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1 Executive Summary

K2 is a stream cipher proposed by S. Kiyomoto, T. Tanaka, and K. Sakurai at
SECRYPT 2007. The design of K2 bears similarities to SNOW 2.0, though having
some important distinctive features. The specification of K2 can be found in [19]. An
overview of its architecture is given in Fig. 1. This document provides the results of a
cryptographic evaluation of K2 performed by K.U.Leuven. The evaluation deals with
attempting to attack K2 in several different ways corresponding to the state-of-the-
art in the modern cryptanalysis of stream ciphers. This report includes analysis with
respect to linear attacks, algebraic attacks, correlation and fast correlation attacks,
differential attacks including the related-key setting, guess-and-determine attacks,
statistical properties, period considerations as well as distinguishing attacks.

As regards linear attacks, we apply the linear masking method to a version of
K2 ignoring the effect of dynamic feedback controller. The best correlation we find
uses 13 linear approximations and is estimated to be 2−156, which cannot be used
to mount any successful attack. In the algebraic analysis, we study the structure
and the quantitative properties of the resulting systems of equations and conclude
that these make an algebraic attack infeasible. Our analysis towards a correlation
attack or fast correlation attack (also not taking into account the dynamic feedback
controller) indicates that this approach might be infeasible as well. Our differential
analysis (it is assumed that there is no dynamic feedback controller and that the
modular additions are replaced with XOR) includes a related-key attack, a related
IV attack as well as a combination of both attacks and suggests that K2 can be
resistant against the differential attacks. Our approaches to both byte- and word-
oriented guess-and-determine attacks result in a complexity of 2320, which makes
these techniques inapplicable to K2. As to period considerations, no short periods
have been found in K2. Our statistical tests do not reveal any structural flaws in
the design of K2. Our analysis indicates that K2 also offers good resistance against
mod n distinguishing attacks.

Thus, we have not been able to identify any weaknesses in K2 and conclude that
that design of K2 is sound.
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Figure 1: Initialization of KCipher-2 and its major components: FSR-A, FSR-B,
DFC (Dynamic Feedback Controller), and NLF
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2 Linear Attacks

2.1 Overview

The linear masking method attack was proposed by Coppersmith, Halevi and Jutla
in [9]. It is applicable to stream ciphers, that are designed using a combination of
a linear and a non-linear part. The output of the non-linear part is masked by the
linear part. In this way the correlation between subsequent outputs of the non-linear
part is removed. In this section we evaluate the applicability of a linear attack based
on linear masking to K2.

The attack proceeds in two main steps. In one step, a linear approximation of
the non-linear part is found. It relates bits of the output keystream for one clock
to some bits of the internal state. The approximation has non-zero bias, hence the
output from the non-linear part can be distinguished from random. In another step,
a linear combination of the outputs of the linear part at several clocks is found
with the property that the outputs cancel out. Finally, the approximation of the
non-linear part is expressed for the same clocks for which the outputs of the linear
part cancel. The result is a linear combination of some bits of the output keystream
for several clocks, that has some bias. The exact value of the bias can be computed
using Matsui’s Piling-up Lemma [22]. If the computed bias is large enough, the
output keystream can be distinguished from random.

The linear masking method has been successfully applied to mount a distin-
guishing attack on the stream cipher SNOW 2.0 [39]. This attack has been later
improved in [27]. KCipher-2, having a design similar to SNOW 2.0, is a natural
target for the linear masking attack. The non-linear part of K2 is its Non-Linear
Function (NLF) [19]. The linear part is composed of the two feedback registers
FSR-A and FSR-B. The part that differentiates KCipher-2 from other similar con-
structions (incl. SNOW 2.0) is the Dynamic Feedback Controller (DFC). The latter
provides additional non-linearity in the linear part of the cipher. In order to analyze
K2 against the linear-masking attack we ignore the DFC. If it can be shown that
the attack cannot be applied to this simplified version of the cipher, then it will not
be applicable also to the original version.

In the following analysis we proceed according to the general steps outlined
above. First we find linear approximations for FSR-A and FSR-B in which their
outputs cancel. Next we find a linear approximation of the NLF and we estimate its
bias. Finally we evaluate the complexity of an attack that would use those relations.

2.2 Linear Relations for FSR-A and FSR-B

In the simplified version of K2, we ignore the dynamic feedback controller (DFC)
by fixing cl1 = 1, cl2 = 0. In this case the following relations for FSR-A and FSR-B,
respectively, hold for any linear mask Γ:

Γ(At+5 ⊕ α0At ⊕At+3) = 0 , (1)

Γ(Bt+11 ⊕ α1Bt ⊕Bt+1 ⊕Bt+6 ⊕Bt+8) = 0 . (2)

3
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Figure 2: Linear path for two clocks of the NLF of K2.
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Since multiplication in GF(232) can be expressed as a linear transformation in GF(2),
equations (1)-(2) are equivalent to

(Γα0)At ⊕ ΓAt+3 ⊕ ΓAt+5 = 0 , (3)

(Γα1)Bt ⊕ ΓBt+1 ⊕ ΓBt+6 ⊕ ΓBt+8 ⊕ ΓBt+11 = 0 . (4)

2.3 Linear Approximation of the NLF

Consider the linear path for two clocks of the non-linear function (NLF) shown in
Fig. 2. For a given linear mask Γ, the following relation holds:

ΓAt ⊕ ΓAt+1 ⊕ ΓAt+4 ⊕ ΓAt+5⊕
ΓBt ⊕ ΓBt+1 ⊕ ΓBt+4 ⊕ ΓBt+9 ⊕ ΓBt+10 ⊕ ΓBt+11 =

ΓzHt ⊕ ΓzLt ⊕ ΓzHt+1 ⊕ ΓzLt+1 . (5)

For masks Γ, Γα0, Γα1 and Γα0α1, we use the linear relations (3),(4) and the linear
approximation of the NLF (5) to obtain a system of linear equations. The smallest
number of linear relations for which we find solution to the system is: 14 relations
of type (3), 16 relations of type (4) and 13 relations of type (5). All equations are
provided in Appendix A. As a result of solving the system of equations for linear
masks Γ, Γα0, Γα1 and Γα0α1 we obtain the following linear relation between the
words of the output key-stream:

(Γα1α0)z
H
0 ⊕ (Γα1α0)z

L
0 ⊕ (Γα1α0)z

H
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L
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H
1 ⊕ (Γα0)z

L
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H
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L
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H
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L
3 ⊕ (Γα1)z

H
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L
4 ⊕
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(Γα0)z

H
6 ⊕ (Γα0)z

L
6 ⊕ (Γα0)z

H
7 ⊕ (Γα0)z

L
7 ⊕

(Γα0)z
H
8 ⊕ (Γα0)z

L
8 ⊕ (Γα0)z

H
9 ⊕ (Γα0)z

L
9 ⊕

ΓzH9 ⊕ ΓzL9 ⊕ ΓzH10 ⊕ ΓzL10⊕
(Γα0)z

H
11 ⊕ (Γα0)z

L
11 ⊕ (Γα0)z

H
12 ⊕ (Γα0)z

L
12⊕

ΓzH13 ⊕ ΓzL13 ⊕ ΓzH14 ⊕ ΓzL14⊕
ΓzH14 ⊕ ΓzL14 ⊕ ΓzH15 ⊕ ΓzL15⊕
ΓzH16 ⊕ ΓzL16 ⊕ ΓzH17 ⊕ ΓzL17 = 0 . (6)

The above relation confirms the result reported by the designers in [19].

2.4 Complexity Estimation

Next we provide an estimation of the correlation with which (6) holds. In this analysis
we replace all modular additions by XOR. The linear path which we use for the
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derivation of (6) has four active Sub operations in one clock (see Fig. 2). Each of
them uses four applications of the AES S-box. Let us assume that one AES S-box
is active in every Sub operation. Since the linear approximation with maximum
correlation of the AES S-box is 2−3, we deduce that the correlation for one clock of
the NLF is (2−3)4 = 2−12. As relation (6) uses 13 linear approximations, we estimate
its correlation to be c = (2−12)13 = 2−156. Its bias is ϵ = | c2 | = 2−157. Therefore
N ≈ ϵ−2 = 2314 words of the key stream are required in order to distinguish the
output sequence of K2 from random.

In [19, Section 4.3, Distinguishing Attacks] the authors note that “we have not
found a combination of linear masks with a bias value higher than 2−128”. The
estimated bias 2−157 of the reported linear relation (6) is lower than 2−128 and
therefore confirms the estimation of the designers.

We have not tried to solve a system with more than 13 equations of type (6).
This can be investigated in future work.

3 Algebraic Attacks

As Shannon postulated in 1949, breaking a good cipher should require “as much work
as solving a system of simultaneous equations in a large number of unknowns of a
complex type”. In fact, Shannon formulated the concept of the algebraic attack. In an
algebraic attack, a cipher is expressed as a non-linear system of equations with a large
number of unknown variables. Next a solution of the system is attempted. In general,
solving multivariate non-linear equations is an NP-hard problem even for quadratic
equations. However if the system of equations is overdefined and sparse, there are
some methods such as XL [10], XSL [11] ,Gröbner bases [1] and SAT-Solvers. Both
XL and XSL are based on the theory of linear algebra, Gröbner Bases is a math-heavy
approach and SAT-Solvers and XL are CS-heavy approaches. However, Gröbner
bases algorithms such as F4 or F5 are not always necessary. In many cases they can
be replaced by a simpler attack that does not require a fixed monomial ordering
and is essentially a linear algebra attack. In most cases, SAT-solvers are much faster
and can break more instances than the current Gröbner bases techniques. SAT-
solvers are based on heuristic search algorithm; then approach consists of guessing
some variables and examining the consequences. If a contradiction has been found,
a new restriction of equation can be added saying that in this set of constraints one
is false. As open-source software, MiniSat2.0 has been a winner of SAT-Race 2006
competition for its amazing results in algebraic cryptanalysis of some simple ciphers.

