for authenticated encryption. In USENIX Security Symposium (2002), D. Boneh,
Ed., USENIX, pp. 327–338.

[43] Bleichenbacher, D. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In Advances in Cryptology – CRYPTO’98 (Santa Barbara,
CA, USA, Aug. 23–27, 1998), H. Krawczyk, Ed., vol. 1462 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 1–12.

[44] Boneh, D., Halevi, S., Hamburg, M., and Ostrovsky, R. Circular-secure encryp-
tion from decision diffie-hellman. In Advances in Cryptology – CRYPTO 2008 (Santa
Barbara, CA, USA, Aug. 17–21, 2008), D. Wagner, Ed., vol. 5157 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 108–125.

[45] Bosselaers, A., and Preneel, B., Eds. Integrity Primitives for Secure Informa-
tion Systems, Final Report of RACE Integrity Primitives Evaluation RIPE-RACE 1040,
vol. 1007 of Lecture Notes in Computer Science. Springer, 1995.

[46] Brassard, G. On computationally secure authentication tags requiring short secret
shared keys. In Advances in Cryptology – CRYPTO’82 (Santa Barbara, CA, USA, 1983),
D. Chaum, R. L. Rivest, and A. T. Sherman, Eds., Plenum Press, New York, USA,
pp. 79–86.

141

[47] Brincat, K., and Mitchell, C. New CBC-MAC forgery attacks. In ACISP 05:
10th Australasian Conference on Information Security and Privacy (Brisbane, Queens-
land, Australia, 2001), V. Varadharajan and Y. Mu, Eds., vol. 2119 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 3–14.

[48] Camenisch, J., and Lysyanskaya, A. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In Advances in Cryptology – EU-
ROCRYPT 2001 (Innsbruck, Austria, May 6–10, 2001), B. Pfitzmann, Ed., vol. 2045 of
Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 93–118.

[49] Canvel, B., Hiltgen, A. P., Vaudenay, S., and Vuagnoux, M. Password intercep-
tion in a SSL/TLS channel. In Advances in Cryptology – CRYPTO 2003 (Santa Barbara,
CA, USA, Aug. 17–21, 2003), D. Boneh, Ed., vol. 2729 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 583–599.

[50] Carter, L., and Wegman, M. Universal hash functions. J. of Computer and System
Sciences, 18 (1979), 143–154.

[51] Chen, L., and Buckingham, J. Authenticated encryption method and apparatus, Apr.
2008. US Patent Application 20060126835.

[52] Clunie, D. Public comments on the XTS-AES mode. Collected email comments released
by NIST, available from their web page, 2008.

[53] Contini, S., and Yin, Y. Forgery and partial key-recovery attacks on HMAC and
NMAC using hash collisions. In Advances in Cryptology – ASIACRYPT 2006 (Shanghai,
China, Dec. 3–7, 2006), X. Lai and K. Chen, Eds., vol. 4284 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 37–53.

[54] Coppersmith, D., Knudsen, L., and Mitchell, C. Key recovery and forgery attacks
on the MacDES MAC algorithm. In Advances in Cryptology – CRYPTO 2000 (Santa
Barbara, CA, USA, Aug. 20–24, 2000), M. Bellare, Ed., vol. 1880 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 184–196.

[55] Coppersmith, D., and Mitchell, C. Attacks on MacDES MAC algorithm. Electronics
Letters 35, 19 (1999), 1626–1627.

[56] Degabriele, J. P., and Paterson, K. G. Attacking the IPsec standards in encryption-
only configurations. In 2007 IEEE Symposium on Security and Privacy (Oakland, Cali-
fornia, USA, May 20–23, 2007), IEEE Computer Society Press, pp. 335–349.

[57] den Boer, B., and Bosselaers, A. Collisions for the compressin function of MD5.
In Advances in Cryptology – EUROCRYPT’93 (Lofthus, Norway, May 23–27, 1993),
T. Helleseth, Ed., vol. 765 of Lecture Notes in Computer Science, Springer, Berlin, Ger-
many, pp. 293–304.

[58] Diffie, W., and Hellman, M. Privacy and authentication: an introduction to cryp-
tography. Proceedings of the IEEE 67 (1979), 397–427.

[59] Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., and Rabin, T. Randomness
extraction and key derivation using the CBC, cascade and HMAC modes. In Advances in
Cryptology – CRYPTO 2004 (Santa Barbara, CA, USA, Aug. 15–19, 2004), M. Franklin,
Ed., vol. 3152 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 494–
510.

142

[60] Dolev, D., Dwork, C., and Naor, M. Nonmalleable cryptography. SIAM Journal
on Computing 30, 2 (2000), 391–437.

[61] Dworkin, M. NIST Special Publication 800-38A. Recommendation for block cipher
modes of operation: Modes and techniques, Dec. 2001.

