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Evaluation of MULTI-S01 Algorithm 
 
1 Executive Summary 
 
This is a report on the stream cipher MULTI-S01.  The MULTI-S01 cipher uses Panama 
output as the keystream for a block-based chaining operation which provides a message 
integrity check. Thus the MULTI-S01 cipher provides an extra service beyond that 
normally associated with stream ciphers. The proposed mode of operation adds two 
integrity check blocks to the message length.  
 
In this report the evaluators discuss all relevant aspects of MULTI-S01. In particular we 
discuss the properties of the operations involved and their suitability for the stated design 
goals. Critical aspects of the design are examined and the requirements for its correct 
operation are noted. For this algorithm the evaluators have 
 

(i)    analysed structural aspects; 
(ii)   evaluated the basic cryptographic properties; 
(iii)  evaluated the security from attack; 
(iv)  evaluated the statistical properties; 
(v)   surveyed the speed. 

 
There are several specific claims that are made for MULTI-S01 in the abstract of 
[MULTI-S01]. The security claims are that MULTI-S01.. 
 
1. achieves high security of data confidentiality, assuming a secure PRNG. 
2. high security of data integrity 
3. an attacker cannot determine any part of PRNG output just from known plaintexts. 
 
The performance claims are that MULTI-S01 
 
1. operates faster than encryption algorithms based on block ciphers. 
2. pre-computation of the random sequence is easy to do. 
 
In this report we examine the accuracy of these claims. Our results may be summarized 
by noting that the following two basic flaws have been found in MULTI-S01. 
 
FLAW 1   Lacks Robustness 
 
The security claims, while strictly true, are not robust in that they fail to be true under a 
minor violation of the key management rules. It is vitally important that implementations 
of MULTI-S01 adhere strictly to the key management rules that require a new key to be 
used for every encryption. 
 
FLAW 2 Attacks on integrity check 
 
With knowledge of the key, it is a simple task for an insider to find two messages which 
produce the same integrity check.  This is a serious flaw in integrity check mechanism.  
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Due to these two flaws, especially Flaw 2, the evaluators would not recommend the 
adoption of MULTI-S01 Algorithm as a standard. 
 
We finally note that the lack of a theoretical proof for the security of the PRNG Panama 
is clearly a potential weakness in this system. It is interesting that a scheme that relies so 
heavily on the security of the underlying PRNG has been defined to use Panama, which is 
certainly very fast but unfortunately has no proof of security. Given the existence of 
design methods and criteria for provably secure stream ciphers, it is clear that the design 
of MULTI-S01 is more strongly influenced by performance efficiency than by the need 
for future security. 
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2 Description of MULTI-S01 
 
The MULTI-S01 cipher is an entire message encryption algorithm. A new key is used for 
every new message. The encryption process can be outlined as follows. 
 
1. Create the key material (A, all Bi and S) by running Panama on the combination of 

key K and diversification parameter Q.   
2. Pad the message to a multiple of 64 bits using standard means. Then append two 

blocks with key and redundancy data. 
3. Encrypt block “i” by XOR with 64-bits of Panama output: Bi. Store this as Fi 
4. Multiply each block by the 64-bit value A, using the designated finite field.  
5. XOR Fi-1 by the result of (b) to make ciphertext block “i”. 

 
The decryption operation is the reverse of encryption, with the provision that if the 
redundancy values do not match, then the ciphertext is deemed invalid and the recovered 
plaintext is not output. Decryption is as follows. 
 
1. Execute Panama(K,Q) to produce the key material {A, Bi, S} 
2. Decrypt each block by XOR with Fi-1 data, multiply by A-1, and XOR with Bi. 
3. Check that the calculated redundancy values agree with what was expected. 
4. Either output the recovered plaintext block “i”, or declare it to be invalid. 
 
The Panama stream cipher is constructed as a large buffer that is slowly updated, together 
with a state that is quickly changed by a nonlinear operation and XOR with buffer 
material. The internal data of the Panama cipher is initially set to zero. Then the key and 
diversification data (each a block of 256 bits) are PUSHed into the cipher. Then 32 blank 
PULLs are performed to diffuse the input data around the buffer and state. After this the 
output bits are taken 256 bits per subsequent PULL operation. These PUSH and PULL 
operations are described in detail in [DAEM 98]. 
 
 
3 Structural Aspects 
3.1 The MULTI-S01 Keystream Combining Operation 
The typical method for combining keystream and plaintext for stream ciphers is the bitwise 
exclusive-or (XOR). This provides perfect secrecy for each bit but does still allow ciphertexts 
to be altered during transmission so that altered plaintext is recovered. In the worst case this 
may allow an attacker to subtly alter the semantic meaning of a message, for example 
changing the account number of a bank transaction.  
 
To foil this attack, the MULTI-S01 algorithm uses a block chaining method to prevent 
ciphertext alteration. Firstly, finite field multiplication allows changes within a block to alter 
many plaintext bits. Secondly, the XOR of internal data from the previous block, together 
with the encoding of redundancy information, provides a mechanism for any alterations to 
result in the wrong value of redundancy being recovered. Any decryption that results in an 
invalid redundancy value is declared invalid, and the recovered “plaintext” is not revealed. 
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The features we would wish from an integrity check is that it will reject any altered ciphertext, 
and that passing the test establishes the validity of the recovered plaintext. Attack scenarios 
against the integrity check are discussed in Section 5.6.  These attacks demonstrate tat the 
integrity check mechanism is seriously flawed. 

3.2 Panama Structural Aspects 
Panama has several thousand internal memory bits. Without obvious structural weaknesses, 
this is probably sufficient to provide resistance to conventional attacks. These aspects are 
discussed in Section 5. 
 
The cycle structure of Panama is unknown. This relates to the lack of proof for the 
minimum period. There may be many separate cycles for each initialisation by K,Q, or 
they may all be on the same large cycle, merely out of phase. There may even be cycles 
that exist for the operation of iterated PULLS in Panama, but are never achieved in 
practice since there are no values of K,Q that create initial data that exist on those cycles. 
We contrast these uncertainties with the theoretical proof that exists for the period and 
cycle structure of traditional LFSR based stream ciphers: where all keys produce the 
same (albeit shifted) keystream that has maximal period. It may be that different K,Q 
values cause Panama output sequences that have different periods, so that not all keys 
would offer equal security. It is possible (but certainly improbable) that there exists small 
cycles for Panama, so that there would exist weak keys in the sense that the induced 
sequences have period smaller than the message length.  

3.3 Equivalent Keys 
The existence of equivalent keys was noted in [SELF], as corollary 1 in Section 2.3, where it 
was used to demonstrate the property of perfect secrecy. While we agree with this, there are 
also disadvantages of equivalent keys which the evaluators point out here. 
 
In MULTI-S01, there are equivalent keys that reduce the effective keyspace by a factor of 264. 
This reduces the size of the keyspace from 2256 to 2192. For any given triple of plaintext 
message, key and associated ciphertext, there is a set of 264 keys that satisfy the triple. To see 
this, consider changing the value of A to any other value, then the values of all Fi change to 
new values, and so there will be some different value of Bi that allows the plaintext blocks to 
remain unchanged. Thus there exists 264 -1 other equivalent sets of keys {A,Bi,S}. Whether 
these could have been generated by any original key K and diversification parameter Q is 
unknown. In implementations where there is no method of “authenticating” the key material 
{A,Bi,S} there is no barrier to a key falsification attack, and hence a third party can be 
convinced that a different key {A’,B’i,S’} was used in an encryption. This demonstrates that 
the key management is vital to the security of MULTI-S01.  

3.4 Mode of Operation and Key Management 
MULTI-S01 is a stream cipher. The confidentiality of the plaintext is guaranteed by the fact 
that every message is encrypted with distinct key material. Contrast this style of key 
management with that for block ciphers: many messages can be encrypted with the same key. 
It is somewhat dangerous for this stream cipher to be presented as a block encryption 
mechanism, since the differing key management requirements of these schemes result in the 
opportunity for a devastating attack. In particular, if MULTI-S01 is ever used in a manner 
that allows two (or more) messages to be encrypted under the same key, then a powerful 
differential-style attack can recover the value of A. Then, following the comments above, the 
entire key becomes known. Subsequently, any additional message that is encrypted under the 
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same key will be recoverable from the ciphertext alone. The attack can be undertaken as a 
chosen text or a known text attack, with very little data requirements. Either way the attack 
can be done in real time. Details of this attack appear in Section 5.5.  
 
The significance of this attack will depend on the application context. For example in a 
situation where MULTI-S01 is chosen for use as the in-house encryption method for a 
company, then distributing a Trojaned version of the encryption software that does not 
change the key for every new message would allow the attack whenever two known 
plaintexts are available. This condition might be easily met if a standard header were 
encrypted at the start of every message. Then the attack would allow real time decryption of 
any ciphertext. Of course, this attack is true for any stream cipher, but we feel that MULTI-
S01 is more likely to become vulnerable to the attack since it adopts a block mode that may 
encourage it to be used like a block cipher. Moreover, the consequences of such a mistake are 
catastrophic for the security of the cryptosystem. 
 
