
CRYPTREC evaluation report on PC-MAC-AES

John P. Steinberger
Institute for Theoretical Computer Science

Beijing, China

February 7, 2011

Contents

1 Purpose and Scope 2

1.1 Notations; conventions . 3

2 Message Authentication Codes 3

3 Security Definitions 4

3.1 MAC security . 4
3.2 Indistinguishability and PRP security . 5
3.3 PRF and VIL-PRF security . 6
3.4 Computational securities . 7
3.5 Collision security, MEDP and MESDP . 8

4 The PC-MAC-AES Specification 8

4.1 The simplified 4-round AES function . 9
4.2 Glossary of notations and basic functions . 9
4.3 Parameters . 9
4.4 Key and key schedule . 10
4.5 Tag generation . 10
4.6 Additional notations for PC-MAC-AES . 11

4.6.1 PC-MAC◦
d[EK , L,G] . 11

4.6.2 PC-MAC∗
d[R,L,G] . 12

4.6.3 PC-MAC⋆
d[R, G] . 12

4.6.4 PC-MAC•
d[R, G] . 13

5 Results on provable security 14

5.1 Overview of results . 14
5.2 Proof overview . 15

6 Provable security improvements 16

6.1 An O(qσ2/2n) upper bound on Advmac
PC-MAC◦

d[EK ,L,G](q, σ) 16

6.2 An O(σ2/2n) upper bound on Advmac
PC-MAC◦

d[EK ,L,G](q, σ) 17

7 Key length improvements 21

8 Cryptanalysis 23

8.1 Differential cryptanalysis attack of Wang et al. 23
8.2 Side-channel attack of Biryukov et al. 23

9 Conclusion 24

10 Acknowledgements 24

1

1 Purpose and Scope

This document is a third-party security evaluation of the PC-MAC-AES algorithm, as defined by
its CRYPTREC standard [1]. This evaluation was commissioned by CRYPTREC, to be completed
on January 24, 2011.

PC-MAC-AES is a Message Authentication Code (MAC) algorithm proposed by Minematsu
and Tsunoo [19], loosely based off of the Pelican MAC algorithm of Daemen and Rijmen [12,13] and
also inspired by the 3-key constructions of Black and Rogaway [8] and the subsequent improvements
of Iwata and Kurosawa [16]. PC-MAC-AES uses a 256-bit key and produces 128-bit digests. As
its name indicates, PC-MAC-AES uses the Advanced Encryption Standard (AES) as a component
(moreover, the round function of AES is a standalone component used in PC-MAC-AES). PC-
MAC-AES was designed to be faster than CBC-like MACs, such as OMAC [17], while retaining
provable security features. The speed of PC-MAC-AES may be as much as 1.75 times faster1 than
OMAC, for d = 5 (where d, 1 ≤ d ≤ 5, is a parameter of PC-MAC-AES; the larger the value of
d, the less the provable security and the higher the amount of preprocessing, but the faster the
MAC). However, the cost of this speedup is a larger amount of preprocessing and a loss in the level
of provable security (OMAC achieves provable security against adversaries of time complexity 264,
PC-MAC-AES against adversaries of time complexity 256).

The purpose of this document is to evaluate the security of PC-MAC-AES from the point of
view of (i) its provable security, (ii) practical cryptanalysis. We also give some suggestions for the
key management of PC-MAC-AES. These points are summarized below.

Provable security. Tsunoo and Minematsu [19] give a result establishing the indistinguishability of
PC-MAC-AES from a random function assuming the indistinguishability of AES from a family of
random permutations. (As indistinguishability from a random function implies unforgeability, this
result in particular implies the the security of PC-MAC-AES against chosen plaintext attacks.)

While we found the proof to be correct this result does not, unfortunately, establish the security
of PC-MAC-AES against practical adversaries, even assuming the pseudorandomness of AES, since
this theorem only guarantees security against adversaries of time complexity ≈ 232. The claim that
PC-MAC-AES achieves security against adversaries of time complexity 256, put forward in [19]
and [2], is in fact only valid for adversaries that ask short messages (which is a nonstandard
assumption to make on an adversary).

This shortcoming is pointed out in the original security proof [19] but is left unmentioned in
the self-evaluation report [2]. Thankfully, we found that substantially stronger security can be
proven for PC-MAC-AES. In Section 6 we show two different such improvements. Our first result,
discussed in Section 6.1, involves some minor modifications of the original proof and proves security
against adversaries of time complexity 242. Our second result, discussed in Section 6.2, requires
changes that are more technical, but proves security against adversaries of time complexity 256.
This is the security originally (but erroneously) claimed in the self-evaluation report.

Cryptanalysis. We review the known results of [20–23] on differential cryptanalysis attacks on
ALPHA-MAC and PC-MAC-AES, and their potential security implications for PC-MAC-AES. We
found that these attacks do not currently pose a security risk for PC-MAC-AES. We discuss the

1We note that [2] contains a typo at the beginning of Section 4.1: the speedup factor of 1.8 (really 1.75) is for
d = 5, not d = 3.

2

side-channel attack of Biryukov et. al [10] on Alpha-MAC, which currently seems to be the only SCA
for this family of constructions, and the possible generalization of such an attack to PC-MAC-AES.
As far as we can tell, this attack does not either pose a security risk for PC-MAC-AES. See Section 8.

Possible Improvements. Besides the provable security improvements discussed above (which just
involve changing proofs) we also point out that the key of PC-MAC-AES may be halved in length
with practically no loss in efficiency. See Section 7.

The reader may note that we devote less attention to differential cryptanalysis and side channel
attacks than to provable security. The reasons are dual: (i) provable security is our field of expertise;
(ii) resistance to differential cryptanalysis and/or side-channel attacks of a scheme is never absolute;
the best proof of security, in this area, is past (and failed) scrutiny by experts. Thankfully, PC-
MAC-AES does have a documented record of some such scrutiny.

1.1 Notations; conventions

We write {0, 1}∗ for the set of all finite nonempty bit strings. We write ({0, 1}n)+ for the set of
bit strings whose length is a positive multiple of n. We write |x| for the length of a bit string

x ∈ {0, 1}∗. We write x‖y for the concatenation of two bit strings x and y. The notation K
$
←− K

means that K is chosen uniformly at random from set K. Following [1], we let [k] denote the 128-bit
encoding of an integer k, 0 ≤ k < 2128. The notation A→ 1 indicates that the adversary A outputs
the bit 1.

In this report, n everywhere denotes the block length of the scheme, which is equal to the
plaintext/ciphertext length of the blockcipher used, as well as to the output length of the MAC
unless truncation is performed. In the case of PC-MAC-AES the block length is n = 128. However,
we often phrase and prove results in a more general setting, in which case the block length is an
arbitrary value (also called the “security parameter”).

2 Message Authentication Codes

A message authentication code (MAC) is a (stateless, deterministic) function H : K × {0, 1}∗ →
{0, 1}n. Here K ⊆ {0, 1}∗ is the key space and n ∈ N is the security parameter. We write HK(x)
instead of H(K,x) for K ∈ K and x ∈ {0, 1}∗. The purpose of a MAC is to assure the data in-

tegrity and authenticity of a message x transmitted between two parties sharing a secret key K ∈ K:

Data integrity. Party B transmits the pair (x, t = HK(x)) to party C; should (x, t) becomes acci-
dentally corrupted to (x′, t′) 6= (x, t), there should be low probability that HK(x′) = t′ (and thus a
high probability that C detects the corruption).

Authenticity. A party A, without knowledge of the secret key K, should find it computationally
infeasible to forge a pair (x, t) such that HK(x) = t.

Authenticity is thus an adversarial version of integrity, and, as such, a stronger notion. When
proving the security of a MAC, we focus on authenticity, since it implies integrity.

3

When quantifying authenticity, one typically assumes the (worst-case) scenario that the ad-
versary A has oracle access to HK(·); this assumption models (in A’s favor) an eavesdropping
capability on the communication channel between B and C. Given this oracle access to HK(·), A
must attempt to forge a pair (x, t) such that HK(x) = t but such that A has not yet queried x
to its oracle. Most literature (e.g. [4, 6–8, 16, 17, 19]) assumes that the adversary is only allowed
a single forgery attempt; however, a much more realistic assumption is to assume that the adver-
sary has several forgery attempts [5], and wins if any of these is validated. The original security
proof for PC-MAC-AES assumes a single forgery attempt [19]; thankfully, as pointed out in the
self-evaluation report [2], the proof can easily be adapted to the case of multiple forgery attempts,
using results of Bellare et al. [5].

3 Security Definitions

3.1 MAC security

We now give formal definitions for the security of a MAC H : K × {0, 1}∗ → {0, 1}n.
Let K ∈ K. If HK is given as an oracle to an adversary, we call HK the tagging oracle and

queries to HK are called tagging queries.
A verification oracle VHK

for HK is a two-argument oracle of domain {0, 1}∗ × {0, 1}n. On
query (x, t) ∈ {0, 1}∗ × {0, 1}n, VHK

returns 1 if HK(x) = t, and 0 otherwise. We call the query
(x, t) a verification query.

