
Security Evaluation of PC-MAC-AES

February, 2011

Lei Wang (University of Electro-Communications)
Kazuo Sakiyama (University of

Electro-Communications)
Iwamasa Nishikado (Cyber Creative Institute)

Kazuo Ohta (University of Electro-Communications)

目 次

1. PC-MAC-AESの効率と安全性のトレードオフについての要旨

2. PC-MAC-AES の安全性評価（本文）

PC-MAC-AES の効率と安全性のトレードオフについて

の要旨

Summary On Efficiency/Security Tradeoff of PC-MAC-AES

PC-MAC-AESの効率と安全性のトレードオフ
についての要旨

本報告書では PC-MAC-AES 技術の妥当性を検証するために次の観点で検討
した．

PC-MAC構成法の安全性について
MAC構成技術の歴史的な流れにそって，MAC構成技術を図４のグループに分け
て，PC-MACに適用可能な攻撃法を網羅した（表１). PC-MAC固有の攻撃方法
Subkey-Recovery Attackと DIS-PC-MACEK(·),RP attack (Section 7参照)を発
見した。
提案された PC-MAC-AESでは，高速化を実現するために 4ラウンドの AES

（本来の AESは 10ラウンド）を構成要素として使用するので，PA-MACの構成
で 4 round AES を使った場合の安全性についても検討した．
その結果，第 8章に示す新しい攻撃法を発見した．この攻撃法は図 4で示す

CBC MAC配下のすべての構成法に対して有効であり，今回発見した攻撃方法は，
PC-MAC構成に対する固有の脆弱性ではない．
なお，今後も，PC-MAC-AES固有の攻撃方法が発見される可能性は残されて

いる．

補足: 本報告書で指摘したすべての攻撃法の計算量は，設計者によって与え
られた安全性証明のバウンド，すなわち如何なる攻撃に要する攻撃の下限値より
も大きな値であった．よって，これらの攻撃法は PC-MAC-AES の安全証明と矛
盾する，あるいはそれを否定するものではない．

PC-MAC-AESの効率について
ブロック長 lであるメッセージに対し、PC-MAC-AESは AESを 0.4 ∗ l ∼ 0.7 ∗ l
回使う。CBC MACは AESを l回使う。PC-MAC-AESは CBC MACより 1.4
∼ 2.5 倍速い。

CRYPTREC候補とするかの判断について
CMAC [16]と比較して，その優位性が確認できれば，CRYPTRECに採用して
よいと考える．
安全性の観点からは，Subkey-Recovery AttackとDIS-PC-MACEK(·),RP at-

tack (Section 7参照)が可能なので，PC-MAC構成は劣っている．速度の観点か
らは，PC-MAC-AESは CMACに比べて 1.4 ∼ 2.5 倍高速である1．

1CMACは一部で 4ラウンドの AESを使うと、CMACの方がコンパクトな実装が可能と思われ
るが、安全性証明ができなくなると思われる。両方式の比較は継続検討が必要と思われる．

4

Summary On Efficiency/Security Tradeoff of
PC-MAC-AES

In order to contribute to a fair judgment on PC-MAC-AES, we will make a
comparison between PC-MAC-AES [15] and three other MACs based on AES:
EMAC [1], MacDES [11]2 and TMAC [12], which are described in Figures 1, 2
and 3, respectively. We refer the specification of PC-MAC-AES to main body
of this report (Section 2). The reasons why we select these three MACs are:

I. each of these MACs uses two independent keys, which is the same with PC-
MAC-AES;

II. the differences between these MACs will be used by us to separate CBC
MAC variants into several groups (see Figure 4). We will discuss the
difference of the security margin (by proposing concrete attacks) among
these groups, whose result is summarized in Table 1.

1. High Efficiency of PC-MAC-AES

Among these MACs, the most efficient MAC is PC-MAC-AES, and the slowest
one is MacDES. The detailed argument is as follows.

Suppose that an input message (after padding) is l blocks long. We will
count the number of executions of AES (full version: 10 rounds). Moreover,
we will consider the complexity on average, and thus ignore the complexity of
pre-process.

• MacDES: l + 2 executions.

• EMAC-AES: l + 1 executions.

• TMAC-AES: l executions.

• PC-MAC-AES: suppose l = (d+1)× t+ s, where d is a positive integer as
a parameter of PC-MAC-AES, t and s are positive integers, t ≤ l

d+1 and
s ≤ d. The number of executions of AES is (1+0.4∗d)∗ t+0.4∗(s−1)+1

≤ (1+0.4∗d)∗l
d+1 + 0.4 ∗ d+ 1. Loosely speaking, PC-MAC-AES needs 0.4 ∗ l

∼ 0.7 ∗ l executions, which depends the value of d.

Therefore PC-MAC-AES is about 1.4 to 2.5 times faster than the other three
MACs.

2MacDES is designed based on the block cipher DES. Here for a comparison, we will
consider a MacDES variant which is based on AES.

5

K and K ′ are two independent secret keys.

Figure 1: EMAC

K and K ′ are two independent secret keys, and K ′′ is derived from K ′.

Figure 2: MacDES

K and K ′ are two independent secret keys.

Figure 3: TMAC

6

2. Security Margin Loss of PC-MAC-AES

Improving efficiency is usually with a loss of security margin. First of all, we
will discuss the security margin loss of PC-MAC [13], compared with EMAC [1],
MacDES [11] and TMAC [12]. Then we will discuss the security margin loss of
CBC MAC variants based on 4-round AES, compared with those based on full-
round AES. Finally we make a comparison between PC-MAC-AES and CMAC
[16], which was recommended for block-cipher-based authentication mode by
NIST in 2005, on the efficiency/security tradeoff.

2.1 Security Margin Loss of PC-MAC

PC-MAC seems not designed completely from scratch. It seems to have adopted
several design features of priorly proposed MACs. The historical development
from original CBC MAC [2] to PC-MAC is shown in Figure 4.

Figure 4: Historical Development of CBC MAC Variants

We will separate the security margin loss of PC-MAC into two cases.

• Loss because of adopting prior design features.

Namely the security loss is not restricted to just PC-MAC, but shared
with other priorly proposed MACs. We have summarized several features
of PC-MAC.

– On-the-fly. This feature is from original CBC MAC, and shared with
all its variants.

Loosely speaking, on-the-fly structure means that

1) message is divided to blocks;

2) blocks is hashed sequentially; and

3) each block is hashed only once.

7

– Suffix. This feature is from EMAC, and shared with its variants such
as XCBC [4], TMAC and OMAC [8]. EMAC and its variants differ
from original CBC MAC only in the last block cipher operation.

Loosely speaking, suffix structure means that the iteration sequences
of block ciphers for processing messageM2 and for partM2 ofM1||M2,
where M1 is a message of multiple-block length, are the same.

EMAC is a suffix MAC, while MacDES is a suffix-free MAC. And
the reason is explained in Figures 5 and 6.

The iteration sequences of block ciphers to process m1||m2 are the same:
EK ||EK ||EK′ .

Figure 5: EMAC is suffix

The iteration sequences of block ciphers to process m1||m2 are different:
EK ||EK′ ||EK ||EK′′ and EK ||EK ||EK′′ .

Figure 6: MacDES is suffix-free.

8

– Tweaking key. This feature is from XCBC, and shared with its vari-
ants such as TMAC and OMAC [8].

Loosely speaking, tweaking key means that a secret key is used to
XOR the input of the last block cipher operation.

XCBC uses two independent tweaking keys: one is for messages with
multiple blocks length and the other one is for messages with non-
multiple block length. Later TMAC made a modification, which uses
only one secret tweaking key, and the other tweaking key is derived
from it. PC-MAC follows the same way with TMAC.

• Loss because of new design features of PC-MAC-AES.

Namely the security loss is restricted to PC-MAC. We have summarize
one new feature of PC-MAC.

– Subkey generation algorithm. All the keys of auxiliary permutations
are generated by using the tweaking key and the block cipher.

In the following, we will discuss the security margin loss of PC-MAC in
detail. Again in order to contribute to a fair judgment on PC-MAC, we will
discuss the security margin loss (by pointing out concrete attacks) from original
CBC MAC to PC-MAC, which is also summarized in Table 1.

2.1.1 Security Margin Loss of CBC MAC and MacDES

With a complexity of the birthday bound, an attacker is able to carry out

• Distinguishing MAC from a random function. (Section 4.1)　
Attacker will identify an oracle of being either MAC or a random function.

• Existential Forgery Attack. (Section 4.2)
Attacker will provide a message/tag pair, where the message was not pri-
orly queried to MAC.

• Selective Forgery Attack. (Section 4.3)
Attacker will select a message she needs, and then forge a valid tag without
directly querying it to MAC.

2.1.2 Security Margin Loss of EMAC

With a complexity of the birthday bound, besides the above attacks, an
attacker is further able to carry out

• Internal-State-Recovery Attack. (Section 5.1)
Attacker will recover the value of an internal state of some message.

9

• Universal Forgery Attack. (Section 5.2)
Attacker is able to forge valid tags for any given message without querying
it to MAC.

• Low Complexity-on-Average Universal Forgery Attack. (Section 5.2)
Here by complexity-on-average, we mean the attacker will forge more than
one message, and we count the complexity of forging one message on
average.

Moreover, the attacker is also able to carry out

• Full-Key Recovery Attack. (Section 5.3)
Suppose the master key has k bits, and the tweaking key has n bits.
It takes 2n/2+1 queries, 2n/2+1 memory and 2k+1 + 2k computations to
recover both of them, which is faster than the brute-force attack.

2.1.3 Security Margin Loss of TMAC

With a complexity of the birthday bound, besides all the above attacks, an
attacker will further be able to carry out

• Partial-key Recovery Attack. (Section 6.1)
The secret key, which is used to tweak the last block, will be recovered.