[62] Dworkin, M. NIST Special Publication 800-38C. Recommendation for block cipher
modes of operation: The CCM mode for authentication and confidentiality, May 2004.

[63] Dworkin, M. NIST Special Publication 800-38B. Recommendation for block cipher
modes of operation: The CMAC mode for authentication, May 2005.

[64] Dworkin, M. NIST Special Publication 800-38D. Recommendation for block cipher
modes of operation: Galois/Counter Mode (GCM and GMAC), Nov. 2007.

[65] Dworkin, M. NIST Special Publication 800-38E: Recommendation for block cipher
modes of operation: The XTS-AES mode of confidentiality on storage devices, Jan. 2010.

[66] Even, S., and Mansour, Y. A construction of a cipher from a single pseudorandom
permutation. In Advances in Cryptology – ASIACRYPT’91 (Fujiyoshida, Japan, Nov. 11–
14, 1991), H. Imai, R. L. Rivest, and T. Matsumoto, Eds., vol. 739 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 210–224.

[67] Ferguson, N. Authentication weaknesses in GCM. Manuscript, available from NIST’s
webpage, 2005.

[68] Ferguson, N. Personal communication, Feb. 2011.

[69] Fischlin, M. Security of NMAC and HMAC based on non-malleability. In Topics in
Cryptology – CT-RSA 2008 (San Francisco, CA, USA, Apr. 7–11, 2008), T. Malkin, Ed.,
vol. 4964 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 138–154.

[70] Fouque, P.-A., Leurent, G., and Nguyen, P. Q. Full key-recovery attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In Advances in Cryptology – CRYPTO 2007
(Santa Barbara, CA, USA, Aug. 19–23, 2007), A. Menezes, Ed., vol. 4622 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 13–30.

[71] Fouque, P.-A., Martinet, G., Valette, F., and Zimmer, S. On the security of the
CCM encryption mode and of a slight variant. In ACNS 08: 6th International Conference
on Applied Cryptography and Network Security (New York, NY, USA, June 3–6, 2008),
S. M. Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung, Eds., vol. 5037 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 411–428.

[72] Fouque, P.-A., Pointcheval, D., and Zimmer, S. HMAC is a randomness extractor
and applications to TLS. In ASIACCS 08: 3rd Conference on Computer and Communi-
cations Security (Tokyo, Japan, Mar. 18–20, 2008), M. Abe and V. Gligor, Eds., ACM
Press, pp. 21–32.

[73] Gligor, V., and Donescu, P. Fast encryption and authentication: XCBC encryption
and XECB authentication modes. In Fast Software Encryption – FSE 2001 (Yokohama,
Japan, Apr. 2–4, 2001), M. Matsui, Ed., vol. 2355 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 92–108.

[74] Goldwasser, S., and Micali, S. Probabilistic encryption. Journal of Computer and
System Sciences 28, 2 (1984), 270–299.

143

[75] Goldwasser, S., Micali, S., and Rackoff, C. The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing 18, 1 (1989), 186–208.

[76] Gueron, S. Speeding up Galois Counter Mode (GCM) computations, June 2007. US
Patent Application 20080240423.

[77] Gueron, S. Intel Advanced Encryption Standard (AES) instructions set — rev 3. White
paper, avialable from www.intel.com, Jan. 2010.

[78] Gueron, S., and Kounavis, M. Using a single instruction multiple data (SIMD)
instruction to speed up Galois Counter Mode (GCM) computation, Dec. 2009. US Patent
Application 20090310775.

[79] Gueron, S., and Kounavis, M. Intel carry-less multiplication instruction and its usage
for computing the GCM mode (revision 2). White paper, avialable from www.intel.com.
List visited Jan 2011., May 2010.

[80] Halevi, S. EME*: Extending EME to handle arbitrary-length messages with associated
data. In Progress in Cryptology - INDOCRYPT 2004: 5th International Conference in
Cryptology in India (Chennai, India, Dec. 20–22, 2004), A. Canteaut and K. Viswanathan,
Eds., vol. 3348 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 315–
327.

[81] Halevi, S. Storage encryption: A cryptographer’s view. Invited talk at the Sixth Con-
ference on Security and Cryptography for Networks (SCN 2008). Slides available from
URL http://people.csail.mit.edu/shaih/, 2008.

[82] Halevi, S., and Rogaway, P. A tweakable enciphering mode. In Advances in Cryp-
tology – CRYPTO 2003 (Santa Barbara, CA, USA, Aug. 17–21, 2003), D. Boneh, Ed.,
vol. 2729 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 482–499.

[83] Halevi, S., and Rogaway, P. A parallelizable enciphering mode. In Topics in Cryp-
tology – CT-RSA 2004 (San Francisco, CA, USA, Feb. 23–27, 2004), T. Okamoto, Ed.,
vol. 2964 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 292–304.

