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Executive Summary

This report presents the results of a limited time evaluation of the block cipher
Cipherunicorn-A.

The round function of Cipherunicorn-A is very complex, which makes it hard
to analyse. We have outlined a few surprising properties of the round function.
First we discovered a differential which specifies 32 bits in the 64-bit outputs
with a probability orders of magnitudes higher than for a random function. Also,
it holds with a high probability that up to four rounds of the Feistel network
inside the round function can be ignored. Our findings are not sufficient to
establish cryptanalytic attacks faster than an exhaustive search for the key.
But it is felt that there are potential in the round function of Cipherunicorn-A
for cryptanalysis of a substantial number of rounds. However, we believe that
with respect to the state-of-the-art a cryptanalytic attack on all 16 rounds of
Cipherunicorn-A is likely not to exist or to be of a very high complexity.

Finally we mention that this report is the result of a limited time of review,
and the analysis was performed without access to computer code implementing
the block cipher. A longer, concentrated analysis might reveal properties of
Cipherunicorn-A which we were not able to detect.
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1 Structural features and characteristics

Cipherunicorn-A is an iterated block cipher with 128-bit blocks and allows for
three different key sizes to be compliant with the AES [30]. The structure
of Cipherunicorn-A is the well-known Feistel network and it runs in 16 rounds.
The Feistel round function consists itself of two smaller (64-bit) Feistel networks
whose outputs are combined by exclusive-ors to form the output of the round
function. The two smaller Feistel networks run in respectively ten and six
rounds together with several other components, e.g., multiplications by some
fixed constants. We shall call these networks the main stream and the secondary
stream, respectively. It is claimed by the designers that each one of these two
smaller Feistel networks by themselves provides enough “shuffling” of the data.
It is shown in this report that this claim is not fully justified.

The complexity of the Feistel round function is relatively big compared
to other known Feistel ciphers. In Cipherunicorn-A there is a total of 16 T -
functions, which consists of an evaluation of four S-boxes on the same input
byte, six multiplications modulo 232, four additions modulo 232, two 32-bit ro-
tations and three other bitwise logical operations. The four S-box evaluations
can be performed as one table lookup, if a table of size about 1 Kbytes is pre-
computed.

An unusual property

Next we report of an unusual property in the both the main stream and the
secondary stream of the round function. Consider the four rounds of the main
stream starting with a round after the second round containing T0. Then it holds
that the 64-bit texts are unaltered with probability 2−16. Consider Figure 3.4
in [2] and the following figure where an eight-tuple gives the values of the eight
bytes in the inputs and outputs to one Feistel round in the round function of
Cipherunicorn-A. Tk→ specifies which round function is considered and in which
direction the output of Tk is computed.

(x0, x1, x2, x3, x4, x5, x6, x7)
Tk→ (x0, x1, x2, x3, y4, y5, y6, y7)

(z0, z1, z2, z3, y4, y5, y6, y7)
T`← (x0, x1, x2, x3, y4, y5, y6, y7)

(z0, z1, z2, z3, y4, y5, y6, y7)
Tm→ (z0, z1, z2, z3, x4, x5, x6, x7)

(x0, x1, x2, x3, x4, x5, x6, x7)
Tn← (z0, z1, z2, z3, x4, x5, x6, x7).

As seen the ciphertext after four rounds equals the plaintext. The fact follows
from the observations that if in the first and third rounds the inputs to Tk and
Tm are equal, and if in the second and fourth rounds the inputs to T` and Tn are
equal, then the quantities output from the round functions in every second round
cancel out, and the output of the four rounds equal the input of the four rounds.
These two events have a probability of about 2−8 each. This is an approximation
only, since the events in the four rounds are not independent. Thus, for any
of such four rounds, there are many fixed points, approximately 248. Since the
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S-boxes were designed not to have any fixed points, this observation could be in
contradiction to the design principles of the designers. Note that for a general
64-bit Feistel cipher the above phenomenon would hold with a probability of
only 2−64.