Algebraic attacks have been applied to block ciphers such as AES and Serpent,
with limited success. The algebraic cryptanalysis can attack only 6-round DES with
one known plaintext and it has not given the expected results for the block cipher.
However, the algebraic attacks have been applied successfully to break LFSR-based
stream ciphers. Billet et al. [4] presented algebraic attacks for variants of the stream
cipher SNOW-2. In the attack, Billet et al. compute the number of monomials in the
variants of SNOW-2; it is so small that one can solve the system with linearization
methods. However their attack is not applicable to the original cipher.

The main reason that Billet et al can attack variants of SNOW-2 is that the

6
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registers for any clock t can be expressed linearly in terms of the initial state vari-
ables and the initial register value. In this way, the system of equations has fewer
monomials, and it can be solved easily.

The stream cipher K2 is designed with the same non-linear components as
SNOW-2. However it uses more registers than SNOW-2 and it also uses the dynamic
feedback control to strengthen the non-linearity of the cipher. Therefore there are
no such linear relations between some register and the initial state variables and the
initial register value as in SNOW-2. In order to evaluate the resistance of K2 against
an algebraic attack, we first analyze variants of K2. In these variants, we replace
the addition operation with the XOR operation and we ignore the dynamic feedback
controller. For these variants of K2, we try to derive a system of equations containing
only key-stream words and internal-state words. Since there are four register words
in the FSM of K2 cipher, we will use the derived system equations for multiple clock
times to increase the equations-to-variables ratio.

For any cycle, we can express the register states words Rt
2 , Rt

1 and Rt+1
2 as

follows,

R2
t = At+4 +Bt +R1

t + ZL
t ,

R1
t = Sub(At−1 +Bt+8 +Bt+9 + Sub(Bt+2 +R2

t−2) + ZH
t−1),

R2
t+1 = Sub(Rt

1).

In order to transform the above system of equations into a system of quadratic
equations, we introduce the new variables Nt to replace the output of one component
Sub.

Nt = Sub(Bt+2 +R2
t−2),

R2
t = At+4 +Bt +R1

t + ZL
t ,

R1
t = Sub(At−1 +Bt+8 +Bt+9 +Nt + ZH

t−1),
R2

t+1 = Sub(R1
t ).

Next we write the system equations from 2 ≤ t ≤ 8 to compute the number Rt of
equations, the number St of unknown variables and the number Tt of monomials.

For t = 2, we obtain

N0 = Sub(B4 +R2
0),

R2
2 = A6 +B2 +R1

2 + ZL
2 ,

R1
2 = Sub(A1 +B10 +B11 +N0 + ZH

1 ),
R2

3 = Sub(R1
2).

In the above system of equations, the number of equations R2 = 23 ·4 ·3+32 = 308,
the number of unknown variables S2 = 11 · 32 = 352, and the number of monomials
T2 = ((81− 8) · 2 + 8) · 4 + 4 · 32 + (81− 8) · 4 · 4− 32 + (81− 8) · 4 = 2172.

For t = 3,

N1 = Sub(B5 +R2
1),

R2
3 = A7 +B3 +R1

3 + ZL
3 ,

R1
3 = Sub(A2 +B11 +B12 +N1 + ZH

2 ),
R2

4 = Sub(R1
3).

7
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In the above system of equations, the number of equations R3 = 23 ·4 ·3+32 = 308,
the number of unknown variables S3 = 9 · 32 = 288 and the number of monomials
T3 = ((81− 8) · 2 + 8) · 4 + 4 · 32 + (81− 8) · 4 · 4− 32 + (81− 8) · 4− 32 · 2 = 2108.

For t = 4,

N2 = Sub(B6 +R2
2),

R2
4 = A8 +B4 +R1

4 + ZL
4 ,

R1
4 = Sub(A3 +B12 +B13 +N2 + ZH

3 ),
R2

5 = Sub(R1
4).

In the above system of equations, the number of equations R4 = 23 ·4 ·3+32 = 308,
the number of unknown variables S4 = 6 · 32 = 192 and the number of monomials
T4 = ((81− 8) · 2 + 8− 8) · 4 + 2 · 32 + (81− 8) · 4 · 4− 32 · 3 + (81− 8) · 4 = 2012.

For t = 5,

N3 = Sub(B7 +R2
3),

R2
5 = A9 +B5 +R1

5 + ZL
5 ,

R1
5 = Sub(A4 +B13 +B14 +N3 + ZH

4 ),
R2

6 = Sub(R1
5).

In the above system of equations, the number of equations R5 = 23 ·4 ·3+32 = 308,
the number of unknown variables S5 = 5 · 32 = 160 and the number of monomials
T5 = ((81− 8) · 2 + 8− 8) · 4 + 32 + (81− 8) · 4 · 4− 32 · 3 + (81− 8) · 4 = 1980.

For t = 6,

N4 = Sub(B8 +R2
4),

R2
6 = A10 +B6 +R1

6 + ZL
6 ,

R1
6 = Sub(A5 +B14 +B15 +N4 + ZH

5 ),
R2

7 = Sub(R1
6).

In the above system of equations, the number of equations R6 = 23 ·4 ·3+32 = 308,
the number of unknown variables S6 = 4 · 32 = 128 and the number of monomials
T6 = ((81− 8) · 2 + 8− 8) · 4 + 32 + (81− 8) · 4 · 4− 32 · 4 + (81− 8) · 4 = 1948.

For t = 7,

N5 = Sub(B9 +R2
5),

R2
7 = A11 +B7 +R1

7 + ZL
7 ,

R1
7 = Sub(A6 +B15 +B16 +N5 + ZH

6 ),
R2

8 = Sub(R1
7).

In the above system of equations, the number of equations R7 = 23 ·4 ·3+32 = 308,
the number of unknown variables S7 = 3 · 32 = 96 and the number of monomials
T7 = ((81− 8− 8) · 2 + 8) · 4 + 32 + (81− 8− 8) · 4 · 4 + (81− 8) · 4 = 1916.

For t = 8,

N6 = Sub(B10 +R2
6),

R2
8 = A12 +B8 +R1

8 + ZL
8

R1
8 = Sub(A7 +B16 +B17 +N6 + ZH

7 ),
R2

9 = Sub(R1
8).

8
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Table 1: Number of Equations, Unknown Variables and Terms

t Rt St Tt TotalR TotalS TotalT
2 308 352 2172 308 352 2172

3 308 288 2108 716 640 4280

4 308 192 2012 924 832 6292

5 308 160 1980 1232 992 8272

6 308 128 1948 1540 1120 10220

7 308 96 1916 1848 1216 12126

8 308 96 1916 2156 1312 14052

· · · · · · · · · · · · · · · · · · · · ·
n 308 96 1916 308 · (n− 1) (n− 6) · 96 + 1120 (n− 6) · 1916 + 10220

In the above system of equations, the number of equations R8 = 23 ·4 ·3+32 = 308,
the number of unknown variables S8 = 3 · 32 = 96 and the number of monomials
T8 = ((81− 8− 8) · 2 + 8) · 4 + 32 + (81− 8− 8) · 4 · 4 + (81− 8) · 4 = 1916. Finally,
Rt = 308, St = 96, Tt = 1916 with t ≥ 8.

The above results are summarized in Table 1, where TotalR, TotalS and TotalT
are the total number of equations, variables and monomials, respectively, for clock
t. As t increases, the ratio TotalR/TotalT approaches 0.160752.

As shown in Table 1, there are (n − 6) · 96 + 1120 variables and 308 · (n − 1)
equations. For a larger value of n, the system will be more overdefined, but the
equations-to-variables ratio is bounded above by 21.67. The equations-to-monomials
ratio is bounded above by 2−2.64.

For AES-128, the number of equations is 8000, the number of variables is 1600
and the number of monomials is about 89600, so the equations-to-variables ratio is
22.32 and the equations-to-monomials ratio is about 2−3.48.

For Serpent-128, the number of equations is 43680, the number of variables is
8192 and the number of monomials is 270336, so the equations-to-variables ratio is
22.41 and the equations-to-monomials ratio is about 2−2.63.

The equations for the original SNOW-2 are as follows:

rt1 = ct−1
2 ⊕ rt−1

2 ⊕ st+4,

rt2 = rt−1
2 ⊕ zt ⊕ st+15 ⊕ st+14 ⊕ st ⊕ ct1 ⊕ ct−1

2

ct1,[0] = 0

ct1,[1] = st+15
[0] rt1,[0]

ct1,[i+1] = st+15
[i] rt1,[i] ⊕ st+15

[i] ct1,[i] ⊕ ct1,[i]r
t
1,[i], 0 < i < 32;

ct2,[0] = 0

ct2,[1] = st+5
[0] r

t
2,[0]

ct2,[i+1] = st+5
[i] rt2,[i] ⊕ st+5

[i] ct2,[i] ⊕ ct2,[i]r
t
2,[i], 0 < i < 32;

rt+1
2 = S(rt1)

The total number of equations is (32 + 32 + 32 + 32 + 39 · 4)n = 282n, the number
of variables is 544 + (64 + 62)n = 544 + 126n and the number of monomials is

9
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Table 2: R/T and R/S
Cipher R/T R/S

AES-128 2−3.48 22.32

Serpent-128 2−2.63 22.41

Variants K2 2−2.64 21.67

SNOW-2 2−1.49 21.16

(137 · 4 + (3 · 30 + 1) · 2 + 62)n + 544 = 792n + 544. Therefore the equations-to-
monomials ratio is about 2−1.49 and the equations-to-variables ratio is about 21.16.
These results are summarized in Table 2.