• Low Complexity-on-Average Internal-State Recovery Attack. (Section
6.3)

Moreover, the attacker will be able to carry out

• Full-Key Recovery Attack Faster than the Attacks on EMAC. (Section
6.4)
There are two improved key-recovery attacks. The first approach is to save
memory, which needs 2 queries, 2 memory and 2k+1 computations. The
second approach is to save time complexity, which needs 2n/2+1 queries,
2n/2+1 memory and 2k + 2k/2+1 computations.

2.1.4 Security Margin Loss of PC-MAC

With a complexity of the birthday bound, besides the above attacks, an
attacker will be able to carry out

• Subkey-Recovery Attacks. (Section 7.1)
All the keys of auxiliary permutations will be recovered.

• Distinguishing a PC-MAC based on a dedicated block cipher, e.g. AES,
from PC-MAC based on random permutations. (Section 7.2)

10

Table 1: On Security Margin Loss of CBC MAC Variants
Birthday Bound Attacks (2n/2)

Features Applicable MACs Attack Scenario

On-the-fly; Most CBC MAC DISMAC,RF;
variants Existential forgery attack;

Selective forgery attack;

On-the-fly; EMAC; XCBC; DISMAC,RF;
Suffix; ANSI retail MAC; [3] Existential forgery attack;

TMAC, CMAC [16]; Selective forgery attack;
PC-MAC Internal-state recovery attack;

Universal forgery attack;
Low complexity-on-average
universal forgery attack;

On-the-fly; XCBC; TMAC; DISMAC,RF;
Suffix; CMAC; Existential forgery attack;
Tweaking key; PC-MAC Selective forgery attack;

Internal-state recovery attack;
Universal forgery attack;
Low complexity-on-average
universal forgery attack;

TMAC, CMAC; Low complexity-on-average
PC-MAC; Internal-State-Recovery Attack
TMAC; Partial-key Recovery Attack;
PC-MAC;

Specific Attacks on PC-MAC: Subkey-Recovery Attack;

Subkey Generation Algorithm DIS-PC-MACEK(·),RP;

Attack beyond Birthday Bounds (2k)
On-the-fly; EMAC; XCBC; Full-key recovery attack;
Suffix; ANSI retail MAC; (complexity: 2k+1)

TMAC; PC-MAC;
On-the-fly; TMAC; PC-MAC; Full-key recovery attack;
Suffix; (complexity: 2k)
Tweaking key;

We refer DISMAC,RF to as distinguishing a MAC from a random function,

and DIS-PC-MACEK(·),RP to as distinguishing PC-MAC based on EK(·) from
PC-MAC based on random permutations. Denote the length of tag and key as
n and k respectively.

Statement. All these attacks have complexities larger than the security bound
proved by the designers. Thus, these attacks don’t contradict with or disprove
the provable security bound of PC-MAC-AES.

11

2.2 Security Margin Loss of Using 4-Round AES

For a CBC MAC variant using 4-round AES, besides the attacks listed in Table
1, with a complexity of the birthday bound, an attacker is able to carry out

• Internal-state-recovery attack. (Section 8.3)

• Subkey-recovery attack. (Section 8.2)
The attacker is able to recover the round keys of 4-round AES.

Of course these attacks are applicable to PC-MAC-AES.

2.3 Comparison between CMAC and PC-MAC on Effi-
ciency/Security Tradeoff

NIST has recommended CMAC [16] for block-cipher-based authentication in
2005. Here we briefly make a comparison between CMAC and PC-MAC.

• On efficiency. For l blocks long messages, CMAC based on AES needs l
executions, while PC-MAC-AES needs 0.4 ∗ l ∼ 0.7 ∗ l executions. Thus
PC-MAC-AES is 1.4 ∼ 2.5 times faster than AES-based CMAC.

• On security. As shown in Figure 4, CMAC also have features: on-the-
fly, suffix and tweaking key. Thus the security margin difference be-
tween CMAC and PC-MAC will be the attacks based on new features
of PC-MAC, which are subkey-recovery and DIS-PC-MACEK(·),RP at-
tacks. Note CMAC does not have subkeys. Thus the security margin loss

from CMAC to PC-MAC will be DIS-PC-MACEK(·),RP attacks.

12

PC-MAC-AESの安全性評価

（本文）

Security Evaluation of PC-MAC-AES

(Main Body)

Contents

1 Backgrounds 21
1.1 Security Requirements on MAC 21
1.2 Common Attacks on MAC . 22

2 PC-MAC-AES 23
2.1 Specification . 23

2.1.1 AES . 23
2.1.2 PC-MAC . 24
2.1.3 PC-MAC-AES . 25

2.2 Rationale . 26
2.2.1 Hash-to-PRF to Build VIL-PRF 26
2.2.2 CBC Iteration to Build AUHF 27
2.2.3 Novelty Design of PC-MAC 27

3 Comparison Between PC-MAC-AES and Other Block-Cipher-
Based MACs 29
3.1 On-the-fly . 29
3.2 Suffix . 29
3.3 Tweaking Key . 30
3.4 New Features . 30

4 Type I of Attacks: Weakness of on-the-fly Structure 31

4.1 DISPC-MAC-AES, RF Attacks 31
4.1.1 Approach Using Internal Collisions 31
4.1.2 Approach Using Bijection of Permutation 32

4.2 Existential Forgery Attack . 33
4.3 Selective Forgery Attack . 33

5 Type II of Attacks: Weakness of Suffix Structure 35
5.1 Internal-State-Recovery Attack 35
5.2 Low Complexity-on-Average Universal Forgery Attack 36
5.3 Key Recovery Attack . 37

5.3.1 Approach Using Internal Collisions 37
5.3.2 Approach Using Internal-State-Recovery Attacks 38

6 Type III of Attacks: Weakness of Tweaking Keys 39
6.1 Partial-Key-Recovery Attack . 39
6.2 Universal Forgery Attack . 40
6.3 Low Complexity-on-Average Internal-State-Recovery Attack . . . 41
6.4 Full Key Recovery Attack . 41

6.4.1 Approach of Saving Memory 41
6.4.2 Approach of Saving Time 42

14

7 Attack of Type IV: Weakness of Subkey Generation Algorithm 43
7.1 Subkey-Recovery Attack . 43
7.2 DIS-PC-MACAES, RP Attacks . 44

8 Attacks of Type V: Weakness of AES-4R 46
8.1 Minimum Available Information 46
8.2 Subkey-Recovery Attacks . 47

8.2.1 Useful Properties of AES 48
8.2.2 How to Recover K4 . 49
8.2.3 Detailed Procedure of Recovering K4 50
8.2.4 How to Recover K3 . 52
8.2.5 How to Recover K2 . 53

8.3 Internal-State Recovery Attack 54

9 Conclusion 55
9.1 Our Contributions . 55
9.2 For CRYPTOREC Committee 56

15

Abstract of Main Body

This report will evaluate the security of PC-MAC-AES and its underlying
components. This report consists of 9 sections.

Section 1 will briefly introduce the backgrounds of Message Authentication
Code (MAC). More precisely, we will introduce the security requirements on
MAC, and common attack models on MAC.

Section 2 will briefly recall the specification of PC-MAC-AES and its design
rationale, which has been included in the designers’ report.

Section 3 will make a comparison between PC-MAC-AES and other block-
cipher-based MACs, and derives several interesting features: on-the-fly, suffix,
Tweaking key, which are shared by PC-MAC-AES and other MACs. On each
feature, we will specify MACs which share it with PC-MAC-AES. Moreover, we
derive new features of PC-MAC. This will contribute to a fair understanding of
the meaning of our attacks on PC-MAC-AES in Section 4 ∼ 7.

Sections 4 ∼ 7 will evaluate the security of PC-MAC-AES, which is the main
part of this report. We will describe distinguishing, forgery, internal-state-
recovery, and key-recovery attacks on PC-MAC-AES.

Previous Works. Strictly speaking, so far only two papers were published ex-
plicitly on the evaluation of PC-MAC-AES. One was published by Yuan
et al. in CRYPTO 2009 [20], which proposed internal-state-recovery and
full-key-recovery attacks. The other one was published by Jia et al. in
CANS 2009 [9], which proposed a forgery attack. However, PC-MAC-AES
shares similar structures with other MACs such as TMAC and CMAC.
Therefore previous published attacks on other MACs may also be appli-
cable to PC-MAC-AES.

• The designers have mentioned the possible applicability of
previous attacks, which were published to attack other MACs
instead of PC-MAC-AES, in their report. However, they
did not state which previous attacks can be adapted to at-
tack PC-MAC-AES and how much the complexity will be.

Our Works. We divide our evaluations into two cases.

Case I. We will summarize and describe several attacks including distin-
guishing, forgery and key-recovery attacks on PC-MAC-AES, most
of which were previously proposed to attack other prior MACs. In-
terestingly, our full-key-recovery attacks on PC-MAC-AES are more
efficient than Yuan et al.’s attack [20]. 3

Case II. We will propose several novel attacks on PC-MAC-AES, which
are based on its new features.

3On the other hand, Yuan et al.’s attack seems to have wider applications.

16

1. Subkey-recovery attacks.
Subkeys {U1, U2, . . . , Ud, K

xor
1 , . . . ,Kxor

d−1} are generated by using
L and EK(·). We showed that after obtaining the knowledge of
L, these subkeys can be easily recovered. The complexity is just
one chosen query for each subkey.

2. Distinguish PC-MAC-AES from PC-MAC-RP.
We will propose an attack procedure, which can distinguish PC-
MAC-AES from another PC-MAC instantiation with a Random
Permutation (RP).

Section 8 will focus on an interesting question:

what potential weakness will the usage of 4-round AES introduce to
CBC-MACs including PC-MAC-AES and its variants?

As we can see, the most attractive design point of PC-MAC-AES is using
4-round AES permutations instead of the full-round AES to process partial mes-
sage blocks, which will improve the efficiency, but still keep provable security.
The theoretical foundation of such replacement is that 4-round AES with in-
dependent round keys have similar differential property with full-round AES.
Besides PC-MAC-AES, several other MACs such as Pelican-MAC [6] are also
using 4-round AES to improve the efficiency. On the other hand, a question will
arise: will such replace weaken the security of CBC-MACs from any sense?