In the secondary stream a similar phenomenon holds for the last three rounds
in the six-round Feistel construction. Assume the byte input to T0 in the third-
last round equals the byte input to T1 in the last round. In this case the
outputs of the secondary stream which is exclusive-ored to the outputs of the
main stream come from the first three rounds in the secondary stream. Thus
with probability 2−8 the main output from the secondary stream is computed
in only three Feistel rounds using T0 in every round.

2 Differential cryptanalysis

In this section we evaluate Cipherunicorn-A with respect to differential crypt-
analysis. A difference of two bit-strings of equal lengths is defined via the
exclusive-or operation. The Feistel round function consists itself of two smaller
(64-bit) Feistel networks with respectively ten and six rounds.

In the following we examine the different components of the Feistel round
function with respect to differential cryptanalysis.

The addition of subkeys modulo 232 is not a linear operation with respect
to the differences defined. However it is well-known that differences of small
Hamming weights stay differences of small Hamming weights with a high prob-
ability through modular additions [20]. For example, two texts different in one
bit only will remain different in only one bit after a modular addition with a
probability of 1/2 in general, and with probability 1 if the difference is in the
most significant bit. Let us examine this in more detail. Consider two 32-bit
words A and B and a subkey K. Integer addition of a constant word K to words
A and B which only differ in few bits does not necessarily lead to an increase
of bit differences in the sums A + K and B + K. This may be illustrated by
the following special cases: Suppose the words A and B only differ in the most
significant bit. Then it follows that A + K and B + K also differ in only the
most significant bit. Suppose next that the words A and B only differ in the
i-th bit, i < 31. Then it can be shown that with probability 1

2 , A + K and
B + K also differ in only the i-th bit. If we use the binary representation of
words, i.e., A = aw−12w−1 + · · · + a12 + a0, and similarly for B and K, the
binary representation of the sum Z = A + K may be obtained by the formulae

zj = aj + kj + σj−1 and σj = ajkj + ajσj−1 + kjσj−1, (1)

where σj−1 denotes the carry bit and σ−1 = 0 (cf. [32]). Using these formulae
one sees that A + K and B + K with probability 1

4 differ in exactly two (con-
secutive) bits. Suppose now the words A and B already differ in exactly two
consecutive bits. Then again using the formulae (1) one can see that with prob-
ability 1

4 , A + K and B + K differ in exactly one bit and that with probability
3
8 , A + K and B + K differ in exactly two (not necessarily consecutive) bits.
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Thus with probability 5
8 the words A + K and B + K differ again in at most

two bits if A and B differ in two consecutive bits. Using the formulae (1) one
could discuss relations between integer addition and bit differences in a more
general setting. However the above suggests that addition of subkeys can only
moderately contribute to an avalanche effect of bit differences. Therefore, let
us first replace the modular addition of the keys by an exclusive-or of the keys.

The A3 function in the main stream is linear with respect to the exclusive-
or operation. Therefore, we shall ignore the A3 function in the search for good
differentials. For any differential found by ignoring the A3 function one can
easily compute the differential input difference before the A3 function.

We use the following notation

(x0, x1, x2, x3)
G→ (y0, y1, y2, y3)

if texts of differences (x0, x1, x2, x3) can result texts of differences (y0, y1, y2, y3)
after one application of a function G, where each xi and yi are byte values.
Let ⊗ denote a multiplication of one of the two constants modulo 232 used in
Cipherunicorn-A. Then the following differentials hold with probability one.

(a, 0, 0, 0) ⊗→ (A, 0, 0, 0)

(a, b, 0, 0) ⊗→ (A,B, 0, 0)

(a, b, c, 0) ⊗→ (A,B, C, 0).

Here a, b, c, A,B, and C denote some nonzero values of a byte. In other words,
if a pair of texts are equal in the lower s bytes, 1 ≤ s ≤ 4, then the texts after
a multipication of a constant modulo 232 have the same property. There is an
even stronger result, namely if a pair of texts are equal in the lower s bits, then
the texts after a multipication of a constant modulo 232 have the same property.
In particular, the following characteristic (where hx is hexadecimal notation)

(80x, 0, 0, 0) ⊗→ (80x, 0, 0, 0) (2)

holds with probability one. In plain words, two texts different in only the
most significant bit are also different in only the most significant bit after the
multiplication of an odd constant modulo 232.

