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This document analyzes the method called ECDHS in SEC 1. The analysis is
based on the SEC 1 documentation (version 1; 20 September 2000).

1 Summary

The ECDHS (Elliptic Curve Diffie-Hellman Scheme) of SEC 1 is versatile, widely
standardized, and builds on well-known techniques. Still, were were not satisfied
with it or with its exposition in SEC 1. Our high-level findings are as follows.

1. Many schemes at once. The ECDHS is not so much a key-agreement
scheme as a key-agreement schema—it is a framework which includes var-
ious key-agreement schemes. This makes ECDHS very versatile: schemes
from this schema are applicable under a wide variety of trust models (that
is, assumptions about who has what keys, and what they believe about
these keys) and under a wide variety usage scenarios (using static public
keys or ephemeral public keys; sending flows signed or not; and so forth).
This versatility also makes ECDHS difficult to analyze: the security prop-
erties one gets vary enormously according to the particulars, and there
are several tens of cases that one could be interested in. The only way
to progress appears to be to first extract from the schema the particular
set of schemes one is potentially interested in, and then deal with them
one-by-one. But there are too many schemes to do this effectively.1

2. Unclear security goals. The exposition in the SEC 1 spec provides
the user with no useful information about what security properties can be
expected to follow when a particular scheme is chosen from this schema.
Fully understanding the answer to this question would require knowledge
beyond anything demonstrated in the spec. We will do our best to clarify
this, but our explication will be far from exhaustive or definitive.

3. Strongest security goals unachieved. Despite the versatility offered
by the ECDHS, no scheme from this schema achieve the strong security
properties which are possible and desirable. For example, no scheme from
this schema achieve unilateral authentication or mutual authentication; no
scheme from this schema is secure in the face of RevealSn queries when ei-
ther party uses a static key; no scheme is secure in the face of an adversary
who may learn coins used for one of the sessions.

4. Unsafe possibilities. ECDHS encompasses schemes with both strong
and weak security properties. Does the presence of a good scheme from

1The diversity we are talking about is not of the sort: use an arbitrary message authenti-
cation code here, or use an arbitrary key-derivation function here; this type of versatility is
not problematic. We are speaking of things like: this key may be static or ephemeral, or here
you might or might not multiply by h, or this flow might or might not be authenticated. This
sort of diversity results in an exposition of fundamentally different schemes all masquerading
under a single label.
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a schema make the schema right, or does the presence of bad schemes
make the schema wrong? We are more inclined toward the latter, particu-
larly because it is so non-obvious what reasonable-sounding instantiations
achieve what goals. When, for example, some basic security goal requires
a well-informed choice of the optional parameter SharedInfo, we would
like to regard this as a significant defect: one should not be compelled
to make a non-obvious instantiation of an optional parameter in order to
achieve basic security goals.

5. Backwards development. The deficiencies of ECDHS may stem from
a development model that puts the scheme before the goal. Instead of
saying: “here are the security goals we are after—how can we best achieve
them?” the thinking appears to be more like: “here is a well-known
protocol—Diffie-Hellman key-exchange—now how can we adapt it to the
EC setting and make a standard of it?” Such an approach is unlikely to
give rise to a high-quality standard in a domain as and subtle as this one.

The criticisms may seem harsh. The underlying problem may be, in part, that
the state-of-the-art for key distribution is not nearly at the level of the state-
of-the-art for other cryptographic goals getting standardized by CRYPTREC
(symmetric encryption, asymmetric encryption, digital signatures, and crypto-
graphic hash functions). This is the only domain among those where: (1) there
is no complete and agreed-to set of definitions; (2) there are no proven correct
protocols for many of the problems one wishes to address; (3) the desired level
of variability in security goals, and the round-cost in achieving them, motivates
accepting a plurality of schemes; (4) the associated level of definitional com-
plexity makes a mathematical treatment long and weighty; (5) even an informal
description of requirements would be the subject of much debate. Thus it would
seem to be harder to devise at a good standard for key-distribution than for any
other problem considered.

