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Executive Summary

This report presents the results of a limited evaluation of the block cipher RC6.
The evaluation consisted of theoretical derivations and practical experimenta-
tions.

No flaws nor weaknesses have been identified in the design which could lead
to cryptanalytic attacks with respect to the state-of-the-art. The prediction by
the designers that only up to 16 of the 20 rounds can be attacked still stands
today. Thus, the security margin for RC6 with the proposed number of rounds
remains the same.

The design of RC6 is very close to the design of RC5 which has been subject
to public scrutiny for more than five years. We believe that RC6 is a stronger
design than that of RC5.

Finally we would like to mention that a longer, concentrated analysis of RC6
might reveal properties which we were not able to detect in this limited time
analysis.
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1 Structural features and characteristics

RC6 has a simple structure and description relative to other proposed block
ciphers. In the following we refer to [1, 2, 3, 4] for further descriptions and no-
tation. RC6 was one of five finalists for the Advanced Encryption Standard [35].
It consists of two Feistel networks whose data are mixed via data-dependent ro-
tations. The operations in one round of RC6 are the following: two applications
of the squaring function f(x) = x(2x + 1) mod 232, two fixed 32-bit rotations,
two data-dependent 32-bit rotations, two exclusive-ors and two additions mod-
ulo 232. The cipher runs in 20 rounds. RC6 is an evolutionary extension of the
block cipher RC5, which received much attention because of its design which is
even simpler than that of RC6. Where RC5 works on two 32-bit words, RC6 is
extended to operations on four 32-bit words. The relative simple structure of
RC5 has allowed for some easy analysis and yet it seems that 16 rounds of RC5
still resists all known attacks well.

The design of RC6 is more complex than that of RC5, and consequently an
analysis of the cipher gets more involved. The security of RC6 relies on the
strength of data-dependent rotations, the mixed use of exclusive-or operations
and modular additions, and on the squaring function f together with the fixed
rotations. By removing one or several of these diffusion properties, the resulting
cipher is weaker with respect to known attacks. However, it speaks in favor of
RC6 that some of these attacks are only theoretical with no practical attacks.

2 Evaluation of security level in terms of differ-
ential and linear cryptanalysis

In section we consider differential and linear cryptanalysis of RC6.
Let us first consider the individual components of RC6 and differential at-

tacks. We shall define the difference between two texts as the exclusive-or of
the texts and consider differences in 32-bit words. First consider the addition
of a subkey modulo 232. Integer addition of a constant word S to words A
and B which only differ in few bits does not necessarily lead to an increase of
bit differences in the sums A + S and B + S. This may be illustrated by the
following special cases: Suppose the words A and B only differ in the most
significant bit. Then it follows that A + S and B + S also differ in only the
most significant bit. Suppose next that the words A and B only differ in the
i-th bit, i < 31. Then it can be shown that with probability 1

2 , A+S and B +S
also differ in only the i-th bit. If we use the binary representation of words,
i.e., A = aw−12w−1 + · · · + a12 + a0, and similarly for B and S, the binary
representation of the sum Z = A + S may be obtained by the formulae

zj = aj + sj + σj−1 and σj = ajsj + ajσj−1 + sjσj−1, (1)

where σj−1 denotes the carry bit and σ−1 = 0 (cf. [37]). Using these formulae
one sees that A + S and B + S with probability 1

4 differ in exactly two (con-
secutive) bits. Suppose now the words A and B already differ in exactly two
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consecutive bits. Then again using the formulae (1) one can see that with prob-
ability 1

4 , A + S and B + S differ in exactly one bit and that with probability
3
8 , A + S and B + S differ in exactly two (not necessarily consecutive) bits.
Thus with probability 5

8 the words A + S and B + S differ again in at most
two bits if A and B differ in two consecutive bits. Using the formulae (1) one
could discuss relations between integer addition and bit differences in a more
general setting. However the above suggests that addition of sub keys can only
moderately contribute to an avalanche effect of bit differences. The following
concerns a relationship between rotations and bit differences in RC6. It is clear
that if A and B differ in s bits, then if both words are rotated by the same
amount, the resulting texts also differ in exactly s bits. If the texts are rotated
by a different amount then the resulting difference becomes harder to predict.
These reasonings motivate to consider exclusive-or differences of low Hamming
weights, e.g., one or two.