[84] Hall, C., Wagner, D., Kelsey, J., and Schneier, B. Building PRFs from PRPs.
In Advances in Cryptology – CRYPTO’98 (Santa Barbara, CA, USA, Aug. 23–27, 1998),
H. Krawczyk, Ed., vol. 1462 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 370–389.

[85] Handschuh, H., and Preneel, B. Key-recovery attacks on universal hash function
based MAC algorithms. In Advances in Cryptology – CRYPTO 2008 (Santa Barbara,
CA, USA, Aug. 17–21, 2008), D. Wagner, Ed., vol. 5157 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 144–161.

[86] IEEE 1619 SISWG. Security in Storage Working Group, P1619 Narrow-Block. Web
page maintained by the IEEE, URL: http://siswg.net/, last visited January 2011.

[87] Institute of Electrical and Electronics Engineers. IEEE Std. 802.11-1999,
IEEE standard for telecommunications and informnation exchange between systems —
LAN/MAN specific requirements — Part II: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) specifications. IEEE Press, 1999.

144

[88] Institute of Electrical and Electronics Engineers. IEEE Std.— 802.1AE-2006,
IEEE Standard for local and metropolitan area networks – Media Access Control (MAC)
security. IEEE Press, 2006.

[89] Institute of Electrical and Electronics Engineers. IEEE Std. 1619.1-2007,
IEEE standard for authenticated encryption with length expansion for storage devices.
IEEE Press, 2007.

[90] Institute of Electrical and Electronics Engineers. IEEE Std. 1619-2007, IEEE
standard for cryptographic protection of data on block-oriented storage devices. IEEE
Press, Apr. 2008.

[91] International Organization for Standardization and International Elec-

trotechnical Commission. ISO/IEC 9797-1:1999, Information technology — Security
techniques — Message Authentication Codes (MACs) — Part 1: Mechanisms using a
block cipher. International Standard, 1999.

[92] International Organization for Standardization and International Elec-

trotechnical Commission. ISO/IEC 10116:2006, Information technology — Security
techniques — Modes of Operation for an n-bit block cipher. International Standard, 2006.

[93] International Organization for Standardization and International Elec-

trotechnical Commission. ISO/IEC FDIS 9797-1:2010(E), Information technology —
Security techniques — Message Authentication Codes (MACs) — Part 1: Mechanisms
using a block cipher. Final Draft International Standard, 2010.

[94] Iwata, T. Comments on “On the security of XCBC, TMAC and OMAC” by Mitchell,
Sept. 2003. Manuscript, availabe from NIST’s website.

[95] Iwata, T. New blockcipher modes of operation with beyond the birthday bound security.
In Fast Software Encryption – FSE 2006 (Graz, Austria, Mar. 15–17, 2006), M. Robshaw,
Ed., vol. 4047 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 310–
327.

[96] Iwata, T., and Kurosawa, K. OMAC: One-key CBC MAC. In Fast Software En-
cryption – FSE 2003 (Lund, Sweden, Feb. 24–26, 2003), T. Johansson, Ed., vol. 2887 of
Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 129–153.

[97] Iwata, T., and Kurosawa, K. Stronger security bounds for OMAC, TMAC, and
XCBC. In Progress in Cryptology - INDOCRYPT 2003: 4th International Conference in
Cryptology in India (New Delhi, India, Dec. 8–10, 2003), T. Johansson and S. Maitra,
Eds., vol. 2904 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 402–
415.

[98] Iwata, T., and Kurosawa, K. OMAC: One-key CBC MAC— Addendum. Manuscript,
available from NIST’s website, 2005.

[99] J. Song, R. Poovendran, and J. Lee. The AES-CMAC-96 algorithm and its use with
IPsec. RFC 4494, June 2006.

[100] J. Song, R. Poovendran, J. Lee, and T. Iwata. The AES-CMAC algorithm. RFC
4493, June 2006.

145

[101] Jaulmes, É., Joux, A., and Valette, F. On the security of randomized CBC-MAC
beyond the birthday paradox limit: A new construction. In Fast Software Encryption –
FSE 2002 (Leuven, Belgium, Feb. 4–6, 2002), J. Daemen and V. Rijmen, Eds., vol. 2365
of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 237–251.

[102] Jia, K., Wang, X., Yuan, Z., and Xu, G. Distinguishing and second-preimage at-
tacks on CBC-like MACs. In CANS 09: 8th International Conference on Cryptology
and Network Security (Kanazawa, Japan, Dec. 12–14, 2009), J. A. Garay, A. Miyaji,
and A. Otsuka, Eds., vol. 5888 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 349–361.

[103] Jonsson, J. On the security of CTR + CBC-MAC. In SAC 2002: 9th Annual Interna-
tional Workshop on Selected Areas in Cryptography (St. John’s, Newfoundland, Canada,
Aug. 15–16, 2003), K. Nyberg and H. M. Heys, Eds., vol. 2595 of Lecture Notes in Com-
puter Science, Springer, Berlin, Germany, pp. 76–93.