Our answer is yes. We will propose an attack on generic CBC-MAC variants
based on 4-round AES with independent round keys. More precisely, we are
able to recover the round keys and the internal state value with a complexity of
267 online queries and 240 offline computations.

Our attack implies an upper bound of subkey-recovery resistance for CBC-
MAC variants based on 4-round AES.

Section 9 will conclude this report.

17

Abbreviations and Notations

AES

• AES · · · · · · Advanced Encryption Standard

• P · · · · · · Plaintext
• C · · · · · · Ciphertext
• SB · · · · · · SubByte
• SR · · · · · · ShiftRow
• MC · · · · · · MixColumn

• ARK · · · · · · AddRoundKey

• AES-4R · · · · · · 4-Round AES with independent round keys

• Byte order of 4× 4 byte matrix:

• Internal state notation {S1, S2, . . . , S16} in AES-4R:

• Si,j · · · · · · Byte j of Si

• ∆Si,j · · · · · · Difference at byte Si,j

PC-MAC-AES

• MAC · · · · · · Message Authentication Code

• UF-CMA · · · · · · UnForgeability against Chosen Message Attack

• CBC · · · · · · Cipher Block Chaining

• PCH · · · · · · Periodic CBC Hash

• TGK(·) · · · · · · Tag Generation oracle

• VFK(·, ·) · · · · · · tag VeriFication oracle

18

• M · · · · · · Message

• T · · · · · · Tag
• K · · · · · · Secret key
• EK(·) · · · · · · AES with the seret key as K

• L · · · · · · Tweaking key

• {G1, . . . , Gd} · · · · · · AES-4R in PC-MAC-AES

• Ui (= U1
i ||U2

i ||U3
i) · · · · · · Round keys in Gi

• {Kxor
1 , . . . ,Kxor

d−1} · · · · · · Mask keys

Others

• ⊕ · · · · · · Bitwise XOR

• ≪ 1 · · · · · · Left shift by 1 bit

• a||b · · · · · · a concatenated with b

• |a| · · · · · · bit length of a

• [t] · · · · · · 128-bit binary encode of integer t

• MDP · · · · · · Maximum Differential Probability

• MEDP · · · · · · Maximum Expected Differential Probability

• AUHF · · · · · · Almost Universal Hash Function

• RF · · · · · · Random Function

• PRF · · · · · · Pseudo-Random Function

• RP · · · · · · Random Permutation

• A · · · · · · Attacker
• DISMAC,RF · · · · · · Distinguish MAC from RF

• DIS-PC-MACAES,RP · · · · · · Distinguish PC-MAC-AES from PC-
MAC-RP

19

List of Figures

1 EMAC . 6
2 MacDES . 6
3 TMAC . 6
4 Historical Development of CBC MAC Variants 7
5 EMAC is suffix . 8
6 MacDES is suffix-free. 8
7 One AES Round Operation ARK ◦MC ◦ SR ◦ SB(·) 23
8 Key Schedule Algorithm . 24
9 Periodic CBC Hash . 24
10 Auxiliary permutation Gi . 25
11 CBC iteration . 27
12 AUHF based on permutations with small MEDP 28
13 Selective forgery attack . 33
14 Internal state recovery attack . 35
15 Universal Forgery Attack . 36
16 Partial-key Recovery Attack . 39
17 Universal Forgery Attack . 40
18 Internal State Recovery Attack 41
19 Recover U1

1 . 43
20 AES-4R . 46
21 AES-4R to process i-th block . 47
22 2-Round Differential Path with a Probability 1 48
23 4-Round Differential Path Used in Our Attacks 49
24 First Differential path for recovering K3 52
25 Second Differential path for recovering K3 53
26 Differential path for recovering K2 54

20

1 Backgrounds

This section consists of

• Security requirements on MAC

• Common attacks on MAC

Message Authentication Code (MAC) is a symmetric-key cryptosystem, which
provides a short tag for a message to protect both its integrity and its authen-
ticity. Suppose Alice and Bob share a common key K, and agree on a tag
generation protocol TGK(·). When Alice sends a message M to Bob, she will
send both M and TGK(M). When Bob receives the message/tag pair, he will
compute TGK(M) using his own copy of K, and check whether it matches with
the tag from Alice. If it matches, Bob is assured that

1) the message is from Alice; and

2) the message is not modified by a third party.

1.1 Security Requirements on MAC

The most important security requirement on MAC is unforgeability : it should
be hard for a third party without the knowledge of the secret key K to generate
a valid tag for a message. The following is the formal definition of Unforgeability
against Chosen Message Attack (UF-CMA).

Definition 1.1.0.1 Let TG: {0, 1}k×{0, 1}∗ −→ {0, 1}n be a message authen-
tication code. For a randomly chosen key K ←− {0, 1}k, denote by TGK(·)
the tag generation oracle. Denote by V FK(·, ·) the tag verification oracle, which
outputs 1 if the message/tag pair is valid, and outputs 0 otherwise. If within
practical resource (time, memory etc) no attacker A with access to TGK(·) and
VFK(·, ·) can produce a message/tag pair of (M,T) satisfying the following two
conditions with a non-negligible probability:

• VFK(M,T) = 1; and

• A did not priorly query M to TGK(·),

we will say this MAC satisfies Unforgeability against Chosen Message Attack
(UF-CMA).

A random function (RF) surely can satisfy UF-CMA, because the success
probability of any attacker forging RF is at most 2−n. Due to the following
theorem, if a MAC is proven indistinguishable from RF, it satisfies UF-CMA.

21

Theorem 1.1.0.1 Denote by Advuf-cma(q, σ) the upper bound of success proba-
bility of a forgery attacker, where q and σ are the number of queries and the total

number of queried message blocks made by the attacker. Denote by Advprf(q, σ)
the upper bound of success probability of an attack distinguishing MAC from a
random function. The following relation holds.

Advuf-cma(q, σ) ≤ Advprf(q, σ) + q
2n

Thus, a stronger security property on MAC is Pseudo-Random Function.
The formal definition is as follows.

Definition 1.1.0.2 Let TG: {0, 1}k×{0, 1}∗ −→ {0, 1}n be a message authen-
tication code. For a randomly chosen key K ←− {0, 1}k, denote by TGK(·) the
tag generation oracle. Let RF (·) be a random function having the same domain
and range with TGK(·). If within practical resource no distinguisher can dis-
tinguish TGK(·) from RF (·) with a non-negligible probability, we will say this
MAC satifies Pseudo-Random Function (PRF).

1.2 Common Attacks on MAC

There are several types of attacks on MACs. Denote by A the attacker.

• DISMAC,RF: A will identify an oracle of either TGK(·) or RF. Namely
A aims to evaluate the PRF property of MAC.

• DISMAC-BC, MAC-RP: suppose a MAC iterates a block cipher (BC).A
will distinguish a block cipher (BC) from a random permutation (RP) un-
der the MAC environment. Namely, A will identify an oracle of MAC
iterating either BC or a RP.

• Forgery attack: A is able to access to TGK(·) and VFK(·, ·), and will
produce a valid tag T for a message M , which was not priorly queried to
TGK(·).
There are three types of forgery attacks.

– Existential forgery attack: no constraint is set on M . Thus M
could be any message, e.x. without any particular meaning.

– Selective forgery attack: M is selected by A.
– Universal forgery attack: for any message M , A can forge a valid

tag.

• Internal-state recovery attack: A is able to access to TGK(·), and
will recover an intermediate state of some message.

• Key recovery attack: A is able to access to TGK(·), and will recover
the secret key K.

22

2 PC-MAC-AES

This section consists of

• Specification of PC-MAC-AES

• Design rationale of PC-MAC-AES

• Comparison with other MACs

2.1 Specification

2.1.1 AES

The Advanced Encryption Standard (AES) [7] is a block cipher adopting the
Substitution-Permutation Network. AES has three variants differing in the key
size and the number of rounds. We will mainly deal with one variant, which
uses a 128-bit key and consists of 10 rounds. In the rest of this paper, we refer
AES to as this variant.

The plaintext block size is 128 bits and represented by a byte matrix of
size 4 × 4. The state matrix will go through a serial of rounds. Each round
applies the following four operations to update the state matrix., which is also
illustrated by Fig. 7.

SubBytes (SB) : apply a 8-bit to 8-bit S-box on each byte of the state matrix;

ShiftRows (SR) : cyclic left shift the i-th row of the state matrix by i bytes
(0 ≤ i ≤ 3);

MixColumns (MC) : multiply each column of the state matrix by a constant
4× 4 matrix.

AddRoundKeys (ARK) : XOR the state with a 128-bit subkey;

Figure 7: One AES Round Operation ARK ◦MC ◦ SR ◦ SB(·)

23

Moreover, the first round applies an additional ARK operation for whitening
the plaintext, which becomes ARK ◦MC ◦ SR ◦ SB ◦ ARK(·). The last round
omits the MC operation, which becomes ARK ◦ SR ◦ SB(·).

Figure 8: Key Schedule
Algorithm

AES transforms the 128-bit key k to eleven
128-bit subkeys {k0, k1, . . . , k10}. The algorithm is
as follows, which is also illustrated in Fig. 8. k
is divided into four 32-bit words W0||W1||W2||W3,
which is expanded to W0|| · · · ||W43, and regrouped
to construct ki: W4i||W4i+1||W4i+2||W4i+3. The
expansion algorithm is as follows.

for i = 4 to 43 do
if i = 0 mod 4 then

Wi = Wi−4 ⊕ Rotate(SB(Wi−1)) ⊕ C
else

Wi = Wi−1 ⊕ Wi−4

end if
end for

where Rotate(·) rotates the word by 8-bits, and
C is predetermined constant.