Next let us consider the smaller Feistel rounds inside the Cipherunicorn-A
Feistel round function.

Let us first consider the main stream. This is a ten-round Feistel network,
consisting of first a modular addition of two subkeys to the round input, then
one application of the A3 function, then two Feistel rounds using the nonlinear
function T0, then two Feistel rounds using the nonlinear function T1, then two
Feistel rounds using the nonlinear function T2, then two Feistel rounds using the
nonlinear function T3, and finally two Feistel rounds using the nonlinear function
Tk, where k is a two-bit value specified by data in the secondary stream.

By

(x0, x1, x2, x3, x4, x5, x6, x7)
Tk→ (y0, y1, y2, y3, y4, y5, y6, y7)
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we shall denote one round of the Feistel network (with 64-bit inputs and outputs)
in Cipherunicorn-A, where Tk is used as the nonlinear function. Also, when
considering two rounds of the Feistel network we shall denote the differentials
as follows

(x0, x1, x2, x3, x4, x5, x6, x7)
Tk→ (y0, y1, y2, y3, y4, y5, y6, y7)

(x0, x1, x2, x3, x4, x5, x6, x7)
Tk← (z0, z1, z2, z3, z4, z5, z6, z7),

so that the differential is depicted in analogue to the figure of [1].
Also, when considering two consecutive rounds with T0 as the nonlinear

function we shall assume that the multiplications of the constants are included,
cf. [1].

Then the following general types of differentials with two rounds are possible

(a, 0, c, d, e, 0, g, h) T1→ (a, 0, c, d, e, 0, g, h)

(a, 0, c, d, e, 0, g, h) T1← (a, 0, c, d, e, 0, g, h)

(a, b, 0, d, e, f, 0, h) T2→ (a, b, 0, d, e, f, 0, h)

(a, b, 0, d, e, f, 0, h) T2← (a, b, 0, d, e, f, 0, h)

(a, b, c, 0, e, f, g, 0) T3→ (a, b, c, 0, e, f, g, 0)

(a, b, c, 0, e, f, g, 0) T3← (a, b, c, 0, e, f, g, 0).

All these two-round differentials have probability one, where a, b, c, d, e, f, g, and
h denote arbitrary byte values. Also, the following differentials over six rounds
have probability one.

(a, 0, 0, 0, b, 0, 0, 0) T1→ (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T1← (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T2→ (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T2← (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T3→ (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T3← (a, 0, 0, 0, b, 0, 0, 0),

where a and b are any byte values. At the end of the main stream in the round
function of Cipherunicorn-A two rounds of encryption is performed using Tk in
the smaller Feistel rounds, where k is specified by the secondary stream. Clearly,
the two-round differential

(a, 0, 0, 0, b, 0, 0, 0) Tk→ (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) Tk← (a, 0, 0, 0, b, 0, 0, 0),
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holds with probability (1/4∗3/4)2 ' 1/32. Note that the probability that k has
one of the values 1, 2, or 3 in one round for one text is 3/4, and the probability
that for the other text one gets the same value of k is 1/4.

The above differentials can be concatenated and the following differential
over eight (8) rounds holds with probability 1/32.

(a, 0, 0, 0, b, 0, 0, 0) T1→ (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T1← (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T2→ (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T2← (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T3→ (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) T3← (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) Tk→ (a, 0, 0, 0, b, 0, 0, 0)

(a, 0, 0, 0, b, 0, 0, 0) Tk← (a, 0, 0, 0, b, 0, 0, 0),

where a and b are any byte values.
Next we consider the case where T0 is used as the nonlinear function. Con-

sider the following two-round differential.

(80x, 0, 0, 0, a, b, c, d) T0→ (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) T0← (80x, 0, 0, 0, 0, 0, 0, 0)

of probability 2−8. To see why this differential has probability 2−8 note that the
inputs to the function T0 in the first round are of difference 80x because of (2).
For any values of these two 8-bit inputs, the corresponding 32-bit outputs can be
determined and therefore also the exclusive-or of the two 32-bit outputs. Thus,
for any two 8-bit inputs to T0 one can compute the values of a, b, c, and d, such
that the differential above has probability one in the first round. The differential
has probability one in the second round, since there will be equal inputs to the
function T0 because of (2). Clearly, one cannot know with certainty the inputs
to T0 in the first round, since in the Feistel round function the initial operation
is the addition of some unknown keys. However, one can guess one of the 8-bit
inputs with probability 2−8, the other 8-bit input can then be easily calculated.