Worse than SEC 1? ECDHS is taken from what we consider to be a nicely
executed standard, SEC 1. We gave that standard received a better review than
we are giving to this protocol—how is that possible? Because, in the author’s
opinion, the key-agreement schemes in SEC 1 were the weakest part of SEC 1.

2 The Schema

ECDHS is deceptively simple. Two parties, whom we denote2 A and B, share
valid EC domain parameters, including the base point G which generates a
subgroup 〈G〉 of the elliptic-curve group E, this subgroup having prime order

2SEC 1 names the parties U and V . Besides looking to similar, as do their lower-case
versions, we wish to regard one party (A) as the initiator as one party party (B) as the
responder. This semantics is not associated to U and V , and we do not want to create
confusion. Additionally, the subscripts associated to the notation in SEC 1 seems cumbersome,
so we will adopt the simpler notation given here.
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n = |E|
h , where h ∈ {2, 3, 4}. Entity A has a (secret key, public key) of (a,A),

while entity B has a (secret key, public key) of (b,B) (here A = aG and B =
bG). These keys could be static (long-lived) or ephemeral. The parties exchange
public keys (possibly in an authenticated way, the standard says). Now:

• Standard DH method. Each party checks that the public key received
lies in the group 〈G〉. Assuming it is, entity A calculates an EC point
S = aB , while entity B calculates an EC point of S = bA. If S = 0 the
party rejects.

• Cofactor DH method. Each party checks that the public key received lies
in the group E. Assuming it is, entity A calculates an EC point S = haB ,
while entity B calculates an EC point of S = hbA. If S = 0 the party
rejects.

Now the x-coordinate of S is converted into a string s, and the shared session key
is K = H(S, SharedInfo), where SharedInfo is an optional, unspecified string.

3 Goals?

The SEC 1 document states (p. 45):

[ECDHS and ECMQV are] designed to meet a wide variety of se-
curity goals depending on how they are applied . . .. [Goals] include
unilateral implicit key authentication, mutual implicit key authenti-
cation, known-key security, and forward security, in the presence of
adversaries capable of launching both passive and active attacks.

Unfortunately, the document never explains what security goals is intended to
follow if the scheme is applied in some particular way. In fact, neither the
specific security goals nor the scope of how it might be applied is discussed at
a level allowing a user to understand what security goal will follow from what
way to use ECDHS. This is a problem, making it hard for a user to know how
or if to use ECDHS.

Two of the goals mentioned above are given descriptions:

implicit key authentication (p. 52): only authorized parties are possibly
capable of computing any session keys.

forward secrecy (p. 52): . . . a session key established between some parties
will not be compromised by the compromise of some of the parties’ static
keys in the future.

We do not find descriptions of unilateral authentication or mutual authen-
tication in the document, though other sources give descriptions at a similar
level of refinement.

The above descriptions don’t go far to clarify the key-agreement goals. What
is the intended attack model? For example, can session keys be revealed? Can
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private coins? Can parties be corrupted? What does one get when doing so? Is
computing some bits of the session key ok—just not all of it? And so forth.

Despite considerable research in this area, it is a still-unresolved question as
to what exactly are the goals that a protocol like ECDHS can achieve, which
are the important goals to achieve, and what goals are actually that a protocol
like this does achieve under different scenarios.

Trying to have a clearer description of the intended goals is not just of “aca-
demic” interest. When Kaliski found an “unknown key-share attack” on the
MQV protocol [K98] of SEC 1, it was unclear if this amounted to a success-
ful attack. It was unclear because the security goals of the scheme had not
enunciated carefully enough.

For us, the “basic” goal of a KD scheme can be stated (still quite informally)
as follows:

Consider an active adversary whose capabilities include, at least,
sending arbitrary messages to instances of entities and obtaining
session keys from these instances. When a party U accepts a key K
as having been shared with a partner V, then at most U and V know
any information about this key K, assuming that the adversary has
not obtained this session key by having asked for it.