Next let us consider the squaring function f(x) = x(2x + 1) mod 232. We
use the following notation ∆x

G→ ∆x′ if texts of differences ∆x can result texts
of differences ∆x′ after one application of a function G. It follows by easy
calculations that there is a non-trivial differential through f of probability one.
Assume that x0 and x1 are two 32-bit texts different in only the most significant
bit. Then f(x0) and f(x1) are also different only in the most significant bit.
In other words the following differential in hex notation holds with probability
one:

80000000x
f→ 8000000x.

Assume next that x0 and x1 are two 32-bit texts different in only the second-
most significant bit. Then f(x0) and f(x1) are also different only in the second-
most significant bit with probability 1/2. In the other cases f(x0) and f(x1)
are different in both the most significant and in the second-most significant bits.
In a similar manner, consider two 32-bit texts different in only the third-most
significant bit. Then after the application of the function f , the texts will differ
in at most three bits, the three most significant bits. All these differentials can
be expressed as a (so-called) truncated differentials which holds with probability
one: it holds that if two texts are equal in the s least significant bits, then after
the application of the function f , the texts are equal in at least the s least
significant bits.

It follows that for all individual components of RC6 there exist differentials
of high probabilities. The question is if it is possible to exploit these high
probability differentials in an attack. For this to happen, it seems one must
consider texts of differences with a low Hamming weight, but such that all data-
dependent rotations are equal for the two texts. The authors themselves have
analysed RC6 extensively with respect to such differentials. In [3] results are
given which show that there are only a limited number of possible differentials
satisfying these constraints. These differentials however only allow for attacks
on RC6 reduced to 12 rounds or less. Since it is recommended to use 20 rounds,
it is believed that with respect to these differential attacks the security margin
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is more than sufficient. Let us next consider differentials where the difference
is defined by subtraction modulo 232. Thus, if x0 and x1 are two 32-bit texts,
the difference is defined ∆x = x0−x1 mod 232. It follows that such differentials
have probability one through a modular addition of a subkey modulo 232. Let
us next consider the squaring function f . Let x0 and x1 be two 32-bit texts
of difference α. Then the difference in the texts after the application of the
function f is

f(x0)− f(x1) = x0(2x0 + 1)− x1(2x1 + 1)
= (x1 + α)(2(x1 + α) + 1)− x1(2x1 + 1)
= 4αx1 + 2α2 + α,

thus the difference depends on both α and x1. However, since x1 appears in
first degree, a second-order differential will not depend on neither x0 nor on x1.
To see this, consider x0 and x1 as above and two texts x2 and x3 of difference
α, such that the difference between x1 and x3 is some value β. The four texts
x0, x1, x2, and x3 form a second-order differential. The value of the differential
through the function f is computed as follows.

f(x0)− f(x1)− (f(x2)− f(x3)) = 4αx1 + 2α2 + α− (4αx3 + 2α2 + α),
= 4α(x1 − x3)
= 4αβ,

thus not depending on the input texts, only on their differences. This means
that through the function f there are second-order differentials of probability
one. The problem in using these second-order differentials is first the data-
dependent rotations. If one should be able to iterate such differentials through
several rounds of RC6, then it seems one has to assume that the rotations for
all four texts always are the same. Thus, the probability of such differentials
are expected to be applicable only for a few number of rounds after which the
probabilities will be very low.

Let us next consider linear cryptanalysis and examine the individual com-
ponents of RC6. First of all, it follows that the addition of a subkey modulo 232

introduces, in general, carry-bits which complicate linear approximations. The
above considerations about the mixed use of exclusive-ors and modular addi-
tions illustrates this fact. However, there are linear relations through a modular
addition of probability one. As before, let A be 32 bits of data and let S be a
32-bit subkey. Then it follows that the least significant bits of A and A+S, have
maximum bias, since the least significant bit of S is a constant. Consider next
the squaring function f . It follows that the least significant bits of x and f(x)
are equal. Thus, there are linear approximations through f of probability one.
This situation is quite similar to the one for differential cryptanalysis, where the
most significant bits play the important role. The problem of iterating linear
approximations through several rounds is similarly difficult as for differential
cryptanalysis. The linear cryptanalysis performed by the authors conjecture
that RC6 is vulnerable to this attack for a maximum of 16 rounds, in which
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case the attack will be very involved and require a huge and unrealistic amount
of plaintexts and their corresponding ciphertexts. In the next section we shall
consider a correlation attack which is similar to the best linear attack discovered
by the authors.