By combining the above results we find that the following differential over
ten rounds of the main stream holds with probability 2−13.

(80x, 0, 0, 0, a, b, c, d) T0→ (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) T0← (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) T1→ (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) T1← (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) T2→ (80x, 0, 0, 0, 0, 0, 0, 0)
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(80x, 0, 0, 0, 0, 0, 0, 0) T2← (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) T3→ (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) T3← (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) Tk→ (80x, 0, 0, 0, 0, 0, 0, 0)

(80x, 0, 0, 0, 0, 0, 0, 0) Tk← (80x, 0, 0, 0, 0, 0, 0, 0),

Clearly, this differential holds also if we incorporate the A3 function, since this
is linear, cf. the above discussion. The probability of the differential through
the complete main stream depends on the Hamming weights of the byte values
a, b, c, and d. Thus, according to the above considerations, one could optimise
the probability by finding values of a, b, c, of d of minimum Hamming weights.
In the best cases each of these are of Hamming weight 1, in which case the
probability drops by a factor of 2−4.

Let us next consider the secondary stream. This is a six-round Feistel net-
work, consisting of first a modular addition of two subkeys to the round input,
then four Feistel rounds using the nonlinear function T0, and finally two Feistel
rounds using the nonlinear function T1. The left half of the secondary stream
is exclusive-ored to both output halves of the main stream. The right half of
the secondary stream is used to specify two indices for a choice of a Tk function
in the main stream, thus only four bits of the right half is used. This imme-
diately gives rise to a differential for the whole round function but where the
initial key additions are replaced with exclusive-ors. It holds with probability
2−13 that two inputs of difference (80x, 0, 0, 0, a, b, c, d) where a, b, c, d have some
precomputed fixed values, result in texts of difference (e′, f, g, h, e, f, g, h) where
e and e′ differ only in the most significant bits. Thus, this still gives 32 bits
of information about the output differences at the cost of a probability of only
2−13. This follows from the fact that the same 32 bits of the outputs of the sec-
ondary stream are exclusive-ored to both 32-bit halves in the output of the main
stream. We did assume that the keys were added bitwise modulo 2 instead of
modulo 232 in the main stream. However, as discussed above, if the differential
has a low Hamming weight in the input differences this will only decrease the
overall probability with a small factor.

Moreover, there are nontrivial cases for the secondary stream. Consider the
following six-round differential.

(0, 0, 0, 0, a, b, c, d) T0→ (0, 0, 0, 0, a, b, c, d)

(0, 0, 0, 0, 0, e, f, g) T0← (0, 0, 0, 0, 0, e, f, g)

(0, 0, 0, 0, 0, e, f, g) T0→ (0, 0, 0, 0, 0, e, f, g)

(l, m, n, p, h, i, j, k) T0← (0, 0, 0, 0, h, i, j, k)

(l, m, n, p, h, i, j, k) T1→ (l, m, n, p, q, r, s, t)

(0, 0, 0, 0, q, r, s, t) T1← (l, m, n, p, q, r, s, t)
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The probability in the first round is one, since the inputs to T0 are equal. In the
second round after the multiplication with the constant, there is a probability of
about 2−8 that the inputs to T0 are equal. Consequently, the probability in the
third round is one again. The values in the differential follows now from the fact
that if the pair of bytes input to T0 in the fourth round and the pair of bytes
input to T1 in the sixth round are equal, then differences cancel out and the
left halves of the secondary stream are equal. If we let α and β be the two byte
values input to T0 in the fourth round, then the probability that the inputs to T1

in the sixth round are α, β or β, α is in total 2−15. Thus, in total this six-round
differential has a probability of 2−23. Note that the right halves are not specified
any further in this differential. Only four bits are used of the right halves, and
in this case it can be assumed that these bits are random. This differential could
have some good applications in a differential for the whole round function, since
the contribution from the secondary stream with respect to differences amount
to the four bits used to select two times one of four functions in the main stream.