This example shows that the keys do need to be changed for every message. The security of 
MULTI-S01 depends critically upon the correct key management techniques. 

3.5 Bit Dependencies of Panama Algorithm in Stream Cipher Mode. 
We have written a computer program that traces exactly those sets of K,Q bits upon which 
state bits depend. This allowed the diffusion properties of Panama to be studied. It was found 
that the key initialisation process is a very thorough mixing.  
 
Summary: all state bits depend on all input K,Q bits after 5 of the 32 blank PULLS during the 
set-up phase. Thus there is over six times the effort required to achieve completeness: this is 
thorough mixing, when compared to DES [FIPS DES] that achieved completeness after 5/16 
of its operation. 
 
Each bit of the state depends on exactly the same number of K,Q bits as every other bit in the 
same word. This greatly simplifies the presentation of this data. We now present the range 
taken by the number of K,Q bits that influence the state bits, over all of the 17 words in the 
state. The table below shows the influence after a small number of PULLS, to illustrate the 
rate at which the influence increases. 
  
Number of PULL                      Number of influencing 
     operations                               K,Q bits  (512 total) 
          0                                                  3 -  7 
          1                                                31 - 36 
          2                                              162 - 187  
          3                                              389 - 413 
          4                                              510 - 512 
          5                                                   512 
 
This data shows that all bits in a word have the same level of dependence on the initial K and 
Q values, so that we have proved there do not exist “weak” bits positions, in the sense of bits 
that depend on relatively few of the initial K,Q bits. We find the diffusion of Panama to be 
satisfactory, and we find no exploitable weaknesses in this aspect of the cipher. 
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3.6 Long Message Techniques 
The MULTI-S01 algorithm has a specific method to deal with long messages: they are 
broken up into portions of 238 bits each, indexed from 0, which are each then encrypted as 232 
blocks under the same key K, but different diversification parameters Q. The standard 
method is to let Q equal the index of the sub-message. The redundancy value R is stated to be 
the same as Q for each encryption. As R is 64 bits and Q is 256 bits it seems that R must be 
set to the 64 least significant bits of Q. We note that it is not clear from [MULTI-S01] how R 
is determined for standard, or short, messages.  
 
This splitting of large messages has the effect of placing an upper bound of 2-32 on the 
probability that a random ciphertext will pass the integrity check. While this is a fine 
ambition, we note that the overall complexity of the random forgery attack is constant at 
264, as set by the block size in bits (see Section 5.6).  
 
 
4 Keystream Properties 
 
The evaluators analysed the basic keystream properties of the Panama algorithm which 
provide cryptographic security. These include a large period, large linear complexity and 
white-noise statistics. It should be noted that for the Panama algorithm there are no 
theoretical results which can be applied to measure these properties, unlike LFSR based 
keystream generators where these properties are known. 
 
Experimental results, which are included below for linear complexity and statistical 
analysis, were conducted by the evaluators using the CRYPT-X package. This is a 
statistical package which was previously designed by the evaluators for analysing 
encryption algorithms. The relevant pages from the CRYPT-X manual have been 
included in Appendix A. 

4.1 Period 
The actual period of the Panama algorithm is difficult to determine. All together there are 
2512 keystream sequences that can be generated from Panama by selecting values for key, 
K, and diversification parameter value, Q. As mentioned in Section 3.3 there is a small 
probability that some of these sequences are equivalent.  In order to determine the 
expected period of one of these sequences the evaluators are of the opinion that a suitable 
model is a block cipher in output feedback mode (OFB). As shown in [DAVI 82] this 
period can vary greatly. However it is possible to determine an expected value for the 
period by applying the birthday paradox.   For block ciphers in OFB mode the expected 
period depends on the length of the input block to generator, n, and the number of bits 
which are feedback, L. If L = n then expected period is approximately 2n-1 and for L < n 
the expected period is approximately 12

n −2 . In the case of the Panama cipher we have n = 
544 and L = 256. This would mean that the expected period is approximately 2273.  
 
We should emphasise that the actual periods of different keystreams produced by Panama 
most likely will have a large variance. However the expected results above indicate that 
for any given sequence there is a high probability that this period is extremely large.   
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4.2 Linear Complexity 
Since there is no theoretical support for the linear complexity of Panama, empirical tests 
on the value of linear complexity and the linear complexity profile have been investigated 
using the CRYPT-X package. The linear complexity tests were applied to the ten Panama 
output streams of length 106 bits, and the results gave linear complexity values extremely 
close to that expected for random data (i.e. half the bit-stream length). For more detailed 
results see Appendix B. The results for the linear complexity profile indicate that, as the 
bit-stream increases in length, the changes in linear complexity maintain the expected 
value of half the stream length. These results support the randomness of the output from 
Panama, based on linear complexity.  These results support the fact that the whole bit-
stream is required to re-construct the stream itself - thus giving an attacker no advantage 
in being able to create the bit-stream with a smaller number of output bits. 

4.3 Statistical Analysis  
The statistical randomness applied to Panama are the tests explained in the CRYPT-X 
package (see attached documents), namely the frequency, binary derivative, change point, 
subblock, runs distribution, sequence complexity, and linear complexity tests. The tests 
are based on the hypothesis that the measure obtained from the output stream supports 
randomness. The p-values obtained for the tests represent the probability that such a 
sample result would be obtained if the algorithm produces a random stream. Very small 
p-values would support non-randomness. 
 
The first five tests were applied to binary output streams of 107 bits, and the two 
complexity tests were applied to binary output streams of 106 bits (due to the amount of 
time required for the tests), using ten different keys.   
 
The subblock tests were applied to the output stream by dividing the bit-stream into non-
overlapping subblocks of length ranging from 2 to 30 bits.  The maximum subblock 
length of 30 was determined from the length of the file and the limitations of the test 
applied. 
 
Results of Statistical Analysis 
The results give the lowest p-value for any one test as 0.001, with 13 of the 360 p-values 
obtained falling below 0.05. This represents a proportion of 0.036 of the tests applied, 
which is below the 0.05 level, and so supports the randomness of the output from Panama.  
For more detailed results see Appendix C.  
 
In the results of the statistical analysis of Panama presented in [SELF] there is recorded a 
run of length 32 in a sample of 221. We agree that this is a rare event with a small 
probability.  In order to investigate this in more detail the length of the longest run was 
recorded for the samples of 107 bits.  The length of the longest run in these larger samples 
that the evaluators analysed was 29  (Key 5), whereas the remaining keys gave the 
longest runs as 28. Hence, together with the results of the runs test applied from CRYPT-
X package, this indicates there is no problem with the distribution of runs in samples 
generated by Panama.  
  
The sequence complexity test provides an effective method of detecting periodicity or 
periodic patterns in the bit-stream.  In the bit-streams tested all sequence complexity 
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values exceeded both the threshold value and the average value of sequence complexity 
for bit streams of length 106. These results support the conclusions on the period of 
Panama in Section 4.1 above. 
 
 
5 Possible Attacks 
 
The majority of the literature discusses attacks on stream ciphers that adhere to the LFSR 
combiner/filter model, in order to achieve provable properties with regard to period and 
linear complexity. The Panama cipher avoids these models and uses large internal 
memory, with the result the standard attack strategies seem to be ineffective. On the other 
hand, there are no proofs for even the basic security properties. Despite the lack of proof, 
however, we feel that the memory size and structure of Panama is sufficiently complex to 
ensure that the security of the cipher cannot be compromised. The possible attacks are 
categorised and examined individually in the next few paragraphs. 
 
In this section we also consider attacks against the integrity check. We have established 
the complexity of random forgery attacks made by a wiretapper, and also assessed the 
ability of an insider to cheat the system. These integrity attacks are discussed in more 
detail in Section 5.6. 

5.1 Simple Attacks 
Simple attacks are those based on exhaustive search, period, linear complexity, and 
statistical attacks on non-uniform output. The memory size of Panama is clearly so large 
that exhaustive search is infeasible. The period of Panama (see also Section 4.1) is (very 
probably) not less than 2273. This is obtained by considering the Panama structure to be 
similar to a block cipher in OFB mode, with less then the full amount of feedback [DAVI 
82]. The linear complexity is also likely to be very large. Note that so long as the period 
and linear complexity are larger than the amount of data being encrypted under a single 
key, then the scheme can be said to be operationally secure, ie., it is secure so long as the 
correct operation of the key management is maintained. It seems likely that the period 
and linear complexity of Panama are both many orders of magnitude larger than any 
feasible message length, and so Panama appears to be operationally secure against the 
basic attacks. However, we re-state that there is no proof for the minimum period or 
linear complexity of Panama. 

5.2 Divide and Conquer Attacks 
Divide and conquer attacks are applicable where the structure of a keystream generator 
can be exploited by assuming some known data, and the remaining bits can be recovered 
faster than exhaustive search. In the case of Panama the total memory size is several 
thousand bits, and there is no clear way to conduct a divide and conquer attack so that it 
results in a break faster than exhaustive search.  
 
There is a two bit rotation in the buffer update process, and this value is not relatively 
prime to the size of buffer data, so that the buffer may be considered to be two separate 
buffers of half the size, which do not interact directly. This observation might lead to a 
divide and conquer attack , except for the fact that these two half buffers do interact 
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indirectly via the effect of the state data. This interaction serves to prevent the attack 
being effective.  