2.1.2 PC-MAC

PC-MAC [13] splits a message M into blocks m1||m2|| · · · ||ml. If ml is short of
a full block, it will be padded a single bit ‘1’ and a number of of ‘0’s.

PC-MAC iterates a structure named Periodic CBC Hash (PCH), which
is built by using a block cipher EK(·), a set of keyed auxiliary permutations
{G1, G2, . . . , Gd} (d: a positive integer) and a set of mask keys {Kxor

1 , . . . ,Kxor
d−1},

to hash m1|| · · · ||ml−1. Denote the output as Y . PCH is described in Figure 9.

Figure 9: Periodic CBC Hash

PC-MAC uses a sub-key L to process the last block ml. If ml is a full block,
a tag T is computed as EK(Y ⊕ (L • u) ⊕ml). Otherwise, T is EK(Y ⊕ (L •
u2)⊕ (ml||10 · · · 0)).

Note on secret keys. PC-MAC uses two independent keys K and L. {U1, U2,

24

. . . , Ud, K
xor
1 , . . . ,Kxor

d−1} are all generated by using EK(·) and L, where Ui is
the secret key in Gi.

2.1.3 PC-MAC-AES

PC-MAC-AES [15] instantiates EK(·) as AES with a 128-bit key and Gi as a 4-
round AES permutation with independent round keys (AES-4R).Gi is described
in Figure 10, which shows that Ui consists of 3 round keys, and thus is 384 bits
long.

Figure 10: Auxiliary permutation Gi

U j
i and Kxor

i are generated as follows:

• U j
i = EK(L⊕ [3 ∗ (i− 1) + j − 1]), and

• Kxor
i = EK(L⊕ [3d+ j − 1]),

where [t] is 128-bit binary encode of integer t.

L • u in finite field GF(2128) is detailed as below, and denoted as mul2(L) in
the rest of this report.

mul2(L) =

{
L≪ 1 if msb(L) = 0

(L≪ 1)⊕ (0120||10000111) else

A pseudo-code description of PC-MAC-AES is shown below in Algorithm 1.

25

Algorithm 1 PC-MAC-AES(K, L, M)

Pre-process:

for i = 1 to d do
U1
i → EK(L⊕ [3 ∗ (i− 1)])

U2
i → EK(L⊕ [3 ∗ (i− 1) + 1])

U3
i → EK(L⊕ [3 ∗ (i− 1) + 2])

end for
for i = 1 to d− 1 do
Kxor

i = EK(L⊕ [3d+ i− 1])
end for

Generate tag:

m1||m2|| · · · ||ml ←M
if l = 1 then
h← pad(m1)

else
s← 0128

for i = 1 to l − 1 do
w ← (i− 1) mod (d+ 1)
if w = 0 then
s← EK(s⊕mi)

else if w = 1 then
s← G1(s⊕mi)

else
s← Gi(s⊕Kxor

w−1 ⊕mi)
end if

end for
end if
if ml is 128 bit long then
h← mul2(L)⊕ h

else
h← mul2(mul2(L))⊕ h

end if
T ← EK(h)
return T

2.2 Rationale

2.2.1 Hash-to-PRF to Build VIL-PRF

A well-known approach, usually named Hash-to-PRF, to build a variable-input-
length pseudo-random function (VIL-PRF) is concatenating an Almost-Universal
Hash Function (AUHF) defined below and a fixed-input-length pseudo-random
function (FIL-PRF).

26

Definition 2.2.1.1 Let H be a function: {0, 1}k × {0, 1}∗ → {0, 1}n. For two
messages M and M ′, the colliding probability on H is

CollH(M,M ′) =
ΣK∈{0,1}kPr[H(K,M) = H(K,M ′)]

2k
.

If CollH(M,M ′) ≤ ϵ holds for any two messages M and M ′, we will say
that H is an ϵ-almost universal hash function (ϵ-AUHF).

Loosely speaking, for a new messages inputted into AUHF, the output will
be different from previous queried messages with an overwhelming probabil-
ity. Then after the re-mapping of PRF, the final output will be random and
uniformly distributed.

2.2.2 CBC Iteration to Build AUHF

An approach to build an AUHF is Cipher Block Chaining (CBC) iteration,
which is shown in Figure 11. CBC iteration has been proven to be AUHF
assuming F is a RF [4].

Figure 11: CBC iteration

2.2.3 Novelty Design of PC-MAC

Adopting Hash-to-PRF and CBC iteration, one can build a provable VIL-PRF,
which is a secure MAC. However, the assumption on F is too strong. When such
a MAC is practically implemented, one have to instantiate F to a complicated
function to preserve the security confidence.

PC-MAC introduces extra mask keys to reduce the assumption on the un-
derlying component to a weaker property Uniformly Differential. PC-MAC
requires that auxiliary permutations Gi has a negligible Maximum Expected
Differential Probability (MEDP).

Definition 2.2.3.1 Let G be a keyed permutation: {0, 1}k×{0, 1}n → {0, 1}n.
Maximum expected differential probability of G, denoted as MEDPG is defined
as follows:

MEDPG = max∆ ̸=0,∆′

ΣK∈{0,1}kPr[G(K,M)⊕G(K,M⊕∆)=∆′]

2k
,

where M is uniformly sampled in {0, 1}n.

27

One can build a AUHF using a set of permutations {Gi}, which have small
MEDP, as shown in Figure 12. Loosely speaking, with the usage of mask keys, an
attacker can only control the input difference of Gi, but without the knowledge
of the exact values. Since Gi has a small MEDP, the probability that an attacker
will produce a collision becomes small.

Figure 12: AUHF based on permutations with small MEDP

However, such an AUHF has a disadvantage. Numerous mask keys are
necessary if the input message is long. Thus PC-MAC proposes PCH. By setting
a parameter d, an execution of EK(·), which is assumed to be PRF, will be
involved every d + 1 message blocks. Thanks to PRF EK(·), PC-MAC can
repeadly use d auxiliary permutations {Gi}, without influencing the collision
resistance of AUHF.

As a summary, PC-MAC is proven to be PRF under two assumptions [13]:

• EK(·) is a psuedo-random permutation; and

• Gi(·) has a small MEDP.

PC-MAC-AES. AES is U.S. government standard and the most widely im-
plemented block cipher, which is a plausible instantiation of EK(·). Moreover,
AES-4R has been proven to be with a MEDP comparable to full AES [17, 10, 18],
and thus is a proper instantiation of Gi(·).

28

3 Comparison Between PC-MAC-AES and Other
Block-Cipher-Based MACs

This section will compare PC-MAC-AES with other CBC MAC
variants. Particularly we derive four features.

• on-the-fly: shared with all CBC MAC variants.

• suffix: shared with EMAC and its variants.

• tweaking key: shared with XCBC and its variants.

• new features of PC-MAC-AES.

This section will make a comparison between PC-MAC-AES and other block-
cipher-based MACs. More precisely, we will derive several feature of PC-MAC-
AES, and pointed out which MACs share the same features. Such a comparison
will contribute to a fair understanding of the weakness of PC-MAC-AES, which
will be discussed in Sections 4 ∼ 8.

3.1 On-the-fly

On-the-fly structure is defined as follows:

• a message will be splited into small blocks, which will be hashed sequen-
tially; and

• each block will be hashed only once.

Almost all the block-cipher-based MACs are variants of CBC MAC [2]. They
all share this feature.

3.2 Suffix

Suffix is defined as follows:

• for any message M1||M2, where M1 is a message of multiple-block length,
the iteration sequence of block ciphers for processing M2 will not change.

This feature is shared with EMAC [1] and its variants such as XCBC [4],
TMAC [12] and OMAC [8].

29

3.3 Tweaking Key

Tweaking key is defined as follows:

• one secret key will be used to XOR the input of the last block cipher
operations.

XCBC MAC [4] firstly introduced the usage of tweak keys. It uses two inde-
pendent tweak keys for full-last-block and non-full last block cases separately.
After that, TMAC [12] proposed a refinement to XCBC: only one tweak key L
is used, and the other tweak key is computed as L • u. PC-MAC follows the
same way with TMAC to tweak the last block, except that it actually uses L•u
and L • u2.

3.4 New Features

We will list two new features of PC-MAC-AES.

• Gi is AES-4R.

• Ui and Kxor
j are generated by EK(·) and L.

30

Statement.

Most attacks in Sections 4 ∼ 7 have been published to attack other MACs, which
were proposed earlier than PC-MAC (refer to papers [19], [5],[14],[9] etc.). We
mainly try to list all the attacks which are applicable to PC-MAC-AES, and
describe them in detail. Moreover, in order to contribute to a fair judgment on
the meaning of these attacks, we describe the security margin loss following the
development history from original CBC MAC to PC-MAC.

4 Type I of Attacks: Weakness of on-the-fly
Structure

This section consists of

• distinguishing attacks

– DISPC−MAC−AES,RF

• forgery attacks

– existential forgery attack

– selective forgery attack

Attacks of Type I are based on the weakness of on-the-fly structure, which
are shared by CBC MAC and its variants, and thus applicable to these CBC
MAC variants.

4.1 DISPC-MAC-AES, RF Attacks

We will describe two attack approaches, which distinguish PC-MAC-AES from
RF.

4.1.1 Approach Using Internal Collisions

PC-MAC-AES has one property due to the on-the-fly structure.

• If two different messages M and M ′ collide on PC-MAC-AES, namely
they have the same tag value. M ||m and M ′||m will also collide on it,
where || means concatenation and m can be any message.

31

However, RF does not have such a property. Thus PC-MAC can be distin-
guished from RF when a pair of colliding messages is found. Attack procedure is
detailed below. Suppose A is given an oracle O(·) of being either PC-MAC-AES
or RF.

1. Initialize a table T as empty.

2. Select a random message M , query it to O(·), and obtain a response T .

3. Check whether T has been included in T .

• Yes: derive the corresponding message/tag pair (M ′, T) in T .
• No: store (M,T) in T and repeat Steps 2 and 3.