3 Evaluation of security level in terms of other
cryptanalysis

In this section we consider other methods of cryptanalysis of RC6.
First of all, there are trivial attacks which apply to all block ciphers. An

exhaustive key search will take 2k operations to succeed, where k is the key
size. Also, the “matching ciphertext attack” applies in ECB and CBC mode,
but requires about 2n/2 ciphertext blocks to succeed with good probability,
where n is the block size. With n = 128 as in RC6, 264 ciphertext blocks are
required after which an attacker would be able to deduce information about the
plaintext blocks.

Higher order differentials. This attack applies to ciphers which uses non-
linear components of a low algebraic degree. The non-linear data-dependent
rotations complicate the higher order differential attacks. It is believed that
s-order differential attacks are less serious for RC6 for increasing values of s.
We discussed higher order differentials already earlier in this report.

The slide attacks, the integral attacks, the non-surjective attacks and the
“mod n” attacks do not seem applicable to RC6 . The latter might be applicable
to modified variants of RC6, which will be discussed later.

The interpolation attacks apply to ciphers which use simple mathematical
functions only. RC6 uses mathematical functions in the squaring function, how-
ever the mixed use of exclusive-ors and modular addition together with data-
dependent rotations seems to have a good effect in thwarting the interpolation
attacks.

The key-schedule of RC6 does not seem to allow for related-key attacks.
Since the round keys are encrypted in relatively many rounds using an encryp-
tion routine similar to that of the encryption algorithm itself, it is unlikely that
any easily identified weak keys or pairs of related keys exist.

In [26, 17] correlation attacks on RC6 were presented. In the following we
shall outline these attacks. The focus will be on the analysis of [26] since this
author is a co-author of this work.

3.1 Correlation attack

In the approach of [26] one fixes each of the least significant five bits in the first
word A and the third word C of the plaintexts and investigates the statistics of
the 10-bit integer obtained by concatenating each of the least significant five bits
in the first and third words, A′′ and C ′′, two rounds later. This is motivated
by the fact that the least significant five bits in A and C altogether are not
changed by the xor and data dependent rotation if both rotation amounts are
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zero. More generally, one can expect a bias for amounts smaller than five. This
leads to a strong bias which can be iterated over many rounds, just as in linear
approximations. Once can consider small rotation amounts as well as the zero
rotation and also rotations near zero from the negative, like 30 or 31, prove to
be useful as well.

Next we summarise the nonrandomness of r-round versions of RC6. The
analysis is based on systematic experiments on increasing numbers of rounds
of RC6 with varying word length w. The method is used to demonstrate that
detecting and quantifying nonrandomness is experimentally feasible up to 6
rounds of RC6.

The tool for the tests is the χ2 statistic of the integer of size ten bits as
obtained by concatenating the least significant five bits in words A′′ and C ′′

every two rounds later.
It has been shown that these tests make it possible to distinguish RC6 with a

certain number of rounds from a permutation randomly chosen from the set of all
permutations. Table 1 lists the result of tests implemented for RC6 with 128-bit
blocks with 3 and 5 rounds. It follows that 213.8 texts are sufficient to distinguish
the 3-round encryption permutation from a randomly chosen permutation in
90% of the cases. It was estimated that for RC6 with 3+2r rounds similar results
will hold using 213.8+r×16.2 texts, which was confirmed by tests implemented on
RC6 with 5 rounds.

Also, it was estimated that for keys where the least significant five bits of
each of the two subkeys in every second round are zeros, the attack improves
with more than a factor of two for each 2 rounds. This leads to the estimate that
for one in 280 keys, 17 rounds of RC6 with 128-bit blocks can be distinguished
from a randomly chosen permutation.

r #Texts Comments
3 213

3 213.8

3 214

5 229

5 230

7 246.2 Estimated.
9 262.4 Estimated.
11 278.6 Estimated.
13 294.8 Estimated.
15 2111.0 Estimated.
17 ≤ 2118 For 1 in every 280 keys.

Table 1: Complexities for distinguishing RC6 with 128-bit blocks and r rounds
from a random function.