5.3 Correlation Attacks 
Correlation attacks can be performed where the model of a noisy LFSR sequence is used 
to exploit correlations between state bits and output bits, and in particular correlations 
with single bits are preferred.  Our analysis of the Boolean function that underlies the 
nonlinear state update transformation indicates that no biases exist with fewer than 3 
input bits, or equivalently that the function is second order correlation immune [SIEG 85]. 
This, combined with the vast internal memory, make correlation attacks on Panama 
appear to be infeasible. All non-zero correlations have probability 0.5 ±  2-3. These 
correlations are not great enough to make the attack feasible, given the order of 
correlation immunity and the large size of the internal memory. We conclude that 
correlation attacks against Panama are infeasible. 

5.4 Linear Cryptanalysis 
The basic approach for linear cryptanalysis of block ciphers, as pioneered by Matsui 
[MATS 93] is the collection of a sufficiently large number of data samples, so that any 
available input/output correlations can be used to correctly determine the values of key 
bits. The bias provided by a set of linearly independent modulo 2 equations is given by 
the piling-up lemma, which relies on the equations being independent, and all internal 
values cancelling out leaving a linear expression for key bits in terms of known plaintext 
and ciphertext bits. 
 
Linear cryptanalysis of stream ciphers using a linear sequential circuit approximation was 
investigated by Golic [GOLI 94], where a general attack was suggested that exploits a 
general statistical weakness of output blocks which exceed the size of the internal 
memory. These attacks are especially effective against stream ciphers based on LFSR 
combination/filtering. However, structures such as Panama are not particularly 
susceptible to this attack. Given a suitable nonlinear Boolean function (which Panama 
has) then the dominant factor affecting the complexity of the linear attack is the size of 
the internal memory. According to [GOLI 94], the complexity of finding useful linear 
correlations, is at least O(2m), where m is the size of the internal memory in bits. As 
Panama has 8736 internal memory bits, the attack is infeasible. 
 
The evaluators suggest that the wrong model for linear cryptanalysis of stream ciphers 
was employed in [SELF], and that the approach described in [GOLI 94] should be used. 
We have several criticisms of the analysis in [SELF]: 
1) The approach in [SELF] ignores the 256 bits of additional state data that is not output 

at each PULL operation, but is fed back into the buffer.  
2) In addition, [SELF] contains a claim that linear correlations involving one bit exist for 

the nonlinear operation in Panama, which have bias of 2-3. We strongly disagree with 
these claims, as an exhaustive search of the appropriate Boolean function properties 
reveals that there are exactly 64 linear correlations with a bias of 2-3, but these biases 
exist only for input masks of weight 3 or more. In fact, all other linear approximations 
have no bias at all, so that the Panama state update transformation is immune to 
correlations with linear functions of 2 inputs or fewer. This means that the Boolean 
function in Panama satisfies second order correlation immunity, which is a very 
desirable property in stream ciphers as it places a lower bound on the complexity of a 
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correlation attack. The details of this Boolean function, and its analysis, appear in 
Appendix D.  

3) The number of independent equations required to complete the cryptanalysis is stated 
without evidence in [SELF] as 63. However, our analysis suggests that at least 256 
independent equations for single buffer/key bits are required. This would greatly 
increase the data requirements for an attack. 

 
We conclude that, due to the very effective and complex nonlinear mixing operation of 
Panama, conducting any linear cryptanalytic attack would require infeasible amounts of 
memory and computation.   

5.5 Differential Cryptanalysis 
Firstly, we note that differential attacks are not generally applicable to stream ciphers. 
This is primarily because the attacker has no ability to change internal data of a stream 
cipher operation. We recall that differential cryptanalysis was originally developed in 
relation to block ciphers (see [BS90]) where it exploited the attackers ability to generate 
the encryptions/decryptions of specially chosen pairs of text, under the same key. As the 
keystream generator of a stream cipher is a deterministic finite state machine initialised 
by the key, the concept of a differential attack is not meaningful in the context of stream 
ciphers, where every message is supposed to be encrypted under a separate key.  
 
However, in the case that two MULTI-S01 messages are encrypted with the same key, 
then we note the possibility for a powerful attack that recovers the value of the A key. 
Once that is found the other Bi and S keys can be found easily. The attack works as 
follows. 
 
Given two different messages (which may be no more than a single block each), 
encrypted under the same (but unknown) key, we have two different ciphertexts. 
Alternatively, in a chosen ciphertext attack, we may select the exact XOR difference in 
the ciphertext block and observe the effect on the recovered plaintext. The attack can 
proceed either way, and we note that only the key A affects the XOR differences, since 
all other keys are XORed, and so cancel out. 
 
Analysis of the finite field multiplication (FFM) operation reveals that all output bits are 
second order, or quadratic, Boolean functions of the bits in the fixed multiplication input, 
which is the key A. It follows from results in [LAI 94], [MILL 95] that the Boolean 
function of the derivative of FFM is linear in these input bits. Hence the XOR difference 
in the recovered plaintext gives 64 bits of information that can be used as the right hand 
side data for a set of 64 simultaneous equations in the 64 unknown A bits. The matrix is 
specified by the polynomial used to determine the finite field representation, so this 
matrix is public information, and the same for any key being used. If this matrix is non-
singular, then a unique solution exists and can be found by inverting the matrix. If, on the 
other hand the matrix does not have 64 linearly independent equations, then extra 
equations can be obtained by repeating the attack on messages of length greater than one 
block. With high probability a set if linearly independent equations will be obtained from 
the encryption of very few blocks. The complexity of matrix inversion is polynomial in 
the size of the matrix. Here the matrix is 64*64, so no more than a couple of thousand 
fast operations are required to invert it. We conclude that the complexity of this attack is 
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so very low that it is quite feasible to perform in real time. Of course it is only applicable 
if the strict key management requirements of stream ciphers is violated. 

5.6 Attacks on the Integrity Check 
The security of MULTI-S01 has been investigated in relation to its capability of 
providing an integrity check.. The complexity of creating a wrong ciphertext that does 
satisfy the integrity check is 264 block encryptions. This value depends entirely on the 
block size. There is a message length/time/probability tradeoff in the attack, so, for 
example, there exists a probability of 2-32 that a single message of size 232 blocks will 
satisfy the integrity check. This probability might be too high for some secure 
applications.  
 
Our analysis has shown that the integrity check performs correctly in one aspect: given a 
fixed ciphertext and the corresponding key there is only one possible plaintext that could 
have been sent. To see this, consider the decryption of the last two blocks of a message, 
which are the integrity check blocks. If the last two blocks are confirmed as equalling S 
and R then the chaining data Fn-2 must be correct. Tracing the effects backwards in 
decryption for each block reveals that the recovered plaintext blocks are correct.  
 
However, we note from [SELF] that the possibility to alter the ciphertext and yet pass the 
integrity check is non-zero. In fact it has been shown that the probability for a random n-
block ciphertext to pass the decryption integrity check is given by the proportion of the A 
key values which are the solution to a polynomial of degree n-2 in A. As there are at most 
n-2 different solutions, the maximum probability of passing the integrity check with each 
try is (n-2)/(264-1).  As the number of blocks of a message in never more than 232, we see 
that the probability for a randomly selected ciphertext to pass the integrity check is no 
more than 2-32. The complexity of making the attempt at this maximum probability is the 
encryption of 232 blocks. The overall complexity of the attack is 232 * 232=264. Hence the 
complexity of the random forgery attack is given by the number of bits per block: 64. 
Increasing the block size will directly increase resistance to the forgery attack and make 
the integrity check more reliable.  
 
We visualise two possible attacks on the integrity check of MULTI-S01. The first 
involves an eavesdropper(wiretapper) who randomly alters the ciphertext hoping the 
resulting ciphertext passes the receiver’s integrity check. The second involves an insider 
who knows the fixed value A, message M, and ciphertext C enabling such a person to 
make changes to the ciphertext which are guaranteed to pass the receiver’s integrity 
check. Note that message M consists of the first n-2 blocks of the plaintext P. 
 
We refer to the following equation that appears towards the end of section 2.4.1 in 
[SELF]. 
                                     0 = ⊕  i δ A −                                                 (1) 2'...0 −= n 1' −−in

)1( +i

This is the equation that must be satisfied for an altered ciphertext to pass the receiver’s 
integrity check. Note that if C i is the original ciphertext block then C i ⊕  δ i represents the 
altered ciphertext C* i . 
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5.6.1 Wiretapper Attack 
In this attack, the wiretapper selects some δ i ’s at random and hopes that they satisfy 
equation (1). As per [SELF], the probability that the randomly chosen δ i ’s satisfy 
equation (1) is the probability that the actual value of A used is one of the n-2 possible 
values of A that satisfy equation (1) for the chosen δ i ’s. This probability is (n-2)/(2 -1) 
as appears in [SELF]. Given that the largest value of n is 2  this probability is upper 
bounded by approximately 1/2 . Thus, the complexity of this attack is approximately 
2 . Even if the chosen δ i ’s  result in a ciphertext that passes the receiver’s integrity 
check, it is highly unlikely that the plaintext, resulting from the altered ciphertext, will be 
meaningful, so in some sense this attack represents a denial of service. Note that this 
attack is a ciphertext only attack, since the wiretapper need only have access to the 
ciphertext. Note further that such an attacker cannot verify the success or otherwise of the 
attack. 