[104] Joux, A. Authentication failures in [sic] NIST version of GCM, 2006. Manuscript,
available from NIST’s webpage.

[105] Joux, A., Poupard, G., and Stern, J. New attacks against standardized MACs. In
Fast Software Encryption – FSE 2003 (Lund, Sweden, Feb. 24–26, 2003), T. Johansson,
Ed., vol. 2887 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 170–
181.

[106] Jutla, C. Encryption modes with almost free message integrity. In Advances in Cryp-
tology – EUROCRYPT 2001 (Innsbruck, Austria, May 6–10, 2001), B. Pfitzmann, Ed.,
vol. 2045 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 529–544.

[107] Jutla, C. Encryption modes with almost free message integrity. Journal of Cryptology
21, 4 (Oct. 2008), 547–578.

[108] Käsper, E., and Schwabe, P. Faster and timing-attack resistant AES-GCM. In
Cryptographic Hardware and Embedded Systems – CHES 2009 (Lausanne, Switzerland,
Sept. 6–9, 2009), C. Clavier and K. Gaj, Eds., vol. 5747 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 1–17.

[109] Katz, J., and Yung, M. Unforgeable encryption and chosen ciphertext secure modes
of operation. In Fast Software Encryption – FSE 2000 (New York, NY, USA, Apr. 10–12,
2000), B. Schneier, Ed., vol. 1978 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 284–299.

[110] Kilian, J., and Rogaway, P. How to protect DES against exhaustive key search (an
analysis of DESX). Journal of Cryptology 14, 1 (2001), 17–35.

[111] Kim, J., Biryukov, A., Preneel, B., and Hong, S. On the security of HMAC and
NMAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1 (extended abstract). In SCN
06: 5th International Conference on Security in Communication Networks (Maiori, Italy,
Sept. 6–8, 2006), R. D. Prisco and M. Yung, Eds., vol. 4116 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 242–256.

[112] Kim, K., Han, K., Yoo, T., and Kwon, Y. High-speed GCM-AES block cipher
apparatus and method, Nov. 2010. US Patent 7,840,003.

[113] Knudsen, L. Chosen-text attack on CBC-MAC. Electronics Letters 33, 1 (1998), 48–49.

146

[114] Knudsen, L., and Preneel, B. MacDES: MAC algorithm based on DES. Electronics
Letters 34 (1998), 871–873.

[115] Kohno, T., Viega, J., and Whiting, D. CWC: A high-performance conventional
authenticated encryption mode. In Fast Software Encryption – FSE 2004 (New Delhi,
India, Feb. 5–7, 2004), B. Roy and W. Meier, Eds., vol. 3017 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 408–426.

[116] Krawczyk, H. LFSR-based hashing and authentication. In Advances in Cryptology –
CRYPTO’94 (Santa Barbara, CA, USA, Aug. 21–25, 1994), Y. Desmedt, Ed., vol. 839 of
Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 129–139.

[117] Krovetz, T., and Rogaway, P. Variationally universal hashing. Information Process-
ing Letters 100, 1 (2006), 36–39.

[118] Krovetz, T., and Rogaway, P. The software performance of authenticated-encryption
modes. To appear at FSE 2011, 2011.

[119] Kurosawa, K., and Iwata, T. TMAC: Two-key CBC MAC. In Topics in Cryptology
– CT-RSA 2003 (San Francisco, CA, USA, Apr. 13–17, 2003), M. Joye, Ed., vol. 2612 of
Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 33–49.

[120] Lee, E., Chang, D., Kim, J., Sung, J., and Hong, S. Second preimage attack on 3-
pass HAVAL and partial key-recovery attacks on HMAC/NMAC-3-pass HAVAL. In Fast
Software Encryption – FSE 2008 (Lausanne, Switzerland, Feb. 10–13, 2008), K. Nyberg,
Ed., vol. 5086 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 189–
206.

[121] Lipmaa, H. IDEA: A cipher for multimedia architectures? In SAC 1998: 5th Annual
International Workshop on Selected Areas in Cryptography (Kingston, Ontario, Canada,
Aug. 17–18, 1999), S. E. Tavares and H. Meijer, Eds., vol. 1556 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 248–263.

[122] Lipmaa, H., Rogaway, P., and Wagner, D. CTR-mode encryption. Comments sent
to NIST and available their web page, or from Rogaway’s, Sept. 2000.

[123] Liskov, M., and Minematsu, K. Comments on XTS-AES. Comments to NIST, avail-
able from their web page, Sept. 2008.

[124] Liskov, M., Rivest, R., and Wagner, D. Tweakable block ciphers. In Advances in
Cryptology – CRYPTO 2002 (Santa Barbara, CA, USA, Aug. 18–22, 2002), M. Yung, Ed.,
vol. 2442 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 31–46.