Also, it was shown that these findings can be used in key-recovery attacks
on RC6. Table 2 lists the estimated complexities of the key-recovery attack for
RC6 with up to 12 rounds for all keys, up to 14 rounds for 192-bit key variants,
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r #Texts Work Memory Comment
12 294 2119 242

14 2110 2135 242

14 2108 2160 274

15 2119 2215 2138

16 2118 2171 274 1 in 260 keys

Table 2: Complexities for key-recovery attacks on RC6 with 128-bit blocks and
r rounds. One unit in “Work” is the time to increment one counter.

up to 15 rounds for 256-bit key variants, and up to 16 rounds for some weak
keys.

The analysis of [17] is comparable to above outlined correlation attack.

3.1.1 New analysis

In this section we report on a new analysis conducted on RC6 for this report.
The idea is that instead of estimating the nonuniformness of five bits from
each of the two Feistel halves in RC6, that is, in total ten bits, there is the
possibility that it could be advantageous to consider instead less or more bits.
To analyse this approach we implemented a series of tests on RC6. Let us call
the above non-uniformness a 10-bit correlation. Then we shall consider also
8-bit correlations and 12-bit correlations.

First a number of tests were run on RC6 with 128-bit blocks as is the pro-
posed version. By considering the uniformness of 10 bits of the ciphertexts after
2 rounds, one needs to generate about 212 texts to detect nonrandomness. How-
ever, in a 12-bit correlation there are 212 possible values of the bits considered,
therefore a χ2-tests is likely to be unreliable (it is usually recommended to use
5 times as many samples as there are possible values). Moreover, tests on a
2-round version might not accuratly measure the effect multiple round corre-
lations might have. In a 4 round version of RC6 one would need to generate
228 texts to see the effect. As we planned to analyse both the 8, 10, and 12-bit
correlations and since in each case one would need to do several tests, this test
was regarded too time-consuming.

Instead we implemented RC6 working on 16-bit words instead of 32-bit
words. One advantage of RC6 is that it scales easily up and down in word
sizes. In an RC6 version with 64-bit blocks the correlation attack as outlined
above would measure the nonuniformness in 8 bits. Without going into too
many details, the expected value of the χ2 statistic is in this case 255. The
number of texts needed to measure the effect of nonrandomness is much lower
for this version of RC6.

Consider Table 3, which lists the results of χ2 tests on 4 rounds of RC6
with 64-bit blocks. As can be seen, there does not seem to be a big effect in
considering less than or more than eight bits. The results in the table show
that the correlations are comparable. Therefore, it seems we can conclude from
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#Texts 6-bit 8-bit 10-bit
220 66 253 1014
222 68 266 1053

Table 3: The χ2-values for RC6 with 64-bit blocks and 4 rounds. Expected χ2

for random 6-bit, 8-bit, and 10-bit functions are 63, 255, and 1023, respectively.

this analysis that 8-bit and 12-bit correlations would not prove a substantial
improvement as compared to the known 10-bit correlations.

3.2 Modified variants of RC6

In [3] the designers of RC6 considered the security of some weakened variants of
the algorithm. The motivation for this is to illustrate that the components left
out are significant for the security of the algorithm. In the following we shall
extend the number of possible modifications of RC6.

1. Remove the fixed rotations.

2. Replace the squaring function f by the identity function.

3. Change the exclusive-ors to modular additions.

4. Change the modular additions to exclusive-ors.

5. Remove the data-dependent rotations.

In [3] the first two options were considered. It was shown that RC6 wihtout the
fixed rotations result in a weaker cipher, the main reason being that the data-
dependent rotation depend on only five bits of the inputs to f . Also, it was
shown that removing the squaring function would give a much weaker cipher.
This variant is somewhat comparable to two parallel runs of the RC5 algorithm.

Let us consider the third modification, that is changing the exclusive-ors
to modular additions. Then since the squaring function is “just” a number of
modular additions modulo 232, the strength of the cipher would lie in the good
interation of rotations and modular additions. It has been shown in [20] that
such ciphers are susceptible to the so-called “mod-n attacks”. Although, it is
not at all clear how such an attack would work on this modification of RC6, it
is felt that the “mod n” attacks or variants of these might be applicable.

Let us consider the fourth modification, that is, changing the modular ad-
ditions to exclusive-ors. In this case, it is believed that the correlation attack
outlined above has an improved performance. The modular additions of sub-
keys introduces some carry bits which add to the confusion and decreases the
correlations used in the attack.