64

32

32

32

 
In the light of the note at the end of the preceding paragraph and the complexity of the 
attack, we do not believe that this attack is a serious threat to MULTI-S01 which is in 
agreement with the analysis in [SELF]. 

5.6.2 Insider Attack 
In the second attack, we are assuming the insider has access to the value A, message M 
and ciphertext C. While in [SELF] knowledge of A is specifically denied, it is plausible 
that either the sender or the receiver could act maliciously and deny sending or receiving 
a particular message, and be able to demonstrate as proof, a different message that 
satisfies the integrity check. This attack is clearly more menacing in that it is possible for 
the attacker to select δ i ’s guaranteed to pass the integrity check as follows. 
 
Since the attacker has knowledge of the value A, such a person can substitute this value 
into equation (1) and get a linear relationship among the n-1, δ i ’s. The attacker can then 
choose δ i  = 0 for i = 0 to n-3 and i = n, then make a judicious selection for δn-2 and 
finally set δn-1 to be a certain predetermined value which will guarantee the receiver will 
have an altered message that will pass the integrity check. 
 
The attacker carries out the following steps. 
 
1. Change Cn-2to C*n-2. 
2. Determine P*n-2 = (Cn-2⊕  C*n-2) ⊗  A ⊕  P1−

n-2. 
3. Determine C*n-1 = Pn-2⊕  P*n-2⊕  Cn-1. 
4. Send ciphertext C i for i = 1 to n-3 and for i = n, and C*n-2 and C*n-1. 
 
The proof is as follows. 
 
By the decryption algorithm 
 
                  P*n-2 = (C*n-2 ⊕  Fn-3) ⊗  A ⊕  B1−

n-2                                                (2) 
and  
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                  Pn-2 = (Cn-2⊕  Fn-3) ⊗  A − ⊕  B1
n-2                                                     (3) 

(2) ⊕  (3) gives 
 
P*n-2 ⊕  Pn-2  = (C*n-2 ⊕  Fn-3 ⊕  Cn-2 ⊕  Fn-3) ⊗  A                                          (4) 1−

 
Thus, P*n-2  = (C*n-2 ⊕  Cn-2) ⊗  A ⊕  P1−

n-2                                                      (5) 
 
Now S = (C*n-1 ⊕  F*n-2) ⊗  A ⊕  B1−

n-1                                                            (6) 
and  S = (Cn-1 ⊕  Fn-2) ⊗  A ⊕  B1−

n-1                                                                 (7) 
 
(6) ⊕  (7) gives 
 
C*n-1 = Cn-1 ⊕  Fn-2⊕  F*n-2 
           = Cn-1 ⊕  Pn-2 ⊕  P*n-2                                                                            (8) 
 
A simple example with n = 4 has been implemented and is described below. 
 
Panama parameters (K & Q) as per supplied test vectors: 
 
K: bcfb8d1629964f571bea19eacdd1a9a8870622392094af2bc18e6942eb017b0f 
Q: 70b91d006387740d0397095a33de361f4a631b3023f06c6a2e3c0cb2647f26bb 
 
R: 0000000000000000 
 
Output from Panama: 
A:  0D8B8EF7C5814F2F ( A-1: 5AA6FCBEC904B0CA ) 
B1: 0431A2CEFB23CBA4 
B2: BFF041318C4F63E8 
B3: 65F97EC547EC7B63 
B4: 82CFE82374CD5CC0 
S:  19AE68546A9DCDAF 
 
 
Message 
P1: FE61A5EE9147C270 
P2: A944B97E03269A33 
 
Ciphertext 
C1: 84A1CB62375A8DD2 
C2: B4905ED917F05E15 
C3: 0F918ACD813EEBB0 
C4: 33EEA7357B9BAFDA 
 
Let 
C2*: 7AD3EFA784A51367 ( selected at random ) 
 
Then 
P2*: 5E3D8D13E061F8BB ( = ( ( C2 ⊕  C2* ) x A-1 ) ⊕  P2 ) 
 
and 
C3*: F8E8BEA062798938 ( = P2 ⊕  P2* ⊕  C3 ) 
 
Decrypting ( C1 | C2* | C3* | C4 ) gives 
P1’: FE61A5EE9147C270 ( = P1 ) 
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P2’: 5E3D8D13E061F8BB ( = P2* ) 
P3’: 19AE68546A9DCDAF ( = S ) 
P4’: 0000000000000000 ( = R ) 
 
 
The significance of the above result is the ability of this second type of attacker to forge a 
meaningful message. The attack can be applied to any message, of any length. Given two 
blocks of changed ciphertext, say blocks i and i+q, then the recovered plaintext is altered 
for consecutive blocks {i, i+1, …, i+q-1}, and is subsequently identical to the original 
plaintext, including satisfying the integrity check. We note that this simple example has 
only two blocks of ciphertext being altered. A real attack may change any number of 
ciphertext blocks, so long as the last alteration restores the plaintext to the original, thus 
allowing the integrity check to succeed. 
 
The above attack is possible because the integrity check is really only a function of the 
last 3 plaintext blocks. What is really needed is for the integrity check to be a function of 
a greater number of plaintext blocks. The check should mimic a block cipher in Cipher 
Block Chaining (CBC) mode where the last output is a function of all the input blocks. 
As an example, for a similar attack to be performed on the Data Encryption Standard 
(DES) [FIPS DES] in CBC mode, the birthday paradox implies that the complexity 
would be 2 32 since the block length of DES is 64. For the Advanced Encryption Standard 
(AES) this figure is 2 since the block length is 128. Complexities of 2  and 2  are 
acceptable from a designer’s point of view but the simplicity of the above attack 
(especially the determinism plus also the flexibility to choose the position of altered 
blocks) indicates a serious flaw in the design of MULTI-S01. 

64 32 64

5.7 Other attacks 
The Inversion attack [GOLI 96] is prevented by the large memory. The requirements are 
exponential in the total memory size (which is 8736 for Panama), so it is straightforward 
to conclude that the inversion attack against Panama is infeasible. 
 
A reconstruction attack was found to be very effective against the mobile 
telecommunications algorithms ORYX [WAGN98] and CAVE [MILL98]. These attacks 
exploited a fundamental weakness of those algorithms. Well designed ciphers will be 
resistant to reconstruction attacks due to the increased time and data requirements. In 
particular the Panama cipher is far too complex to attack by reconstruction: there is no 
fast way of rejecting a bad guess for any set of data. We conclude that Panama is secure 
against the reconstruction attack. 
 
6 Implementation 
 
In this section we investigate the implementation issues for the MULTI-S01 algorithm.  
Section 4 of the self evaluation report [SELF] gives details of both software and hardware 
implementations of the MULTI-S01 algorithm. 

6.1 Software 
Panama (the MULTI-S01 “engine”) is well suited to 32-bit processors because of its 
heavy use of 32-bit word operations.  The Panama algorithm can also be optimised for 
64-bit processors.  The MULTI-S01 algorithm (which “wraps” Panama) performs a 64-
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bit finite field multiplication which is better suited to 64-bit processors.  The figures 
quoted in the self evaluation report (Section 4.1 of [SELF]) of 270Mbps on a 64-bit 
processor running at 600MHz and 55Mbps on a 32-bit processor running at 350Mhz 
highlight the difference in performance between 32-bit and 64-bit processors. 
 
The evaluators were able to confirm that the Panama implementation is extremely 
efficient running at approximately 730Mbps on a Pentium III 650MHz processor.  The 
overhead of the MULTI-S01 enhancements (especially the finite field multiplication) 
significantly reduces the performance (especially on computers with 32-bit processors).   
 
The code size and memory stack utilisation figures quoted (Table 8, Section 4.1 of 
[SELF]) indicate that a software implementation of MULTI-S01 on a memory-poor 
device, such as a smart card, would be feasible. 

6.2 Hardware 
Section 4.2 of [SELF] describes logic circuit designs and gate size and throughput 
evaluations for MULTI-S01.  The hardware implementation described is actually a 
simulation and the document states that the quoted figures may actually be slower in 
practice.  The throughput rates of 8.3-9.1Gbps for a speed-optimised implementation, and 
620-730Mbps for a gate-count-optimised implementation, if correct, are impressive and 
indicate suitability for all but the most bandwidth-intensive applications. 
 
 
7 Conclusion 
 
The evaluators have conducted a thorough analysis of the properties of the Panama and 
MULTI-S01 algorithms. There are some observed flaws in MULTI-S01, relating to the 
integrity check mechanism and also the key management. We also point out that there are 
several problems with the analysis of [SELF]. 
 
The prospect of attacks on the integrity check mechanism are significant. For this reason 
MULTI-S01 should not be used for high-security applications. Also the catastrophic 
results of violating the key management imply that only fully trusted implementations of 
MULTI-S01 should be used in any case. The evaluators suggest that MULTI-S01 be re-
designed to address these issues before it is considered as a future standard. 
 