[125] Locktyukhin, M. Improving the performance of the Secure Hash Algorithm (SHA-1).
White paper, avialable from www.intel.com, Mar. 2010.

[126] Luby, M., and Rackoff, C. How to construct pseudo-random permutations from
pseudo-random functions (abstract). In Advances in Cryptology – CRYPTO’85 (Santa
Barbara, CA, USA, Aug. 18–22, 1986), H. C. Williams, Ed., vol. 218 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, p. 447.

[127] Luby, M., and Rackoff, C. How to construct pseudorandom permutations from
pseudorandom functions. SIAM Journal on Computing 17, 2 (1988).

147

[128] Luby, M., and Rackoff, C. A study of password security. In Advances in Cryptology –
CRYPTO’87 (Santa Barbara, CA, USA, Aug. 16–20, 1988), C. Pomerance, Ed., vol. 293
of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 392–397.

[129] Lucks, S. The sum of PRPs is a secure PRF. In Advances in Cryptology – EURO-
CRYPT 2000 (Bruges, Belgium, May 14–18, 2000), B. Preneel, Ed., vol. 1807 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 470–484.

[130] McEvoy, R. P., Tunstall, M., Murphy, C., and Marnane, W. Differential power
analysis of HMAC based on SHA-2, and countermeasures. In WISA 07: 8th International
Workshop on Information Security Applications (Jeju Island, Korea, Aug. 27–29, 2007),
S. Kim, M. Yung, and H.-W. Lee, Eds., vol. 4867 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 317–332.

[131] McGrew, D. An interface and algorithms for authenticated encryption. RFC 5116, Jan.
2008.

[132] McGrew, D., and Fluhrer, S. Multiple forgeries against message authentication
codes. Cryptology ePrint Archive, Report 2005/161, May 2005.

[133] McGrew, D., and Viega, J. The security and performance of the Galois/Counter Mode
of operation (full version). Cryptology ePrint Archive, Report 2004/193, Aug. 2004.

[134] McGrew, D., and Viega, J. The Galois/Counter Mode of operation (GCM). Submis-
sion to NIST, available from their web page, May 2005.

[135] McGrew, D., and Viega, J. GCM update, May 2005. Manuscript, available from
NIST’s webpage.

[136] McGrew, D., and Viega, J. The Use of Galois Message Authentication Code (GMAC)
in IPsec ESP and AH. RFC 4543, May 2006.

[137] McGrew, D. A., and Viega, J. The security and performance of the Galois/counter
mode (gcm) of operation. In Progress in Cryptology - INDOCRYPT 2004: 5th Interna-
tional Conference in Cryptology in India (Chennai, India, Dec. 20–22, 2004), A. Canteaut
and K. Viswanathan, Eds., vol. 3348 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, pp. 343–355.

[138] Menezes, A., van Oorschot, P., and Vanstone, S. Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton, Florida, 1996.

[139] Menezes, A., van Oorschot, P., and Vanstone, S. Handbook of Applied Cryptog-
raphy. The CRC Press series on discrete mathematics and its applications. CRC Press,
2000 N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA, 1997.

[140] Merkle, R., and Hellman, M. On the security of multiple encryption. Communica-
tions of the ACM 24, 7 (1981), 465–467.

[141] Minematsu, K. Improved security analysis of XEX and LRW modes. In SAC 2006: 13th
Annual International Workshop on Selected Areas in Cryptography (Montreal, Canada,
Aug. 17–18, 2006), E. Biham and A. M. Youssef, Eds., vol. 4356 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 96–113.

148

[142] Minematsu, K. Beyond-birthday-bound security based on tweakable block cipher. In
Fast Software Encryption – FSE 2009 (Leuven, Belgium, Feb. 22–25, 2009), O. Dunkel-
man, Ed., vol. 5665 of Lecture Notes in Computer Science, Springer, Berlin, Germany,
pp. 308–326.

[143] Mister, S., and Zuccherato, R. J. An attack on CFB mode encryption as used
by OpenPGP. In SAC 2005: 12th Annual International Workshop on Selected Areas in
Cryptography (Kingston, Ontario, Canada, Aug. 11–12, 2005), B. Preneel and S. Tavares,
Eds., vol. 3897 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 82–
94.

[144] Mitchell, C. A new key recovery attack on the ANSI retail MAC. Electronics Letters
39, 4 (2003).

[145] Mitchell, C. On the security of XCBC, TMAC, and OMAC, Aug. 2003. Technical
Report RHUL-MA-2003-4.

[146] Mitchell, C. Error oracle attacks on CBC mode: Is there a future for CBC mode
encryption? In ISC 2005: 8th International Conference on Information Security (Singa-
pore, Sept. 20–23, 2005), J. Zhou, J. Lopez, R. H. Deng, and F. Bao, Eds., vol. 3650 of
Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 244–258.

[147] Nandi, M. Improved security analysis for OMAC as a pseudornadom function. Jounral
of Mathematical Cryptology 3, 2 (1998), 133–148.