Let us next consider the fifth modification, that is, removing the data-
dependent rotations. In this case, it is strongly believed that there exist efficient
differential and/or linear attacks.
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The above analysis illustrates that the components are all necessary for RC6
with 20 or less rounds. It is, of course, an impossible task to judge whether the
components are sufficient in constructing a secure cipher. So far noone has been
able to disprove this conjecture.

4 Survey of previous results on RC6

The known results on RC6 today are first and foremost the first analysis by the
designers [3]. In [10] the designers elaborate on the analysis of the simplified
variants of RC6, and [11] discusses some differential properties of the data-
dependent rotations.

The only known results not from the designers are those of [26, 17, 38]. The
first two were already discussed above, the third one concerns scenarios where
RC6 is used as a hash function. The author reports on some almost related
keys, but to the best of our knowledge these findings are only of theoretical
interest, if at all.
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A Block Ciphers in General

In the following we give a compressed overview of the state-of-the-art of block
cipher cryptanalysis, and outline the following known attacks.

1. Exhaustive Key Search

2. Matching Ciphertext Attacks

3. Differential Cryptanalysis

4. Truncated Differential Attacks

5. Higher-order Differential Attacks

6. Linear Cryptanalysis

7. Related-key Attacks

8. Non-surjective Attacks

9. Interpolation Attacks

10. Mod-n Attacks

11. Slide Attacks

12. Integral Attacks

A.1 Exhaustive key search

This attack needs only a few known plaintext-ciphertext pairs. An attacker
simply tries all keys, one by one, and checks whether the given plaintext encrypts
to the given ciphertext. For a block cipher with a k-bit key and n-bit blocks the
number of pairs of texts needed to determine the key uniquely is approximately
dk/ne. Also, if the plaintext space is redundant, e.g., consists of English or
Japanese text, the attack will work if only some ciphertext blocks is available.
The number of ciphertext blocks needed depends on the redundancy of the
language.

A.2 The matching ciphertext attack

The matching ciphertext attack is based on the fact that for block ciphers of m
bits used in the modes of operations for the DES [34] after the encryption of
2m/2 blocks, equal ciphertext blocks can be expected and information is leaked
about the plaintexts [12, 22, 32].
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A.3 Differential cryptanalysis

The most well-known and general method of analysing conventional cryptosys-
tems today is differential cryptanalysis, published by Biham and Shamir in 1990.
Differential cryptanalysis is universal in the sense that it can be used against
any cryptographic mapping which is constructed from iterating a fixed round
function. One defines a difference between two bit strings, X and X ′ of equal
length as

∆X = X ⊗ (X ′)−1, (2)

where ⊗ is the group operation on the group of bit strings used to combine
the key with the text input in the round function and where (X)−1 is the
inverse element of X with respect to ⊗. The idea behind this is, that the
differences between the texts before and after the key is combined are equal,
i.e., the difference is independent of the key. To see this, note that

(X ⊗K)⊗ (X ′ ⊗K)−1 = X ⊗K ⊗K−1 ⊗X ′−1 = X ⊗ (X ′)−1 = ∆X.

In a differential attack one exploits that for certain input differences the distri-
bution of output differences of the non-linear components is non-uniform.

Definition 1 An s-round characteristic is a series of differences defined as an
s + 1-tuple {α0, α1, . . . , αs}, where ∆P = α0, ∆Ci = αi for 1 ≤ i ≤ s.

Here ∆P is the difference in the plaintexts and ∆Ci is the difference in the
ciphertexts after i rounds of encryption. Thus, the characteristics are lists of
expected differences in the intermediate ciphertexts for an encryption of a pair
of plaintexts. In essence one specifies a characteristic for a number of rounds
and searches for the correct key in the remaining few rounds. In some attacks
it is not necessary to predict the values α1, . . . , αs−1 in a characteristic. The
pair (α0, αs) is called a differential. The complexity of a differential attack is
approximately the inverse of the probability of the characteristic or differential
used in the attack.

A.4 Truncated differentials

For some ciphers it is possible and advantageous to predict only the values of
parts of the differences after each round of the cipher. The notion of truncated
differentials was introduced by Knudsen [24]:

Definition 2 A differential that predicts only parts of an n-bit value is called
a truncated differential. More formally, let (a, b) be an i-round differential. If
a′ is a subsequence of a and b′ is a subsequence of b, then (a′, b′) is called an
i-round truncated differential.