We note that the lack of proof for the security properties of Panama remains a concern, as 
other schemes do have proof of basic requirements. On the other hand, there seems to be 
no pressing reason to doubt the security of Panama, and all of our analyses on that 
algorithm suggest that, with high probability, it has no exploitable weaknesses. An 
advantage of this scheme is the very high rate of data throughput.  
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Appendix A. Description of Statistical Tests 
This appendix gives a mathematical description of the statistical tests used. 
 

A.1 Mathematical Description of Stream Cipher Tests 
This section contains a mathematical description of each of the tests. In each case an 
example is given to illustrate a particular test. The first five tests examine the hypothesis 
that the bit stream was based on Bernoulli trials where the proportion of ones and zeros 
is 2

1 . The two complexity tests examine the knowledge that a small subsection of the bit 
stream can be used to produce the remainder of the stream. If this is possible the string 
would not be considered to be random, especially in relation to its use in a stream cipher. 
The recommended size of a sample stream to test depends on the size of the average 
message which is being encrypted using the keystream. i.e. If an average cryptogram has 
size five million bits then one should use test samples of this length. It should be noted 
that not all of the tests can be applied to a string of this length due to computational 
limitations.  For example, in the linear complexity test one would need to examine a 
smaller substring of the keystream.  It is recommended that strings of length at least 
100000 bits be used for testing. 
 

A.1.1 Frequency Test 
The frequency test checks that there is an equal proportion of ones and zeros in the bit 
stream. For randomness the proportion of ones and zeros in the bit stream should be 
approximately equal, since any substantial deviation from equality could result in a 
successful cryptanalytic attack on the cipher. For example, assume that a cryptanalyst 
attacking the stream cipher knows the type of plaintext being used, e.g. standard English 
text coded in 8-bit ASCII, and the keystream has 4

3 of the bits zero. Under this assumption 
the cryptanalyst knows the frequency distribution of the plaintext in terms of single bits, 
digraphs and trigraphs. With this knowledge the cryptanalyst could recover a substantial 
amount of the plaintext, using ciphertext alone. 
The number of ones in a random binary sequence follows a binomial distribution, with 
mean 2

n and variance 4
n .  This may be approximated using a normal distribution.  The 

following notation is used: 

 

sequence. theinonesofproportionˆ

ones;ofnumber
zeros;ofnumber

bits;ofnumbertotal

1

1

0

==

=
=

=

n
np

n
n
n

 

The aim of the frequency test is to determine how the proportion of ones, , in the 
sample stream of length n bits, fits into the hypothesised distribution where the 
proportion of ones, and the variance, 

p̂

5.0=π n4
12 =σ . This is a two-tailed test [BHAT 

77].  The standardised normal test statistic is : )5.0ˆ(2 −= pnz .  The significance 
probability value, p, of the normal distribution is calculated for this statistic. This 
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measures the probability of obtaining a number of ones equal to or further from the mean 
of 2

n  than this sample gives for the hypothesised (where and 5.0=π n4
12 =σ ). 

100000>

)

A small significance probability indicates a significant result (i.e., the stream is 
considered to be non-random). For large values of n ( ) a highly significant 
result (significance probability < 0.001) indicates a possible weakness in the cipher and it 
is recommended that no further tests be carried out on this sample as the imbalance of 
ones and zeros may effect their results.  

n

It should be noted that passing the frequency test does not mean the stream is not 
patterned. The following highly patterned streams, where the number of ones and zeros 
are equal, will pass the frequency test: 
11111111..........00000000......... 
10101010101010..................... 
Hence further testing is required to obtain knowledge of any patterns in the stream. 
 
Example: 
Test stream: 
10100010000101110001011000111010101010101010000001 
Calculations and results:  

   
504

12

50n

×=σ
=

 

    
42.0ˆ

211

=
=

p
n

   13137.1)5.042.0(50z −=−=  
    2579.0p =
Interpretation: 

25.79 % of bit streams of length 50 will have a number of ones equal to or further from 
the mean of 25, for the hypothesised distribution, than this sample.  This sample satisfies 
the frequency test. 
 

A.1.2 Binary Derivative Test 
The binary derivative is a new stream formed by the exclusive-or operation on successive 
bits in the stream. Successive binary derivative streams may be obtained from each new 
binary derivative, each one being of length one less than its predecessor [CARR 88]. 
The proportion of ones in the i-th binary derivative gives the proportion of overlapping 
(i+1)-tuples from the original stream in one of two known groupings of these (i+1)-tuples.  
This will be explained for  and i . 1=i 2=
When i  (first binary derivative) we are looking at the overlapping two-tuples: 00, 01, 
10, 11 (in the original stream). 

1=

The proportion of ones in the first binary derivative, , gives the proportion of the 
total number of 01 and 10 patterns in the original stream. 

1(p̂

)1(p̂ > ½ means there is a larger proportion of the group of 01 and 10 two-tuples (in the 
original stream). 

)1(p̂ < ½ means there is a larger proportion of the group of 00 and 11 two-tuples (in the 
original stream). 
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A combination of the frequency test on the original stream and its first binary derivative 
is equivalent to testing that there is an equal number of these four overlapping two-tuples 
in the original stream. This replaces the well-known Serial Test [DAWS 91]. 
When i  (second binary derivative) we are looking at overlapping three-tuples: 000, 
001, 010, 011, 100, 101, 110, 111 (in the original stream).  The proportion of ones in the 
second binary derivative, , gives the proportion of the total number of 001, 011, 100, 
110 patterns in the original stream. 

2=

)2(p̂

)2(p̂  > ½ means there is a larger proportion of the group of 001, 100, 110, and 011 three-
tuples. 

)2(p̂  < ½ means there is a larger proportion of the group of 000, 010, 101, and 111 three-
tuples. 
A combination of the frequency test on the original stream and a similar test on the first 
and second binary derivatives, tests that there is an equal number of the eight overlapping 
three-tuples in the original stream, for practically all cases. If a cipher gives a satisfactory 
result to these tests AND also the change point test, then it can be considered to generate 
equal numbers of the overlapping three-tuples. 
 
Notation: 

 
derivative th-  thein ones of proportion)()(ˆ

derivative th-  thein ones ofnumber )(

1

1

i
in

inip

iin

=
−

=

=
 

The frequency test is applied to each stream and the standardised normal variable is 
found for the proportion of ones in each of the first two binary derivatives: 

)5.0)(ˆ(2)( −−= ipiniz , for .   2,1=i
The significance probability value, , of the normal distribution is calculated for each 
statistic.  A small significance probability indicates a significant result.  For large n 
( ) a highly significant result (significance probability < 0.001) indicates a 
possible weakness in the cipher. 

ip

100000>n

 
Example: 
Test stream: 
 10100010000101110001011000111010101010101010000001 
Calculations and results: 
D1 : 1110011000111001001110100100111111111111111000001 
D2 : 001010100100101101001110110100000000000000100001 
 
Frequency test on first binary derivative (D1) : 
    30)1(n1 =
   5.242

1n =−  
   61224.0)1(ˆ 150

30
1
)1(1 === −−n

np  

   57143.1)5.061224.0(492)1(z =−=  
    1161.01 =p
Interpretation: 
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11.61 % of bit streams of length 49 will have a number of ones equal to or further from 
the mean of 24.5, for the hypothesised distribution, than this sample.  This sample 
satisfies the frequency test on the first binary derivative. 

Since the frequency test is satisfied for the original stream and the first binary derivative 
then the cipher can be regarded as producing an equal number of overlapping two-tuples. 
Frequency test on second binary derivative (D2) : 
    16)2(n1 =
   242

2n =−  
   333.0)2(ˆ 250

16
2
)2(1 === −−n

np  

   3094.2)5.0333.0(482)2(z −=−=  
    0209.02 =p
Interpretation: 

2.09 % of bit streams of length 48 will have a number of ones equal to or further from 
the mean of 24, for the hypothesised distribution, than this sample. This sample 
satisfies the frequency test on the second binary derivative. 

Even though the frequency tests on the original stream and the first and second binary 
derivatives were all satisfied, the cipher will still have to satisfy the change point test 
before regarding it as producing an equal number of overlapping three-tuples. 
 

A.1.3 Change Point Test 
At each bit position, t, in the stream the proportion of ones to that point is compared to 
the proportion of ones in the remaining stream. 
The difference or change in these proportions is compared for all positions in the bit 
stream. The bit where the maximum change occurs is called the change point.  The test 
applied determines whether this change is significant for a binomial distribution where 
the proportion of ones in the stream is expected to be 0.5. 
This test is very useful for detecting patterned streams which have passed the frequency 
test on the stream and the first two binary derivatives. Even if 2

1=π and the stream has 
passed the frequency test it could be, for n = 106, that 4

1=π  for the first 500000 bits and 

4
3=π  for the second 500000 bits.  This is not considered to be a good pseudorandom 

sequence to be used as a keystream, and the change point test would detect such cases. 
This test is also useful for checking that there is an equal number of overlapping three-
tuples for streams which have passed the frequency test on the original stream and also on 
the first two binary derivatives. 
The hypothesis to be tested is that there is no change in the proportion of ones throughout 
the whole stream. The statistic [PETT 79] used is  where ]n[St]t[Sn]t[U ×−×=

  
ttS

nS
n

bittoonesofnumber][
streaminonestotal][

streaminbitstotal

=
=

=

The maximum absolute value of this statistic is found: 
  nttU K1for  ,])[(ABS of MaximumMax ==
The significance probability, p, associated with this statistic is approximated by:  

])[]([
2 2

nSnnnS
Max

ep −
−

= . 
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For small values of p the actual significance probability is smaller than that calculated. 
The smaller the value of p then the more significant the result.  For large streams  a 
highly significant result, p < 0.001, indicates a possible weakness in the algorithm. 
 