Finally, one should try to look for differentials which go through both the
main stream and the secondary stream with a high probability. Although we
have not been able to make much progress on this in the time frame set for
this work, it is believed that there exist such differentials of high probabilities.
However, it is also believed that the probabilities for such differentials are low
enough, such that attacks on 16 rounds of Cipherunicorn-A will be of very high
complexity, if possible at all.

3 Linear cryptanalysis

In this section we consider attacks based on linear cryptanalysis. In the following
we examine the different components of the Feistel round function with respect
to linear cryptanalysis.

First we note that the A3 function helps complicate linear attacks, since each
output is a sum of three input bits. Thus in linear characteristics considering
one or a few bits, A3 has the effect of involving additional bits which complicate
analysis.

The addition of subkeys modulo 232 is not a linear operation respect to the
exclusive-or operation. However it is well-known that there is a linear relation
of maximum bias in the least significant bits.

We use the following notation

(x0, x1, x2, x3)
G→ (y0, y1, y2, y3)

to denote that texts with bit masks (x0, x1, x2, x3) are correlated to outputs
of the function G with bit masks (y0, y1, y2, y3). As before, let ⊗ be denote a
multiplication of one of the two constants modulo 232 used in Cipherunicorn-A.
Then the following linear characteristic holds with probability one.

(0, 0, 0, 0x1) ⊗→ (0, 0, 0, 0x1)
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Thus, there is a linear approximation of the least significant bits of maximum
bias for both modular addition and modular multiplication modulo 232.

The S-boxes used in the Tk-functions are all constructed from the inverse
function over GF (28), which is known to be highly nonlinear [27].

The only approach we have been able to find is the traditional one of tracing
bits round per round and combining these into relations over several rounds. In
the round function of Cipherunicorn-A this approach would require to incorpo-
rate at least the output of eight or more S-boxes per round. Since the S-boxes
are highly nonlinear this approach is not likely to enable attacks on more than
a few rounds of Cipherunicorn-A and far less than the specified 16 rounds.

4 Other cryptanalysis

In this section we consider other attacks. First of all, there are trivial attacks
which apply to all block ciphers. An exhaustive key search will take 2k opera-
tions to succeed, where k is the key size. Also, the “matching ciphertext attack”
applies in ECB and CBC mode, but requires about 2n/2 ciphertext blocks to
succeed with good probability, where n is the block size. With n = 128 as
in Cipherunicorn-A, 264 ciphertext blocks are required after which an attacker
would be able to deduce information about the plaintext blocks.

Higher order differentials. This attack applies to ciphers which uses nonlinear
components of a low algebraic degree. Cipherunicorn-A uses S-boxes of a high
nonlinear order in a relatively complex round function, and the probability that
a higher order differential attack could be applicable is very small.

The slide attacks, the integral attacks, the non-surjective attacks and the
“mod n” attacks do not seem applicable to Cipherunicorn-A .

The interpolation attacks apply to ciphers which use simple mathematical
functions only. Cipherunicorn-A uses mathematical functions in the S-boxes,
however the affine mappings in the S-boxes together with the A3 function seems
to have a good effect in thwarting the interpolation attacks.

The key-schedule of Cipherunicorn-A does not seem to allow for related-key
attacks. Since the round keys are encrypted in relatively many rounds using
both modular multiplications and S-box lookups, it is unlikely that any easily
identified weak keys or pairs of related keys exist.

5 Survey of previous results

The only previous results on Cipherunicorn-A that we are aware of are those
of the designers themselves [2]. In the self evaluation report the designers
spend most of the time discussing statistical tests of the round function of
Cipherunicorn-A which were performed. However it is widely believed that
such round function tests are not adequate as a tool for measuring the security
of the full cipher. Resistance against statistical tests for the full cipher is on the
other hand a necessary condition for a secure cipher although not a sufficient
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condition. It is relatively easy to construct ciphers which pass these tests but
for which there are efficient short-cut attacks. The comparison with the five
AES finalist block ciphers is not fair. As an example, it is well-known that the
Rijndael round function does not achieve full diffusion in one round, but the
construction guarantees that this is achieved after two rounds.
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A Block Ciphers in General

In the following we give a compressed overview of the state-of-the-art of block
cipher cryptanalysis, and outline the following known attacks.