A truncated differential can be seen as a collection of differentials. As an exam-
ple, consider an n-bit block cipher and the truncated differential (a′, b), where
a′ specifies the least n′ < n significant bits of the plaintext difference and b
specifies the ciphertext difference of length n. This differential is a collection
of all 2n−n′ differentials (a, b), where a is any value, which truncated to the n′

least significant bits is a′.
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A.5 Impossible differentials

A special type of differentials are those of probability zero. The attack was first
applied to the cipher DEAL [25] and later to Skipjack [7]. The main idea is
to specify a differential of probability zero over some number of rounds in the
attacked cipher. Then by guessing some keys in the rounds not covered by the
differential one can discard a wrong value of the key if it would enable the cipher
to take on the differences given in the differential.

A.6 Higher-order differentials

An sth-order differential is defined recursively as a (conventional) differential
of the function specifying an (s − 1)st order differential. In order words, an
sth order differential consists of a collection of 2s texts of certain pairwise,
predetermined differences. We refer to [28, 24] for a more precise definition of
higher order differentials.

In most cases one considers differences induced by the exclusive-or operation
and the field of characteristic 2. The nonlinear order of a function f : GF (2n) →
GF (2n) is defined as follows. Let the output bits yj be expressed as multivariate
polynomials qj(x) ∈ GF (2)[x1, . . . , xn], where x1, . . . , xn are the input bits. The
nonlinear order of f is then defined to be the minimum total degree of any linear
combination of these polynomials. The higher order differential attacks exploit
the following result.

Corollary 1 Let f : GF (2n) → GF (2n) be a function of nonlinear order d.
Then any dth order differential is a constant. Consequently, any (d+1)st order
differential is zero.

The boomerang attack [39] can be seen as a special type of a second-order
differential attack. This variant applies particularly well to ciphers for which
one particular (first-order) differential applies well to one half of the cipher, and
where another particular (first-order) differential applies well to the other half
of the cipher.

A.7 Linear cryptanalysis

Linear cryptanalysis was proposed by Matsui in 1993 [29]. A preliminary version
of the attack on FEAL was described in 1992 [31]. Linear cryptanalysis [29] is
a known plaintext attack in which the attacker exploits linear approximations
of some bits of the plaintext, some bits of the ciphertext and some bits of the
secret key. In the attack on the DES (or on DES-like iterated ciphers) the linear
approximations are obtained by combining approximations for each round under
the assumption of independent round keys. The attacker hopes in this way to
find an expression

(P · α)⊕ (C · β) = (K · γ) (3)
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which holds with probability pL 6= 1
2 over all keys [29], such that |pL− 1

2 |, called
the bias, is maximal. In (3) P, C, α, β, γ are m-bit strings and ‘·’ denotes the
dot product. The bit strings α, β, γ are called masks.

Definition 3 An s-round linear characteristic is a series of masks defined as
an (s + 1)-tuple {α0, α1, . . . , αs}, where α0 is the mask of the plaintexts and αi

is the mask of the ciphertexts after i rounds of encryption for 1 ≤ i ≤ s.

As for differential cryptanalysis one specifies a linear characteristics for a number
of rounds and searches for the keys in the remaining rounds, we refer to [29] for
more details. A linear attack needs approximately about b−2 known plaintexts
to succeed, where b is the bias of the linear characteristic used.

Also, the concepts of linear hulls, the analogue to differentials as opposed to
characteristics in differentials cryptanalysis, has been defined in [33].

Finally, in [30] it has been shown that if one defines the quantity q = (2p−1)2

where p is the probability of a linear characteristic or hull, then when combining
several linear characteristics one can multiply their q values to get the q-value
of the combination. Sometimes the q values are referred to as the “linear prob-
ability”, which is somewhat misleading, but nevertheless seems to be widely
used.

A.8 Mod n cryptanalysis

In [20] a generalisation of the linear attacks is considered. This attack is applica-
ble to ciphers for which some words (in some intermediate ciphertext) are biased
modulo n, where n typically is a small integer. It has been shown that ciphers
which uses only bitwise rotations and additions modulo 232 are vulnerable to
these kinds of attacks.

A.9 Related-key attacks

There are several variants of this attack depending on how powerful the attacker
is assumed to be.