4. Select a random message m.

5. Query M ||m to O(·), and obtain a response T1.

6. Query M ′||m to O(·), and obtain a response T2.

7. If T1 = T2, O(·) is PC-MAC. Otherwise, O(·) is RF.

Complexity. Due to the birthday attack, Steps 2 and 3 will be repeated 264

times to generate a colliding pair with a success probability 0.33.

4.1.2 Approach Using Bijection of Permutation

If the domain of PC-MAC-AES is restricted to {0, 1}128, it actually becomes a
permutation, and thus has no colliding message pairs. However, RF does not
have such a property. Thus PC-MAC-AES can be distinguished from RF when
a pair of 128 bits long colliding messages is found. Attack procedure is detailed
as below. Suppose A is given an oracle O(·) of being either PC-MAC-AES or
RF.

1. Initialize a table T as empty.

2. Initialize a counter C as 0.

3. Query C to O(·), and obtain a response T .

4. Check whether T has been included in T .

• Yes: O(·) is RF.
• No: if C ≤ 264, C ← C + 1, and repeat Steps 3 and 4. Otherwise,
O(·) is PC-MAC-AES.

Complexity. It needs 264 queries with a success probability 0.33.

Remark. Interestingly, this attack is not highly related to on-the-fly structure,
but can be regarded as weakness of using block ciphers.

32

4.2 Existential Forgery Attack

The distinguishing attack in Section 4.1.1 can be converted to an existential
forgery attack. After a pair of colliding messages M and M ′ is generated, A is
able to forge M ||m by querying M ′||m to PC-MAC-AES, where m can be any
message. Attack procedure is detailed below.

1. Initialize a table T as empty.

2. Select a random message M , query it to PC-MAC-AES, and obtain a
response T .

3. Check whether T is included in T .

• Yes: derive the corresponding message/tag pair (M ′, T) in T .
• No: store (M,T) in T and repeat Steps 2 and 3.

4. Select a random message m.

5. Query M ′||m to PC-MAC-AES, and obtain a response T1.

6. Output a valid tag T1 for M ||m, which was not priorly queried.

Complexity. It needs 264 queries with a success probability 0.33.

4.3 Selective Forgery Attack

Without loss of generality, suppose A selects a 2 blocks long message M (=
m1||m2). If a pair of colliding messages, as shown in Figure 13, are generated,
A has EK(m1)⊕m = EK(m′)⊕m2, which implies EK(m1)⊕m2 = EK(m)⊕m′.
Thus A is able to forge m1||m2 by querying m||m′ to PC-MAC-AES. Attack
procedure is detailed below.

Figure 13: Selective forgery attack

1. Initialize a table T as empty.

2. Select 264 random 128 bits long messages m (m ̸= m2), query m1||m to
PC-MAC-AES, and store the message/tag pairs in T .

33

3. Select a random 128 bits long message m′ (m′ ̸= m1), query m′||m2 to
PC-MAC-AES, and obtain a response T .

4. Check whether T has been included in T .

• Yes: derive the message pair (m1||m,T) from T ;
• No: repeat Steps 3 and 4.

5. Query m||m′ to PC-MAC-AES, and obtain a response T1

6. Output a valid tag T1 for m1||m2, which was not priorly queried.

Complexity. Steps 3 and 4 will be repeated 264 times with a success probability
0.63. The overall complexity is 265 queries.

Remark. This attack is a selective forgery attack, since A is able to select a
messageM , which is longer than 128 bits, and forge a valid tag without querying
it to PC-MAC-AES. However, this attack cannot forge 128 bits long messages,
and thus it is not a universal forgery attack.

34

5 Type II of Attacks: Weakness of Suffix Struc-
ture

This section consists of

• internal-state-recovery attack

• forgery attack

– low complexity-on-average universal forgery attack

• full-key recovery attack

Attacks of Type II are based on the weakness of suffix structure, which are
shared by EMAC and its variants, and thus applicable to them.

5.1 Internal-State-Recovery Attack

Without loss of generality, suppose A will recover the internal state right after
m1 of a message M (= m1|| · · ·), which is more precisely EK(m1). If a pair of
colliding messages, as shown in Figure 14, is generated, A has EK(m1)⊕m = m′,
which implies EK(m1) = m⊕m′. Thus A will know the value of EK(m1), which
is the internal state right after m1. Attack procedure is detailed below.

Figure 14: Internal state recovery attack

1. Initialize a table T as empty.

2. Select 264 random 128 bits long messages m, query m1||m to PC-MAC-
AES, and store the message/tag pairs in T .

3. Select a random 128 bits long message m′, query m′ to PC-MAC-AES,
and obtain a response T .

35

4. Check whether T is included in T .

• Yes: derive the message pair (m1||m,T) from T ;
• No: repeat Steps 3 and 4.

5. Output m⊕m′ as the value of EK(m1).

Complexity. Steps 3 and 4 will be repeated 264 times with a success probability
0.63. The overall complexity is 265 queries.

5.2 Low Complexity-on-Average Universal Forgery Attack

Without loss of generality, suppose A is going to forge a one-block message m.
Let M (= m1|| · · · ||md+1) be a random (d + 1)-block message. As shown in
Figure 15, M ||(PCH(M)⊕m) and m are a collision on PC-MAC-AES. Thus A
can forge a valid tag for m by querying M ||(PCH(M)⊕m). Attack procedure
is detailed below.

Figure 15: Universal Forgery Attack

1. Select a random (d + 1)-block message M , and another random message
M ′.

2. Recover the internal state right after M of PC-MAC-AES(M ||M ′), which
is PCH(M). Refer to Section 5.1 for the detailed procedure.

3. Query M ||(PCH(M)⊕m) to PC-MAC-AES, and obtain a response T .

4. Output a valid tag T for m, which was not priorly queried.

36

Complexity. The dominant complexity is from Step 2. Thus A makes 265

queries with a success probability 0.63.

Complexity on average. After PCH(M) is recovered, A only needs 1 query
to forge a message. Thus A is able to forge a heavy number of message with only
a negligible increasement of complexity, which will make the average complexity
low.

5.3 Key Recovery Attack

PC-MAC-AES has two 128-bit keys K and L. Thus a trivial attack will need
2256 computations to recover both K and L. However, it only needs around 2128

computations to recover them. There are two attacks based on the weakness of
the suffix iteration.

Remark. Besides suffix, these two attacks seem to also take advantage that
EMAC and its variants only use the second secret key to remodel the last block
operation of original CBC MAC.

5.3.1 Approach Using Internal Collisions

When a pair of colliding messages m1||m2 and m′
1||m′

2, which are 2 blocks
long, is generated, A has EK(m1) ⊕ m2 = EK(m′

1) ⊕ m′
2. Thus A is able to

exhaustively recover K without the knowledge of L. After K is recovered, A
will further exhaustively recover L using 1 message/tag pair. Attack procedure
is detailed below.

1. Generate a pair of 2-block long colliding messages m1||m2 and m′
1||m′

2 on
PC-MAC-AES. Refer to Section 4.1.1 for the detailed procedure.

2. Set a counter C as 0128.

3. Check whether AESC(m1)⊕m2 = AESC(m
′
1)⊕m′

2 holds.

• Yes: K = C.

• No: C ← C + 1. Repeat Step 3.

4. Query a one-block message m to PC-MAC-AES, and obtain a response T .

5. Set C as 0128.

6. Compute PC-MAC-AES(m) using recovered K and C as L, and check
whether it will be equal to T .

• Yes: L = C.

• No: C ← C + 1. Repeat Step 6.

37

7. Output K and L.

Complexity. Step 1 needs 265 queries with a success probability 0.63. Step 3
will be repeated 2128 times in the worst case. Similarly Step 6 will be repeated
2128 times in the worst case. Finally the overall complexity is 265 online queries
and 2129 offline computations.

5.3.2 Approach Using Internal-State-Recovery Attacks

When the internal state right after m1 of 2 blocks long message m1||m2 is
recovered, A is able to exhaustively recover K, and then exhaustively recover
L. Attack procedure is detailed below.

1. Select a random 2 blocks long message m1||m2, and recover the value of
EK(m1). The procedure is detailed in Section 5.1.

2. Set C as 0128.

3. Check whether EC(m1) = EK(m1).

• Yes: K = c

• No: C → C + 1 and repeat Step 3.

4. Exhaustively recover L. Refer to the attack procedure (Steps 5 and 6) in
Section 5.3.1.

5. Output K and L.

Complexity. Step 1 needs 265 online queries. Step 3 will be repeated 2128

times. Refer to Section 5.3.1, it needs 2128 computations to recover L. Overall,
it needs 265 queries and 2129 computations.

38

6 Type III of Attacks: Weakness of Tweaking
Keys

This section consists of

• partial-key-recovery attack

• forgery attacks

– (new) universal forgery attack

• low complexity-on-average internal-state-recovery attack

• (better) full-key recovery attack

Attacks of Type III are based on the weakness of using a secret key to tweak
the last block, which are shared by TMAC and its variants, and thus applicable
to them.

6.1 Partial-Key-Recovery Attack

When a pair of colliding messages, as shown in Figure 16, is generated, A has
m ⊕ mul2(L) = (m′||10 · · · 0) ⊕ mul2(mul2(L)), where m is 128 bits long, but
m′ is short of 128 bits long. Denote mul2(L) by X, and then X ⊕mul2(X) =
m ⊕ (m′||10 · · · 0) holds. A will get X = (m ⊕ (m′||10 · · · 0) • (u + 1)−1, and
further L = (m ⊕ (m′||1 · · · 0)) • (u + 1)−2. The attack procedure is detailed
below.

Figure 16: Partial-key Recovery Attack

1. Initialize a table T as empty.

2. Select 264 random 128-bit messages, query them to PC-MAC-AES, and
store the message/tag pairs in T .

39

3. Select a random message m′, which is short of 128 bits, query it to PC-
MAC-AES, and obtain a response T .

4. Check whether T has been included in T .

• Yes: derive the message/tag (m,T) in T .
• No: repeat Steps 3 and 4.

