Chapter 2

CIPHERUNICORN-E

CIPHERUNICORN-E was designed by NEC Corporation in 2000.

2.1 Design Properties

2.1.1 Basic Properties

The design includes logical operations (bitwise XOR, AND, shifts, ...), arith-

metic additions on 32-bit words, and table lookups. There are four 8-bit to

8-bit substitution boxes defined by tables, which leads to 1KB of table.
Several errors were found in the design description:

e Figure 3.7 have @ operations with a single input. They should be
removed.

e Figure 3.11 represent several outputs at a place which is not consistent

with Figure 3.8 and Figure 3.10. It should be corrected.

2.1.2 Upper Level

Encryption is a cascade of L operations and Feistel schemes with round
functions F'. The L operation is linear. Depending on the subkey bits in LK,
L takes each of the bits of the two 32-bit halves bitwise and perform one of
the four following operations.

1. nothing,
2. XOR of the left bit to the right bit,

3. XOR of the right bit to the left bit,

13

14 CHAPTER 2. CIPHERUNICORN-E

4. swap of the two bits.

We notice that XORing left bits onto the right ones can be included in the
F' function of the next Feistel round. Similarly, XORing the right bit onto
the left one can be included in the F' function of the previous Feistel round.
Thus, all the first three operations do not alter the Feistel scheme.

Swapping the bits can however be viewed as a merge of the previous
and the next Feistel rounds. Typically, if LK} = Oxffffffffffffffff,
the round 27 — 1 and 2¢ can be merged with a single round function which
is the XOR of F{2-1} and F{%} Additionally, if SK{#*~1 = SK{%} and
FK{Z1 = FK{?} | this XOR is zero, so the two rounds vanish and we merge
the round 27 — 2 and 2¢ 4+ 1. Therefore this operation decreases the number
of effective Feistel rounds.

2.1.3 The F Function

The round function is a tricky cascade of 7' functions with additional XOR
with data-dependent temporary keys and a structure permuted according
to the temporary key. The T functions are of four types: Ty, 11,715, T5.
They perform XOR on all four bytes with a value taken from the tables
which depends on a single byte. It should be noticed that two consecutive 7;
operations may cancel each other if the ith input byte is the same. Strictly
speaking, two consecutive 7; operations cannot cancel because the ith byte
is modified by the first 7; operation through a function which has purposely
no fixed points. This however occurs if the ith byte is additionally modified
by an extra operation in between the two 7; operations, like a K; operation
which simply XOR a temporary key onto the ith byte.

The cascade of T; functions provides a good diffusion of byte information.

The temporary key generation mechanism is another tricky cascade of
T; functions with an additional Y; ;, function. This Y ;, function can be
considered like a

z — 2.(14+2°.(1+27).(1 + 2¥) mod 2%

function. This propagates lower order bytes though higher order bytes. On
the other hand, 7y propagates the higher order byte onto all other bytes.
Finally, only the 4 higher order bits and the 16 lower level bits are used in
order to define the temporary key.

2.1.4 Relationship between Substitution Tables

The four substitution tables have been designed in order to have a maximal
resistance against linear and differential cryptanalysis. Their design core is

2.1. DESIGN PROPERTIES 15

an inverse function over GF(2%) in combination with an affine transforma-
tion. The four different substitution tables are thus generated by the inverse
function in four different representations of GF(2%); each one of these repre-
sentations is defined by an irreducible polynomial. More formally, each S-box
S; is defined by the formula

Sl(ac) = 0; ((SL‘ —+ Ci)_l mod gZ) + dz

where ¢;’s and d;’s are 8-bit constants not equal to zero, g; are irreducible
polynomials of degree 8 over GF(2) and o; are matrices defining a linear
application over GF(2)®.

We noticed that the output of two S-boxes can be linearly related in some
cases. More precisely, it is well known that two different representations of
GF(28) are isomorphic.

Let’s take as example two different representations of GF(2?):

F = GF(2)z]/(a®+2+1)
F = GF2)x]/(2®+ 2> +1).