From Table 2, we can see that the sparsity for variants of K2 cipher is weaker than
that of SNOW-2 and Serpent-128, but stronger than that of AES-128 and Serpent-
128. Since an algebraic attack on SNOW-2 is difficult, the attack for variants of K2
will be even more difficult.

If we consider the original K2 cipher then the XOR operation is replaced by
addition operation and the dynamic feedback controller is considered. This makes
an algebraic attack on K2 more difficult than on variants of K2. We conclude that
an algebraic attack for K2 is infeasible.

4 Correlation Attacks

4.1 Introduction

The correlation attack is an attack on stream ciphers, proposed by Siegenthaler in
1985 [34, 35]. The attack can be either a known-plaintext attack or a ciphertext-
only attack. Redundancy in the plaintext is required for the ciphertext-only attack.
The attack is applicable to keystream generators composed of several LFSRs (linear
feedback shift registers). We denote the number of LFSRs as n, and their respective
lengths as ℓi, 0 < i ≤ n. A divide-and-conquer approach is used: the correlation
attack aims to recover the initial state of each LFSR separately.

4.2 Combination Generators and Linear Complexity

Several variants of the correlation attack exist. The original attack of [35] applies to
combination generators, but can be extended to other keystream generators as well.

In a combination generator (see Fig. 3), the output bits of the n LFSRs are
combined by using a Boolean function f(x1, . . . , xn). The output of a combination
generator is a linear recurring sequence st. The length of the shortest LFSR that can
generate this infinite recurring series st, is denoted by Λ(S). Using 2Λ(S) output bits,
the Berlekamp-Massey algorithm [21] can be used to construct this shortest LFSR.

If all n LFSR lengths ℓi, 0 < i ≤ n are different and greater than two, the outputs
of the combination generator has a linear complexity of

f∗(x1, x1, . . . , xn) , (7)

10
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f

Figure 3: Schematic representation of a combination generator.

provided that the n LFSRs are all started in a non-zero state [31]. Here, f∗ is the
algebraic normal form of f , evaluated over the integers. For example, if three LFSRs
of lengths ℓ1, ℓ2 and ℓ3 are combined by the Boolean function

x1x2 ⊕ x2x3 ⊕ x3 , (8)

then the linear complexity of the output is

ℓ1ℓ2 + ℓ2ℓ3 + ℓ3 . (9)

A high linear complexity ensures that the Berlekamp-Massey algorithm algo-
rithm becomes computationally infeasible. This implies that to preclude attacks,
the Boolean function f must be non-linear.

4.3 Description of the Correlation Attack

Assume that the output f(x1, . . . , xn) of the Boolean function is correlated to one
of its inputs xi. In other words, the probability

p = Pr[f(x1, . . . , xn) ̸= xi] (10)

is not 1/2. Denote the keystream by st, 0 ≤ t < N , and the output of the i-th LFSR
as st, 0 ≤ t < N .

Then,

X =
N−1∑
t=0

st ⊕ ut (11)

11
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Table 3: Pseudocode for the correlation attack.

Input:
N keystream bits s0, s1, . . . , sN−1.

Output:
The internal state of the i-th LFSR: u0, u1, . . . , uℓi−1.

Required:
p = Pr[f(x1, . . . , xn) ̸= xi]

For every value of the internal state u0, u1, . . . , uℓi−1:
Calculate u0, u1, . . . , uN−1.
Compute the correlation between u0, u1, . . . , uN−1 and s0, s1, . . . , sN−1:

X =
∑N−1

t=0 st ⊕ ut .
If X is sufficiently close to Np, then

output the initial state u0, u1, . . . , uN−1.

will be a binomially distributed random variable, with an average of X̄ = Np and
variance of σ = Np(1− p) .

To perform the correlation attack, we initialize the i-th LFSR to each of the
possible states. We then generate the first N bits of the sequence ut produced by the
i-th LFSR, and calculate the correlation X between ut and the keystream output st.
If X is sufficiently close to Np, the value to which the i-th LFSR was initialized will
be correct with a high probability. This correlation attack is explained in pseudocode
in Table 3. To avoid correlation attacks, the concept of correlation immunity was
introduced by Siegenthaler in [34], and further investigated in [6, 7, 33,37,40,41].

For example, assume 3 LFSRs are used, and the output of f(x1, x2, x3) is cor-
related to both x1 and x2. Then, the correlation attack can be used to recover the
initial state of the first and second LFSR, independently of each other and of the
third LFSR. The initial state of the third LFSR can then be recovered by exhaustive
search. The initial state of all LFSRs can then be recovered with a complexity of at
most

3∑
i=1

2ℓi − 1 , (12)

instead of

3∏
i=1

2ℓi − 1 (13)

if exhaustive search is used for all LFSRs. This analysis assumes that each of the
LFSRs can be initialized to every possible initial state, except the all-zero state.

12
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4.4 Application of the Correlation Attack to KCipher-2

The KCipher-2 stream cipher consists of two LFSRs, denoted as FSR-A and FSR-B,
that are combined using a non-linear function. Additionally, a dynamic feedback
controller is used to provide irregular clocking of FSR-B. To simplify our analysis,
we will ignore the irregular clocking.

If we apply a correlation attack to KCipher-2, the goal is to recover the internal
state of each LFSR separately. The following observations make it clear why the
original correlation attack is not feasible.

The first four words of the internal state of FSR-A are initialized with the 128-
bit key k. The fifth word of FSR-A ensures the LFSR is never initialized to an
all-zero value. Any attack to exhaustively search over all possible values of FSR-A,
corresponds to searching over all values of the 128-bit key k. Therefore, even if the
keystream is correlated in some way to the output of FSR-A, such an attack would
require searching over 2k−1 keys on average. Therefore, this attack corresponds to
searching over the entire 128-bit key space.

Another line of attack, might be to recover FSR-B separately of FSR-A. Again,
the key schedule ensures that FSR-B never contains the all-zero state. The key
schedule can be rewritten as follows:

Ki =

{
Ki+4 ⊕ S[Ki+3 ≪ 8]⊕ Rcon[i/4] for i = 4n,

Ki+4 ⊕Ki+3 for i ̸= 4n.
(14)

Therefore, the value of four consecutive expanded keys {Ki,Ki+1,Ki+2,Ki+3}
uniquely determines the value of the key k = {K0,K1,K2,K3}. As a result, obtaining
the initial state of FSR-B is equivalent to obtaining the key k. The divide-and-
conquer approach of the original correlation attack will not give any advantage over
exhaustive search: even if the keystream and the output of FSR-B are correlated in
some way, it will be as difficult to obtain the initial state of FSR-B as it is to obtain
the key k (both imply knowledge of the key k).

Therefore, we conclude that the original correlation attack cannot be applied to
KCipher-2, because once the initial state of either FSR-A or FSR-B is recovered,
the key k and therefore the contents of the other FSR are determined as well. Our
simplified analysis assumes that there is no dynamic feedback controller, and that
a Boolean function is used to combine both LFSRs. In KCipher-2, the combination
of both LFSRs is done using a complicated function, containing a mix of

• the exclusive-or operation,

• addition modulo 232,

• a non-linear permutation, namely the AES 8× 8-bit S-box, applied four times
in parallel on each byte of a 32-bit word,

• a linear permutation, implemented as the AES 32 × 32-bit MixColumn oper-
ation,

• four state registers (R1, R2, L1 and L2).

13
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As we explained that the complexity of correlation attacks increases with the
non-linearity of the combining function, this observation further complicates the
application of the correlation attack.

4.5 Fast Correlation Attacks

For this report, fast correlation attacks were investigated as well. Fast correlation
attacks were proposed by Meier and Staffelbach at EUROCRYPT 1998 [23,24].

In the correlation attack of Table 3, the initial state of one LFSR is recovered by
exhaustive search. In fast correlation attacks, the combining function is modeled by
an LFSR followed by a binary symmetric channel (BSC) with crossover probability
p∗. If there is a correlation between the output of the LFSR and the keystream
generator, the crossover probability p∗ of the BSC will be lower than 1/2.

In this case, the fast correlation attack will use techniques based on coding theory
(e.g. maximum likelihood decoding) to recover the initial state of the LFSR faster
than exhaustive search. In [15], Johansson and Jönsson introduce correlation attacks
using convolutional codes, and in [14] using turbo codes. The memory requirements
of these attacks are further reduced in [8] and [16].

Similar to correlation attacks, the complexity of fast correlation attacks increases
with the non-linearity of the combining function f . Therefore, the application of the
fast correlation attack will have the same complications as the correlation attack
described earlier.

5 Differential Attacks

Differential cryptanalysis, introduced by Biham and Shamir, is one of the most
powerful attacks against iterated ciphers. It is usually a chosen plaintext attack in
which the attacker observes how the differences in an input can affect the resultant
difference at the output. This difference can be defined in several ways, but the
XOR operation is usual. A pair of constant input and output differences is called
a differential. The probabilities of such differentials can be used to determine a
lower bound on the complexity of an differential attack to show when an cipher is
vulnerable to these attacks.