The block length of a tagging query x ∈ {0, 1}∗ is ⌈x/n⌉. The block length of a verification query
(x, t) ∈ {0, 1}∗ × {0, 1}n is also defined as ⌈x/n⌉. The total block length σ of an adversary A with
access to a tagging oracle and a verification oracle is the sum of the block lengths of all A’s queries.

The number of queries q of an adversary A with access to a tagging oracle HK and a verification
oracle VHK

is the sum of the number of queries A makes to HK and the number of queries A makes
to VHK

. (Namely, q is the total number of queries A makes.)
We note that PC-MAC-AES pads inputs of length |x| to inputs of length n⌈|x|/n⌉. Hence, in the

case of PC-MAC-AES (and other related constructions such as CBC-MAC, XCBC and OMAC),
the total block length σ is exactly the total number of blocks of (the first coordinates of) A’s
queries after padding, which is also equal to number of compression function evaluations necessary
to answer A’s queries. As such, σ(A) is a lower bound on the time complexity of running A with
oracles HK , VHK

, and is a more accurate reflection of the cost of A’s attack than the number of
queries q made by A. We note that σ ≥ q. In general σ > q unless A only makes queries that are
one block long after padding.

We say an adversary A with access to a tagging oracle HK and a verification oracle VHK
(for

the same key K) wins or forges or makes a successful forgery if A makes a query (x, t) to VHK
such

that VHK
(x, t) = 1 and such that A had not previously queried x to HK . We let

SuccessfulForgery(AHK ,VHK)

denote this event, and we define the MAC security of H with respect to A as

Advmac
H (A) = Pr[K

$
←− K;SuccessfulForgery(AHK ,VHK)]

where the probability is taken over the random choice of K (chosen uniformly in K) as well as over

4

the coin tosses of A, if any. Overloading this notation, we let

Advmac
H (q, σ)

be the maximum of Advmac
H (A) taken over all adversaries A that make at most q queries of total

block length σ. We also let
Advmac-max

H (q, ρ)

be the maximum of Advmac
H (A) taken over all adversaries A that make at most q queries where

each query has block length at most ρ. Thus

Advmac-max
H (q, ρ) ≤ Advmac

H (q, qρ). (1)

One also has, trivially (and often unsatisfactorily),

Advmac
H (q, σ) ≤ Advmac-max

H (q, σ). (2)

The above notions presume an adversary which is allowed several different forgery attempts,
since the adversary may win at any query. This is a stronger notion of security than what is
classically considered. Classically, the adversary is only allowed one forgery attempt, namely only
one query to its verification oracle. More precisely, we define

Advmac-1
H (q, σ)

to be the maximum of Advmac
H (A) taken over all adversaries A that make at most q queries of total

block length σ, at most one of which is a verification query. Thus

Advmac-1
H (q, σ) ≤ Advmac

H (q, σ)

and Advmac-1
H (q, σ) corresponds to the “standard” (but somewhat weak) notion of chosen plaintext

security.
We likewise define

Advmac-1-max
H (q, ρ)

to be the maximum of Advmac-1
H (A) taken over all adversaries A that make at most q queries where

each query has block length at most ρ. Similarly to (1) and (2) we have

Advmac-1-max
H (q, ρ) ≤ Advmac-1

H (q, qρ). (3)

and

Advmac-1
H (q, σ) ≤ Advmac-1-max

H (q, σ). (4)

3.2 Indistinguishability and PRP security

Let F : K ×D → {0, 1}n, F ′ : K′ ×D → {0, 1}n be two keyed family functions of same domain D.
We define the distinguishing advantage of an adversary A against F , F ′ as

Adv
cpa
F,F ′(A) = Pr[K

$
←− K;AFK → 1]− Pr[K

$
←− K′;AF ′

K → 1].

5

Here ‘cpa’ stands for ‘chosen plaintext attack’. We define Adv
cpa
F,F ′(q, σ) to be the maximum of

Adv
cpa
F,F ′(A) over all adversaries A making at most q queries of total block length σ. (See Section

3.1.)
Let E : K × {0, 1}n → {0, 1}n be a blockcipher of key space K. We define the pseudorandom

permutation security of E against an adversary A as

Adv
prp
E (A) = Pr[K

$
←− K;AEK → 1]− Pr[P

$
←− perm(n);AP → 1].

Here “P
$
←− perm(n)” denotes the sampling of a permutation P uniformly at random from all

permutations from {0, 1}n to {0, 1}n. We define

Adv
prp
E (q)

as the maximum of Adv
prp
E (A) over all adversaries A making at most q queries. (Note the total

block length of the queries is determined by the number of queries.)

3.3 PRF and VIL-PRF security

Let R : {0, 1}∗ → {0, 1}n be a random function and let, as before, H : K × {0, 1}∗ → {0, 1}n be a
MAC. The distinguishing advantage of an adversary A with access to an oracle of domain {0, 1}∗

and range {0, 1}n is defined as

Adv
vilprf
H (A) = Pr[K

$
←− K;AHK → 1]− Pr[AR → 1].

The probabilities are understood to be taken over the random choice of K, the coins of A and the
randomness of R. We then define

Adv
vilprf
H (q, σ)

as the maximum of Adv
vilprf
H (A) taken over all adversaries A making at most q queries, of total

block length σ. It is easy to see, as observed by Bellare et al. [5], that

Advmac
H (q, σ) ≤

q

2n
+ Adv

vilprf
H (q, σ). (5)

For completeness, and since a complete proof of (5) does not appear in [5], we take a moment to
provide a proof here.

Proof of (5). Let B be an optimal (q, σ)-MAC adversary for H, namely an adversary such that
Advmac

H (B) = Advmac
H (q, σ) and such that B makes at most q queries of total block length at most

σ. We construct a PRF adversary A for H as follows: A simulates B; if B successfully forges, then
A outputs 1, otherwise A outputs 0. Clearly, A makes at most q queries to its oracle, of total block
length at most σ. We have

Pr[K
$
←− K;AHK → 1] = Advmac

H (B)

and
Pr[AR → 1] ≤

q

2n

6

so, by definition,

Adv
vilprf
H (A) ≥ Advmac

H (B)−
q

2n

as desired. �

We note that if Hπ denotes H truncated to π ≤ n bits (i.e., Hπ
K(x) is the first π bits of HK(x)),

then we have likewise that

Advmac
Hπ (q, σ) ≤

q

2π
+ Adv

vilprf
Hπ (q, σ) (6)

which in turn implies that

Advmac
Hπ (q, σ) ≤

q

2π
+ Adv

vilprf
H (q, σ) (7)

since Adv
vilprf
Hπ (q, σ) ≤ Adv

vilprf
H (q, σ) (indeed, truncating can only hurt the adversary’s distin-

guishing advantage).
Analogously to Advmac-max

H (q, ρ), we define

Adv
vilprf-max
H (q, ρ)

to be the maximum of Adv
vilprf
H (A) taken over all adversaries A making q queries each of block

length at most ρ. We have, similarly to (5), that

Advmac-max
H (q, ρ) ≤

q

2n
+ Adv

vilprf-max
H (q, ρ) (8)

and, if Hπ again denotes the truncation of H to π ≤ n bits, that

Advmac-max
Hπ (q, ρ) ≤

q

2π
+ Adv

vilprf-max
H (q, ρ). (9)

Let E : K × {0, 1}n → {0, 1}n be a blockcipher of key space K. We define the PRF security of
E against an adversary A as

Adv
prf
E (A) = Pr[K

$
←− K;AEK → 1]− Pr[R

$
←− func(n, n);AR → 1].

Here “R
$
←− func(n, n)” denotes the sampling of a function R uniformly at random from all functions

from {0, 1}n to {0, 1}n. We define

Adv
prf
E (q)

as the maximum of Adv
prf
E (A) over all adversaries A making at most q queries. (Note here too the

total block length of the queries is determined by the number of queries.)

3.4 Computational securities

In the above security definitions, the computational power of the adversaries is not mentioned
(and therefore not restricted). This can be meaningful in certain information-theoretic settings.
However, when discussing, say, the PRP security of AES-128, one must consider computationally
bounded adversaries in order to get meaningful statements. (Indeed, AES-128 can be distinguished
from a PRP in O(1) queries if we allow computationally unbounded adversaries.)

7

Each of the security notions Advmac
H , Adv

prp
E , Adv

vilprf
H , Adv

cpa
F,F ′, etc, defined so far can be

augmented with a time bound t on the adversary. For example, we write

Advmac
H (q, σ, t)

for the maximum of Advmac
H (A) over all adversaries A of running time at most t, making at most q

queries of total length at most σ. Here the meaning of “running time” is supposed fixed with respect
to some reasonable model of computation. What matters is establishing meaningful reductions
from one type of security to another: for example, showing that if Advmac

PC−MAC−AES(q, σ, t) is large
(meaning bad security), where H uses a blockcipher E, then it must be that (say) Adv

prp
AES(σ, t′)

is large for a value of t′ not much larger than t. Eventually, all security bounds must reduce to the
PRP security of the underlying blockcipher.