Let « = z and v = x be generators of the multiplicative group of F and
I, respectively. Then o and 8 = 7 have both z® + z + 1 as minimal
polynomial (the minimal polynomial of an element z € GF(p) is the lowest
degree monic polynomial M (z) with coefficient over GF'(p) such that M (z) =
0); this defines the isomorphism between the two representations: we map
a + ba + co? represented as (c,b,a) onto a + b3 + ¢/3* represented with
1=(0,0,1), v = (0,1,0) and v* = (1,0,0). In our example, the matrix of
the linear application ¢ is given by

5=

O = =
[R
— O O

A similar matrix can be found for each combination of two S-boxes. Let
us consider

matrixA; (S (z @) ®d)) = z 'modg
matrixA; ' (So(y @ cz) B dy) = y ' mod gy
We know that the modulo g; and modulo g, representations of GF(2%) are
isomorphic. If v is an element of GF(2)[z]/go of minimal polynomial g;

(namely, a primitive root of g;), then we can define the matrix matrixP
which maps z* onto 4* for 4 = 0,...,7. This is a field isomorphism, thus

(matrixP(z)) ! mod g, = matrixP(z ' mod g;).

16 CHAPTER 2. CIPHERUNICORN-E

By taking y = matrixP(z), we obtain that
matrixAj ' (S (matrixP(z) @ ¢p) ® do) =
matrixP x matrixA7' (S (z @ ¢;) & dy)
which summarizes as
S>(z) = v @ matrixA, x matrixP x matrixA;" (S; (matrixP~" (2 & u)))
with
u = ¢y ® matrixP(c)
= dy ® matrixA, x matrixP x matrixA; ' (d;).
Finally, we can write
Si(z) = v; ® matrixQ, (S;(matrixR;(z & u;)))

for ¢+ = 1,2,3. This means that all S; are affine transformations of each
other. It is however not clear if this fact can be exploited in an effective
attack against the cipher.

2.1.5 Substitution Tables

Substitution tables have other surprising properties. Namely, for any 7, there
exist two affine transformation f and g such that S;o f =go S;.
For instance, let us take : = 0. We let

f(z) = (z* mod go) + co + (c; mod go)
which is an affine transformation. We have

Spo f(r) = matrixAy((z + co) 2 mod go) + do
= matrixL x (SQ(Q?) + do) + do

with
(1101100 1Y)
10101101
10110100
L — | 01010111
00101101
01100110
00011011
\00111110)
SO

g(x) = matrixL(z + d) + d.

2.2. DIFFERENTIAL AND LINEAR CRYPTANALYSIS 17

2.1.6 The K Function

The K function XOR a byte with wk1l or wk2. We notice that if one of these
bytes is zero, the corresponding K function does nothing.

We also notice that the K (sh[wk0][1]) function commutes with the four
previous T functions, and the K (sh[wk0][0]) function commutes with the
three previous T functions.

2.1.7 Key Scheduler

The key scheduler is a Feistel scheme in which the round function sequence
has a period of four. It generates alternately an LK-type subkey, an SK-type
subkey, and an FK-type subkey. Due to the periodic structure of the key
scheduler, there is no chance that the generated subkeys have a period of
three, six or nine. We can still expect to have a period of twelve, which
would mean that the LK subkeys sequence would have a period of four, as
well as the SK subkeys sequence and the FK subkeys sequence. This would
give a square structure to the encryption: we could write it 0 o 0. It can be
furthermore written with

c=L'on?ollorlol?on?0Llon!

1 2

where 7' and 72 are two 2-round Feistel schemes and the L‘’s are four L
functions with four different LK subkeys.

2.2 Differential and Linear Cryptanalysis

The S; substitution boxes make it hard to get good differential and linear
cryptanalysis since inversion in Galois fields is well known to be highly non-
linear. Diffusion of byte information in Feistel round functions is also quite
good. We can still hope to be able to use the mentioned design properties of
F (like cancellation of consecutive 7; functions) and of the overall structure
(like cancellation of consecutive rounds). This will however occur with low
probability, and the number of rounds (16 minus the number of canceled
rounds) is still large enough to protect against these attacks.

We have not been able to find good differential or linear attacks. We
still think that internal properties of the design may still hide unexpected
weaknesses.

18 CHAPTER 2. CIPHERUNICORN-E

2.3 Other Attacks

2.3.1 Side Channel Attacks

Like most of block ciphers, CIPHERUNICORN-E is vulnerable against sim-
ple models of power analysis. Assuming we can get the Hamming weight
of all CPU registers throughout the computation, we can recover the whole
secret key with a few chosen plaintexts. This is however a powerful power
analysis model.