In this section, we concentrate on the propagation of (XOR) differences through-
out the cipher in each clocking. We consider three attack scenarios: related key
attack, related IV attack and a combination of these two attacks.

In order to simplify the analysis, we use a modified (probably weaker) version
of the algorithm. The modular additions are replaced with the XOR operation, the
dynamic feedback controller is removed (i.e., multiplication with constants α1, α2

and α3 are omitted) and multiplication with α0 is ignored. The new version can be
seen in Fig. 4.

5.1 Properties of Components

In this section, we investigate the differential properties of the building blocks in the
Sub transformation.
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5.1.1 Substitution

The Sub transformation uses an 8-bit to 8-bit bijective S-box four times in parallel
to process each word. Since KCipher-2 uses a bijective S-box, thus, S(∆x) = 0 if
and only if ∆x = 0. The difference distribution table (DDT) of the S-box contains
exactly 127 nonzero output differences for a given nonzero input difference. Only
one of these values has probability of 2−6 while the other 126 remaining nonzero
values have probability of 2−7.

Table 4: Probability Distribution of the Linear Layer

m\ n 1 2 3 4

1 0 0 0 1.000
2 0 0 2−7.994 0.984
3 0 2−15.988 2−8.017 0.985
4 2−23.983 2−16.011 2−8.016 0.985

5.1.2 Linear Permutation

The 32-to-32 linear permutation used in KCipher-2 is based on an MDS matrix with
a branch number of 5. The detailed input-output distribution of differences are given
in Table 5.

Based on this distribution we can compute the probability of an activity pattern
with m active S-boxes to go to a fixed activity pattern with n active S-boxes after
the linear permutation. This probability is denoted by Pr[m → n] and it is given in
Table 4 for all possible patterns.
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Figure 4: Initialization for Modified KCipher-2: modular additions are replaced with
XORs, the DFC is ignored
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5.2 Key Ideas of the Attacks

We first start with a primitive algorithm to get the initial results on KCipher-2.
In this scheme we concentrate only on 32-bit words, where each word is denoted
by one if there is an XOR difference in it and zero otherwise. Then, the number of
active Sub functions in the whole state is counted for each clocking. This way we can
observe the best cases (the states with minimum number of active words) without
getting into the details of the algorithm.

In order to count the minimum number of active S-boxes, we treat each word as
a combination of four bytes and denote it by a number between zero and four. Again,
zero corresponds to a passive word and a positive number indicates the number of
active bytes within a word. When two active words enter the XOR operation, we
take the minimum possible number as the output difference. (i.e. let n1 and n2 be
the values of the first and second words respectively, then the resulting output will
be |n1−n2|). So, the XOR operation is replaced by ABS operation to obtain an active
word with the minimum number of active bytes.

The linear layer in the Sub operation is also analyzed in two different ways. In
the first approach, if the input value of the linear layer (denoted by x) is greater
than zero, then the output value is always taken as four since it occurs with a high
probability (see the probability distribution of the linear layer in Table 4 for details).
In the second approach, the output value is taken as 5 − x by the property of the
linear layer. Since the branch number of the corresponding MDS code is 5, this value
will be the minimum that one can get after the linear layer. If the input value is
zero, then output value is zero for both cases.

For the detailed analysis, we combine the ideas presented above. We still treat
each active word as a combination of four bytes denoted by a number between one
and four. But this time, we take all possible output values of each XOR operation
and the Sub functions individually into consideration. So, the states in clocking are
represented as a tree structure where each state corresponds to a branch. Then we
perform a depth first search in which the states whose total active S-box number
exceeding a predefined value for each round are eliminated immediately.

To be more specific and clear: in each clocking of modified KCipher-2 six val-
ues (A4, B10, R1, R2, L1, L2) are updated and there exists eighteen variables used in
fourteen XOR operations. Each word can take five values, so for the the worst case
518 ≈ 241.8 possible branches can occur after one clocking, whereas on average this
value is 3.718 ≈ 234.0. This means that complexity is too high to analyze multiple
rounds. Therefore, the XOR operations used to update B10 and A4 are divided into
two groups (see (15) and (16)), with either four variables or two variables. A similar
idea is also applied to the update of L1 and R1 (see (17) and (18)).

B10 = (A0 ⊕B10 ⊕ L1 ⊕ L2)⊕ (B0 ⊕B1 ⊕B6 ⊕B8) (15)

A4 = (A4 ⊕B0 ⊕R1 ⊕R2)⊕ (A0 ⊕A3) (16)

L1 = Sub(B4 ⊕R2) (17)

R1 = Sub(B9 ⊕ L2) (18)

The output values of the linear layer are restricted to either zero, four or both,
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depending on the input values. If both words entering the XOR operation before
Sub are passive, then the output value is also passive and it is set to zero. If one of
the inputs is active and the other is not, then the output value will be active and the
number of active bytes at the output will be four, since it is the most probable case
as indicated in Table 5. Finally, if both of the inputs entering the XOR operation is
active, then the output value can be four (when a difference remains) or zero (if the
input differences cancel each other).

All these changes reduce the worst case complexity to 54 × 32 ≈ 212.5 for one
clocking. As a result, the computation of more rounds becomes feasible.

5.3 Related-Key Attacks

Related-key attacks are a special type of differential attacks that allow the keys
to be chosen with specific differences. In this section, we analyze the resistance
of KCipher-2 against the related-key attacks. Our aim is to obtain the minimum
number of active S-boxes throughout the cipher by using differential cryptanalysis.

We start with the key loading step to obtain the number of active words and to
find some useful properties that can be exploited in the related-key attacks. To do so,
we assume there exists an XOR difference in the initial key K = (K0,K1,K2,K3).

First of all, the key schedule algorithm is rewritten where ∆K
′
3 and ∆K

′
7 are the

values obtained from K3 and K7 (i.e., K
′
i = Sub(Ki ≪ 8)). Since all the subkey

values are generated from the initial key, 15 possible cases could be obtained from
key initialization by introducing differences.

∆K0 = ∆K0

∆K1 = ∆K1

∆K2 = ∆K2

∆K3 = ∆K3

∆K4 = ∆K0 ⊕∆K
′
3

∆K5 = ∆K0 ⊕∆K1 ⊕∆K
′
3

∆K6 = ∆K0 ⊕∆K1 ⊕∆K2 ⊕∆K
′
3

∆K7 = ∆K0 ⊕∆K1 ⊕∆K2 ⊕∆K3 ⊕∆K
′
3

∆K8 = ∆K0 ⊕∆K
′
3 ⊕∆K

′
7

∆K9 = ∆K1 ⊕∆K
′
7

∆K10 = ∆K0 ⊕∆K2 ⊕∆K
′
3 ⊕∆K

′
7

∆K11 = ∆K1 ⊕∆K3 ⊕∆K
′
7

Next, some conditions are introduced to get the minimum number of active
subkeys. We try to avoid a difference from ∆K

′
3 and ∆K

′
7 and finally count the

number of active subkeys. Table 6 represents the best results and as it can be seen,
the minimum number of active subkeys is five after the key scheduling algorithm.

The best results in terms of minimum number of active Sub functions for this
attack are given in Table 7. By using the methods given in Section 5.2, we can obtain
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Table 6: Propagation of key differences

Conditions:

Subkey Differences: ∆K0 = ∆K2 ∆K1 = ∆K2 ∆K1 = ∆Sub(∆K1 ≪ 8) ∆K2 = ∆Sub(∆K2 ≪ 8)

∆K0 ∆K - - -
∆K1 - ∆K ∆K -
∆K2 ∆K ∆K - ∆K
∆K3 - - - -
∆K4 ∆K - - -
∆K5 ∆K ∆K ∆K -
∆K6 - - ∆K ∆K
∆K7 - - ∆K ∆K
∆K8 ∆K - ∆K ∆K
∆K9 - ∆K - ∆K
∆K10 - ∆K ∆K ∆K
∆K11 - ∆K - -

5 6 6 6

Number of Active Subkeys

the minimum number of active S-boxes for KCipher-2. For the best case, in terms
of maximum number of cycles by defining a threshold on the number of active S-
boxes, there exits 33 active S-boxes through the 8 cycles of key initialization, so that
the probability of any differential characteristic is upper bounded by a probability
of 2−198 which means that the related-key scenario is not feasible for 24 rounds or
more (see Table 8).

5.4 Related-IV Attacks

In this section, we analyze the resistance of KCipher-2 against related-IV attacks.
These attacks are similar to related-key attacks and are based on the same method-
ology. However, the attacker has advantage in these attacks since the IV words are
independent of each other unlike the key words that are related to each other by
a key loading step. Therefore one has more control over the choice of the IV words
and can start with a lower number of active words.

As a first step, we initialized the state with all possible 24 − 1 = 15 values
of IV = (IV0, IV1, IV2, IV3) and clocked the internal state for 24 rounds in the
initialization process. Then, we checked if all zero state can be observed in any
clocking step. We observed that the propagation of the differences is quite fast and,
hence, it is impossible to achieve all zero state in KCipher-2.