As simple as this sounds, the above is a high standard—and in some ways a
higher standard than the goals set out for ECDHS.

4 From Schema to Schemes

To get an understanding of the security characteristics of ECDHS one needs to
extract from this schema some particular schemes to look at.3 From the SEC 1
spec it is not immediately obvious what are the relevant “dimensions” by which
the schemes differ. We single out what seem to be the principal ways in which
the schemes differ. Refer to Figure 1.

static vs. eephemeral. A central characteristic of the scheme is whether the
key pairs are static or ephemeral:

1. A (public key, secret key) is static (long-lived) if it will be used for multiple
sessions.

2. A (public key, secret key) is ephemeral if it will be used for just one
session.

We will also use these words to apply to just the public key or its secret key.
The above characteristics separately apply to the initiator A and the re-

sponder B. Thus there are four possibilities: ordering by initiator/responder,
we denote these four cases by static/static, static/ephemeral, ephemeral/static,

3Again we are using language somewhat at odds with SEC 1. ECDHS is one scheme in
SEC 1. We are saying that, in analysis, one can not think of it that way.
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A B Scheme
static/ephemeral static/ephemeral

nocert/cert/strongcert nocert/cert/strongcert
unsigned/signed unsigned/signed standard/cofactor

Figure 1: Characteristics on which to differentiate schemes from the ECDH
schema. These 192 possibilities still do not capture some security-relevant con-
siderations, as discussed in the text.

and ephemeral/ephemeral. Similar notation will be used for other scheme at-
tributes which separately apply to the initiator and the responder.

nocert vs. cert vs. strongcert. One can assume that:

1. nocert. The receiver of the public key does not know the agent to whom
this key is bound (e.g., he doesn’t have any sort of certificate binding this
public key to a named entity).

2. cert. The receiver of the public key knows that it belongs to a particular
named entity (e.g., he has a certificate establishing this binding, and the
receiver of the PK trusts the CA that asserts this binding).

3. strongcert. The receiver of the public key knows that it belongs to
a particular named entity, and the receiver knows that that entity has
the corresponding secret key. For example, the CA who provided the
certificate might have required the entity requesting it to prove knowledge
of the secret key.

As we shall see, the level of assurance provided by “cert” does not seem to
be very useful when certificates are used in ECDHS. The problem is that an
adversary Z can copy a principal’s public key and have it certified (in the cert-
sense) as her own. On the flip side of this, “strongcert” would provide the
needed guarantees—but we would be weary of a protocol that made such a
strong assumption on what a certificate implies. A good protocol would (and
could) achieve its goals assuming the lower, cert-level of guarantee.

The use of static public keys that are not known (by certificates or other
means) to be associated to some particular principal might not be so interest-
ing. Similarly, the use of ephemeral public keys that have corresponding certifi-
cates is an unlikely possibility (I have never heard of getting a certificate for an
ephemeral PK). Still, logically, the presence or absence of a known entity-PK
binding is orthogonal to the key being static or ephemeral.

unsigned vs. signed. When public keys (static or ephemeral) are exchanged,
they may be exchanged in an unauthenticated or an authenticated way. The
latter would normally be accomplished by signing the public keys. We shall
distinguish this dimension as unsigned/signed. The latter, when applied to a
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party U, means that the other party V is certain of the originator of that flow.
As with nocert/cert/strongcert, the intent is not to mandate the mechanism, but
to suggest the use of an abstracted model which corresponds to the assurance
one would normally obtain through the mechanism of signatures.

standard vs. cofactor. The ECDHS comes in a standard version and a
cofactor version (where one multiplies by h). These are significantly different
protocols.

Further dimensions. The ECDHS allows an optional string SharedInfo to be
used in the key-derivation process. One needs to discuss security according to
what that string may be. In the “worst” case the string is empty or security-
irrelevant. (It is conceivable, though perhaps a bit far-fetched, that reasonable
use of this string could compromise security.) However, there are better choices
for this string (as hinted at in the SEC 1, Appendix B) where one can salvage
some security properties that would otherwise be absent. Since this string is
unspecified and security-relevant, there are now infinitely many protocols to try
to analyze. We will discuss some uses of SharedInfo in the sequel.