The T (and K) functions which depend on temporary keys may induce
additional weaknesses against power analysis of timing attacks, depending
on how it is implemented. For instance, T may require to use data depen-
dent rotations, which are known to introduce important weaknesses against
timing attacks. More generally, if the implementation makes the ordering
of the CPU instructions change, we may have important weaknesses against
power analysis since power analysis will be able to see the actual sequence
of instructions which is performed. Tricky implementations may be able
to thwart these problems, but any careless implementation may be highly
vulnerable.

The substitution tables induce weaknesses against differential fault anal-
ysis: if we speed up the clock signal, part of the memory will become out of
reach. If the unreachable memory contains the substitution tables, analyzing
the differences may lead to information on internal computations.

CIPHERUNICORN-E may thus be more vulnerable against side channel
attacks than usual because of the internal structure (7', S).

2.3.2 Weak Keys

If we try to find keys for which the key scheduler has a period of four (which
is the “natural period” of the scheduler), we obtain that the same 64-bit
string must go though two 2-round Feistel schemes with 7 and 7T}, and with
T, and T3, so that, if © denotes its 32 rightmost bits, we have

T()(.’E) == TQ(LE)
This ends up with the equations
S;toSy087 0Ss(zg) = 0

STt o S3087! 0 Ss(x) T
52_1 OSO (@) Sl_l @) Sg(.%‘o) = Xy-

This system has no solution, thus it is not possible to find keys with such
a property.

2.4. AVAILABLE LITERATURE 19

Even if this was possible, it is not quite clear how weak the generated sub-
keys would be since the period of four conflicts with the period of the subkey
type sequence which is three. We can also wonder about keys for which the
period is twelve. We expect to get about one keys with this property. For
this, as already mentioned, the encryption is a square permutation. It may
be possible to distinguish square permutations from other ones, which can
be considered as a weakness.

There may thus exist about one weak key, but it is not clear how weak it
is, nor how to identify it.

2.3.3 Decorrelation

The F function provides too much entropy. Actually, it is likely that we
cannot efficiently distinguish f from a random function with only two chosen
inputs. With four chosen inputs, we obtain enough information in order to
reconstruct the round subkey. We estimated the decorrelation of order four
to be at least 2 x e™! ~ 0.74. Although it is hard to estimate the actual
decorrelation, it is likely to be quite small, and well known techniques may
prove that no efficient characteristic can be found against nine rounds.

2.4 Available Literature

The only available literature about CIPHERUNICORN-E is to our knowl-
edge the specification document provided by NEC and the given TECE ref-
erences [19, 20]. We haven’t found any independent cryptanalysis or third
party comments on CIPHERUNICORN-E in the academic literature.

2.5 Conclusion

CIPHERUNICORN-E is a recent block cipher with conservative design. Al-
though the original documents still have errors, it looks like a strong cipher
since no attacks has been found so far. Publication of CIPHERUNICORN-E
is however restricted to domestic area, and no public analysis were done so
far.

We also outlined a few internal properties which may ultimately lead to
some attacks which are unknown so far: cancellation of internal rounds, can-
cellation of T functions, affine transformations between substitution boxes,
symmetries in the key scheduler. Careless implementation may also be more
vulnerable than usual against side channel attacks.

20

CHAPTER 2. CIPHERUNICORN-E

Diffusion and confusion are however quite good, and decorrelation seems
to suggest strong resistance against variants of linear and differential attacks.

Finally, we think that the internal mathematical structure is so rich that
we did not found all interesting properties so far. We recommend to have
deeper analysis.

Here are our conclusion about CIPHERUNICORN-E.

1.

. Resistance against side channel attacks:

Discovery of unexpected internal properties: “—”. We discov-
ered an unexpected relationship between substitution boxes.

. Randomness provided by the key schedule: “++4”. The key

schedule seems to provide pretty good randomness.

. Resistance against differential and linear cryptanalysis: “+”.

The design seems to trickyly resist to these attacks.

“_ 9

. The complexity
of round functions may provide some weaknesses.

Maturity of the algorithm: “.”. Although quite young, this algo-
rithm looks pretty mature. We did not found any international aca-
demic reference so far.

Overall security confidence: “.”. We believe that deeper analysis
is required.

Beauty of the design: “+”. The design is quite conservative and
looks quite tricky.