3.5 Collision security, MEDP and MESDP

Let H : K × ({0, 1}n)+ → {0, 1}n be a keyed function whose domain ({0, 1}n)+ is the set of all
strings whose length is a positive multiple of n. Then for positive integers m, m′ we define

Advcoll
H (m,m′) = max

x∈{0,1}nm,x′∈{0,1}nm′
,x 6=x′

PrK [HK(x) = HK(x′)].

We note the probability is only taken over the key K, and that this definition involves no adversary;
however we keep the Adv-type notation for the sake of uniformity.

Let P : K × {0, 1}n → {0, 1}n be a keyed permutation of {0, 1}n; that is PK(·) = P (K, ·) is a
permutation of {0, 1}n for all K ∈ K. Then we define the maximum expected differential probability,
or MEDP of P as

MEDP(P) = max
a,b∈{0,1}n,a6=0

Pr
K

$
←−K,X

$
←−{0,1}n

[PK(X) ⊕ PK(X ⊕ a) = b]

(The notation is meant to indicate the probability is taken over the random choice of X ∈ {0, 1}n

and K ∈ K.)
We finally define the maximum expected self-differential probability of P as

MESDP(P) = max
a{0,1}n

Pr
K

$
←−K,X

$
←−{0,1}n

[X ⊕ PK(X) = a].

The MEDP of blockciphers such as AES has been studied in connection with differential crypt-
analysis [14]. The MESDP was introduced by Minematsu and Tsunoo [19].

4 The PC-MAC-AES Specification

In this section we reproduce the PC-MAC-AES specfication [2]. We do so to establish notation as
well as for the reader’s convenience. Some minor differences in notation exist with [2]; we mostly
introduced these in order to better harmonize with [19].

We note that 384 (which appears many places in the specification) is 3 · 128.

8

4.1 The simplified 4-round AES function

Let SubBytes : {0, 1}128 → {0, 1}128, ShiftRows : {0, 1}128 → {0, 1}128, MixColumns : {0, 1}128 →
{0, 1}128 be be the three components of the AES round function, as specified in [3]. Let Rnd :
{0, 1}128 → {0, 1}128 be the composition

Rnd(x) = MixColumns(ShiftRows(SubBytes(x))).

(We note that Rnd is an unkeyed permutation.) Thus a round of AES, applied to a 128-bit value x,
consists of xoring x with a 128-bit “subkey” followed by an application of Rnd. (AES-128 consists
of 10 such rounds, where the subkeys for each round are derived from a single 128-bit key using
AES’s key scheduling mechanism; the key scheduling mechanism of AES is of no interest for what
follows.)

Let U = U (1)‖U (2)‖U (3) be a 384-bit value where each U (i) is a 128-bit value. The U (i)’s are
called subkeys. The 4-round AES function 4rU : {0, 1}128 → {0, 1}128 with key U is defined by

4rU (x) = Rnd(U (3) ⊕Rnd(U (2) ⊕Rnd(U (1) ⊕Rnd(x)))). (10)

We note that 4rU involves 4 applications of the AES round function Rnd. However, an xor with
a subkey is missing in the first round, and hence we refer to 4rU as the “simplified 4-round AES
function”.

For the remainder of the report we let 4r : {0, 1}384×{0, 1}128 → {0, 1}128 be the keyed function
defined by 4r(U, x) = 4rU (x), where 4rU (x) is defined by (10).

4.2 Glossary of notations and basic functions

• K : 128-bit key of AES
• L : secondary 128-bit key
• d : order (a parameter of PC-MAC-AES, positive integer)
• π : bit length of final truncated tag (a parameter of PC-MAC-AES, a positive integer at most
128)
• AESK(·) : the AES-128 encryption function on key K ∈ {0, 1}128

• 4rU : simplified 4-round AES function with 384-bit key, U
• mul2(x) : multiply-by-two operation defined over the finite field GF(2128), defined as

mul2(x) =

{

x≪ 1 if msb(x) = 0
(x≪ 1)⊕ (0120‖10000111) otherwise

where msb(x) is the most significant bit of x.
• pad(x) : a padding function for x with |x| ≤ 128 defined as

pad(x) =

{

x if |x| = 128

x‖1‖0128−|x|−1 if |x| < 128

4.3 Parameters

PC-MAC-AES takes two parameters: the order d, which is an integer between 1 and 5 (one could,
syntactically speaking, use larger values than 5, but this is not recommended by the specification)

9

as well as the output length π, an integer between 64 and 128 (one could likewise use smaller values
than 64, but this is likewise not recommended). We note that π does not affect PC-MAC-AES until
the 128-bit output is obtained, at which point the final output is simply obtained by truncating
the 128-bit output to its first π bits. We discuss the role of d below.

4.4 Key and key schedule

PC-MAC-AES uses a 256-bit key K‖L where K,L ∈ {0, 1}128 . From K and L, an additional
d ·384+(d−1) ·128 bits of key material are constructed. More precisely, d 384-bit values U1, . . . , Ud

are constructed by putting Ui = U
(1)
i ‖U

(2)
i ‖U

(3)
i where

U
(j)
i = AESK(L⊕ [3(i − 1) + (j − 1)])

(we recall that [k] stands for the 128-bit binary encoding of the integer k); moreover, (d−1) 128-bit
values Kxor

1 , . . . ,Kxor
d−1 are built by letting

Kxor
j = AESK(L⊕ [3d + j − 1]).

Thus the values U
(1)
1 , . . . , U

(3)
d ,Kxor

1 , . . . ,Kxor
d−1 are generated from AESK(L⊕ ·) in counter mode.

We let Kaux = U1‖· · · ‖Ud‖K
xor
1 ‖· · · ‖K

xor
d−1 denote the d · 384 + (d − 1) · 128 additional bits of

“auxiliary” key material.

4.5 Tag generation

Assume fixed values of d, π, K, L and let U1, . . . , Ud,K
xor
1 , . . . ,Kxor

d−1 be generated as described
above. The core components of PC-MAC-AES are the (fixed-key) AES encryption function AESK

as well as the simplified 4-round AES functions 4rU1 , . . . , 4rUd
.

Let x ∈ {0, 1}∗ be a message whose MAC is to be computed; the π-bit MAC of x under PC-
MAC-AES is given by the following algorithm (in which the generation of the auxiliary key is
assumed):

function PC-MAC-AES(d, π,K,L, x)
let x = x1‖· · · ‖xm where |xi| = 128 for i < m and 1 ≤ |xm| ≤ 128
s← 0128

for i← 1 to m− 1 do

w ← (i− 1) mod (d + 1)
if w = 0 then s← AESK(s⊕ xi)
else if w = 1 then s← 4rU1(s⊕ xi)
else s← 4rUw(s⊕Kxor

w−1 ⊕ xi)
h← s⊕ pad(xm)
if |xm| = 128 then h← mul2(L)⊕ h
else h← mul2(mul2(L))⊕ h
return the first π bits of AESK(h)

We refer the reader to Figures 2 and 3 of [1] and Figure 1 of [19]. (We note that in these figures,
GU is our 4rU .)

10

We let
PC-MAC-AESπ,d

K,L(x)

be the output of the pseudocode given. We note this defines, in particular, a keyed function
PC-MAC-AESπ,d of 256 bit key (the key being the pair (K,L)).

4.6 Additional notations for PC-MAC-AES

In this section we give some notations for generalizations of PC-MAC-AES, and for some compo-
nents of these generalizations. These generalizations are used as hybrids in the security proofs.
There are three main hybrids, with attendant notations, that we use. In all hybrids n stands for
the generalized block length. (Originally n = 128 and one may keep thinking of n as having value
128, if this is helpful.) In addition, we define a sub-component of the last hybrid in Section 4.6.4.

4.6.1 PC-MAC◦
d[EK , L,G]

Let G : {0, 1}3n → {0, 1}n be any keyed permutation of {0, 1}n of key length 3n and output length
n. G is an abstract version of the simplified 4-round AES function 4r. We write GU (x) for G(U, x),
as usual, where U = U (1)‖U (2)‖U (3) ∈ {0, 1}3n and x ∈ {0, 1}n.

Let E : {0, 1}n → {0, 1}n be any blockcipher, writing EK(x) for E(K,x), as usual; EK gener-
alizes AESK .