5. Output L = (m⊕ (m′||1 · · · 0)) • (u+ 1)−2.

Complexity. Steps 3 and 4 will be repeated 264 times with a success probability
0.63. Th overall complexity is 265 queries with a success probability 0.63.

6.2 Universal Forgery Attack

After A has the knowledge of L, universal forgery attack becomes trivial. With-
out loss of generality, suppose A will forge a non-full one block long message
m′, more precisely short of 128 bits. As shown in Figure 17, m⊕∆ and m′ is a
pair of colliding messages on PC-MAC-AES. Thus A can forge m′ by querying
m⊕∆ to PC-MAC-AES. Attack procedure is detailed below.

∆ means mul2(L) ⊕ mul2(mul2(L)), and m = m′||10 · · · 0.

Figure 17: Universal Forgery Attack

1. Recover L. The procedure is detailed in Section 6.1.

2. Compute ∆ as mul2(L) ⊕ mul2(mul2(L)).

3. Query m⊕∆ to PC-MAC-AES, and obtain a response T .

4. Output T as a valid tag for m′, which was not priorly queried.

Complexity. The dominant complexity is from Step 1. The complexity is 265

queries with a success probability 0.63.

40

6.3 Low Complexity-on-Average Internal-State-Recovery
Attack

After L is recovered, A can obtain internal state of a message trivially. Without
loss of generality, suppose A will recover the internal state after m1 for a 2
blocks long message m1||m2. As shown in Figure 18, A can query m1⊕mul2(L)
to PC-MAC-AES, which is actually EK(m1). Thus A has recovered the internal
state after m1 for m1||m2. Attack procedure is detailed below.

Figure 18: Internal State Recovery Attack

1. Recover L. The procedure is detailed in Section 6.1.

2. Query m1 ⊕mul2(L), and obtain a response T .

3. Output T as the internal state EK(m1).

Complexity. The dominant complexity is from Step 1. The overall complexity
is 265 queries with a success probability 0.63.

Complexity on average. After L is recovered, A only needs 1 query to obtain
an internal-state value of a message. Thus A is able to recover internal-state
values of a heavy number of messages with only a negligible increasement of
complexity, which makes the average complexity low.

6.4 Full Key Recovery Attack

L can be trivially computed afterK is recovered. Thus there is better time/memory
tradeoff compared with full-key-recovery attack of Type I.

6.4.1 Approach of Saving Memory

Guessing the value of K, A can compute the corresponding value of L by us-
ing one message/tag pair, and verify the correctness of guess by using another
message/tag pair. By exhaustively guessing K, A will recover both K and
L. Throughout the attack, A only needs to memorize two message/tag pairs.
Attack procedure is detailed below.

41

1. Select two random 128 bits long messages m and m′, query them to PC-
MAC-AES, and obtain responses T and T ′ respectively.

2. Set a counter C as 0128.

3. Compute (E−1
C (T)⊕m) • u−1.

4. Check whether T ′ = EC(m
′ ⊕ (E−1

C (T)⊕m)) holds.

• Yes. K = C, and L = (E−1
C (T)⊕m) • u−1.

• No. C ← C + 1, and repeat Steps 3 and 4.

5. Output K and L.

Complexity. Steps 3 and 4 will be repeated 2128 times in the worst case, and
each times needs 2 computations. Overall, the complexity is 2129. Interestingly,
A only needs to memorize 2 message/tag pairs.

6.4.2 Approach of Saving Time

A will follow the procedures in Section 5.3 to recover K first, and then compute
the value of L trivially. Attack procedure is detailed below.

1. Recover K using internal-state-recovery attacks. Refer to Section 5.3.2 for
detailed procedure.

2. Compute L as (E−1
K (T)⊕m) •u−1, where (m,T) is a message/tag pair of

PC-MAC-AES.

3. Output K and L.

Complexity. The complexity is reduced to 2128. A has to memorize 265

message/tag pairs.

42

7 Attack of Type IV: Weakness of Subkey Gen-
eration Algorithm

This section consists of

• Subkey-recovery attack

• DIS-PC-MACAES, RP attack

Attacks of Type IV will discuss the weakness introduced by new feature of
PC-MAC-AES.

7.1 Subkey-Recovery Attack

After L is recovered, A can recover {Ui} and {Kxor
i } trivially. Here pick U1

as an example. U1 (= U1
1 ||U2

1 ||U3
1) is generated as follows: U1

1 = EK(L);
U2
1 = EK(L⊕ [1]), and U3

1 = EK(L⊕ [2]) respectively. A can query a one-block
message L⊕mul2(L) to PC-MAC-AES, which is shown in Figure 19, to obtain
the value of U1

1 . Similarly A will recover U2
1 and U3

1 . Thus U1 is recovered.
Attack procedure is detailed below.

Figure 19: Recover U1
1

1. Recover L. The procedure is detailed in Section 6.1.

2. Set i as 1.

3. Recover Ui as follows.

(a) Query L ⊕ [3 ∗ (i − 1)] ⊕ mul2(L) to PC-MAC-AES, and obtain a
response as U1

i .

43

(b) Query L⊕ [3 ∗ (i− 1) + 1]⊕mul2(L) to PC-MAC-AES, and obtain
a response as U2

i .

(c) Query L⊕ [3 ∗ (i− 1) + 2]⊕mul2(L) to PC-MAC-AES, and obtain
a response as U3

i .

4. Set i← i+ 1. If i ≤ d, repeat Steps 3 and 4.

5. Set j as 1.

6. Query L⊕ [3∗(d−1)+j]⊕mul2(L) to PC-MAC-AES to obtain a response
as Kxor

j .

7. Set j ← j + 1. If j ≤ d− 1, repeat Steps 6 and 7.

8. Output {Ui} and {Kxor
i }.

Complexity. The dominant complexity is from recovering L. The overall
complexity is 265 queries.

7.2 DIS-PC-MACAES, RP Attacks

A is able to trivially distinguish PC-MAC-AES from PC-MAC-RP after recov-
ering L, {Ui} and {Kxor

i }. Since A knows the value of L, she will be able to
recover internal state EK(m) for a 2 blocks long message m||m′ easily. With
the knowledge of {U1} and {Kxor

i }, A is able to generate a colliding message
pair on PC-MAC-AES. However, PC-MAC-RP does not have such a property.
Thus A will be able to distinguish PC-MAC-AES from PC-MAC-RP. Attack
procedure is detailed below. Denote the given oracle as O(·), which is either
being PC-MAC-AES or PC-MAC-RP.

1. Suppose O(·) is PC-MAC-AES. Recover L, {Ui} and {Kxor
i }. Procedure

is detailed in Sections 6.1 and 7.1.

2. Select a random 128 bits message m1, query m1 ⊕ L to O(·), and obtain
a response t.

3. Select a random 128-bit message m2, and compute y = G1(m2 ⊕ t).

4. Select another random 128-bit message m′
2 (m′

2 ̸= m2), and compute
y′ = G1(m

′
2 ⊕ tT).

5. Select a random 128-bit message m3, and compute m′
3 = m3 ⊕ y ⊕ y′.

6. Query m1||m2||m3 and m1||m′
2||m′

3 to O(·), and obtain responses T and
T ′.

7. Check where T = T ′ holds.

• Yes: O(·) is PC-MAC-AES.

44

• No: O(·) is PC-MAC-RP.

Complexity. The dominant complexity is from recovering L. Thus the overall
complexity is 265 queries.

45

8 Attacks of Type V: Weakness of AES-4R

This section consists of

• a subkey-recovery attack on a CBC MAC vari-
ant using AES-4R

• an internal-state-recovery attack

Attacks of Type V is to deal with an interesting question:

Will using AES-4R weaken the security of a CBC MAC variant from any
sense?

Our answer is yes. We will propose a subkey recovery attack on a CBC MAC
variant using AES-4R. AES-4R is detailed in Figure 20. More precisely we will
recover the subkeys K2, K3 and K4.

Figure 20: AES-4R

8.1 Minimum Available Information

All CBC MACs share a common character on-the-fly structure. Suppose a CBC
MAC will use AES-4R to process i-th block of input messages, which is shown
in Figure 21.

46

Figure 21: AES-4R to process i-th block

We will show how to obtain the output difference of AES-4R for a chosen
input difference with a complexity of 265 queries. The main idea is to generate
a pair of colliding messages, which only differs at i-th and (i+1)-th blocks, and
difference of i-th block is equal to the chosen input difference of AES-4R. We
can get that the corresponding output difference of AES-4R should be equal to
the difference of (i+1)-th blocks. Attack procedure is detailed belwow. Suppose
the chosen input difference of AES-4R is ∆.

1. Initialize a table T as empty.

2. Select i random blocks m1, . . ., mi.

3. Compute m′
i = mi ⊕∆.

4. Select 264 random block m, and query m1||m2|| · · · ||mi−1||mi||m to MAC,
and obtain corresponding tags. Store the message/tag pairs in T .

5. Select a random block m′, and query m1||m2|| · · · ||mi−1||m′
i||m′ to MAC,

and obtain a corresponding tag T .

6. Check whether T has been included in T .

• Yes: derive the message/tag pair (m1||m2|| · · · ||mi−1||mi||m, T) from
T .
• No: repeat Steps 5 and 6.

7. Output m⊕m′ as the corresponding output difference of AES-4R.

Complexity. Steps 5 and 6 will be repeated 264 times with a success probability
0.63. The overall complexity is 265 queries with a success probability 0.63.

8.2 Subkey-Recovery Attacks

With the knowledge of output difference for a chosen input difference on AES-
4R, we will show how to recover subkeys.

47

8.2.1 Useful Properties of AES

We will list several properties of AES which will be used in our attacks.

Property 1. The branch number of MC is 5.