Taxonomy. Referring to Figure 1, reading left-to-right and then down, we have
singled out 192 possibilities: the initiator A may use a static or ephemeral public
key; the responder B may use a static or ephemeral public key; the initiator’s
public key might not or might be known by the responder to be associated
to the initiator’s identity—and, in the latter case, the responder might not or
might take for granted that the initiator is the one that originated that public
key; the responder’s public key might not or might be known by the initiator to
be associated to the responder’s identity—and, in the latter case, the initiator
might not or might take for granted that the responder is the one that originated
that public key; the public key (purportedly) provided by the initiator might
not or might be known by the responder to have been sent by the initiator;
the public key (purportedly) provided by the responder might not or might be
known by the initiator to have been sent by the responder; the scheme itself may
use the standard key-derivation method or the cofactor key-derivation method.
As indicated above, this taxonomy of schemes still omits the role of SharedInfo.

A staggering number of possibilities. It would seem nearly impossible
to fully understand what is and is not achieved under all of these possibilities.
But the situation is perhaps not completely hopeless. As indicated, some of
the possibilities are not interesting. Some of the added elements don’t add
much. In looking at attacks, some of the variability will be irrelevant. Still, the
above discussion should already make clear that there are major obstacles to
fully analyzing a schema of this ilk. To our knowledge, it has never been done.
We suggest that a schema specification like this one is not amenable to careful
analysis by cryptographers simply because it is so open-ended in potentially
relevant directions as to admit several tens of fundamentally different schemes—
more than anyone could carefully deal with.
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5 Efficiency

ECDHS is good in terms of efficiency. The computational work associated to
ECDHS is well-approximated by looking at the number of multiplications in
the elliptic-curve group that each party must perform, the number of signature
generations, and the number of signature verifications.

For the static/static cases, where the associated key for the pair of principals
has been cached, one needs zero multiplications, signature generations, or sig-
nature verifications. This is the case that would be associated to fast rekeying,
and no algebraic/public-key operations would be performed.

For the (ephemeral/ephemeral, nocert/nocert, unsigned/unsigned, cofactor)
case we each party needs two multiplication (and no signature operations). One
of these can be performed in advance, off-line.

For what we regard as the “best” cases, namely (ephemeral/ephemeral,
signed/signed, cofactor), each party needs two multiplications, but each party
must also generate one signature and verify one signature. One of the multipli-
cations, as well as the signature generation, can be done in advance, off-line.

For all cases besides the cached static/static ones, the corresponding stan-
dard (non-cofactor) scheme adds one more multiplication.

Of course it is not only the number of multiplications that matters, but
(among other factors) the size of the group where we are doing these multipli-
cations. As we shall see, most of the schemes do not support strong provable-
security results, and so it is impossible to get an understanding of the appro-
priate parameter choices by looking at the strength of the reductions involved.
Nonetheless, a security level of 80 bits, that is n = 160, is probably adequate in
practice.

6 Representative Attacks

We give some representative attacks on various schemes from this schema. None
of the attacks are deep, and we assume that most or all of them are known.

6.1 Fixed-session-key attack (static/static)

We consider the case in which the DH key exchange is based on a pair of
static public keys: entity B has the public key A of entity A (where A = aG).
Similarly, entity A has the public key B of entity B (where B = bG). If A and
B are already in this state, no flows are needed. If either or both are not yet
in this state, then likely one or two certificates is flowed, either from the entity
in question or from a registry service. The entities would be assumed to have
the public key for the CA. Though it is irrelevant for us now, one might assume
that B knows this key to be associated to A (eg., we are in the cert case) and A
knows this key to be associated to B. Pictorially, the (static/static, cert/cert,
unsigned/unsigned, standard) protocol might be realized by:
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A(a,A), B:B B(b,B), A:A

PID = B PID = A
S = aB S = bA

K = H(S) K = H(S)

Here the superscripts for the parties serve as a shorthand for the trust model:
they indicate what a party “knows.” The notation U : U is used for the cert
model, indicating that the party “knows” that U has been associated to public
key U .