We now write PC-MAC◦
d[EK , L,G] for the PC-MAC-AES algorithm applied with EK substi-

tuted for AESK and with G substituted for 4r. More precisely, PC-MAC◦
d[EK , L,G] uses an auxil-

iary key Kaux = U1‖· · · ‖Ud‖K
xor
1 ‖· · · ‖K

xor
d−1 which is generated by the function EK(L⊕·) in counter

mode. (I.e., U
(1)
1 = EK(L⊕[0]), U

(2)
1 = EK(L⊕[1]), etc.) Then the value PC-MAC◦

d[EK , L,G](x) is
computed by the following algorithm (in which once again we assume the existence of the auxiliary
key without mention of its precomputation):

function PC-MAC◦
d[EK , L,G](x)

let x = x1‖· · · ‖xm where |xi| = n for i < m and 1 ≤ |xm| ≤ n
s← 0n

for i← 1 to m− 1 do

w ← (i− 1) mod (d + 1)
if w = 0 then s← EK(s⊕ xi)
else if w = 1 then s← GU1(s⊕ xi)
else s← GUw(s⊕Kxor

w−1 ⊕ xi)
h← s⊕ pad(xm)
if |xm| = n then h← EK(mul2(L)⊕ h)
else h← EK(mul2(mul2(L))⊕ h)
return h

We note that we have dropped all mention of π, the truncation length; thus PC-MACd[R,L,G]
returns an output of length n. Now mul2(·) stands for multiplication by 2 over GF(2n), for any
representation of GF(2n), and pad(·) stands for padding to length n instead of to length 128
(generalized in the natural way).

We view PC-MAC◦
d[EK , L,G] as a keyed function, with key (K,L).

11

4.6.2 PC-MAC∗
d[R,L,G]

This hybrid is an abstraction (generalization) of PC-MAC◦
d[EK , L,G]. We keep G as in the previous

section. Let R be an arbitrary function from {0, 1}n to {0, 1}n.
We now write PC-MAC∗

d[R,L,G] for the PC-MAC◦
d[EK , L,G] with EK substituted by R. More

precisely, PC-MAC∗
d[R,L,G] uses an auxiliary key Kaux = U1‖· · · ‖Ud‖K

xor
1 ‖· · · ‖K

xor
d−1 which is

generated by the function R(L⊕·) in counter mode. Then the value PC-MAC∗
d[R,L,G](x) is com-

puted by the following algorithm:

function PC-MAC∗
d[R,L,G](x)

let x = x1‖· · · ‖xm where |xi| = n for i < m and 1 ≤ |xm| ≤ n
s← 0n

for i← 1 to m− 1 do

w ← (i− 1) mod (d + 1)
if w = 0 then s← R(s⊕ xi)
else if w = 1 then s← GU1(s⊕ xi)
else s← GUw(s⊕Kxor

w−1 ⊕ xi)
h← s⊕ pad(xm)
if |xm| = n then h← R(mul2(L)⊕ h)
else h← R(mul2(mul2(L)) ⊕ h)
return h

We still view PC-MAC∗
d[R,L,G] as a keyed function, whose key consists of the n-bit value L and

of a n2n-bit description of R. (Put differently, sampling the key space of PC-MAC∗
d amounts to

sampling an n-bit value L uniformly at random in {0, 1}n as well as a function R uniformly at
random in func(n, n), the set of all functions from {0, 1}n × {0, 1}n.)

4.6.3 PC-MAC⋆
d[R, G]

This hybrid is an abstraction (generalization) of PC-MAC∗
d[R,L,G]. We keep G as in the previous

section.
Let R,R′, R′′ and R′′′ be any functions from {0, 1}n to {0, 1}n. These will be abstract versions

of, respectively, the functions R(·), R(mul2(L) ⊕ ·), R(mul2(mul2(L)) ⊕ ·) and R(L ⊕ ·) used in
PC-MAC∗

d[R,L,G]. We write R for the 4-tuple (R,R′, R′′, R′′′).
We now write PC-MAC⋆

d[R, G] for the PC-MAC∗
d[R,L,G] algorithm applied with R, R′, R′′,

R′′′ substituted for the functions R(·), R(mul2(L)⊕ ·), R(mul2(mul2(L))⊕ ·) and R(L⊕ ·).
More precisely, PC-MAC⋆

d[R, G] involves an auxiliary key Kaux = U1‖· · · ‖Ud‖K
xor
1 ‖· · · ‖K

xor
d−1

which is generated by the function R′′′ in counter mode: U
(1)
1 = R′′′([0]), U

(2)
1 = R′′′([1]), etc. Then

the value PC-MACd[R, G](x) is computed by the following algorithm:

function PC-MAC⋆
d[R, G](x)

let x = x1‖· · · ‖xm where |xi| = n for i < m and 1 ≤ |xm| ≤ n
s← 0n

for i← 1 to m− 1 do

w ← (i− 1) mod (d + 1)
if w = 0 then s← R(s⊕ xi)

12

else if w = 1 then s← GU1(s⊕ xi)
else s← GUw(s⊕Kxor

w−1 ⊕ xi)
h← s⊕ pad(xm)
if |xm| = n then h← R′(h)
else h← R′′(h)
return h

We note that R′′′ does not appear in the pseudocode above; however, R′′′ is used to generate the
auxiliary key Kaux. We also note that by definition, then, if R′′′ is sampled at random from all
functions from n bits to n bits, Kaux is sampled independently and at random from all bit strings
of length (4d − 1)n.

4.6.4 PC-MAC•
d[R, G]

Let R and G be as in the last section, and also let the auxiliary key Kaux be generated from R′′′

as in the last section. PC-MAC•
d[R, G] is an algorithm that takes an input x whose length is a

multiple of n, and returns a value h as follows:

function PC-MAC•
d[R, G](x)

let x = x1‖· · · ‖xm where |xi| = n for 1 ≤ i ≤ m, and where m ≥ 1
s← 0n

for i← 1 to m− 1 do

w ← (i− 1) mod (d + 1)
if w = 0 then s← R(s⊕ xi)
else if w = 1 then s← GU1(s⊕ xi)
else s← GUw(s⊕Kxor

w−1 ⊕ xi)
h← s⊕ pad(xm)
return h

We note that PC-MAC•
d[R, G] is simply PC-MAC⋆

d[R, G] restricted to padded inputs and with
the final application of R′, R′′ removed. In fact, we note that we can implement PC-MAC⋆

d[R, G]
using PC-MAC•

d[R, G] as a component, as follows:

function PC-MAC⋆
d[R, G](x)

let x = x1‖· · · ‖xm where |xi| = n for i < m and 1 ≤ |xm| ≤ n
let h← PC-MAC•

d[R, G](x1‖· · · ‖xm−1‖pad(xm))
if |xm| = n then h← R′(h)
else h← R′′(h)
return h

Like PC-MAC⋆
d[R, G], we view PC-MAC•

d[R, G] as keyed function family, keyed by R.

13

5 Results on provable security

5.1 Overview of results

We start by reviewing the security results of Minematsu and Tsunoo [19] (‘MT’ for short). MT

give an upper bound on Adv
vilprf-max
PC-MAC◦

d[EK ,L,G](q, ρ, t):

Theorem 1 [19] Let PC-MAC◦
d[EK , L,G] be as defined in Section 4.6.1, viewed as a function of

keyspace {0, 1}2n. Then

Adv
vilprf-max
PC-MAC◦

d[EK ,L,G](q, ρ, t) ≤ Adv
prp
E (ρq + 4d, t′) +

2.5(ρq + 4d)2

2n
+ (dǫdp + ǫsdp)

q2

2
(11)

where t′ = t + O(ρq), ǫdp = MEDP(G) and ǫsdp = MESDP(G).

We note that truncation cannot lessen the PRF-security of a function, so the bound Theorem 1
also applies to any truncated version of PC-MAC◦

d[EK , L,G].
In particular, letting n = 128, letting EK = AESK and letting G = 4r, we obtain a corollary

on PC-MAC-AESπ,d. Keliher et al. [14] proved that MEDP(4r) ≤ 2−113, and, as observed by MT,
it is easy to see that MESDP(4r) = 2−128. Thus:

Corollary 1 [19] Let PC-MAC-AESπ,d be as defined in Section 4.5. Then

Adv
vilprf-max

PC-MAC-AESπ,d(q, ρ, t) ≤ Adv
prp
AES-128(ρq + 4d, t′) +

2.5(ρq + 4d)2

2128
+

(

d

2114
+

1

2129

)

q2

where t′ = t + O(ρq).

Then by (the computational analogue of) (9) and Corollary 1 we have, for example, that

Advmac-max
PC-MAC-AESπ,d(q, ρ, t) ≤

q

2π
+ Adv

prp
AES-128(ρq + 4d, t′) +

2(ρq + 4d)2

2128
+

(

d

2114
+

1

2129

)

q2 (12)

there t′ = t + O(ρq).
We note that (12) is inequality (4) on page 5 of the self-evaluation report [2]. The self-evaluation

report claims that “in practice, q2

2114 is the dominant term”, and hence that PC-MAC-AES is secure
against adversaries of time complexity at most 256 (provided, say, π ≥ 64, as recommended by the
specification). However, (12) certainly does not show provable security against adversaries of time
complexity 256. Indeed, an adversary that asks a single message of 232 blocks followed by 232 − 1
messages of 1 block each (thus setting ρ = q = 232) has time complexity 233, but (12) gives a void
bound for such an adversary. At issue is the fact (12) gives a bound on Advmac-max(q, ρ) of order
ρ2q2/2n rather than giving a bound on Advmac(q, σ) of order σ2/2n (since σ is an accurate reflection
of the time complexity of an adversary, whereas ρq can severly overestimate the time complexity
of an adversary). This deficiency was already underlined in [19], though it is not mentioned in [2].
We return to this question in Section 6.