[148] Nandi, M. A simple and unified method of proving indistinguishability. In Progress in
Cryptology - INDOCRYPT 2006: 7th International Conference in Cryptology in India
(Kolkata, India, Dec. 11–13, 2006), R. Barua and T. Lange, Eds., vol. 4329 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 317–334.

[149] Nandi, M. A unified method for improving PRF bounds for a class of blockcipher
based MACs. In Fast Software Encryption – FSE 2010 (Seoul, Korea, Feb. 7–10, 2010),
S. Hong and T. Iwata, Eds., vol. 6147 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, pp. 212–229.

[150] Naor, M., and Reingold, O. A pseudo-random encryption mode, 1997. Manuscript,
available from Naor’s webpage.

[151] Naor, M., and Reingold, O. On the construction of pseudorandom permutations:
Luby-Rackoff revisited. Journal of Cryptology 12, 1 (1999), 29–66.

[152] Naor, M., and Reingold, O. Synthesizers and their application to the parallel con-
struction of pseudo-random functions. J. Comput. Syst. Sci. 58, 2 (1999), 336–375.

[153] National Bureau of Standards. DES modes of operation. Federal Information
Processing Standards Publication 81 (FIPS PUB 81), U.S. Department of Commerce,
1980.

[154] National Institute of Standards, and Technology. FIPS PUB 197. Advanced
Encryption Standard (AES). U.S. Department of Commerce, Nov. 2001.

[155] National Institute of Standards and Technology. Block ciphers: ap-
proved algorithms. Web page maintained by NIST, last visited in January of 2011.
http://csrc.nist.gov/groups/ST/toolkit/block ciphers.html.

149

[156] National Institute of Standards and Technology. Escrowed Encryption Stan-
dard (EES). FIPS PUB 185, U.S. Department of Commerce, Feb. 1994.

[157] National Institute of Standards and Technology. Security requirements for
cryptographic modules. FIPS PUB 140-2, U.S. Department of Commerce, May 2001.

[158] National Institute of Standards and Technology. Specification for the Advanced
Encryption Standard (AES). FIPS PUB 197, U.S. Department of Commerce, Nov. 2001.

[159] National Institute of Standards and Technology. FIPS PUB 198-1. The Keyed-
Hash Message Authentication Code (HMAC). Federal Information Processing Standards
Publication, July 2009.

[160] National Security Agency. SKIPJACK and KEA algorithm specifications. Version
2.0. Available from NIST’s webpage, May 1998.

[161] Okeya, K. Side channel attacks against HMACs based on block-cipher based hash
functions. In ACISP 06: 11th Australasian Conference on Information Security and
Privacy (Melbourne, Australia, July 3–5, 2006), L. M. Batten and R. Safavi-Naini, Eds.,
vol. 4058 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 432–443.

[162] OpenSSL. The open source toolkit for SSL/TLS. http://www.openssl.org/source, 2010.

[163] Patarin, J. Security of random Feistel schemes with 5 or more rounds. In Advances in
Cryptology – CRYPTO 2004 (Santa Barbara, CA, USA, Aug. 15–19, 2004), M. Franklin,
Ed., vol. 3152 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 106–
122.

[164] Paterson, K., and Watson, G. Immunising CBC mode against padding oracle attacks:
A formal security treatment. In SCN 08: 6th International Conference on Security in
Communication Networks (Amalfi, Italy, Sept. 10–12, 2008), R. Ostrovsky, R. D. Prisco,
and I. Visconti, Eds., vol. 5229 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 340–357.

[165] Paterson, K., and Yau, A. Padding oracle attacks on the ISO CBC mode encryption
standard. In Topics in Cryptology – CT-RSA 2004 (San Francisco, CA, USA, Feb. 23–27,
2004), T. Okamoto, Ed., vol. 2964 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 305–323.

[166] Paterson, K., and Yau, A. Cryptography in theory and practice: The case of encryp-
tion in ipsec. In Advances in Cryptology – EUROCRYPT 2006 (St. Petersburg, Russia,
May 28 – June 1, 2006), S. Vaudenay, Ed., vol. 4004 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 12–29.

[167] Petrank, E., and Rackoff, C. CBC MAC for real-time data sources. Journal of
Cryptology 13, 3 (2000), 315–338.

[168] Pietrzak, K. A tight bound for EMAC. In ICALP 2006: 33rd International Colloquium
on Automata, Languages and Programming, Part II (Venice, Italy, July 10–14, 2006),
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds., vol. 4052 of Lecture Notes in
Computer Science, Springer, Berlin, Germany, pp. 168–179.

[169] Preneel, B. MAC algorithms: State of the art and recent developments, May 2008.
Lecture slides, available from the speaker’s personal webpage.