The best results in terms of minimum number of active Sub functions for this
attack are given in Table 9. The best results in terms of maximum number of cycles
by defining a threshold on the number of active S-boxes are given in Table 10. For
the best case there exist 30 active S-boxes through the 9 cycles of key initialization,
so that any differential characteristic has a probability of at most 2−180.
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5.5 Related Key/IV Attacks

In this type of attack we assume differences both in the IV and the initial keyK. The
best results in terms of minimum number of active Sub functions for this attack are
given in Table 11. For the cases with few active words for the related-IV attack, we
searched for possible IV activity patterns. Based on our experiments, the minimum
number of active S-boxes is 32 after 8 rounds. The propagation of differences in the
best case is given in Table 12.

5.6 Conclusion and Remarks

We can conclude that KCipher-2 is resistant against differential attacks. The high
number of active S-boxes in the initialization process makes it difficult for an attacker
to control the differences at the keystream.

Some other observations are as follows:

• If one can obtain a zero difference in FSR-A after the initialization step, since
there is no feedback in the keystream output process FSR-A becomes redun-
dant. Hence it is possible to remove it from the system and analyze only
FSR-B.

• If there exist differences only in A0 and B0 at a given time then it is possible
to cancel them and have an all zero difference. But some conditions must be
satisfied like: ∆A0.α0 = ∆B0 and ∆B0.αi = ∆A0 (i.e., α0.αi = 1) i ∈ {0, 1}.
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Table 7: Results for the related key attack

A0 A1 A2 A3 A4 B10B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 L2 L1 R2 R1 #Active
Sub

1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 2
0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1
1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0
1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 2
0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 3
0 1 1 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 2
1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 1 0 1
1 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 0 1 3
0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 2
1 1 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1
1 0 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 1 2
0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1 1 3
1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 1 3
1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 1 3
1 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 1 4
1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 1 3
1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 1 1 1
0 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0 0 0 0 1 1
0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0
0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1
0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 2
1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0

Total 43

Table 8: Results for the related key attack

A0 A1 A2 A3 A4 B10B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 L2 L1 R2 R1 #Active
S-boxes

4 0 0 4 4 0 0 0 0 0 4 4 0 0 4 4 0 0 0 0 4
0 0 4 4 0 4 0 0 0 0 0 4 4 0 0 4 0 4 0 0 8
0 4 4 0 0 4 4 0 0 0 0 0 4 4 0 0 4 4 0 0 4
4 4 0 0 0 0 4 4 0 0 0 0 0 4 4 0 4 0 0 0 0
4 0 0 0 4 0 0 4 4 0 0 0 0 0 4 4 0 0 0 0 0
0 0 0 4 4 1 0 0 4 4 0 0 0 0 0 4 0 0 0 0 0
0 0 4 4 4 0 1 0 0 4 4 0 0 0 0 0 0 0 0 0 1
0 4 4 4 0 4 0 1 0 0 4 4 0 0 0 0 0 0 0 4 8
4 4 4 0 0 3 4 0 1 0 0 4 4 0 0 0 0 4 4 0 8

Total 33
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Table 9: Results for the related IV attack

A0 A1 A2 A3 A4 B10B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 L2 L1 R2 R1 #Active
Sub

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1
0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 2
1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1
1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1
1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1
1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1 0 1
0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 3
1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 3
1 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 1 1 0 2
0 1 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1
1 1 1 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 2
1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 3
1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 3
1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 2
0 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1
0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 0 0 3
0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 1

34

Table 10: Results for the related IV attack

A0 A1 A2 A3 A4 B10B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 L2 L1 R2 R1 #Active
S-boxes

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4
0 0 1 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0 4 4
0 1 1 2 1 1 1 0 0 1 0 0 0 0 0 0 0 4 0 10
1 1 2 1 1 2 1 1 0 0 1 0 0 0 0 0 4 0 0 7
1 2 1 1 3 0 2 1 1 0 0 1 0 0 0 0 0 0 4 9

Total 30
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Table 11: Results for the related key/IV attack

A0 A1 A2 A3 A4 B10B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 L2 L1 R2 R1 #Active
Sub

0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 1
0 1 1 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 2
1 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 2
1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 3
0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0 1 2
0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 2
0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1
0 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 1 2
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1
1 0 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0
0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1
1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 0 2
1 1 1 0 1 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 1
1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0
1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1
0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 2
1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 3
1 1 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 2
1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0
0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0

Total 30

Table 12: Results for the combined related attack

A0 A1 A2 A3 A4 B10B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 L2 L1 R2 R1 #Active
S-boxes

0 0 4 4 0 0 4 0 0 2 4 0 4 0 4 4 0 0 0 0 4
0 4 4 0 0 0 0 4 0 0 2 4 0 4 0 4 0 0 0 4 8
4 4 0 0 0 0 0 0 4 0 0 2 4 0 4 0 0 4 4 0 6
4 0 0 0 0 4 0 0 0 4 0 0 2 4 0 4 4 4 0 0 8
0 0 0 0 0 0 4 0 0 0 4 0 0 2 4 0 4 0 0 4 4
0 0 0 0 4 0 0 4 0 0 0 4 0 0 2 4 0 0 4 0 0
0 0 0 4 0 0 0 0 4 0 0 0 4 0 0 2 0 0 0 0 0
0 0 4 0 2 2 0 0 0 4 0 0 0 4 0 0 0 0 0 0 0
0 4 0 2 2 2 2 0 0 0 4 0 0 0 4 0 0 0 0 0 2

Total 32
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6 Guess-and-Determine Attacks

Guess-and-determine is an attack strategy that has been successfully applied to
many stream cipher proposals. In particular, the stream ciphers Sosemanuk [3] and
SNOW [12] whose design philosophy shares common elements with KCipher-2 have
been subjected to guess-and-determine attacks [13,38].

The principle of a guess-and-determine attack is as follows. The attacker is as-
sumed to have access to a sequence of contiguous key stream which has been created
with one particular key, which he then attempts to recover. Depending on the at-
tack setting, the IV is fixed as well or the attacker may be able to obtain keystream
created with different known or even chosen IVs and the same key. Then, a guess for
part of the internal state of the cipher is made. By using the equations describing
the relation between the known keystream, the guessed and the unknown parts of
the state, the attacker tries to determine the remaining unknown parts of the state.
Once a new part of the state is known, the attacker can often verify his guess by
checking consistency between multiple clockings, which usually improve the attack
complexity. This procedure is then repeated until the entire state has been guessed
or determined.

We now investigate the applicability of this type of attack to KCipher-2.

6.1 Word-Oriented Guess-and-Determine

Since the B register is controlled by the smaller A register, a straightforward appli-
cation of the guess-and-determine approach to KCipher-2 involves guessing

At, At+3, At+4

andAt+2[30, 31]

at time t, which completely determines the influence of A on the update cycle of B
and the Li and Ri registers at time t. The goal is then to determine the values of
the remaining parts of the state, namely

At+1, At+2[0, . . . , 29], Bt, . . . , Bt+10,

and the values of Li, Ri at clocks t, . . . , t+10. We further assume that the keystream
zLt , z

H
t from t = 0, . . . , 10 is known. Once the complete internal state of KCipher-2

is known, the attacker can arbitrarily calculate forwards and backwards due to the
invertibility of the state update. Note that so far, 3 · 32 + 2 = 98 bits have been
guessed.

After guessing the above-mentioned values, the state is updated as follows. A
and B are clocked:

At+1+i = At+i for i = 0, . . . , 3

At+5 = At+3⊕α0At

Bt+1+i = Bt+i for i = 0, . . . , 9

Bt+11 = ct1Bt⊕Bt+1⊕Bt+6⊕ ct2Bt+8

(19)
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and the FSM registers are updated:

R1t+1 = Sub(L2t�Bt+9)

L1t+1 = Sub(R2t�Bt+4)

R2t+1 = Sub(R1t)

L2t+1 = Sub(L1t),

(20)

with constants ct1, c
t
2 depending on the dynamic feedback bits which have already

been guessed. Additionally, the following keystream words are generated:

zLt = Bt�R2t⊕R1t⊕At+4

zHt = Bt+10�L2t⊕L1t⊕At.
(21)

We observe that the equations for the keystream words zLt and zHt only involve
the FSM registers Ri and Li, respectively; and we have R2t+1 = Sub(R1t) and
L2t+1 = Sub(L1t). Consequently, after guessing R10, we know R21 = Sub(R10). For
the next clock, we need to guess only two bits of A, namely the new At+2[30, 31].
However, to use the keystream relation

zL1 = B1�R21⊕R11⊕At+5, (22)

we need to guess R11 to determine the value of B1. Since we can already calculate
R22 = Sub(R11), we only need to clock once more and guess R12 to use the next
keystream relation

zL2 = B2�R22⊕R12⊕At+6.

in an analogous manner to determine B2. To determine At+6, however, At+1 has to
be guessed. The same holds for At+7 in the next clock (t = 3), so the attacker can
equivalently guess the entire contents of the LFSR A in the beginning, accounting
for a work factor of 2160. In order to determine the entire contents of B, three more
clockings with guesses of R1 have to be made. Afterwards, at t = 6, the following
values are known:

R10,...,4, R21,...,5, L10,...,6, L21,...,7, B0,...,5.

Now we can use the relation for zHt to determine more words of the B register by

zHt = Bt+10�L2t⊕L1t⊕At,

which yields B11,...,16 and in turn the corresponding values of the L2t by

R1t+1 = Sub(L2t�Bt+9),

which yields L11,...,6 by

L1t = Sub−1(L2t).