Property 2. Any 4 byte differences of input and output of MC will uniquely
determine the remaining 4 byte differences.

Property 3. The following 2 round differential path in Figure 22 is with a prob-
ability 1, where byte in white color has no difference and byte in grey color has
a non-zero difference.

Figure 22: 2-Round Differential Path with a Probability 1

Hereafter, we will refer non-active byte to as byte with a zero difference, and
active byte to as byte with a non-zero difference.

Property 4. For the 2-round differential path in Figure 22, the output byte
differences after 2nd MC essentially only depend on bytes 0, 5, 10 and 15 of the
pair inputs.

Proof. Let (x1, x
′
1) and (x2, x

′
2) be two pairs of inputs satisfying

• each pair differs at byte 0;

• the differences at byte 0 are equal for the two pairs;

• bytes 0, 5, 10 and 15 are equal for x1 and x2.

From the above conditions, we can trivially get that bytes 0, 7, 10 and 13 of
internal state after 2nd SR are still equal for x1 and x2. The same situation
happens for x2 and x′

2. Thus we get that the byte differences after 2nd SR are
equal for the two pairs. Due to linearity of MC transformation, the byte differ-
ences after 2nd MC will also be equal for the two pairs. Therefore Property 4
has been proven.

Property 5. for a pair of input difference ∆i and output difference ∆o, 2 corre-
sponding values X satisfying SB(X)⊕ SB(X ⊕∆i) = ∆o can be derived with a
probability of nearly 0.5 by looking up the differential distribution table of S-box.

48

8.2.2 How to Recover K4

Our attack is based on a 4-round differential path in Figure 23, which has a
probability 1 following Property 3. The main novelty of our attack is as follows.

Figure 23: 4-Round Differential Path Used in Our Attacks

Let (m1,m
′
1), (m2,m

′
2) and (m3,m

′
3) be three pairs satisfying the following

three conditions.

• each pair differs at byte 0; Thus the differential propagation for each pair
following the path in Figure 23.

• the difference at byte 0 are equal for the three pairs;

• the values of bytes 0, 5, 10 and 15 are equal for m1, m2 and m3.

From Property 4, these pairs share the same byte differences at State S8.
We extend (m1,m

′
1), (m2,m

′
2) and (m3,m

′
3) to five pairs {(m1,m

′
1), (m2,m

′
2),

(m3,m
′
3), (m1,m2), (m1,m3)}, and obtain the byte difference at State S16 for

each pair.
Then we will compute the byte difference at State S14 for these five pairs

due to the linearity of SR−1 ◦MC−1(·).
Finally we will recover State S14 and k4 column by column. Following the

dotted computation in Figure 23, by guess one column of S14 and K4, we will
be able to compute differences of byte 0, 5, 10 and 15 of State S9 for three pairs
(m1,m

′
1), (m2,m

′
2) and (m3,m

′
3), which should be equal. For a false guess, the

probability of satisfying the property is 2−64. In total, there are 264 freedom.

49

Therefore only the correct value will be left. Similarly we can recover the other
columns. Thus K4 will be recovered.

Moreover, we use two ideas to reduce the complexity.

Idea I. We do not need to guess a column of K4. First we will compute the
byte difference of a diagonal at State S10 by guessing one column of S14.
Then we determine the value of each byte independently. Finally we can
compute the value of the column of K4. In such a manner, the complexity
becomes 240 from 264.

Idea II. After one column is recovered, actually the byte difference at State 9
has been uniquely determined. Thus it will be much easier to recover the
following three columns.

8.2.3 Detailed Procedure of Recovering K4

Notations. (m1,m
′
1), (m2,m

′
2) and (m3,m

′
3) are three pairs following the

differential path in Figure 23. Moreover, m1, m2 and m3 share the same values
of bytes 0, 5, 10, and 15. Denote States ofm1, m

′
1, m2, m

′
2, m3 andm′

3 as S
1
1∼16,

S1′

1∼16, S
2
1∼16, S

2′

1∼16, S
3
1∼16 and S3′

1∼16 respectively. Denote Byte j of State St
i as

St
i,j . Denote State difference of pairs (m1,m

′
1), (m2,m

′
2), (m3,m

′
3), (m1,m2),

(m1,m3) as ∆S1,1
1∼16, ∆S2,2

1∼16, ∆S3,3
1∼16, ∆S1,2

1∼16 and ∆S1,3
1∼16 respectively. Denote

difference of byte j in ∆St1,t2
i as ∆St1,t2

i,j .

Attack Procedure.

1. Select three message pairs (m1,m
′
1), (m2,m

′
2) and (m3,m

′
3) satisfying the

conditions detailed in Section 8.2.2.

2. Obtain ∆S1,1
16 , ∆S2,2

16 , ∆S3,3
16 , ∆S1,2

16 and ∆S1,3
16 . The procedure is detailed

in Section 8.1.

3. Inversely compute ∆S1,1
14 , ∆S2,2

14 , ∆S3,3
14 , ∆S1,2

14 and ∆S1,3
14 .

4. Guess the values of bytes S1
14,0, S

1
14,4, S

1
14,8 and S1

14,12.

5. Compute the values of bytes S1
13,0, S

1
13,4, S

1
13,8 and S1

13,12.

6. Compute the values of bytes S1′

14,0, S
1′

14,4, S
1′

14,8 and S1′

14,12 since ∆S1,1
14 is

known.

7. Compute the values of bytes S1′

13,0, S
1′

13,4, S
1′

13,8 and S1′

13,12.

8. Compute ∆S1,1
13,0, ∆S1,1

13,4, ∆S1,1
13,8 and ∆S1,1

13,12.

9. Compute ∆S1,1
10,0, ∆S1,1

10,5, ∆S1,1
10,10 and ∆S1,1

10,15 due to the linearity of SR,
MC and ARK.

10. Compute the values of bytes S2
14,0, S

2
14,4, S

2
14,8 and S2

14,12 since ∆S1,2
14 is

known.

50

11. Compute the values of bytes S2′

14,0, S
2′

14,4, S
2′

14,8 and S2′

14,12 since ∆S2,2
14 is

known.

12. Compute ∆S2,2
10,0, ∆S2,2

10,5, ∆S2,2
10,10 and ∆S2,2

10,15, similarly with Steps 5 ∼ 9.

13. Compute ∆S1,2
10,0, ∆S1,2

10,5, ∆S1,2
10,10 and ∆S1,2

10,15.

14. Compute the values of bytes S3
14,0, S

3
14,4, S

3
14,8 and S3

14,12 since ∆S1,3
14 is

known.

15. Compute the values of bytes S3′

14,0, S
3′

14,4, S
3′

14,8 and S3′

14,12 since ∆S3,3
14 is

known.

16. Compute ∆S3,3
10,0, ∆S3,3

10,5, ∆S3,3
10,10 and ∆S3,3

10,15.

17. Compute ∆S1,3
10,0, ∆S1,3

10,5, ∆S1,3
10,10 and ∆S1,3

10,15.

18. Guess the value of byte S1
10,0.

19. Compute the values of bytes S1′

10,0, S
2
10,0, S

2′

10,0, S
3
10,0 and S3′

10,0.

20. Compute the values of bytes S1
9,0, S

1′

9,0, S
2
9,0, S

2′

9,0, S
3
9,0 and S3′

9,0.

21. Check whether ∆S1,1
9,0 = ∆S2,2

9,0 = ∆S3,3
9,0 holds.

• Yes: the guess of S1
10,0 at Step 18 is correct.

• No: the guess of S1
10,0 at Step 18 is wrong.

If every candidate value of S1
10,0 has been tried, the guess of the

column of S1
14 is wrong. Guess next candidate value at Step 4 and

repeat Steps 4 ∼ 21.
Otherwise, guess next candidate value at Step 18, and repeat Steps
19 ∼ 21.

22. Recover the values of bytes S1
10,5, S

1
10,10 and S1

10,15 similarly with Step
18 ∼ 21, which also determines the values of bytes S1

14,0, S
1
14,4, S

1
14,8 and

S1
14,12.

23. Recover bytes 0, 4, 8 and 12 of K4.

24. Compute the values of bytes S1
9,0, S

1
9,5, S

1
9,10 and S1

9,15.

25. Compute the values of these bytes of S1′

9 .

26. Compute the values of ∆S1,1
9,0 , ∆S1,1

9,5 , ∆S1,1
9,10 and ∆S1,1

9,15. Then ∆S1,1
8,0 ,

∆S1,1
8,5 , ∆S1,1

8,10 and ∆S1,1
8,15 are known.

51

27. Determine the values of ∆S1,1
8 (=∆S1,1

9).

This is because of Property 2. For the difference propagation ∆S1,1
7

MC−−−→
S1,1
8 in Figure 23, 4 byte differences of each column has been determined,

and thus the remaining four byte difference can be computed. For exam-
ple, for the first column, ∆S1,1

7,4 , ∆S1,1
7,8 , ∆S1,1

7,12 and ∆S1,1
8,0 are determined.

28. Recover the values of the remaining bytes of S1
14 and K4 similarly with

Steps 4 ∼ 23.

Note that the values of ∆S1,1
9 has been determined at Step 27. Thus when

recover the other bytes of S1
10, there is no need to carry out guess-the-verify

approach (Steps 18 ∼ 21). Instead, it will be recovered by looking up the
differential distribution table of S-box. This will save time complexity.

29. Output the values of K4 and S1
14.

Complexity. At Step 2, less than 267 queries is necessary. The memory re-
quirement is less than 266. At Steps 4 ∼ 23, the time complexity is around
240. At Steps 28, the time complexity is around 232. Overall, the complexity of
recovering K4 is 267 online queries and 240 offline computations. The memory
requirement is 266.

Remark. This attack is also an internal-state-recovery attack.

8.2.4 How to Recover K3

After K4 is recovered, we will recover K3 using two differential paths in Fig-
ures 24 and 25. The main novelty of our attacks is as follows.