14

5.2 Proof overview

In this section we sketch the proof of Theorem 1. The proof sketch we give does little accounting
(as usual) of the time complexities involved in the various reductions; suffice it to say that these
reductions are efficient.

The proof uses the so-called PRF/PRP switching lemma (folklore), which states that

|Adv
prf
E (q)−Adv

prp
E (q)| ≤

q2

2n+1

for any blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n. Thus to show (11) it is sufficient to show

Adv
vilprf-max
PC-MAC◦

d[EK ,L,G](q, ρ, t) ≤ Adv
prf
E (ρq + 4d, t′) +

2(ρq + 4d)2

2n
+ (dǫdp + ǫsdp)

q2

2
. (13)

In turn, (13) is implied, using a standard hybrid argument, by

Adv
vilprf-max
PC-MAC∗

d[R,L,G](q, ρ) ≤
2(ρq + 4d)2

2n
+ (dǫdp + ǫsdp)

q2

2
. (14)

(Note that (14) is an information-theoretic statement—note also that, as explained in Section 4.6.2,
PC-MAC∗

d[R,L,G] is keyed by R as well as by L.) In fact, MT show the slightly stronger inequality:

Adv
vilprf-max
PC-MAC∗

d[R,L,G](q, ρ) ≤
(ρq + 4d)2

2n+1
+

(

dǫdp + ǫsdp +
2ρ2 + 1

2n

)

q2

2
. (15)

A crucial ingredient in proving (15) is the following lemma, stated without proof in [19] but easy
to prove from a similar lemma by Iwata and Kurosawa [16]. We note that in the statement of
this lemma, “mul2(1)i” is our notation for “the constant 2 in GF(2n), taken to the power i”; thus
mul2(1)0 · L = L and mul2(1)1 · L = mul2(L), etc.

Lemma 1 Let R be the set of all functions from {0, 1}n to {0, 1}n and let D = {0, 1}n×{0, 1, 2, 3}.
Let K = R × {0, 1}n and let F : K × D be defined by FR,L(x, 0) = R(x) and FR,L(x, i) =
R(mul2(1)i−1 · L ⊕ x) for i = 1, 2, 3, where (R,L) ∈ K = R × {0, 1}n. Let K′ = R4, and let

F ′ : K′ × D be defined by F ′
R0,R1,R2,R3

(x, i) = Ri(x), where (R1, R2, R3, R4) ∈ K
′ = R4. Then

Adv
cpa
F,F ′(q) ≤

q2

2n+1 .

Since a PRF adversary against PC-MAC∗
d[R,L,G] making q queries each of length at most ρ can be

simulated with at most ρq +4d queries to R, it is straightforward from Lemma 1 and the definition
of PC-MAC⋆

d[R, G] that (15) is implied by

Adv
vilprf-max
PC-MAC⋆

d[R,G](q, ρ) ≤

(

dǫdp + ǫsdp +
2ρ2 + 1

2n

)

q2

2
. (16)

To prove (16), MT use the following lemma of Black and Rogaway [8] (presented here in slightly
disguised form, namely as it applies to PC-MAC⋆

d):

Adv
vilprf-max
PC-MAC⋆

d[R,G](q, ρ) ≤ max
m1,...,mq , ms≤ρ





∑

1≤i<j≤q

Advcoll
PC-MAC•

d[R,G](mi,mj)



 . (17)

The heart of MT’s analysis is the following lemma:

15

Lemma 2 ([19], Lemma 3) We have

Advcoll
PC-MAC•

d[R,G](m,m′) ≤ dǫdp + ǫsdp +
(m + m′)2 + 2

2n+1

for all positive integers m, m′.

(In fact MT show a slightly stronger result than Lemma 2, but the bound they apply in the end is
the one above.) From Lemma 2 and (17), one can show (16).

While the proof of Lemma 2 is really the heart of MT’s analysis it is also quite technical and
“beyond the scope” of this report. However, we have verified it in detail, and are satisfied of its
correctness (and, by extension, of the correctness of the results mentioned in Section 5.1). Readers
who succeed in reading Section 6.2 will also get a flavor for the proof of Lemma 2.

6 Provable security improvements

As mentioned in Section 5.1, (12) is not a really satisfactory security bound, since it only guarantees
security against adversaries of time complexity ≈ 232. Minematsu and Tsunoo actually mention the
desirability of proving an upper bound on Advmac

PC-MAC◦
d[EK ,L,G](q, σ) rather than an upper bound

on Advmac-max
PC-MAC◦

d[EK ,L,G](q, ρ) ([19] top of page 236). In this section, we show how to obtain such
an upper bound in two different ways. The first is rather straightforward and yields an upper
bound of ordoer O(qσ2/2n), giving security against adversaries of time complexity 242 (up from
232). The second method is harder but yields an O(σ2/2n) upper bound. This is optimal and gives
security against adversaries of time complexity 256 (where the dominant term is no longer σ2/2n

but dǫdp
q2

2).

6.1 An O(qσ2/2n) upper bound on Advmac
PC-MAC

◦
d[EK ,L,G](q, σ)

Our starting point is the following analogue of (17), also due to Black and Rogaway [8] (and also
cited by MT [19]):

Adv
vilprf
PC-MAC⋆

d[R,G](q, σ) ≤ max
m1,...,mq,

Pq
r=1 mr=σ





∑

1≤r<s≤q

Advcoll
PC-MAC•

d[R,G](mr,ms)



 (18)

By Lemma 2, thus, we have

Adv
vilprf
PC-MAC⋆

d[R,G](q, σ) ≤ max
m1,...,mq ,

Pq
i=1 mi=σ





∑

1≤i<j≤q

(mi + mj)
2

2n+1





+

(

dǫdp + ǫsdp +
1

2n

)

q2

2
(19)

To apply (19) we need to upper bound the “max” term. Note that we can allow the mi’s to range
over arbitrary nonnegative real numbers, since this can only increase the max. A straightforward
maximization argument then shows that the max is obtained when (say) m1 = σ and mi = 0 for
i > 1.

16

We thus directly obtain

Adv
vilprf
PC-MAC⋆

d[R,G](q, σ) ≤
qσ2

2n+1
+

(

dǫdp + ǫsdp +
1

2n

)

q2

2

which implies

Adv
vilprf
PC-MAC∗

d[R,L,G](q, σ) ≤
(σ + 4d)2

2n+1
+

qσ2

2n+1
+

(

dǫdp + ǫsdp +
1

2n

)

q2

2

and

Adv
vilprf
PC-MAC◦

d[EK ,L,G](q, σ) ≤ Adv
prp
E (σ + 4d) +

1.5(σ + 4d)2

2n+1
+

qσ2

2n+1
+

(

dǫdp + ǫsdp +
1

2n

)

q2

2
.

Finally, this implies, by (5) (and including time complexities),

Advmac
PC-MAC◦

d[EK ,L,G](q, σ, t) ≤

q

2n
+ Adv

prp
E (σ + 4d, t′) +

1.5(σ + 4d)2

2n+1
+

qσ2

2n+1
+

(

dǫdp + ǫsdp +
1

2n

)

q2

2

where t′ = t+O(σ). We note the dominant is qσ2

2n+1 and, when applied to PC-MAC-AES and n = 128,
this bound yields security against adversaries of time complexity up to 242 (with σ = q = 242).

6.2 An O(σ2/2n) upper bound on Advmac
PC-MAC

◦
d[EK ,L,G](q, σ)

In this Section we give our best bound on the provable security of PC-MAC-AES. Unfortunately,
the material in this section is somewhat technical, in the same vein as Lemma 3 of [19].

We use the following analogue of (18), also due to Black and Rogaway [8], which is implicit in
their proof of (18):

Adv
vilprf
PC-MAC⋆

d[R,G](q, σ) ≤

max
x1,...,xq∈({0,1}n)+

Pq
r=1 |xr|/n=σ

xr 6=xs,1≤r<s≤q

Pr





∨

1≤r<s≤q

PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs)



 (20)

We note that probability in (20) occurs only over the choice of R which, in the case of PC-MAC•
d[R, G],

only affects R and the auxiliary key Kaux (through R′′′). Thus the underlying probability space
is sampled by sampling R, which is equivalent to sampling a pair (R,Kaux) uniformly at random
from func(n, n)× ({0, 1}n)4d−1.

Fix now a sequence x1, . . . , xq ∈ ({0, 1}n)+ for which the maximum in (20) is obtained. Let
mr = |xr|/n be the block length of xr (which is an integer).