1. Exhaustive Key Search

2. Matching Ciphertext Attacks

3. Differential Cryptanalysis

4. Truncated Differential Attacks

5. Higher-order Differential Attacks

6. Linear Cryptanalysis

7. Related-key Attacks

8. Non-surjective Attacks

9. Interpolation Attacks

10. Mod-n Attacks

11. Slide Attacks

12. Integral Attacks

A.1 Exhaustive key search

This attack needs only a few known plaintext-ciphertext pairs. An attacker
simply tries all keys, one by one, and checks whether the given plaintext encrypts
to the given ciphertext. For a block cipher with a k-bit key and n-bit blocks the
number of pairs of texts needed to determine the key uniquely is approximately
dk/ne. Also, if the plaintext space is redundant, e.g., consists of English or
Japanese text, the attack will work if only some ciphertext blocks is available.
The number of ciphertext blocks needed depends on the redundancy of the
language.

A.2 The matching ciphertext attack

The matching ciphertext attack is based on the fact that for block ciphers of m
bits used in the modes of operations for the DES [29] after the encryption of
2m/2 blocks, equal ciphertext blocks can be expected and information is leaked
about the plaintexts [7, 16, 26].
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A.3 Differential cryptanalysis

The most well-known and general method of analysing conventional cryptosys-
tems today is differential cryptanalysis, published by Biham and Shamir in 1990.
Differential cryptanalysis is universal in the sense that it can be used against
any cryptographic mapping which is constructed from iterating a fixed round
function. One defines a difference between two bit strings, X and X ′ of equal
length as

∆X = X ⊗ (X ′)−1, (3)

where ⊗ is the group operation on the group of bit strings used to combine
the key with the text input in the round function and where (X)−1 is the
inverse element of X with respect to ⊗. The idea behind this is, that the
differences between the texts before and after the key is combined are equal,
i.e., the difference is independent of the key. To see this, note that

(X ⊗K)⊗ (X ′ ⊗K)−1 = X ⊗K ⊗K−1 ⊗X ′−1 = X ⊗ (X ′)−1 = ∆X.

In a differential attack one exploits that for certain input differences the distri-
bution of output differences of the non-linear components is non-uniform.

Definition 1 An s-round characteristic is a series of differences defined as an
s + 1-tuple {α0, α1, . . . , αs}, where ∆P = α0, ∆Ci = αi for 1 ≤ i ≤ s.

Here ∆P is the difference in the plaintexts and ∆Ci is the difference in the
ciphertexts after i rounds of encryption. Thus, the characteristics are lists of
expected differences in the intermediate ciphertexts for an encryption of a pair
of plaintexts. In essence one specifies a characteristic for a number of rounds
and searches for the correct key in the remaining few rounds. In some attacks
it is not necessary to predict the values α1, . . . , αs−1 in a characteristic. The
pair (α0, αs) is called a differential. The complexity of a differential attack is
approximately the inverse of the probability of the characteristic or differential
used in the attack.

A.4 Truncated differentials

For some ciphers it is possible and advantageous to predict only the values of
parts of the differences after each round of the cipher. The notion of truncated
differentials was introduced by Knudsen [18]:

Definition 2 A differential that predicts only parts of an n-bit value is called
a truncated differential. More formally, let (a, b) be an i-round differential. If
a′ is a subsequence of a and b′ is a subsequence of b, then (a′, b′) is called an
i-round truncated differential.

A truncated differential can be seen as a collection of differentials. As an exam-
ple, consider an n-bit block cipher and the truncated differential (a′, b), where
a′ specifies the least n′ < n significant bits of the plaintext difference and b
specifies the ciphertext difference of length n. This differential is a collection
of all 2n−n′ differentials (a, b), where a is any value, which truncated to the n′

least significant bits is a′.
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A.5 Impossible differentials

A special type of differentials are those of probability zero. The attack was first
applied to the cipher DEAL [19] and later to Skipjack [4]. The main idea is
to specify a differential of probability zero over some number of rounds in the
attacked cipher. Then by guessing some keys in the rounds not covered by the
differential one can discard a wrong value of the key if it would enable the cipher
to take on the differences given in the differential.