150

[170] Preneel, B., and van Oorschot, P. Key recovery attack on ANSI X9.19 retail MAC.
Electronics Letters 32, 17 (1996), 1568–1569.

[171] Preneel, B., and van Oorschot, P. On the security of iterated message authentica-
tion codes. IEEE Transactions on Information Theory 45, 1 (1999), 188–199.

[172] Preneel, B., and van Oorschot, P. C. MDx-MAC and building fast MACs from
hash functions. In Advances in Cryptology – CRYPTO’95 (Santa Barbara, CA, USA,
Aug. 27–31, 1995), D. Coppersmith, Ed., vol. 963 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 1–14.

[173] Rechberger, C., and Rijmen, V. On authentication with HMAC and non-random
properties. In FC 2007: 11th International Conference on Financial Cryptography and
Data Security (Scarborough, Trinidad and Tobago, Feb. 12–16, 2007), S. Dietrich and
R. Dhamija, Eds., vol. 4886 of Lecture Notes in Computer Science, Springer, Berlin,
Germany, pp. 119–133.

[174] Rhroeppel, R. Public comments on the XTS-AES mode. Collected email comments
released by NIST, available from their web page, 2008.

[175] Ristenpart, T., and Rogaway, P. How to enrich the message space of a cipher. In
Fast Software Encryption – FSE 2007 (Luxembourg, Luxembourg, Mar. 26–28, 2007),
A. Biryukov, Ed., vol. 4593 of Lecture Notes in Computer Science, Springer, Berlin, Ger-
many, pp. 101–118.

[176] Rogaway, P. Problems with proposed IP cryptography. Manuscript draft-rogaway-ipsec-
comments-00.txt, Apr. 1995.

[177] Rogaway, P. Bucket hashing and its application to fast message authentication. Journal
of Cryptology 12, 2 (1999), 91–115.

[178] Rogaway, P. Authenticated-encryption with associated-data. In ACM CCS 02: 9th Con-
ference on Computer and Communications Security (Washington D.C., USA, Nov. 18–22,
2002), V. Atluri, Ed., ACM Press, pp. 98–107.

[179] Rogaway, P. Efficient instantiations of tweakable blockciphers and refinements to modes
OCB and PMAC. In Advances in Cryptology – ASIACRYPT 2004 (Jeju Island, Korea,
Dec. 5–9, 2004), P. J. Lee, Ed., vol. 3329 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, pp. 16–31.

[180] Rogaway, P. Nonce-based symmetric encryption. In Fast Software Encryption –
FSE 2004 (New Delhi, India, Feb. 5–7, 2004), B. Roy and W. Meier, Eds., vol. 3017
of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 348–359.

[181] Rogaway, P. Public comments on the XTS-AES mode. Collected email comments
released by NIST, available from their web page, 2008.

[182] Rogaway, P., Bellare, M., Black, J., and Krovetz, T. OCB: A block-cipher mode
of operation for efficient authenticated encryption. In ACM CCS 01: 8th Conference on
Computer and Communications Security (Philadelphia, PA, USA, Nov. 5–8, 2001), ACM
Press, pp. 196–205.

151

[183] Rogaway, P., and Shrimpton, T. A provable-security treatment of the key-wrap prob-
lem. In Advances in Cryptology – EUROCRYPT 2006 (St. Petersburg, Russia, May 28 –
June 1, 2006), S. Vaudenay, Ed., vol. 4004 of Lecture Notes in Computer Science, Springer,
Berlin, Germany, pp. 373–390.

[184] Rogaway, P., and Wagner, D. A critique of CCM. Cryptology ePrint Archive, Report
2003/070, Apr. 2003.

[185] Rogway, P., and Zhang, H. Online ciphers from tweakable blockciphers. In Topics in
Cryptology – CT-RSA 2011 (2011), Lecture Notes in Computer Science, Springer, Berlin,
Germany.

[186] Salowey, J., Choudhury, A., and McGrew, D. AES Galois Counter Mode (GCM)
Cipher Suites for TLS. RFC 5288, Aug. 2008.

[187] Schroeppel, R. The Hasty Pudding Cipher. AES candidate submitted to NIST.
http://www.cs.arizona/∼rcs/hpc, 1998.

[188] Shannon, C. Communication theory of secrecy systems. Bell Systems Technical Journal
28, 4 (1949), 656–715.

[189] Simon, D. Finding collisions on a one-way street: Can secure hash functions be based on
general assumptions? In Advances in Cryptology – EUROCRYPT’98 (Espoo, Finland,
May 31 – June 4, 1998), K. Nyberg, Ed., vol. 1403 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 334–345.

[190] Stevens, M., Lenstra, A., and de Weger, B. Chosen-prefix collisions for MD5 and
colliding X.509 certificates for different identities. In Advances in Cryptology – EURO-
CRYPT 2007 (Barcelona, Spain, May 20–24, 2007), M. Naor, Ed., vol. 4515 of Lecture
Notes in Computer Science, Springer, Berlin, Germany, pp. 1–22.