By substituting the new values obtained for L1t and L2t into

R1t+1 = Sub(L2t�Bt+9)
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and

zHt = Bt+10�L2t⊕L1t⊕At,

we can determine all words of B except B6, B7, B8. Finally, we can use the LFSR
equation Bt+11 = ct1Bt⊕Bt+1⊕Bt+6⊕ ct2Bt+8 (with the constants ct1 and ct2 de-
pending on the already guessed bits of A) to determine the last three remaining
words of B. In total, this implies that ten 32-bit words have to be guessed, which
accounts for a complexity of 2320 and makes this approach inferior to brute force of
the 128-bit key.

6.2 Byte-Oriented Guess-and-Determine

It is sometimes possible to reduce the amount of material that needs to be guessed
by decomposing the state update at byte (or bit) level instead of operating on words.
The complexity of the attack then depends on the number of bytes (bits) that have
to be guessed in order to determine the solution of the first smaller subsystem. In
this section, we simplify the cipher by replacing all modular additions (�) by XORs.
We use [W ]i to denote byte i = 0, . . . , 3 of a 32-bit word W , with W3 denoting the
most significant byte.

One then obtains the following systems of equations for one step. The clocking
of A is described as

[At+1+k]i = [At+k]i for k = 0, . . . , 3 and i = 0, . . . , 3.

For i = 1, . . . , 3 we have

[At+5]i = [At+3]i⊕ [α0At]i

= [At+3]i⊕
[
α0 [At]3 α

3
0⊕ · · ·⊕α0 [At]0

]
i

= [At+3]i⊕ [At](i−1)⊕ [Tα0 [[At]3]]i ,

with a 8-to-32 bit lookup table Tα0 . This becomes

[At+5]0 = [At+3]0⊕ [α0At]0
= [At+3]0⊕ [Tα0 [[At]3]]0 ,

for the least significant byte i = 0. The last equalities follows from the special choice
of the field representations used in KCipher-2 that allows implementing multiplica-
tion by α0 by a left shift by one byte and a table lookup based on the most significant
byte.

The update of register B is analogously described by

[Bt+1+k]i = [Bt+k]i for k = 0, . . . , 9 and i = 0, . . . , 3.

For i = 1, . . . , 3, we have

[Bt+11]i =
[
ct1Bt

]
i
⊕ [Bt+1]i⊕ [Bt+6]i⊕

[
c2tBt+8

]
i

=
[
ct1 [Bt]3 α

3
0⊕ · · ·⊕ ct1 [Bt]0

]
i
⊕ [Bt+1]i⊕ [Bt+6]i⊕[

ct2 [Bt+8]3 α
3
0⊕ · · ·⊕ ct2 [Bt+8]0

]
i

= [Bt](i−1)⊕ [Tc1 [[Bt]3]]i⊕ [Bt+1]i⊕ [Bt+6]i⊕ [Bt+8](i−1)⊕ [Tc2 [[Bt+8]3]]i ,
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with 8-to-32 bit lookup tables Tα0 , Tc1 , Tc2 for multiplication in GF (232) by those
constants. This becomes

[Bt+11]0 =
[
ct1Bt

]
0
⊕ [Bt+1]0⊕ [Bt+6]0⊕

[
c2tBt+8

]
0

= [Tc1 [[Bt]3]]0⊕ [Bt+1]0⊕ [Bt+6]0⊕ [Tc2 [[Bt+8]3]]0

for the least significant byte i = 0.
The FSM update equations are given by

[R1t+1]i = [Sub(L2t⊕Bt+9)]i
= 2 · S([L2t⊕Bt+9](3−i) mod 4)⊕ 3 · S([L2t⊕Bt+9](2−i) mod 4)

⊕S([L2t⊕Bt+9](1−i) mod 4)⊕S([L2t⊕Bt+9](−i) mod 4)

[L1t+1]i = [Sub(R2t⊕Bt+4)]i
= 2 · S([R2t⊕Bt+4](3−i) mod 4)⊕ 3 · S([R2t⊕Bt+4](2−i) mod 4)

⊕S([R2t⊕Bt+4](1−i) mod 4)⊕S([R2t⊕Bt+4](−i) mod 4)

[R2t+1]i = [Sub(R1t)]i
= 2 · S([R1t](3−i) mod 4)⊕ 3 · S([R1t](2−i) mod 4)

⊕S([R1t](1−i) mod 4)⊕S([R1t](−i) mod 4)

[L2t+1]i = [Sub(L1t)]i
= 2 · S([L1t](3−i) mod 4)⊕ 3 · S([L1t](2−i) mod 4)

⊕S([L1t](1−i) mod 4)⊕S([L1t](−i) mod 4),

for all i = 0, . . . , 3. The byte-level keystream equations are[
zLt

]
i
= [Bt]i⊕ [R2t]i⊕ [R1t]i⊕ [At+4]i[

zHt
]
i
= [Bt+10]i⊕ [L2t]i⊕ [L1t]i⊕ [At]i

for i = 0, . . . , 3 in each clock.
We observe that each keystream relation of the type (22) involves a word R1t =

Sub(L2t⊕Bt+9) and R2t = Sub(R1t). Hence, in order to determine one byte of
Bt′ , four bytes of R1t have to be guessed, which effectively couples four formerly
independent systems of equations at byte level. Consequently, it seems that the
byte-oriented approach results in exactly the same complexity as the word-level
approach.

7 Period Considerations

While the feedback polynomial of the LFSR A is primitive, the dynamic feedback
operation causes the feedback polynomial of the B register to be primitive only in
two out of four cases:

(αc1t
1 + α1−c1t

2 − 1)Bt⊕Bt+1⊕Bt+6⊕αc2t
3 Bt+8 (23)

is not primitive whenever c2t = 1.
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Even if the individual periods in the two cases c1t = 0, c2t = 1 and c1t = c2t = 1
are sufficiently long, there is a possibility of having a short period for nontrivial
sequences of c1t and c2t. Since B is an LFSR, this can be efficiently checked by
solving a linear system of equations for each possible 2k-bit sequence of c1t and c2t,
with k ≥ 11. Since the work factor amounts to 22k Gaussian eliminations, we have
so far only checked for this periodicity property up to k = 14. No short periods of
those lengths k have been found.

8 Statistical Properties

A great deal of statistical tests have been developed to discover various types of
irregularities on the bit sequences produced by stream ciphers. In their cryptana-
lytic essence, statistical tests are generic distinguishing attacks that do not take the
concrete structure of the cipher into account. However, several types of tests do aim
at some specific statistical properties for classes of stream cipher designs, e.g. the
linear properties for LFSR-based designs in the linear complexity test.

If a stream cipher fails at least a single test of any test suite, this immediately
means that the cipher is structurally flawed. The fact that a stream cipher passes a
vast suite of statistical tests can be seen as a rather rough indicator for the soundness
of its design. Apart from the structural unawareness, a major limitation of any
feasibly computable test from a generic test suite is its low distinguishing power,
since severe limitations exist regarding its complexity. For example, if a test requires
no more than 220 operations, it cannot detect any distinguishing attack of a higher
complexity. If a cipher passes a suite of tests, this fact cannot be seen as anything
more than the absence of a subset of structural flaws.

As a part of our analysis effort, we applied the statistical test suite [32] developed
by NIST for evaluating random number generators for cryptographic applications
to K2. Note that a previous version of this test suite was used by NIST to analyze
the statistical properties of the AES candidate algorithms.

A typical statistical test focuses on a property of a bit sequence, computes a
specific statistic for this property based on a sample sequence obtained from the
tested sequence generator (such as a stream cipher or a random number generator),
and compares the values of the computed statistic to those expected for a randomly
drawn bit sequence. The statistical proximity of the bit sequence tested to a ran-
domly drawn bit sequence is usually measured by the P-value which is interpreted
as the probability that a randomly drawn sequence would behave worse than the
tested sequence with respect to the test statistic.

To perform the analysis of statistical properties for K2, we used the K2 reference
implementation to generate 100 output bit streams (with 100 different combinations
of key and IV values) of length 106 bits each and tested their (pseudo)randomness
using the NIST suite comprising the following types of tests (see [32] for test de-
scription):

• Monobit Frequency Test,

• Block Frequency Test for block length 128,
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Table 13: P-values for tests from the NIST statistical test suite

Test P-value

Frequency 0.616305
BlockFrequency 0.699313
CumulativeSums 0.657933
Runs 0.616305
LongestRun 0.798139
Rank 0.699313
FFT 0.494392
NonOverlappingTemplate 0.798139
OverlappingTemplate 0.040108
Universal 0.816537
ApproximateEntropy 0.739918
RandomExcursions 0.689019
RandomExcursionsVariant 0.941144
Serial 0.759756
LinearComplexity 0.994250

• Runs Test,

• Test for the Longest Run of Ones in a Block,

• Binary Matrix Rank Test,

• Spectral Test,

• Non-overlapping Template Matching Test for block length 9,

• Overlapping Template Matching Test for block length 9,

• Maurer’s Universal Statistical Test,

• Linear Complexity Test for block length 500,

• Serial Test for block length 16,

• Approximate Entropy Test for block length 10,

• Cumulative Sums Test,

• Random Excursions Test, and

• Random Excursions Variant Test.

These tests yielded P-values provided in Table 13. Thus, the bit sequences gener-
ated with K2 passed all tests implemented by the NIST statistical test suite at the
significance level α = 0.01. The applied statistical tests did not reveal any structural
flaws in the design of K2.
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9 Distinguishing Attacks

9.1 Preliminaries

At first we provide some background on distinguishing attacks and mod n crypt-
analysis.