A.6 Higher-order differentials

An sth-order differential is defined recursively as a (conventional) differential
of the function specifying an (s − 1)st order differential. In order words, an
sth order differential consists of a collection of 2s texts of certain pairwise,
predetermined differences. We refer to [22, 18] for a more precise definition of
higher order differentials.

In most cases one considers differences induced by the exclusive-or operation
and the field of characteristic 2. The nonlinear order of a function f : GF (2n) →
GF (2n) is defined as follows. Let the output bits yj be expressed as multivariate
polynomials qj(x) ∈ GF (2)[x1, . . . , xn], where x1, . . . , xn are the input bits. The
nonlinear order of f is then defined to be the minimum total degree of any linear
combination of these polynomials. The higher order differential attacks exploit
the following result.

Corollary 1 Let f : GF (2n) → GF (2n) be a function of nonlinear order d.
Then any dth order differential is a constant. Consequently, any (d+1)st order
differential is zero.

The boomerang attack [33] can be seen as a special type of a second-order
differential attack. This variant applies particularly well to ciphers for which
one particular (first-order) differential applies well to one half of the cipher, and
where another particular (first-order) differential applies well to the other half
of the cipher.

A.7 Linear cryptanalysis

Linear cryptanalysis was proposed by Matsui in 1993 [23]. A preliminary version
of the attack on FEAL was described in 1992 [25]. Linear cryptanalysis [23] is
a known plaintext attack in which the attacker exploits linear approximations
of some bits of the plaintext, some bits of the ciphertext and some bits of the
secret key. In the attack on the DES (or on DES-like iterated ciphers) the linear
approximations are obtained by combining approximations for each round under
the assumption of independent round keys. The attacker hopes in this way to
find an expression

(P · α)⊕ (C · β) = (K · γ) (4)



Analysis of Cipherunicorn-A 15

which holds with probability pL 6= 1
2 over all keys [23], such that |pL− 1

2 |, called
the bias, is maximal. In (4) P, C, α, β, γ are m-bit strings and ‘·’ denotes the
dot product. The bit strings α, β, γ are called masks.

Definition 3 An s-round linear characteristic is a series of masks defined as
an (s + 1)-tuple {α0, α1, . . . , αs}, where α0 is the mask of the plaintexts and αi

is the mask of the ciphertexts after i rounds of encryption for 1 ≤ i ≤ s.

As for differential cryptanalysis one specifies a linear characteristics for a number
of rounds and searches for the keys in the remaining rounds, we refer to [23] for
more details. A linear attack needs approximately about b−2 known plaintexts
to succeed, where b is the bias of the linear characteristic used.

Also, the concepts of linear hulls, the analogue to differentials as opposed to
characteristics in differentials cryptanalysis, has been defined in [28].

Finally, in [24] it has been shown that if one defines the quantity q = (2p−1)2

where p is the probability of a linear characteristic or hull, then when combining
several linear characteristics one can multiply their q values to get the q-value
of the combination. Sometimes the q values are referred to as the “linear prob-
ability”, which is somewhat misleading, but nevertheless seems to be widely
used.

A.8 Mod n cryptanalysis

In [14] a generalisation of the linear attacks is considered. This attack is applica-
ble to ciphers for which some words (in some intermediate ciphertext) are biased
modulo n, where n typically is a small integer. It has been shown that ciphers
which uses only bitwise rotations and additions modulo 232 are vulnerable to
these kinds of attacks.

A.9 Related-key attacks

There are several variants of this attack depending on how powerful the attacker
is assumed to be.

1. Attacker gets encryptions under one key.

2. Attacker gets encryptions under several keys.

(a) Known relation between keys.

(b) Chosen relation between keys.