Example: 
Test stream: 
 s = 10100010000101110001011000111010101010101010000001 
Calculations and results: 

 

9721432050Max
20][

43
21][

50

=×−×=
=

=
=

=

tS
t

nS
n

 

 5390.0)2150(2150
972 2

== −×
×−

ep  
Interpretation: 

The actual significance probability of the change in the proportion of ones is less than 
53.9%.   This result indicates there is no significant change in the proportion of ones  in 
the bit stream.  This sample satisfies the change point test. 

 

A.1.4 Subblock Test 
The stream is divided into S non-overlapping subblocks, each of length b.  Any fractional 
subblocks remaining are ignored.  For a stream of length n, the number of subblocks is 
the integral part of  b

n , i.e. S =  b
n . 

For  a subblock size of b ≤ 16 a test of uniformity is applied – i.e., there should be an 
equal number of each b bit pattern.  The test compares the observed number of each b bit 
pattern with bS 2 . 

The test statistic used is ∑
−

=

−=χ
12

0i

2
i

b
2

b

Sf
S
2   [BEKE 82], where fi is the frequency of 

subblock pattern whose equivalent decimal value is i.  This statistic is compared with a 
chi-square distribution with degrees of freedom equal to .  For values of b > 6 the 
normal distribution may be used to approximate the chi-square distribution.  Limitations:  
The minimum length required for the stream to test for randomness using b-bit subblocks 
is  bits. 

12b −

b2b5 ×
For  a subblock size of b > 16 the repetition test is applied.  The repetition test measures 
the number of repeated patterns in a sample of S subblocks, each containing b bits. Given 
the binary stream is divided into S b-bit subblocks then, for a random stream, each of the 

 possible binary b-bit patterns is equally likely to occur.  As the block length 
increases and 

bN 2=
∞→N , with a sample of size S where ∞→ 0N

S → , then the distribution 
of the number of subblock repetitions in the sample approaches a Poisson distribution 

with a mean of )1( N
S

eN
−

−−S=λ .  When N8=S the mean converges to 32, for large 
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values of b (say b > 16).  The Poisson distribution is well approximated by the normal 
distribution for  λ .   32=

= rz

λ

45 
bit  8 of

8
100000

  the(hence

0 =

=


f

4042
260

freedom of 
12500

2 255

0

8

−

∑
=i

The test requires a count of the number of subblock repetitions, r. (Note that if a 
particular pattern occurs three times, then this would add two to the number of 
repetitions).  
The number of b-bit subblocks required for the test is N8=S , and gives . 32≈λ
The procedure is to sort the subblocks and then determine the number of repetitions, r. 

The test statistic is 
λ
λ− (standard normal statistic for a Poisson distribution with a 

mean equal to ), and is compared with the standard normal distribution.  A two-tailed 
test applies since both too few or too many repetitions may indicate non-randomness of 
the stream.   
The required stream length to apply the repetition test using b-bit subblocks is 

32
b

2b +× bits.  This is considerably less than the length of stream required to apply the 
uniformity test for subblocks of the same size.  Since the stream lengths required are very 
large, no sample stream will be shown.  Instead, the following data will be used to 
illustrate a test calculation for the uniformity test: 
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Interpretation: 
40.42% of all possible streams of length 100000 will have a distribution of 8-bit 
subblocks less uniform than this sample shows.  This sample satisfies the subblock 
test for subblocks of length 8. 

The following data is used to illustrate a test calculation for the repetitions tests: 
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Interpretation: 
14.44% of all possible streams of length 36864 will have a 18-bit subblock 
repetition count further from the mean (32) than this sample shows.  This sample 
satisfies the subblock test for subblocks of length 18. 
 

A.1.5 Runs Test 
The runs distribution test compares the distribution of the number of runs of ones 
(blocks) and zeros (gaps) with that expected under randomness. For a random binary 
stream where 2

1)0Pr()1Pr( == there should be an equal number of  number of blocks and 
gaps of the same length. Based on Golomb's postulates, the expected number of runs of 
length i for a random binary stream should be i2

1 of the number of runs, and for each 
length there should be an equal number of runs of ones and zeros, i.e. 

1i2
s

i1i0 )r(E)r(E +== Run , where Runs indicates the number of runs in the binary stream.  The 
hypothesis to be tested is that the distribution of runs in the stream fits a binomial 
population for which 2

1)0Pr()1Pr( == .  The test applied is adapted from [MOOD40]. 
The long runs are added together to form new variables s0k and s1k corresponding to the 

number of gaps and blocks of length k or more, where s  and  is the number 

of zeros in the stream. 

∑
=

=
0n

ki
i0k0 r 0n

By adding the long runs together a certain amount of information will be lost. In order to 
minimise the amount of information lost, it is recommended here that  1logk 5

1n
2 −= + . 

For a stream of length n = 106 this would give a maximum value of k = 16, and hence the 
number of gaps of length 16 or more would be added together to give s0,16 and the 
number of blocks of length 16 or more would be added together to give s1,16. 
Explanation of terms: 
  = number of bits in stream n
 = number of ones in the bit stream 1n
 = number of runs of 0 of length i i0r
 = number of runs of 0 of length i for i < k i0s
 = number of runs of 0 for lengths ≥ k k0s
 = number of runs of 1 of length i i1r
 = number of runs of 1 of length i for i < k i1s
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 = number of runs of 1 for lengths ≥ k k1s
The variables: 

 1k,...,1i
n

)(nru
i2

2
1

i1
i −=−=

+

 

 
n

)(nsxu
1k

2
1

k1
kk

+−==  

 1k,...,1i
n

)(nryu
i2

2
1

i0
iik −=−==

+

+  

 
n

nnzu 2
1

1
k2

−
==  

are asymptotically normally distributed with zero means and variances and covariances: 
4i2

2
12i

2
1

iiii ))(1i2()()y,y()x,x( ++ −−=σ=σ  
4ji

2
1

jiji ))(ji1()y,y()x,x( ++−−=σ=σ  
3ki

2
1

ki ))(ki()x,x( +++−=σ  
2k2

2
11k

2
1

kk ))(1k2()()x,x( ++ +−=σ  
4ji

2
1

ji ))(ji5()y,x( ++−−=σ  
3jk

2
1

jk ))(jk4()y,x( ++−−=σ  
3i

2
1

ii ))(2i()z,y()z,x( +−=σ=σ  
2k

2
1

k ))(5k()z,x( +−=σ  

4
1

zz)z,z( =σ=σ  
Test procedure: 
1. Determine k.   
2. Take a sample stream of n bits from a stream cipher.  Determine the number of 

runs of each length to gives and for k .   i1 i0s ,...,1i =
3. Calculate foru using above formulae.  k2,...,1jj =

4. Determine  [S = which is a ]ijσ k2k2 matrix.  Calculate .  × [ ] [ ] 1
ij

ij1S −− σ=σ=
 This will require obtaining the inverse of a matrix of up 
to 32 elements for bits.  Calculate which 

follows a χ distribution (chi-squared distribution with 2k degrees of freedom). 
There are terms in this sum. 

)1024(2

2
k2

)k2(

610n ≤ ∑σ== −
ji

ij1T uuSQ uu

2

∑ ∑
= <

σ+σ=
k2

1i ji
ji

ij2
i

ii uu2uQ  

The significance probability value, p, of the chi-squared distribution is calculated for this 
statistic. A small value of p indicates a significant result. For large streams a highly 
significant result, , indicates a possible weakness in the algorithm. %1.0p <
The runs test can be used to support results from the previous tests. Failure of the runs 
test indicates that there is a bad distribution of run lengths or that there are no runs 
recorded above a certain length that are expected to occur for streams of the sample size. 
The zero frequencies recorded will result in a higher chi-squared statistic thus giving a 
smaller significance probability. 
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Example: 
 Test stream: 
  10100010000101110001011000111010101010101010000001 
Calculations and results: 

  
21n

31runstotal
50n

1 =
=

=

     21log1logk 5
51

25
1n

2 =−=−= +  
  3s,13s,5s,10s 12110201 ====

 0189545941546.0
50

)(5013xu
3

2
1

11 =−==  

 7134596194077.0
50

)(503xu
3

2
1

22 −=−==  

 8995303300858.0
50

)(5010yu
3

2
1

13 =−==  

 4925656854249.0
50

)50(21zu 2
1

4 −=
−

==  

 109375.0))(12()()u,u()u,u( 6
2
13

2
1

3311 =−−=σ=σ  
 046875.0)(3)u,u( 6

2
1

21 −=−=σ  
 046875.0)(5)()u,u( 6

2
13

2
1

22 =−=σ  
 046875.0)(3)u,u( 6

2
1

31 ==σ  
015625.0)(1)u,u( 6

2
1

32 ==σ  
0625.0)(1)u,u()u,u( 4

2
1

4341 −=−=σ=σ  
1875.0)(3)u,u( 4

2
1

42 −=−=σ  
25.0)u,u( 4444 =σ=σ  

Elements of the inverse matrix, S-1 : 

.,2,5,3,2,12,0,4

,5,0,5,5,3,4,5,6

3
14443

3
142

3
14134333231

3
12423

3
122

3
121

3
11413

3
112

3
211

−=σ=σ−=σ−=σ=σ=σ=σ−=σ

−=σ=σ−=σ−=σ−=σ−=σ−=σ=σ
 

Q = 8.4733.. follows a  distribution. 2
4χ

p = 0.076 
Interpretation:   

7.6% of bit streams of length 50 will have a distribution of run lengths further from the 
expected distribution than this sample gives.  This sample satisfies the runs distribution 
test. 