Figure 24: First Differential path for recovering K3

52

Figure 25: Second Differential path for recovering K3

Let m be a message used for recovering K4. We know that during recovering
K4, the internal states S9∼16 of m are also recovered. Select two pairs (m,m′)
and (m,m′′) satisfying the input differences of differential paths in Figures 24
and 25 respectively. For the pair (m,m′), first recover the output difference
following the procedure in Section 8.1, which also determine the difference at
State S6. Then guess the value of bytes S1,0, S1,4, S1,8 and S1,12 of m, which
will determine the difference at State S5. By checking the input and output

differences of S-box during S5
SB−−→ S6, 2

16 candidate values for S5 and S6 of
m will be left with a probability 2−16. In total, by exhaustively guessing bytes
S1,0, S1,4, S1,8 and S1,12 of m, 232 candidate values for S5 and S6 of m will be
left. Each candidate value will contribute to a candidate value of K3. Finally
we carry out similar procedure for the other pair (m,m′′), and obtain another
232 candidate values of K3. The colliding value will be the correct value of K3.
Moreover, we have also recovered the values of S1,0, S1,1, S1,4, S1,5, S1,8, S1,9,
S1,12 and S1,13 of m.

Comlexity. It needs 266 online queries, and 232 computations. The memory
requirement is 264.

8.2.5 How to Recover K2

After K3 and K4 are recovered, we will recover K2 using the differential path
in Figure 26. The main novelty is as follows.

53

Figure 26: Differential path for recovering K2

Let m be a message used for recovering K4 or K3. The internal state S5∼16

for m has been recovered. Moreover, bytes S1,0, S1,1, S1,4, S1,5, S1,8, S1,9, S1,12

and S1,13 for m have been recovered. Select two message pairs (m,m′) and
(m,m′′) satisfying the input difference of the differential path in Figure 26. For
the pair (m,m′), first recover the output difference following the procedure in
Section 8.1, which also determine the difference at State S2. By checking the

input and output differences of S-box during S1
SB−−→ S2, 2

8 candidate values
for S1 and S2 of m will be left, and each candidate value will contribute to a
candidate value of K2. Finally we carry out similar procedure for the other pair
(m,m′′), and obtain another 28 candidate values of K2. The colliding value will
be the correct value of K2.

Complexity. It needs 266 online queries and negligible offline computations.
The memory requirement is 264.

8.3 Internal-State Recovery Attack

Refer to Remark in Section 8.2.3.

54

9 Conclusion

This section consists of

• summarization of our contributions.

• words for CRYPTOREC Committee.

This report has evaluated the security of PC-MAC-AES and its underlying
component AES-4R.

9.1 Our Contributions

The high-level overview of our contributions is as follows.

First of all, we listed all the attacks applicable to PC-MAC-AES. Strictly speak-
ing, so far only two papers were published explicitly on the evaluation of PC-
MAC-AES to our best knowledge. One is published by Yuan et al. in CRYPTO
2009 [20], which proposed internal-state-recovery and full-key-recovery attacks.
The other one is published by Jia et al. in CANS 2009 [9], which proposed a
forgery attack. However, PC-MAC shares similar structure with other MACs
such as EMAC and TMAC. Therefore previous published attacks on other
MACs may be also applicable to PC-MAC-AES.

• The designers have mentioned such event in their submission
report [15]. However, they did not state which previous attacks
can be adapted to attack PC-MAC-AES and how much the com-
plexity will be.

We summarized and formalized several attacks including distinguishing, forgery
partial-key-recovery and full-key-recovery attacks on PC-MAC-AES. Interest-
ingly, our full-key-recovery attacks on PC-MAC-AES are more efficient than
Yuan et al.’s attack [20].

Moreover, we successfully find several attacks based on the weakness of new
feature of PC-MAC-AES, which reveals the security margin loss of PC-MAC-
AES compared with previous proposed MACs. The details are given below.

1. Subkey-recovery attacks.

Subkeys {U1, U2, . . . , Ud, K
xor
1 , . . . ,Kxor

d−1} are generated by using L and
EK(·). We showed that after obtaining the knowledge of L, these subkeys
can be easily recovered. The complexity is just one chosen query for each
subkey.

55

2. Distinguish PC-MAC-AES from PC-MAC-RP.

We will firstly propose an attack procedure, which can distinguish PC-
MAC-AES from another PC-MAC instantiation with a Random Permu-
tation (RP).

Secondly, we discuss about an interesting question:

what potential weakness will the usage of 4-round AES introduce to
CBC-MACs including PC-MAC-AES and its variants?

As we can see, the most attractive design point of PC-MAC-AES is using
4-round AES permutations instead of the full-round AES to process partial mes-
sage blocks, which will improve the efficiency, but still keep provable security.
The theoretical foundation of such replacement is that 4-round AES with in-
dependent round keys have similar differential property with full-round AES.
Besides PC-MAC-AES, several other MACs such as Pelican-MAC are also using
4-round AES to improve the efficiency. On the other hand, a question will arise:
will such replace weaken the security of CBC-MACs from any sense?

Our answer is yes. We proposed an attack on generic CBC-MAC variants
based on 4-round AES with independent round keys. More precisely, we are
able to recover the round keys and the internal state value with a complexity of
267 online queries and 240 offline computations.

Interestingly, our results imply an upper bound of subkey-recovery resistance
for CBC-MACs based on 4-round AES.

9.2 For CRYPTOREC Committee

We made a comparison between CMAC [16], which was recommended by NIST
for block-cipher-based authentication in 2005, and PC-MAC-AES.

• From the view of security.

From our subkey-recovery and DIS-PC-MACEK(·),RP. attacks, PC-MAC-
AES has a weaker security margin than CMAC.

• From the view of efficiency.
PC-MAC-AES is about 1.5 ∼ 2.5 times faster than CMAC.

56

References

[1] Integrity Primitives for Secure Information Systems, Final Report of RACE
Integrity Primitives Evaluation RIPE-RACE 1040, volume 1007 of Lecture
Notes in Computer Science. Springer, 1995.

[2] ISO/IEC 9797-1. Information technology – security techniques – message
authentication codes (macs) – part 1: Mechanisms using a block cipher.
Technical report, International Organization for Standards.

[3] American Bankers Association. Ansi x9.19, financial institution retail mes-
sage authentication. 1986.

[4] John Black and Phillip Rogaway. Cbc macs for arbitrary-length messages:
The three-key constructions. In Mihir Bellare, editor, CRYPTO, volume
1880 of Lecture Notes in Computer Science, pages 197–215. Springer, 2000.

[5] Karl Brincat and Chris J. Mitchell. New cbc-mac forgery attacks. In Vijay
Varadharajan and Yi Mu, editors, ACISP, volume 2119 of Lecture Notes
in Computer Science, pages 3–14. Springer, 2001.

[6] Joan Daemen and Vincent Rijmen. The pelican mac function. Cryptology
ePrint Archive, Report 2005/088. http://eprint.iacr.org/.

[7] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 2002.

[8] Tetsu Iwata and Kaoru Kurosawa. Omac: One-key cbc mac. In Thomas
Johansson, editor, FSE, volume 2887 of Lecture Notes in Computer Science,
pages 129–153. Springer, 2003.

[9] Keting Jia, Xiaoyun Wang, Zheng Yuan, and Guangwu Xu. Distinguishing
and second-preimage attacks on cbc-like macs. In Juan A. Garay, Atsuko
Miyaji, and Akira Otsuka, editors, CANS, volume 5888 of Lecture Notes in
Computer Science, pages 349–361. Springer, 2009.

[10] Liam Keliher and Jiayuan Sui. Exact maximum expected differential and
linear cryptanalysis for two-round advanced encryption standard. Cryptol-
ogy ePrint Archive, Report 2005/321, 2005. http://eprint.iacr.org/

2005/321.

[11] Lars R. Knudsen and Bart Preneel. Macdes: A mac based on des. In
Electronics Letter, volume 34, pages 871–873, 1998.

[12] Kaoru Kurosawa and Tetsu Iwata. Tmac: Two-key cbc mac. In Marc Joye,
editor, CT-RSA, volume 2612 of Lecture Notes in Computer Science, pages
33–49. Springer, 2003.

57

[13] Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably secure macs from
differentially-uniform permutations and aes-based implementations. In
Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in
Computer Science, pages 226–241. Springer, 2006.

[14] Chris J. Mitchell. Partial key recovery attacks on xcbc, tmac and omac. In
Nigel P. Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in
Computer Science, pages 155–167. Springer, 2005.

[15] NEC. メッセージ認証コード pc-mac-aes.

[16] NIST. Recommendation for block cipher modes of operation: The
cmac mode for authentication. http://csrc.nist.gov/publications/

nistpubs/800-38B/SP_800-38B.pdf.

[17] Sangwoo Park, Soo Hak Sung, Seongtaek Chee, E-Joong Yoon, and Jongin
Lim. On the security of rijndael-like structures against differential and
linear cryptanalysis. In Yuliang Zheng, editor, ASIACRYPT, volume 2501
of Lecture Notes in Computer Science, pages 176–191. Springer, 2002.

[18] Sangwoo Park, Soo Hak Sung, Sangjin Lee, and Jongin Lim. Improving
the upper bound on the maximum differential and the maximum linear
hull probability for spn structures and aes. In Thomas Johansson, editor,
FSE, volume 2887 of Lecture Notes in Computer Science, pages 247–260.
Springer, 2003.

[19] Bart Preneel and Paul C. van Oorschot. Mdx-mac and building fast macs
from hash functions. In Don Coppersmith, editor, CRYPTO, volume 963
of Lecture Notes in Computer Science, pages 1–14. Springer, 1995.

[20] Zheng Yuan, Wei Wang, Keting Jia, Guangwu Xu, and Xiaoyun Wang.
New birthday attacks on some macs based on block ciphers. In Shai Halevi,
editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science, pages
209–230. Springer, 2009.

58