Knudsen used the methods of 1 by giving a chosen plaintext attack of the first
kind on LOKI’91 [15], reducing an exhaustive key search by almost a factor of
four. The concept “related-key attack” was introduced by Biham [3], who also
introduced the attack scenarios of 2, where the encryptions under several keys
are requested. Knudsen later described a related key attack on SAFER K [17]
and Kelsey, Schneier, and Wagner [13] applied the related key attacks to a wide
range of block ciphers. It may be argued that the attacks with a chosen relation
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between the keys are unrealistic. The attacker need to get encryptions under
several keys, in some attacks even with chosen plaintexts. However there exist
realistic settings, in which an attacker may succeed to obtain such encryptions.
Also, there exists quite efficient methods to preclude the related key attacks
[13, 11].

A.10 Interpolation attack

In [12] Jakobsen and Knudsen introduced the interpolation attack on block
ciphers. The attack is based on the following well-known formula. Let R be a
field. Given 2n elements x1, . . . , xn, y1, . . . , yn ∈ R, where the xis are distinct.
Define

f(x) =
n∑

i=1

yi

∏

1≤j≤n,j 6=i

x− xj

xi − xj
. (5)

f(x) is the only polynomial over R of degree at most n− 1 such that f(xi) = yi

for i = 1, . . . , n. Equation (5) is known as the Lagrange interpolation formula
(see e.g.,[6, page 185]). In the interpolation attack an attacker constructs poly-
nomials using pairs of plaintexts and ciphertexts. This is particularly easy if
the components in the cipher can be expressed as easily described mathemat-
ical functions. The idea of the attack is, that if the constructed polynomials
have a small degree, only few plaintexts and their corresponding ciphertexts are
necessary to solve for the (key-dependent) coefficients of the polynomial, e.g.,
using Lagrange’s interpolation. To recover key bits one expresses the ciphertext
before the last round as a polynomial of the plaintext.

A.11 Non-surjective attack

In [31] Rijmen-Preneel-De Win described the non-surjective attack on iterated
ciphers. It is applicable to Feistel ciphers where the round function is not surjec-
tive and therefore statistical attacks become possible. In a Feistel cipher one can
compute the exclusive-or of all outputs of the round functions from the plain-
texts and the corresponding ciphertexts. Thus, if the round functions are not
surjective this gives information about intermediate values in the encryptions,
which can be used to get information about the secret keys.

A.12 Slide attacks

In [5] the “slide attacks” were introduced, based on earlier work in [3, 15]. In
particular it was shown that iterated ciphers with identical round functions,
that is, equal structures plus equal subkeys in the rounds, are susceptible to
slide attacks. Let Fr ◦ Fr−1 ◦ · · · ◦ F1 denote an r-round iterated cipher, where
all Fis are identical. The attacker tries to find pairs of plaintext P, P ∗ and
their corresponding ciphertexts C, C∗, such that F1(P ) = P ∗ and Fr(C) = C∗.
Subsequently, an attacker has twice both the inputs and outputs of one round
of the cipher. If the round function is simple enough, this can lead to very
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efficient attacks. To find such pairs of texts, one can in the worst case apply the
birthday paradox, such that one such pair is expected from a collection of 2n/2

texts, where n is the block size.

A.13 Integral Attacks

These attacks are sometimes referred to as the “Square attack”, since it was
first applied to the block cipher Square [9, 8]. The attack on Square slightly
modified also applies to the block ciphers Crypton and Rijndael [10].

In [21] these attacks are generalised under the name of “integral cryptanal-
ysis”. In differential attacks one considers differences of texts, in integral crypt-
analysis one considers sums of texts. In ciphers where all nonlinear functions
are bijective, it is sometimes possible to predict a sum of texts, even in the cases
where differential attacks are not applicable. The main observations are that in
a collection of texts which in a particular word take all values exactly equally
many times, the value of the words after a bijective function also take all values
exactly equally many times. Also, assume that s words have this property and
that in the cipher a linear combination of the s words are computed (with re-
spect to the group operation considered). Then it is possible to determine also
the sum of all linear combinations in a collection of texts. This attack is still
today the best attack reported on Rijndael which has been the selected for the
Advanced Encryption Standard.
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