 

A.1.6 Sequence Complexity Test 
The sequence complexity, c(s), is the number of different substrings encountered as the 
stream, s, is viewed from beginning to end [LEMP 76]. 
Example  (n = 16)  : 
     s = 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 
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Marking in different substrings : 
     s = 1/0/0 1/1 1 1 0/1 1 0 0/0 0 1 0/ 
Here the sequence complexity c(s) = 6 
A threshold value of sequence complexity is used to measure the randomness of a 
sequence.  This threshold value is nlog

n
2

where n is the total bits in the stream. A stream 
with a sequence complexity measure below this threshold value would be considered to 
be patterned, ie not random. For the example given, the threshold value 44

16 == . Hence 
the stream is not considered patterned. 
An expected value for the sequence complexity of a random stream of the same length is 
calculated using the following algorithm [GUST 96]: 

 
 

;1  then)( if
end;

;1     

;2     
begin

do )( while
;2
;2

)2log(
)1log(

−=<

+=

++=

<
=
=

−

ccin

cc

ii

ni
c
i

i  

It is expected that a good pseudo-random number sequence has a sequence complexity 
which is close to this value. It should be noted that the expected value of sequence 
complexity is always greater than the threshold value. However, a bit stream will only be 
considered to not satisfy the sequence complexity test if the value of c(s) is less than the 
threshold value. 
The sequence complexity is used to replace the autocorrelation test which is commonly 
used to determine any periodicity in the pseudorandom number generator. Periodicity 
would greatly reduce the number of "different" substrings encountered. Hence c(s) would 
be low and fall below the threshold value.  [DAWS 91]  
 
Example 
Test stream: 
 10100010000101110001011000111010101010101010000001 
Calculations and results: 

13valueExpected
859191.8valueThreshold

10)s(c
50n

=
=

=
=

 

Interpretation: 
This sample stream is considered random based on the sequence complexity test. 
 

A.1.7 Linear Complexity Test 
A.1.7.1 Linear Complexity 
The linear complexity test checks for the minimum amount of knowledge (bits) needed to 
reconstruct the whole stream.  Every finite stream, s, can be produced by a linear 
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feedback shift register (LFSR).  The length of the shortest LFSR which will produce the 
stream is said to be the linear complexity of the stream, which will be denoted by L(s). 
If the value of L(s) is L then 2L consecutive terms can be used to reconstruct the whole 
sequence using the Berlekamp Massey algorithm.  [MASS 69]  Hence, in order to avoid 
stream reconstruction, the value of L should be large. 
 
Example: 
 01011001010100100111100000110111001100011101011111101101 
This shortest recurrence relation which will create this sequence is: 
  )()1()4()5()6( tututututu ⊕+⊕+⊕+=+
where ⊕  is addition mod 2, and the first bit is u(0). 
For example: 

 If 0=t  then  . 
01100

)0()1()4()5()6(
⊕⊕⊕=

⊕⊕⊕= uuuuu

 If 1=t  then  . 
10001

)1()2()5()6()7(
⊕⊕⊕=

⊕⊕⊕= uuuuu

 If 2=t  then  . 
01010

)2()3()6()7()8(
⊕⊕⊕=

⊕⊕⊕= uuuuu

This means that the linear complexity, L(s), of this sequence is six.  If any twelve 
consecutive bits are known then the whole sequence can be reconstructed. [MASS 69] 
It should be noted that some keystreams can pass all the previous tests yet possess a very 
small linear complexity. An example of this is an m-sequence (see [RUEP 84]). An m-
sequence has a period of length and a linear complexity of L.  An m-sequence has 
the best possible distribution of zeros and ones for a sequence of period 2 . In this 
fashion an m-sequence appears to be statistically random in terms of tests A.1.1 to A.1.6. 
In fact m-sequences are commonly used as white noise generators. However, in terms of 
their use in a stream cipher an m-sequence offers very low security. Knowledge of only 
2L consecutive bits of the keystream is needed to derive the defining LFSR and hence 
determine the whole keystream.   

12L −
1L −

For large n, L(s) is approximately normally distributed with 81
862

2
n , =σ=µ  [RUEP 84], 

[KREY 81].  Using the standardised normal statistic ))(( 286
81 nsLz −=  the significance 

probability value, p, of the normal distribution is calculated.  
Since only low values of L(s) signify a possible weakness to the cipher, only a one-tailed 
test (lower tail) need apply. A small value of p indicates a significant result. For large 
streams a highly significant result ( ) indicates a possible weakness in the 
algorithm. 

%1.0p <

The linear complexity test by itself can classify as random, streams which may be highly 
patterned, or contain large substrings which are highly patterned. Some of the previous 
test results should support this. e.g. a stream of 12

n −  zeros followed by a one, and then 
followed by a repetition of these 2

n  terms, has a linear complexity of 2
n . This stream 

would be classified as being random using the linear complexity test. Clearly, such a 
stream is highly patterned and would not satisfy the previous tests. However, it is 
possible to construct a stream of length n which would pass all the previous statistical 
tests, and have a linear complexity of approximately 2

n  yet would contain a large highly 
patterned substring.  Hence the following linear complexity profile tests are carried out. 
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A.1.7.2 Linear Complexity Profile 
Since some highly patterned streams can give a linear complexity measure close to 2

n a 
second test measures the change in the linear complexity profile of the stream as each bit 
is added. Let s(i) be the substring formed by taking the first i bits of s.  If L(s(i)) for i = 
1,...,n  denotes the linear complexity of s(i) then the values of s(i) are defined to be the 
linear complexity profile of s and should follow approximately the 2

i line [MASS 69].  A 
failure in this test would highlight any large deviations from the 2

i line, which would 
appear for strings passing the linear complexity test and containing any large highly 
patterned substrings. A change in linear complexity signifies a jump.  
There are two tests relating to the Linear Complexity Profile: 
 
A.1.7.3 Linear Complexity Profile – Number of Jumps 
Let the total number of jumps be F.  For large n, F is approximately normally distributed 
with 4

n=µ  and 8
n2 =σ  [CART].  The standardised statistic for the number of jumps is 

)( 4
8 n
n Fz −= .  The significance probability, p, for this standardised statistic is 

calculated.  Since a small number of jumps would indicate a sequence within which 
patterns may exist, a one-tailed test (lower tail) is applied.  A small value of p ( ) 
indicates that the number of jumps in linear complexity is low, and there may be patterns 
in the stream which would indicate a possible weakness in the cipher. 

%1.0p <

 
A.1.7.4 Linear Complexity Profile – Jump Size 
If a stream passes the test on the number of jumps in linear complexity, then the 
distribution of jump heights may be investigated.  The height of a jump is the difference 
in linear complexity when a change occurs. Let the total number of jumps in linear 
complexity be F, where f is the number of jumps of height i. For a random string based 
on Bernoulli trials where the probability of a one on each trial is one half, the probability, 

that a given jump has height i is given by

i

ip i
2
1

i )(p = . Hence the expected number of 
jumps of height i, , is given by e . ie Fpii ×=

The chi-squared statistic used is ∑
=

−=
m

1i i

2
ii2

e
)ef(χ  [CART 87].  The maximum value of 

 is determined from the condition for the chi-squared test, that .  The number 
of degrees of freedom, , is determined from the sample taken. 

mi = 5ei >
1−m

The significance probability value, p, of the chi-squared distribution is calculated for this 
statistic. A small significance probability indicates a significant result – i.e., the stream is 
considered to be non-random. For large samples a highly significant result, , 
indicates a possible weakness in the algorithm.   

%1.0p <

Example 
Test stream: 
 10100010000101110001011000111010101010101010000001 
Calculations and results: 
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Linear Complexity Test 
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Interpretation: 
50 % of bit streams of length 50 will have a linear complexity less than this sample.  
This sample satisfies the linear complexity test. 

Hence bits (the whole stream) is needed to reconstruct the stream using the 
Berlekamp-Massey algorithm. 