Let
Coll =

∨

1≤r<s≤q

PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs)

be the collision event. We wish to upper bound Pr[Coll]. The natural approach to upper bounding
Pr[Coll] would be to apply a union bound, thus using the inequality

Pr[Coll] ≤
∑

1≤r<s≤q

Pr[PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs)].

17

However, this union bound leads to a term of type q
∑

r m2
r/2

n, and hence to no improvement over
the result of Section 6.1.

Instead, we apply a union bound to a different decomposition of the Coll event. Let lr =
⌈ mr

d+1⌉ = ⌈ |xr|
n(d+1)⌉. Thus lr calls to R are made during the computation of PC-MAC•

d[R, G](xr),

unless mr ≡ 1 mod (d + 1) in which case lr − 1 calls are made to R. Following the notations of
Lemma 3 in [19], let Y r

i be the i-th input of R in (the computation of) PC-MAC•
d[R, G](xr) for

1 ≤ i ≤ lr and 1 ≤ r ≤ q and where, if mr ≡ 1 mod d + 1, Y r
lr

= PC-MAC•
d[R, G](xr). Also let

lr,slcp ≥ 0 be the largest integer such that the first (d + 1)(lr,slcp − 1) + 1 blocks of xr and xs coincide.

Thus Y r
i = Y s

i with probability 1 for 1 ≤ i ≤ lr,slcp.
For 1 ≤ r ≤ q define the event

ICr =
(

Y r
i = Y r

j for some 1 ≤ i < j ≤ lr
)

Here IC stands for “internal collision”. Then for 1 ≤ r < s ≤ q define the event

MICr,s =
(

¬ICr ∧ ¬ICs ∧ Y r
i = Y s

j for some 1 ≤ i ≤ lr, 1 ≤ j ≤ ls

such that i 6= j if i, j ≤ lr,slcp

)

where MIC stands for “mutual internal collision”. Finally for 1 ≤ r < s ≤ q define the event

Collr,s = (¬ICr ∧ ¬ICs ∧ ¬MICr,s ∧ PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs)) .

Obviously, then,

Coll =⇒
∨

1≤r≤q

ICr ∨
∨

1≤r<s≤q

MICr,s ∨
∨

1≤r<s≤q

Collr,s. (21)

We shall upper bound Pr[Coll] by doing a union bound over the events that appear (21). (The key
point which will lead to the final improvement of the bound is that each event ICr is counted just
once in this union bound, as opposed to q− 1 times (once for each value of s 6= r), as occurs in the
MT proof.)

Just like equation (6) on page 233 of [19] we have that, for any possible value k of Kaux,

Pr[ICr] = Pr[ICr |Kaux = k] ≤

(

lr
2

)

/2n ≤
l2r

2n+1
. (22)

To upper bound Pr[MICr,s] and Pr[Collr,s] we define some additional events; the first two are
the analogues of the events Dlcp and D of [19]:

D
r,s
lcp =

(

Y r
i 6= Y r

j for all i 6= j, 1 ≤ i, j ≤ lr,slcp

)

Dr,s =
(

¬ICr ∧ ¬ICs ∧ Y r
i 6= Y s

j for all 1 ≤ i ≤ lr, 1 ≤ j ≤ ls

such that i 6= j if i, j ≤ lr,slcp

)

SCr,s =
(

lr > lr,slcp ∧ ls > lr,slcp ∧ Y r
l
r,s
lcp+1 = Y s

l
r,s
lcp+1

)

TCr,s =
(

Y r
i = Y s

j for some lr,slcp < i ≤ lr, l
r,s
lcp < j ≤ ls, (i, j) 6= (lr,slcp + 1, lr,slcp + 1)

)

D
r,s
lcp+1 =

(

Y r
i 6= Y r

j for all i 6= j, 1 ≤ i ≤ min(lr, l
r,s
lcp + 1), 1 ≤ j ≤ min(ls, l

r,s
lcp + 1)

)

18

(Thus Dr,s =⇒ D
r,s
lcp, ¬ICr =⇒ D

r,s
lcp, ¬ICs =⇒ D

r,s
lcp, ¬ICr =⇒ D

r,s
lcp+1, ¬ICs =⇒ D

r,s
lcp+1; we can

note also that Dr,s = ¬ICr ∧ ¬ICs ∧ ¬MICr,s.)
Since MICr,s =⇒ (¬ICr ∧ ¬ICs), one can check that

MICr,s =⇒ SCr,s ∨ TCr,s

and that, more particularly,

MICr,s =⇒ (Dr,s
lcp ∧ SCr,s) ∨ (¬ICr ∧ ¬ICs ∧ ¬SCr,s ∧ TCr,s). (23)

We have that

Pr[Dr,s
lcp ∧ SCr,s] ≤ Pr[SCr,s |Dr,s

lcp] ≤ dǫdp (24)

as argued in the proof of Lemma 4 of [19] (case of a ‘type (I) collision’). We then have, since
(¬ICr ∨ ¬ICs) =⇒ D

r,s
lcp+1, that

Pr[¬ICr ∧ ¬ICs ∧ ¬SCr,s ∧ TCr,s]

= Pr[¬ICr ∧ ¬ICs ∧ D
r,s
lcp+1 ∧ ¬SCr,s ∧ TCr,s]

≤ Pr[TCr,s ∧ ¬ICr ∧ ¬ICs |D
r,s
lcp+1 ∧ ¬SCr,s]

To upper bound the latter inequality, let k be any possible value for Kaux; we actually upper bound

Pr[TCr,s ∧ ¬ICr ∧ ¬ICs |D
r,s
lcp+1 ∧ ¬SCr,s ∧Kaux = k].

Now conditioning on D
r,s
lcp+1 ∧ ¬SCr,s we find that the values Y r

llcp+1 and Y s
llcp+1 are distinct and

also distinct from the values Y r
1 , . . . , Y r

llcp
, Y s

1 , . . . , Y s
llcp

. We now reveal, sequentially, the values

Zr
llcp+1 = R(Y r

llcp+1) (and hence learn the value Y r
llcp+2, since Kaux is known), the value Zr

llcp+2 =

R(Y r
llcp+2) (and hence lear the value Y r

llcp+3), etc, until we learn the value Y r
lr
—but we do not reveal

the value Zr
lr
—and then, likewise, we reveal the values Zs

llcp+1 = R(Y s
llcp+1), etc, up until we learn

the value Y s
ls
. In this process, either the condition ¬ICr or ¬ICs becomes violated, in which case the

event TCr,s∧¬ICr∧¬ICs does not occur, or else: (i) each Zr-value that is revealed is independently
distributed at uniform and has chance at most 1/2n of triggering the event TCr,s (by colliding with
Y s

llcp+1), and (ii) or each Zs-value that we reveal is independently distributed at uniform and has

chance at most (lr − llcp)/2n of triggering the condition TCr,s. (Note that Zr
j (resp. Zs

j′+1) induces
a permutation on Y r

j+1 (resp. Y s
j′+1) since Kaux is fixed.) Since (lr− llcp− 1) Zr-values are revealed

and (ls − llcp − 1) Zs-values are revealed, we thus have

Pr[¬ICr ∧ ¬ICs ∧ ¬SCr,s ∧ TCr,s] ≤ Pr[TCr,s ∧ ¬ICr ∧ ¬ICs |D
r,s
lcp+1 ∧ ¬SCr,s ∧Kaux = k]

≤ (lr − lllcp − 1)
1

2n
+ (ls − lllcp − 1)

lr − llcp
2n

≤
lrls
2n

. (25)

Combining (23), (24), (25) we thus obtain

Pr[MICr,s] ≤ dǫdp +
lrls
2n

. (26)

19

Finally we need to upper bound Pr[Collr,s]. Note that since Dr,s ⇐⇒ ¬ICr ∧ ¬ICs ∧ ¬MICr,s,
we have

Pr[Collr,s] = Pr[Dr,s ∧ PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs)]

≤ Pr[PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs) |D
r,s]

If lr = ls = llcp then

Pr[Collr,s] ≤ Pr[PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs) |D
r,s]

= Pr[PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs) |D
r,s
lcp]

≤ max(dǫdp, ǫsdp,
1

2n
) (27)

(see equation (9) p. 234 of [19]). On the other hand, if lr > llcp or ls > llcp, then

Pr[Collr,s] ≤ Pr[PC-MAC•
d[R, G](xr) = PC-MAC•

d[R, G](xs) |D
r,s] ≤

1

2n
(28)

(see equation (8) p. 233 of [19]).
Now, from (26), (27), (28) and the observation that Pr[MICr,s] = 0 if lr = ls = llcp, we have

Pr[MICr,s] + Pr[Collr,s] ≤ dǫdp + ǫsdp +
1

2n
+

lrls
2n

. (29)

Thus, combining (21) with (22) and (29) we obtain

Pr[Coll] ≤

q
∑

r=1

l2r
2n

+
∑

1≤r<s≤q

(

dǫdp + ǫsdp +
1

2n
+

lrls
2n

)