Distinguishing Attacks: In a distinguishing attack, the attacker is able to tell
apart a cipher from an ideal cipher. The adversary (i.e., an algorithm) that does
this job, taking the outputs of the examined cipher as inputs, is called a distin-
guisher. A distinguisher works when the output of a cipher is biased; its efficiency
depends on the magnitude(s) of the bias(es). The efficiency of the distinguisher is
measured by a parameter called the advantage. Let Z denote an t-tuple, (z1, . . . , zt),
where each zi is a function of one or more output bits of a cipher. Each value zi
is generated independently of another, under a key (or an alternative input to the
cipher) chosen uniformly at random. Suppose that a distinguishing algorithm A,
that takes Z as input, outputs ‘Cipher’ if it identifies Z as coming from the cipher
and ‘Random’ if it identifies Z as coming from an ideal source. Let ZCipher (resp.
ZIdeal) denote the event that Z is generated by the cipher (resp. an ideal source).
Then, the advantage Adv of A is given by:

Adv(A) = |Pr(A(Z) = Cipher|ZCipher)− Pr(A(Z) = Cipher|ZIdeal)|.

A distinguishing attack that requires an extremely large t for a considerable
advantage may not be seen as very useful. Nevertheless, the analysis that leads to
the detection of biased output may give good insights into the structural properties
of the cipher and could serve as a launch pad for more serious attacks.

A distinguishing attack may be further developed into a key or state recovery
attack. Examples include the attacks on ESSENCE [25] and Moustique [17] for
key recovery and the Künzli-Meier distinguishing attack on the stream cipher MAG
for state recovery [20].

Mod n Cryptanalysis: This technique was introduced by Kelsey et al. in [18].
It is a kind of statistical distinguishing attack that has been used against several
block ciphers (e.g., RC5P, M6 [18]) and stream ciphers (e.g., Rabbit [5,29]) that are
based on modular additions, bit-shifts and bit-rotations.

In the case of bit-rotation, the idea behind the mod n cryptanalysis technique is
the following. Let X be some 32-bit integer and Y denote X ≪ 1. Then,

Y =

{
2X if X < 231,

2X + 1− 232 if X ≥ 231,
(24)

and hence,

Y mod n =

{
2X mod n if X < 231,

2X + 1− 232 mod n if X ≥ 231.
(25)

Therefore, when 232 − 1 ≡ 0 mod n, we have Y = 2X mod n irrespective of the
value of X. Else, every X mod n results in one of the two values of Y mod n in (25)
with equal probability.
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In the case of addition modulo 232 (denoted by the symbol �), the idea is as
follows. Let S = X � Y . Then,

S =

{
X + Y with probability 0.5 + 2−33,

X + Y − 232 with probability 0.5− 2−33.
(26)

The probabilities in (26) were computed using [28, (18)],1 under the assumption
thatX and Y are independent and uniformly distributed. Here again, when 232−1 ≡
0 mod n, we have S mod n = X + Y mod n, irrespective of the values of X and Y .
Even otherwise, this relation may hold with very high probability; for example when
the 4 most significant bits of X (or Y ) are all 1’s, then the probability is 0.98.

9.2 Mod n Cryptanalysis of Weakened KCipher-2

In the independent evaluation of KCipher-2 by the Institute for Infocomm Research
(I2R), Singapore, guess-and-determine attacks have been considered. Here, the an-
alysts reduce the cipher as follows. First, they assume that the entire contents of
FSR-A are guessed (in their linear cryptanalysis they disregard FSR-A). This comes
with a cost of O(2160) time. Next, they replace XOR with � in the keystream gen-
eration steps and ignore the α coefficients (in the feedback polynomials)2 and the
Sub transformations. The keystream generation algorithm of this reduced cipher is
represented by the following equations:

zHt = Bt+10 � L2t � L1t, (27)

zLt = Bt �R2t �R1t, (28)

L2t+1 = L1t,

R2t+1 = R1t,

L1t+1 = R2t �Bt+4,

R1t+1 = L2t �Bt+9.

When the keystream words take the forms (27) and (28), it is likely that they are
biased when reduced modulo 3. Any 32-bit integer chosen from {0, . . . , 232 − 1} is
congruent 1 mod 3 with probability (232 − 1)/(3 · 232), 2 mod 3 with the same prob-
ability and 0 mod 3 with probability (232 + 2)/(3 · 232). Therefore, the summands
in (27) and (28) are biased when reduced modulo 3. If the carry terms generated in
the equations reduced modulo 3 are biased as well, zHt mod 3 and zLt mod 3 are bi-
ased. A point to be noted here is that the carries cannot be immediately assumed to
be biased because the summands modulo 3 are not uniformly distributed and conse-
quently the formulae of [28,36] cannot be applied. Carry biases are best determined
experimentally; an analytic evaluation is expected to be quite involved.

We performed simulations of modular additions taking the summands of (27)
to be b-bit integers, where 4 ≤ b ≤ 8. Our results indicate that the overall bias is
preserved by modular addition. In other words, additional summands do not affect
the bias. For example, when b = 8, the following probabilities were obtained:

1A generic treatment of carry propagation in modular addition is given in [36].
2In their linear cryptanalysis they fix these coefficients.
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• Pr(zHt ≡ 1 mod 3) = (224 − 216)/(3 · 224) = (1− 2−8)/3

• Pr(zHt ≡ 2 mod 3) = (224 − 216)/(3 · 224) = (1− 2−8)/3,

• Pr(zHt ≡ 0 mod 3) = (224 + 217)/(3 · 224) = (1 + 2−7)/3.

The respective probabilities when one (8-bit) summand is removed from (27) are:

• Pr(zHt ≡ 1 mod 3) = (216 − 28)/(3 · 216) = (1− 2−8)/3

• Pr(zHt ≡ 2 mod 3) = (216 − 28)/(3 · 216) = (1− 2−8)/3,

• Pr(zHt ≡ 0 mod 3) = (216 + 29)/(3 · 216) = (1 + 2−7)/3.

We see that the probabilities, though biased, are not different in the two cases. Intu-
itively, it appears that the result could be very well extended to 32-bit summands.
For instance, our simulation yielded the following probabilities for 4-bit summands:

• Pr(zHt ≡ 1 mod 3) = (1− 2−4)/3

• Pr(zHt ≡ 2 mod 3) = (1− 2−4)/3,

• Pr(zHt ≡ 0 mod 3) = (1 + 2−3)/3.

The respective magnitudes of the biases in the 4-bit and 8-bit cases are different.
Given this, the only information that the attacker can gain from the biases is the size
of each summand in the keystream generation equation (27). However, this informa-
tion does not appear to be useful, especially considering distinguishing attacks.

9.2.1 Other Reduced Versions of KCipher-2

We may replace (27) and (28) in one of the following ways and arrive at a similar
result as above (i.e., likely biases in zHt mod 3 and zLt mod 3).

• Include FSR-A:

zHt = Bt+10 � L2t � L1t �At, (29)

zLt = Bt �R2t �R1t �At+4. (30)

• Assume guessed FSR-A but approximate the equations differently as:

zHt = Bt+10 � (L2t ⊕ L1t), (31)

zLt = Bt � (R2t ⊕R1t). (32)

• Include FSR-A and approximate the equations in the same way as in (31)
and (32):

zHt = Bt+10 � (L2t ⊕ L1t ⊕At), (33)

zLt = Bt � (R2t ⊕R1t ⊕At+4). (34)

Here again, our simulations yielded similar results as in Section 9.2 – the keystreams
are biased but the biases seem useless in building distinguishing attacks.

33



Security Evaluation of K2 7 March 2011

9.3 Analysis of the Original KCipher-2

In Sect. 9.2, we analysed several reduced variants of KCipher-2. If Z = X ⊕Y , then
when n = 3 or 5 the distribution of Z mod n is, from our experiments, close to
uniform.

The approximations in (33) and (34) each hold with probability 2−64. This is
because only when L2t = 0 and L1t ⊕ At = 0, zHt can be approximated as (33); if
the events are independent and L1t (or At), L2t are uniformly distributed at random,
the approximation holds with probability 2−64 (also confirmed by our simulations).
Similar arguments apply for the approximation in (34). The probability 2−64 is very
small for a distinguisher of meaningful complexity to be built (especially if the key
size is 128 bits).

Based on the analysis presented in Sections 9.2 and 9.3, KCipher-2 and some of
its weakened variants seem to offer good resistance against distinguishing attacks
based on the mod n cryptanalysis technique.
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10 Conclusions

We attempted to apply a wide spectrum of state-of-the-art cryptanalytic techniques
to K2 and its simplified versions. We have not been able to identify any weaknesses
and we conclude that K2 possesses a sound design.
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A Linear Attack

In this section the equations are listed which are used in the linear attack analysis
(Section 2).

A.1 Linear relations for FSR-A

Linear relations for FSR-A (3) using masks Γ, Γα0, Γα1 and Γα0α1 for clocks
0,1,3,4,5,6,7,9,10,11,12,13,15,16:

(Γα1α0)A0 ⊕ (Γα1)A3 ⊕ (Γα1)A5 = 0 ,

(Γα0)A1 ⊕ ΓA4 ⊕ ΓA6 = 0 ,

(Γα1α0)A1 ⊕ (Γα1)A4 ⊕ (Γα1)A6 = 0 ,

(Γα0)A2 ⊕ ΓA5 ⊕ ΓA7 = 0 ,

(Γα1α0)A4 ⊕ (Γα1)A7 ⊕ (Γα1)A9 = 0 ,

(Γα0)A5 ⊕ ΓA8 ⊕ ΓA10 = 0 ,

(Γα1α0)A5 ⊕ (Γα1)A8 ⊕ (Γα1)A10 = 0 ,

(Γα0)A7 ⊕ ΓA10 ⊕ ΓA12 = 0 ,

(Γα0)A8 ⊕ ΓA11 ⊕ ΓA13 = 0 ,

(Γα0)A9 ⊕ ΓA12 ⊕ ΓA14 = 0 ,

(Γα0)A10 ⊕ ΓA13 ⊕ ΓA15 = 0 ,

(Γα0)A13 ⊕ ΓA16 ⊕ ΓA18 = 0 ,

(Γα0)A15 ⊕ ΓA18 ⊕ ΓA20 = 0 ,

(Γα0)A16 ⊕ ΓA19 ⊕ ΓA21 = 0 .