50)(2 =× sL

 
Linear Complexity Profile - Number of jumps 
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Interpretation: 
84.13% of streams of length 50 will have a number of jumps in linear complexity 
less than this sample.  This sample satisfies the test on the number of jumps in 
linear complexity. 
 

Linear Complexity Profile – Jumps size 
.1,1,0,2,11 54321 ===== fffff  

5.7e1 =   Since  for i , then these values are combined to give .  The 
corresponding values of f are combined to give f . 

5<ie 2>

i

5.72 =+e
42 =+

 
0707.0

1121freedom of Degrees
27.35.7

)5.74(
5.7

)5.711(2 22

=
=−=−=

=+= −−

p
m

χ
 

Interpretation: 
Approximately 7.07% of bit streams of length 50 will have a sump size distribution 
further from the expected distribution than this sample gives.  The sample satisfies the 
test on the distribution of the linear complexity jump size. 
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Appendix B.  
 
Results of  Linear Complexity Tests on Panama 
 
Length of output stream = 1,000,000 bits.  
Number of streams = 10 
 
Test Key 

1 
Key 
2 

Key 
3 

Key 
4 

Key 
5 

Key 
6 

Key 
7 

Key 
8 

Key 
9 

Key 
a 

Linear Complexity 500000 500000 500001 500000 499999 500000 500000 500000 500002 500000

LC p-value .500 .500 .834 .500 .166 .500 .500 .500 .974 .500
LC profile – Jumps .814 .357 .791 .801 .074 .037 .467 .715 .498 .090
LC Profile – Jump 
Size 

.419 .750 .186 .908 .921 .198 .077 .015 .745 .584

 
 
Secret Keys Used (64 HEX): 
Key1:  bcfb8d1629964f571bea19eacdd1a9a8870622392094af2bc18e6942eb017b0f 
Key 2:  0000000000000000000000000000000000000000000000000000000000001 
Key 3:  0000000000000000000000000000000000000000000000000000000000002 
Key 4:  0000000000000000000000000000000000000000000000000000000000004 
Key 5:  0000000000000000000000000000000000000000000000000000000000008 
Key 6.  70b91d006387740d0397095a33de361f4a631b3023f06c6a2e3c0cb2647f26bb 
Key7:   008cf9209a7df04d2d2a990b08b8fec3 bad772b3f0c401fce5cf1db8cfebd599 
Key8:   bad772b3f0c401fce5cf1db8cfebd599008cf9209a7df04d2d2a990b08b8fec3 
Key9:   f878de38af18a9a1098bd8dc9f9c5e015d5ae4d5004fcd1bbf37a779bb1fce2b 
Keya:   5d5ae4d5004fcd1bbf37a779bb1fce2b f878de38af18a9a1098bd8dc9f9c5e01 
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Appendix C.  
 
Results of Statistical Randomness Tests on Panama 
 
Length of output stream = 10,000,000 bits. 
Length of output stream = 1,000,000 bits. (Sequence Complexity Test) 
Number of streams = 10 
Test Key 

1 
Key 
2 

Key 
3 

Key 
4 

Key 
5 

Key 
6 

Key 
7 

Key 
8 

Key 
9 

Key 
a 

Frequency .073 .705 .059 .580 .894 .071 .247 .009 .212 .134
Binary Derivative 
(1) 

.181 .375 .058 .599 .192 .272 .622 .855 .460 .559

Binary Derivative 
(2) 

.915 .487 .318 .625 .626 .956 .551 .597 .585 .700

Change Point .964 .964 .964 .964 .964 .964 .964 .964 .964 .964
Subblock b = 2 .351 .895 .153 .855 .993 .089 .104 .028 .364 .212
Subblock b = 3 .248 .088 .153 .716 .302 .100 .412 .101 .077 .468
Subblock b = 4 .194 .015 .290 .675 .593 .339 .173 .257 .347 .034
Subblock b = 5 .621 .079 .681 .953 .623 .595 .411 .234 .610 .838
Subblock b = 6 .913 .124 .848 .787 .502 .491 .172 .265 .452 .411
Subblock b = 7 .590 .344 .001 .994 .030 .166 .474 .464 .706 .688
Subblock b = 8 .787 .022 .961 .459 .048 .468 .495 .392 .300 .198
Subblock b = 9 .776 .202 .406 .793 .587 .463 .812 .842 .626 .029
Subblock b = 10 .452 .805 .764 .963 .505 .484 .902 .403 .555 .629
Subblock b = 11 .533 .796 .791 .586 .546 .211 .654 .059 .577 .067
Subblock b = 12 .052 .117 .246 .689 .418 .589 .382 .389 .506 .188
Subblock b = 13 .654 .351 .447 .434 .861 .624 .955 .195 .461 .299
Subblock b = 14 .392 .028 .852 .908 .294 .215 .684 .447 .856 .001
Subblock b = 15 .554 .424 .253 .347 .580 .513 .140 .328 .676 .502
Subblock b = 16 .362 .554 .079 .353 .939 .606 .340 .128 .181 .764
Subblock b = 17 .596 .860 .216 .724 1.00 .724 .860 .112 .596 .596
Subblock b = 18 .216 .596 .216 .724 .289 .379 .724 .377 .724 .860
Subblock b = 19 .860 1.00 .289 .052 .860 .216 .377 .596 .480 .724
Subblock b = 20 .860 .377 .596 .596 .860 .860 .157 .596 1.00 .480
Subblock b = 21 .112 .860 .596 .596 .289 1.00 .058 .289 .724 .289
Subblock b = 22 .724 .480 .480 .880 .596 .480 .724 .724 .860 1.00
Subblock b = 23 .596 .596 .596 .724 .860 .480 .377 .596 .052 .596
Subblock b = 24 1.00 .377 .596 1.00 .860 .724 .724 .377 .289 .596
Subblock b = 25 .480 .480 .480 .860 .112 .216 .289 .724 .289 .860
Subblock b = 26 .377 .860 1.00 .596 .860 .724 .724 .596 .480 .289
Subblock b = 27 1.00 .480 .860 .216 .724 .052 .860 .077 .860 .724
Subblock b = 28 .377 .157 .596 .112 .289 .377 .724 .377 .289 .377
Subblock b = 29 .724 .077 .112 .377 .596 .860 .724 .860 .860 .724
Subblock b = 30 .724 .860 .216 1.00 .052 .596 .860 .860 .480 .480
Runs Distribution .773 .145 .547 .574 .509 .229 .994 .702 .615 .493
Longest Run 28 28 28 28 29 28 28 28 28 28 
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Sequence 
Complexity 

50787 50783 50774 50753 50776 50744 50773 50775 50789 50811

Linear Complexity .500 .500 .834 .500 .166 .500 .500 .500 .974 .500
LC profile – Jumps .814 .357 .791 .801 .074 .037 .467 .715 .498 .090
LC Profile – Jump 
Size 

.419 .750 .186 .908 .921 .198 .077 .015 .745 .584

Sequence Complexity on 106 bits:   Threshold value = 50,441     Mean value = 50172 
 
Secret Keys Used (64 HEX): 
Key1:  bcfb8d1629964f571bea19eacdd1a9a8870622392094af2bc18e6942eb017b0f 
Key 2:  0000000000000000000000000000000000000000000000000000000000001 
Key 3:  0000000000000000000000000000000000000000000000000000000000002 
Key 4:  0000000000000000000000000000000000000000000000000000000000004 
Key 5:  0000000000000000000000000000000000000000000000000000000000008 
Key 6.  70b91d006387740d0397095a33de361f4a631b3023f06c6a2e3c0cb2647f26bb 
Key7:   008cf9209a7df04d2d2a990b08b8fec3 bad772b3f0c401fce5cf1db8cfebd599 
Key8:   bad772b3f0c401fce5cf1db8cfebd599008cf9209a7df04d2d2a990b08b8fec3 
Key9:   f878de38af18a9a1098bd8dc9f9c5e015d5ae4d5004fcd1bbf37a779bb1fce2b 
Keya:   5d5ae4d5004fcd1bbf37a779bb1fce2b f878de38af18a9a1098bd8dc9f9c5e01 
 

 37



 

Appendix D.  
 
Details of the Nonlinear Boolean Function in Panama 
 
The nonlinear operation of Panama consists of three parts: a nonlinear combination of  
words, word rotations, and the XOR combination of these values. This results in every bit 
of the state being a function of 9 bits of the previous state. (Here we ignore the extra 
XOR with buffer data). Due to the regular design, these Boolean functions all have the 
same structure, which we may represent as follows (where addition is mod 2) 
 
f(x)=x1 + x2x3 + x3 + x4 + x5x6 + x6 + x7 + x8x9 + x9 + 1 
 
This Boolean function has been analysed by Walsh-Hadamard Transform (WHT) and all of 
the possible linear correlations have been found. There are 64 linear functions with which 
f(x) is uncorrelated. These 64 linear functions are exactly all those which include the terms 
x1,x4, and x7. These linear functions all have weight 3 or more. All other linear functions 
have zero correlation with f(x). Hence, f(x) is second order correlation immune, an important 
fact not previously reported. The only non-zero WHT values are 64. The available linear bias 
is then given by 64/512=2-3. 
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