[191] Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik,

D., and de Weger, B. Short chosen-prefix collisions for MD5 and the creation of a
rogue CA certificate. In Advances in Cryptology – CRYPTO 2009 (Santa Barbara, CA,
USA, Aug. 16–20, 2009), S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer Science,
Springer, Berlin, Germany, pp. 55–69.

[192] Stubblebine, S., and Gligor, V. On message integrity in cryptographic protocols.
In IEEE Computer Symposium on Research in Security and Privacy (1992), IEEE Press,
pp. 85–104.

[193] Tsudik, G. Message authentication with one-way hash functions. In INFOCOM (1992),
pp. 2055–2059.

[194] Vaudenay, S. Security flaws induced by CBC padding — Applications to SSL, IPSEC,
WTLS In Advances in Cryptology – EUROCRYPT 2002 (Amsterdam, The Nether-
lands, Apr. 28 – May 2, 2002), L. R. Knudsen, Ed., vol. 2332 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 534–546.

[195] Viega, J., and McGrew, D. The use of Galois/Counter Mode (GCM) in IPsec En-
capsulating Security Payload (ESP). RFC 4106, June 2005.

152

[196] Wang, L., Ohta, K., and Kunihiro, N. New key-recovery attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In Advances in Cryptology – EUROCRYPT 2008 (Istanbul,
Turkey, Apr. 13–17, 2008), N. P. Smart, Ed., vol. 4965 of Lecture Notes in Computer
Science, Springer, Berlin, Germany, pp. 237–253.

[197] Wang, P., Feng, D., Lin, C., and Wu, W. Security of truncated MACs. In Inscrypt
(2008), M. Yung, P. Liu, and D. Lin, Eds., vol. 5487 of Lecture Notes in Computer Science,
Springer, pp. 96–114.

[198] Wang, X., Yin, Y., and Yu, H. Finding collisions in the full SHA-1. In Advances in
Cryptology – CRYPTO 2005 (Santa Barbara, CA, USA, Aug. 14–18, 2005), V. Shoup,
Ed., vol. 3621 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 17–
36.

[199] Wang, X., and Yu, H. How to break MD5 and other hash functions. In Advances in
Cryptology – EUROCRYPT 2005 (Aarhus, Denmark, May 22–26, 2005), R. Cramer, Ed.,
vol. 3494 of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 19–35.

[200] Wang, X., Yu, H., Wang, W., Zhang, H., and Zhan, T. Cryptanalysis on
HMAC/NMAC-MD5 and MD5-MAC. In Advances in Cryptology – EUROCRYPT 2009
(Cologne, Germany, Apr. 26–30, 2009), A. Joux, Ed., vol. 5479 of Lecture Notes in Com-
puter Science, Springer, Berlin, Germany, pp. 121–133.

[201] Wegman, M., and Carter, L. New hash functions and their use in authentication and
set equality. In J. of Comp. and System Sciences (1981), vol. 22, pp. 265–279.

[202] Wen, F., Wu, W., and Wen, Q. Error oracle attacks on several modes of operation.
In CIS (2) (2005), Y. Hao, J. Liu, Y. Wang, Y. ming Cheung, H. Yin, L. Jiao, J. Ma, and
Y.-C. Jiao, Eds., vol. 3802 of Lecture Notes in Computer Science, Springer, pp. 62–67.

[203] Whiting, D., Housley, R., and Ferguson, N. Counter with CBC-MAC (CCM).
Undated manuscript. Submission to NIST, available from their web page, June 2002.

[204] Whiting, D., Housley, R., and Ferguson, N. Counter with CBC-MAC (CCM).
RFC 3610 (Informational), Sept. 2003.

[205] Wikipedia. Disk encryption theory. Wikipedia encyclopedia entry. Visited January 9,
2011.

[206] Yasuda, K. The sum of CBC MACs is a secure PRF. In Topics in Cryptology – CT-
RSA 2010 (San Francisco, CA, USA, Mar. 1–5, 2010), J. Pieprzyk, Ed., vol. 5985 of
Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 366–381.

[207] Yau, A., Paterson, K., and Mitchell, C. Padding oracle attacks on CBC-mode
encryption with secret and random IVs. In Fast Software Encryption – FSE 2005 (Paris,
France, Feb. 21–23, 2005), H. Gilbert and H. Handschuh, Eds., vol. 3557 of Lecture Notes
in Computer Science, Springer, Berlin, Germany, pp. 299–319.

[208] Zhou, G., Michalik, H., and Hinsenkamp, L. Improving throughput of AES-GCM
with pipelined Karatsuba multipliers on FPGAs. In ARC (2009), J. Becker, R. Woods,
P. M. Athanas, and F. Morgan, Eds., vol. 5453 of Lecture Notes in Computer Science,
Springer, pp. 193–203.

153