1. Attacker gets encryptions under one key.

2. Attacker gets encryptions under several keys.

(a) Known relation between keys.

(b) Chosen relation between keys.

Knudsen used the methods of 1 by giving a chosen plaintext attack of the first
kind on LOKI’91 [21], reducing an exhaustive key search by almost a factor of
four. The concept “related-key attack” was introduced by Biham [6], who also
introduced the attack scenarios of 2, where the encryptions under several keys
are requested. Knudsen later described a related key attack on SAFER K [23]
and Kelsey, Schneier, and Wagner [19] applied the related key attacks to a wide
range of block ciphers. It may be argued that the attacks with a chosen relation
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between the keys are unrealistic. The attacker need to get encryptions under
several keys, in some attacks even with chosen plaintexts. However there exist
realistic settings, in which an attacker may succeed to obtain such encryptions.
Also, there exists quite efficient methods to preclude the related key attacks
[19, 16].

A.10 Interpolation attack

In [18] Jakobsen and Knudsen introduced the interpolation attack on block
ciphers. The attack is based on the following well-known formula. Let R be a
field. Given 2n elements x1, . . . , xn, y1, . . . , yn ∈ R, where the xis are distinct.
Define

f(x) =
n∑

i=1

yi

∏

1≤j≤n,j 6=i

x− xj

xi − xj
. (4)

f(x) is the only polynomial over R of degree at most n− 1 such that f(xi) = yi

for i = 1, . . . , n. Equation (4) is known as the Lagrange interpolation formula
(see e.g.,[9, page 185]). In the interpolation attack an attacker constructs poly-
nomials using pairs of plaintexts and ciphertexts. This is particularly easy if
the components in the cipher can be expressed as easily described mathemat-
ical functions. The idea of the attack is, that if the constructed polynomials
have a small degree, only few plaintexts and their corresponding ciphertexts are
necessary to solve for the (key-dependent) coefficients of the polynomial, e.g.,
using Lagrange’s interpolation. To recover key bits one expresses the ciphertext
before the last round as a polynomial of the plaintext.

A.11 Non-surjective attack

In [36] Rijmen-Preneel-De Win described the non-surjective attack on iterated
ciphers. It is applicable to Feistel ciphers where the round function is not surjec-
tive and therefore statistical attacks become possible. In a Feistel cipher one can
compute the exclusive-or of all outputs of the round functions from the plain-
texts and the corresponding ciphertexts. Thus, if the round functions are not
surjective this gives information about intermediate values in the encryptions,
which can be used to get information about the secret keys.

A.12 Slide attacks

In [8] the “slide attacks” were introduced, based on earlier work in [6, 21]. In
particular it was shown that iterated ciphers with identical round functions,
that is, equal structures plus equal subkeys in the rounds, are susceptible to
slide attacks. Let Fr ◦ Fr−1 ◦ · · · ◦ F1 denote an r-round iterated cipher, where
all Fis are identical. The attacker tries to find pairs of plaintext P, P ∗ and
their corresponding ciphertexts C, C∗, such that F1(P ) = P ∗ and Fr(C) = C∗.
Subsequently, an attacker has twice both the inputs and outputs of one round
of the cipher. If the round function is simple enough, this can lead to very
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efficient attacks. To find such pairs of texts, one can in the worst case apply the
birthday paradox, such that one such pair is expected from a collection of 2n/2

texts, where n is the block size.

A.13 Integral Attacks

These attacks are sometimes referred to as the “Square attack”, since it was
first applied to the block cipher Square [14, 13]. The attack on Square slightly
modified also applies to the block ciphers Crypton and Rijndael [15].

In [27] these attacks are generalised under the name of “integral cryptanal-
ysis”. In differential attacks one considers differences of texts, in integral crypt-
analysis one considers sums of texts. In ciphers where all nonlinear functions
are bijective, it is sometimes possible to predict a sum of texts, even in the cases
where differential attacks are not applicable. The main observations are that in
a collection of texts which in a particular word take all values exactly equally
many times, the value of the words after a bijective function also take all values
exactly equally many times. Also, assume that s words have this property and
that in the cipher a linear combination of the s words are computed (with re-
spect to the group operation considered). Then it is possible to determine also
the sum of all linear combinations in a collection of texts. This attack is still
today the best attack reported on Rijndael which has been the selected for the
Advanced Encryption Standard.
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