≤

q
∑

r=1

l2r
2n

+
∑

1≤r<s≤q

lrls
2n

+

(

dǫdp + ǫsdp +
1

2n

)

q2

2
. (30)

The question thus reduces to computing

max
l1,...,lq:

P

r lr=σ

q
∑

r=1

l2r
2n

+
∑

1≤r<s≤q

lrls
2n

. (31)

(The condition l1+ · · ·+ lq = σ is slightly generous, since one can have lr < mr, but this condition is
simple to work with.) Taking, more generally, the max over all nonnegative real values of l1, . . . , lq
such that l1 + · · · + lq = σ, it is easy to see that the max is again obtained when (say) l1 = σ and
l2 = · · · = lr = 0, in which case the value of the max is σ2/2n. Thus

Pr[Coll] ≤
σ2

2n
+

(

dǫdp + ǫsdp +
1

2n

)

q2

2

and, by (20),

Adv
vilprf
PC-MAC⋆

d[R,G](q, σ) ≤
σ2

2n
+

(

dǫdp + ǫsdp +
1

2n

)

q2

2
. (32)

20

This implies, by the same reasoning as at the end of Section 6.1, that

Adv
vilprf
PC-MAC◦

d[EK ,L,G]
(q, σ, t) ≤

Adv
prp
E (σ + 4d, t′) +

1.5(σ + 4d)2

2n+1
+

σ2

2n
+

(

dǫdp + ǫsdp +
1

2n

)

q2

2
. (33)

and

Advmac
PC-MAC◦

d[EK ,L,G](q, σ, t) ≤

q

2n
+ Adv

prp
E (σ + 4d, t′) +

1.5(σ + 4d)2

2n+1
+

qσ2

2n+1
+

(

dǫdp + ǫsdp +
1

2n

)

q2

2
(34)

where in both cases t′ = t + O(σ). If we consider the truncated version of PC-MAC, where π is the
truncation length, the term q

2n in (34) must be replaced q
2π .

Applied to the case of PC-MAC-AES, we note that the dominant term in (33) and (34) is

dǫdp
q2

2 since in that case ǫdp = MEDP (4r) has (best known) upper bound 2−113. When d = 1
this gives security of ≈ 257, whereas if d = 5 the security is about 256. (These numbers being
time complexities of adversaries, where the time complexity of the adversary is the total block
length of its queries.) This is the best security bound we could prove for PC-MAC-AES, and seems
satisfactory. Moreover, there are no known forgery attacks of this time complexity (but it is easy
to devise forgery attacks of time complexity 264).

7 Key length improvements

Minematsu and Tsunoo [19] also discuss the possibility of, potentially, deriving the key L from K,
in order to achieve only n bits of key instead of 2n bits of key—e.g., by putting L = EK(0n). They
mention that the proof techniques for OMAC (in which precisely only n bits of key are achieved
by setting L = EK(0n)) do not apply in the PC-MAC-AES setting (problems arise due to the use
of the simplified 4-round AES function) and, in fact, they show a counterexample in this regard.

However, another possibility, not discussed by Minematsu and Tsunoo, is to derive both K and
L from a third n-bit key K∗. Given K∗ ∈ {0, 1}n (which is now the private key) we can set, for
example, K = EK∗(0n), L = EK∗ = (1n), and then define PC-MAC-AES as before.

That is, applied to the case of E =AES, we define a 1-key scheme 1-PC-MAC-AESπ,d
K∗ by

1-PC-MAC-AESπ,d
K∗(x) = 1-PC-MAC-AESπ,d

AESK∗ (0n),AESK∗ (1n)(x).

Generalizing, we define a scheme 1-PC-MAC◦
d[E,K∗, G] by

1-PC-MAC◦
d[E,K∗, G](x) = PC-MAC◦

d[EEK∗ (0n), EK∗(L), G](x)

for any blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n and any keyed permutation G : {0, 1}3n ×
{0, 1}n → {0, 1}n.

The security of 1-PC-MAC◦
d[E,K∗, G] is similar to that of PC-MAC◦

d[EK , L,G]:

Proposition 1 For any blockcipher E : {0, 1}n × {0, 1}n → {0, 1}n and any keyed permutation

G : {0, 1}3n × {0, 1}n → {0, 1}n we have

Adv
vilprf
1-PC-MAC◦

d[E,K∗,G](q, σ, t) ≤ Adv
vilprf
PC-MAC◦

d[EK ,L,G](q, σ, t) + Adv
prp
E (σ + 4d, t′) +

1

2n
(35)

where t′ = t + O(1).

21

Proof. Let A be a PRF adversary for 1-PC-MAC◦
d[E,K∗, G] making q queries of total length at

most σ, and of running time t. We construct a PRP adversary B for E making σ + 4d queries to
E and of running time t + O(1) as follows. When given oracle access to its n-bit to n-bit oracle
F (which may be either EK∗ for a random key K∗ or a random permutation P), B computes
(K,L) = (F (0n), F (1n)). Then B simulates A on oracle PC-MAC◦

d[EK , L,G], and outputs the
same answer as A. We note that

Pr[K∗ $
←− {0, 1}n;BEK∗ → 1] = Pr[K∗ $

←− {0, 1}n;A1-PC-MAC◦
d[E,K∗,G] → 1]

whereas

Pr[P
$
←− perm(n);BP → 1] ≤ Pr[(K,L)

$
←− {0, 1}2n;APC-MAC◦

d[EK ,L,G] → 1] +
1

2n

since the statistical distance between (P (0n), P (1n)) and a random pair of n-bit strings is 1
2n .

Moreover, B makes at most σ + 4d queries to E. Thus

Adv
prp
E (σ + 4d, t + O(1)) ≥ Adv

prp
E (B)

= Pr[K∗ $
←− {0, 1}n;BEK∗ → 1]− Pr[P

$
←− perm(n);BP → 1]

≥ Pr[K∗ $
←− {0, 1}n;A1-PC-MAC◦

d[E,K∗,G] → 1]

−Pr[(K,L)
$
←− {0, 1}2n;APC-MAC◦

d[EK ,L,G] → 1]−
1

2n

≥ Adv
vilprf
1-PC-MAC

◦
d[E,K∗,G](q, σ, t)

−Adv
vilprf
PC-MAC

◦
d[EK ,L,G](q, σ, t) −

1

2n

as desired. �

We similarly have that

Advmac
1-PC-MAC

◦
d[E,K∗,G](q, σ, t) ≤ Advmac

PC-MAC
◦
d[EK ,L,G](q, σ, t) + Adv

prp
E (σ + 4d, t′) +

1

2n
(36)

where t′ = t+O(1). The proof is identical to the proof of Proposition 1, with the modification that
B outputs 1 or 0 according to whether A succeeds in forging or not.

The issue with such a proposal is indeed not the loss of security but, rather, the loss of efficiency.
For example, Black and Rogaway once proposed a similar method for reducing the key length of
XCBC from 3n bits to n bits [9], but the more efficient methods of Iwata and Kurosawa, that use
only one key scheduling of the blockcipher, were eventually preferred [16,17].

The situtaion with PC-MAC-AES, however, is not quite the same. PC-MAC-AES is not efficient
anyway with respect to preprocessing. When d = 1, three applications of EK(·) are necessary to
compute the auxiliary key Kaux; when d = 5, 19 applications of EK(·) are required (and we envisage
using PC-MAC-AES with values of d closer to 5 than to 1). In such a case, the cost of two additional
applications of E under a different key seems relatively minor. Moreover, the computation of K
and L happens only once for the lifetime of the key: once K and L have been computed, K∗ may be
forgotten. Thus the memory requirements of the modified scheme are the same: only 2n bits of key
material need to be kept in memory from one application of the MAC to the next (or 2n+(4d−1)n
bits of key material if we wish to also keep the auxiliary key in memory, which is likely). In fact,

22

the modified scheme offers the added flexibility of keeping only n bits of key material in memory
between MAC applications, if this seems desirable, whereas the original scheme requires a minimum
of 2n bits—but there is no obligation to store K∗ in the modified scheme, if one wishes to simply
store K and L.

A main advantage of having a smaller key, besides the aesthetic value of minimalism, is the
possibility of reusing pre-existing key-exchange protocols and software that are designed or 128-bit
keys. Disadvantages include complicating the already fairly involved preprocessing stage of PC-
MAC-AES, as well as the (rather minor) loss in efficiency. Whether the advantages outweigh the
disadvantages may depend on implementation aspects that I am not qualified to comment on.

8 Cryptanalysis

In this section we briefly review some cryptanalytic results on PC-MAC-AES. Most of the contents
of this section is covered by the self-evaluation report [2] in a nearly similar amount of detail.

We note, at the onset, that there exist well-known forgery attacks on PC-MAC-AES of time
complexity 264, and, more generally, on all (deterministic) CBC-like MACs using a 128-bit state.
These are all based on finding inner collisions. For example, the classical extension attack of Preneel
and Oorschot [15] allows to forge a MAC value by finding two messages x, x′ with equal MACs;
chances are an inner collision has occured, which will allow the MAC of x′‖y to be computed from
the MAC of x‖y (assuming x, x′ have the same length).