A.2 Linear relations for FSR-B

Linear relations for FSR-B (4) using masks Γ, Γα0, Γα1 and Γα0α1 for clocks
0,1,3,4,5,6,7,9,10,11,12,13,15,16:
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(Γα1α0)B0 ⊕ (Γα0)B1 ⊕ (Γα0)B6 ⊕ (Γα0)B8 ⊕ (Γα0)B11 = 0 ,

(Γα1α0)B1 ⊕ (Γα0)B2 ⊕ (Γα0)B7 ⊕ (Γα0)B9 ⊕ (Γα0)B12 = 0 ,

(Γα1)B3 ⊕ ΓB4 ⊕ ΓB9 ⊕ ΓB11 ⊕ ΓB14 = 0 ,

(Γα1)B4 ⊕ ΓB5 ⊕ ΓB10 ⊕ ΓB12 ⊕ ΓB15 = 0 ,

(Γα1α0)B4 ⊕ (Γα0)B5 ⊕ (Γα0)B10 ⊕ (Γα0)B12 ⊕ (Γα0)B15 = 0 ,

(Γα1)B5 ⊕ ΓB6 ⊕ ΓB11 ⊕ ΓB13 ⊕ ΓB16 = 0 ,

(Γα1)B6 ⊕ ΓB7 ⊕ ΓB12 ⊕ ΓB14 ⊕ ΓB17 = 0 ,

(Γα1)B7 ⊕ ΓB8 ⊕ ΓB13 ⊕ ΓB15 ⊕ ΓB18 = 0 ,

(Γα1)B9 ⊕ ΓB10 ⊕ ΓB15 ⊕ ΓB17 ⊕ ΓB20 = 0 ,

(Γα1α0)B9 ⊕ (Γα0)B10 ⊕ (Γα0)B15 ⊕ (Γα0)B17 ⊕ (Γα0)B20 = 0 ,

(Γα1α0)B10 ⊕ (Γα0)B11 ⊕ (Γα0)B16 ⊕ (Γα0)B18 ⊕ (Γα0)B21 = 0 ,

(Γα1α0)B11 ⊕ (Γα0)B12 ⊕ (Γα0)B17 ⊕ (Γα0)B19 ⊕ (Γα0)B22 = 0 ,

(Γα1)B12 ⊕ ΓB13 ⊕ ΓB18 ⊕ ΓB20 ⊕ ΓB23 = 0 ,

(Γα1)B13 ⊕ ΓB14 ⊕ ΓB19 ⊕ ΓB21 ⊕ ΓB24 = 0 ,

(Γα1)B15 ⊕ ΓB16 ⊕ ΓB21 ⊕ ΓB23 ⊕ ΓB26 = 0 ,

(Γα1)B16 ⊕ ΓB17 ⊕ ΓB22 ⊕ ΓB24 ⊕ ΓB27 = 0 .

A.3 Linear approximation of the NLF

Linear approximation of the NLF using 13 relations of type (5):

(Γα1α0)A0 ⊕ (Γα1α0)A1 ⊕ (Γα1α0)A4 ⊕ (Γα1α0)A5⊕
(Γα1α0)B0 ⊕ (Γα1α0)B1 ⊕ (Γα1α0)B4 ⊕ (Γα1α0)B9⊕
(Γα1α0)B10 ⊕ (Γα1α0)B11 =

(Γα1α0)z
H
0 ⊕ (Γα1α0)z

L
0 ⊕ (Γα1α0)z

H
1 ⊕ (Γα1α0)z

L
1 (35)

(Γα0)A1 ⊕ (Γα0)A2 ⊕ (Γα0)A5 ⊕ (Γα0)A6⊕
(Γα0)B1 ⊕ (Γα0)B2 ⊕ (Γα0)B5 ⊕ (Γα0)B10⊕
(Γα0)B11 ⊕ (Γα0)B12 =

(Γα0)z
H
1 ⊕ (Γα0)z

L
1 ⊕ (Γα0)z

H
2 ⊕ (Γα0)z

L
2 (36)

(Γα1)A3 ⊕ (Γα1)A4 ⊕ (Γα1)A7 ⊕ (Γα1)A8⊕
(Γα1)B3 ⊕ (Γα1)B4 ⊕ (Γα1)B7 ⊕ (Γα1)B12⊕
(Γα1)B13 ⊕ (Γα1)B14 =

(Γα1)z
H
3 ⊕ (Γα1)z

L
3 ⊕ (Γα1)z

H
4 ⊕ (Γα1)z

L
4 (37)
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ΓA4 ⊕ ΓA5 ⊕ ΓA8 ⊕ ΓA9⊕
ΓB4 ⊕ ΓB5 ⊕ ΓB8 ⊕ ΓB13 ⊕ ΓB14 ⊕ ΓB15 =

ΓzH4 ⊕ ΓzL4 ⊕ ΓzH5 ⊕ ΓzL5 (38)

(Γα1)A5 ⊕ (Γα1)A6 ⊕ (Γα1)A9 ⊕ (Γα1)A10⊕
(Γα1)B5 ⊕ (Γα1)B6 ⊕ (Γα1)B9 ⊕ (Γα1)B14⊕
(Γα1)B15 ⊕ (Γα1)B16 =

(Γα1)z
H
5 ⊕ (Γα1)z

L
5 ⊕ (Γα1)z

H
6 ⊕ (Γα1)z

L
6 (39)

ΓA6 ⊕ ΓA7 ⊕ ΓA10 ⊕ ΓA11⊕
ΓB6 ⊕ ΓB7 ⊕ ΓB10 ⊕ ΓB15 ⊕ ΓB16 ⊕ ΓB17 =

ΓzH6 ⊕ ΓzL6 ⊕ ΓzH7 ⊕ ΓzL7 (40)

(Γα0)A6 ⊕ (Γα0)A7 ⊕ (Γα0)A10 ⊕ (Γα0)A11⊕
(Γα0)B6 ⊕ (Γα0)B7 ⊕ (Γα0)B10 ⊕ (Γα0)B15⊕
(Γα0)B16 ⊕ (Γα0)B17 =

(Γα0)z
H
6 ⊕ (Γα0)z

L
6 ⊕ (Γα0)z

H
7 ⊕ (Γα0)z

L
7 (41)

(Γα0)A8 ⊕ (Γα0)A9 ⊕ (Γα0)A12 ⊕ (Γα0)A13⊕
(Γα0)B8 ⊕ (Γα0)B9 ⊕ (Γα0)B12 ⊕ (Γα0)B17⊕
(Γα0)B18 ⊕ (Γα0)B19 =

(Γα0)z
H
8 ⊕ (Γα0)z

L
8 ⊕ (Γα0)z

H
9 ⊕ (Γα0)z

L
9 (42)

ΓA9 ⊕ ΓA10 ⊕ ΓA13 ⊕ ΓA14⊕
ΓB9 ⊕ ΓB10 ⊕ ΓB13 ⊕ ΓB18 ⊕ ΓB19 ⊕ ΓB20 =

ΓzH9 ⊕ ΓzL9 ⊕ ΓzH10 ⊕ ΓzL10 (43)

(Γα0)A11 ⊕ (Γα0)A12 ⊕ (Γα0)A15 ⊕ (Γα0)A16⊕
(Γα0)B11 ⊕ (Γα0)B12 ⊕ (Γα0)B15 ⊕ (Γα0)B20⊕
(Γα0)B21 ⊕ (Γα0)B22 =

(Γα0)z
H
11 ⊕ (Γα0)z

L
11 ⊕ (Γα0)z

H
12 ⊕ (Γα0)z

L
12 (44)

ΓA13 ⊕ ΓA14 ⊕ ΓA17 ⊕ ΓA18⊕
ΓB13 ⊕ ΓB14 ⊕ ΓB17 ⊕ ΓB22 ⊕ ΓB23 ⊕ ΓB24 =

ΓzH13 ⊕ ΓzL13 ⊕ ΓzH14 ⊕ ΓzL14 (45)
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ΓA14 ⊕ ΓA15 ⊕ ΓA18 ⊕ ΓA19⊕
ΓB14 ⊕ ΓB15 ⊕ ΓB18 ⊕ ΓB23 ⊕ ΓB24 ⊕ ΓB25 =

ΓzH14 ⊕ ΓzL14 ⊕ ΓzH15 ⊕ ΓzL15 (46)

ΓA16 ⊕ ΓA17 ⊕ ΓA20 ⊕ ΓA21⊕
ΓB16 ⊕ ΓB17 ⊕ ΓB20 ⊕ ΓB25 ⊕ ΓB26 ⊕ ΓB27 =

ΓzH16 ⊕ ΓzL16 ⊕ ΓzH17 ⊕ ΓzL17 (47)
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