More powerful attacks than forgery attacks have also been mounted, notably the second preim-
age attacks of Jia et al. [18]. However, all these attacks have time complexity 264, namely are based
in one way or another on birthday collisions, and it is no big surprise that all security breaks down
once birthday-many queries are made. Moreover, as stated, these attacks apply to all CBC-like
MACs, such as EMAC, XCBC, TMAC, OMAC, CMAC, PC-MAC and MT-MAC, and are therefore
not specifically interesting to PC-MAC-AES (whose provable security is anyway quite inferior to
264). In the two subsections that follow we briefly outline some attacks that are more specific to
PC-MAC-AES.

8.1 Differential cryptanalysis attack of Wang et al.

Wang et al. [20,23] detail some attacks that are applicable to MACs using the (simplified) 4-round
AES function. These MACs include Pelican [12], MT-MAC-AES [19] and PC-MAC-AES [19]. The
methods involve the use of near inner collisions and impossible differentials to recover an internal
state. As it applies to PC-MAC-AES, this attack requires query complexity 285.5 and offline time
complexity 2128. The attack recovers the full key of PC-MAC-AES (which is nontrivial since PC-
MAC-AES has a 256-bit key). Despite its novelty, the attack has completely impractical time
bounds and poses no apparent risk to the security of PC-MAC-AES.

We note that Wang et al. made certain corrections to their results in [21]. However, these
corrections were not relevant to the attack of PC-MAC-AES.

8.2 Side-channel attack of Biryukov et al.

Biryukov et al. [10] give a side channel attack on Alpha-MAC, a MAC based on the 4-round AES
function [11] which was a precursor of PELICAN [12] which is itself a precursor of PC-MAC-AES.
Their attack is quite efficient and allows so-called “selective” forgeries, with the exception of a

23

128-bit suffix of the message—this means the adversary can choose any message x ∈ (¶0 1♦128)+

and forge the MAC of x y for an n-bit value that is determined by x. As described, however,
this attack applies only to Alpha-MAC, and it indeed does not seem as if the attack transfers to
PELICAN [13] (let alone PC-MAC-AES).

9 Conclusion

PC-MAC-AES is a carefully designed MAC which offers an interesting mixture of provable security
and efficiency. In a sense it inherits these dual features (separately) from its two closest direct
ancestors, TMAC [16] and PELICAN [12].

While we originally found the existing provable security results on PC-MAC-AES to not offer
satisfactory levels of security (these securing only against adversaries of time complexity 232), we
found good security (up from 232 to 256) could be achieved after doing some modifications to the
proofs. (At this juncture, we would like to emphasize that all the “hard work” in the security proof
is done by Minematsu and Tsunoo [19]; our own contribution, while nontrivial, is very dependent
on their original insights.)

While security against adversaries of time complexity 256 is not quite as good as other comprable
MACs like OMAC (which achieve closer to 264), it seems sufficient. Moreover the known (non-
side-channel) attacks all have complexity 264, and it seems probable that 256 is still not the best
security provable. In particular, a better bound on the MEDP of the 4-round AES function would
immmediately imply a better security bound for PC-MAC-AES.

A main drawback of PC-MAC-AES is the complicated preprocessing stage and the large amount
of key material that must be kept in memory. Whether the gain in speed offered by PC-MAC-AES,
accrued over many MACs effected with the same key, offsets the disadvantages of the preprocessing
stage is something that practitioners will be better able to judge than me. (This might depend
on the device, the choice of d, the average number of messages MAC’ed with the same key, etc.)
The question of whether the proposed key length reduction to n bits described in Section 7 is
“worth it” or not (including the inconvenience of changing the specification) is also likely best left
to practitioners to decide.

While the differential cryptanalysis of PC-MAC-AES and related schemes seems to have gar-
nered sufficient attention from leading researchers, some concerns remain (on my part) with respect
to side channel attacks, as it is not clear to me whether any researchers in that area have closely
considered PC-MAC-AES. It may be good to get a second (short) opinion on this matter from
someone more knoweldgeable in the field, e.g one of the authors of [10]. However, it also worth
considering that SCA countermeasures devised for AES will quite likely apply to the AES round
function as well, and hence be deployable to the simplified 4-round function used by PC-MAC-AES.

10 Acknowledgements

I would like to thank Vincent Rijmen for helpful feedback.

24

References

[1] NEC Corporation, Specification of Cryptographic Technique PC-MAC-AES, 2010. Available
at http://www.cryptrec.go.jp /english/method.html.

[2] NEC Corporation, Self-evaluation Report for PC-MAC-AES, 2010. Available at
http://www.cryptrec.go.jp /english/method.html.

[3] NIST FIPS-197, http://csrc.nist.gov/publications/fips/fips197/fips197.pdf

[4] M. Bellare, R. Canetti and H. Krawczyk, Keying hash functions for message authentication,
CRYPTO 1996, LNCS vol. 1109 (Springer-Verlag), pp. 1–15.

[5] M. Bellare, O. Goldreich and A. Mityagin, The Power of Verification Queries in Message
Authentication and Authenticated Encryption, 2004, http://eprint.iacr.org.

[6] M. Bellare, J. Killian and P. Rogaway, The security of the cipher-block chaining message
authentication code, Journal of Computer and System Sciences, vol. 61, no. 3, Dec. 2006,
pp. 362–399.

[7] J. Black and P. Rogaway, A blockcipher mode of operation for parrelelizable message authen-
tication, EUROCRYPT 2002, LNCS vol. 2332 (Springer-Verlag), pp. 384–397.

[8] J. Black and P. Rogaway, CBC MACs for Arbitrary-Length Messages: The Three-Key Con-
structions, J. of Cryptology, vol. 18 (2005), no. 2, pp. 111–131.

[9] J. Black and P. Rogaway, Comments to NIST concerning AES modes of operations: A sugges-
tion for handling arbitrary-length messages with the CBC MAC, Second modes of operation

workshop, available at http://www.cs.ucdavis.edu/ rogaway.

[10] A. Biryukov, A. Bogdanov, D. Khovratovich and T. Kasper, Collision Attacks on AES-based
MAC: Alpha-MAC, Cryptographic Hardware and Embedded Systems–CHES 2007, LNCS 4727
(Springer-Verlag), pp. 166–180.

[11] J. Daemen and V. Rijmen, A New MAC Construction ALRED and a Specific Instance ALPHA-
MAC, FSE 2005, LNCS 3557 (Springer-Verlag), pp. 1–17.

[12] The PELICAN MAC function, IACR eprint archive (2005), http://eprint.iacr.org/2005/088

[13] J. Daemen and V. Rijmen, Refinement of the ALRED Construction and MAC Security Claims,
Information Security vol. 4 September 2010, pp. 149–157.

[14] J. Keliher and J. Sui, Exact maximum expected differential and linear cryptanalysis for two-
round Advanced Encryption Standard, IET Information Security, vol. 1, no. 2 (2007), pp. 53–
57.

[15] B. Preneel, P. C. van Oorschot, MDx-MAC and Building Fast MACs from Hash Functions,
CRYPTO 1995, LNCS 963, pp. 1–14.

[16] T. Iwata and K. Kurosawa, TMAC: Two-key CBC MAC, Topics in Cryptology — CT-RSA
2002, LNCS vol. 2271.

25

[17] T. Iwata and K. Kurosawa, OMAC: One-key CBC MAC, Fast Software Encryption 2003,
LNCS vol. 2887.

[18] K. Jia, X. Wang, Z. Yuan and G. Xu, Distinguishing attacks and second-preimage attacks on
the CBC-like MACs, Cryptology eprint archive, report 2008/542.

[19] K. Minematsu and Y. Tsunoo, Provably Secure MACs from Differentially-uniform Permuta-
tions and AES-based Implementations, FSE 2006, LNCS 4047 (Springer-Verlag), pp. 226–241.

[20] W. Wang, X. Wang and G. Xu, Impossible Differential Cryptanalysis of Pelican,
MT-MAC-AES and PC-MAC-AES, Cryptology ePrint Archive, Report 2009/005, 2009,
http://eprint.iacr.org/.

[21] S. Wu, M. Wang and Z. Yuan, A Flaw in the Internal State Recovery Attack on ALPHA-MAC,
Cryptology ePrint Archive, Report 2010/160, 2010, http://eprint.iacr.org.

[22] Z. Yuan, K. Jia, W. Wang and X. Wang, Distinguishing and Forgery Attacks on Alred and
its AES-based instance ALPHA-MAC, Cryptology ePrint Archive, Report 2008/516, 2008,
http://eprint.iacr.org.

[23] Z. Yuan, W. Wang, K. Jia, G. Xu and X. Wang, New Birthday Attacks on Some MACs based
on Block Ciphers, CRYPTO 2009, LNCS 5667 (Springer-Verlag), pp. 209–230.

26