The static/static trust model is useful. (This is the model of SKIP.) If entities
A and B can be regarded as already being in possession of one another’s public
keys, then they implicitly have a shared key K based on these two public keys.
However, the key K is not a session key in any sense. It does not vary from
run to run and must not be used as a session key. Consider, for example, what
happens if K is used in counter-mode encryption. Disaster! The same Vernam
pad is used in every session, completely sacrificing privacy. If the keys used in
ECDHS are both long-lived, then the protocol does not accomplish the minimum
requirements of properly distributing a session key: getting in the hands of the
participants a new key with each session.

Distributing a proper session key. There is some way out, via the optional
string SharedInfo. If SharedInfo is something that is guaranteed to never be
reused across sessions, then some measure of session-key security is possible
when both parties use static public keys. Consider, for example, the following
scenario, where α and β are random strings selected by A and B, respectively:

A(a,A), B:B α - B(b,B), A:A

β�
S = aB S = bA

SharedInfo = A ‖ B ‖ α ‖ β SharedInfo = A ‖ B ‖ α ‖ β
PID = B PID = A

K = H(S, SharedInfo) K = H(S, SharedInfo)

Now the protocol distributes a fresh session key each time it is run. In the
envisaged scenario where A and B are already in possession of the certificates,
the flows are only an exchange of α and β.

The protocol does not achieve forward secrecy: if either a or b should at
some point become known, all previous session keys will be compromised.

The protocol is secure against strong reveal queries (which give the adversary
the coins of this session) for the simple reason that there are no private random
coins used with a session.
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Is it acceptable to eliminate the value β from being flowed, setting SharedInfo =
α? No; the adversary who obtains one session key can now initiate a new session
(playing the role of A) which uses this session key.

Is it acceptable to eliminate the value α from being flowed, setting SharedInfo =
α? No; the adversary who obtains one session key can now initiate a new session
(playing the role of B) which uses this session key.

If the entities have approximately synchronized clocks than one alternative
is to make SharedInfo a time-varying value provided by the A. Entity B would
have to check that this value is timely, and entity would have to reject if the
same value is presented twice.

What has been said in this section holds true for other static/static settings.

Summary: Without using SharedInfo, the static/static ECDHS is insecure

in the most fundamental way: it does not produce a session key. But it

does provide a shared static key. The protocol can be made to distribute

a session key if SharedInfo incorporates nonces provided by both parties.

Even then, forward secrecy is not obtained.

The role of A and B, which we also inserted into SharedInfo, will be made clear
in the next subsection.

6.2 Unknown key-share attacks

The static/static cases of ECDHS has another problem—one quite endemic to
the ECDH schemes. Let us continue to assume the cert/cert case but think,
concretely, that the binding of an entity U to his public key U is provided by a
certificate Signca(U↔U ) obtained from entity CA (with widely-known public
key CA, and well-secured secret key ca). Let us assume that U can obtain a
certificate bound to U simply by demonstrating that he is U and presenting the
desired public key U . This is typical. It is the “cert” setting.

An adversary Z takes the public key A of A and gets a certificate Signca(Z↔
A) saying that A is Z’s public key. Similarly, Z takes the public key B of B and
gets a certificate Signca(Z↔B) saying that B is Z’s public key. Now entity A
engages Z in a conversation where A assumes a binding of Z↔ B (obtained by
Z providing A with such a certificate). The adversary Z engages entity B in a
conversation where B assumes a binding of Z↔ A (obtained by Z providing B
with such a certificate). The adversary simply relays the messages between A
and B. In this way, A establishes a shared session key with B, but both entities
believe, wrongly, that they are speaking to entity Z. Pictorially:

A(a,A), Z:B ←→ Z ←→ B(b,B), Z:A

PID = Z PID = Z
S = bA S = bA

K = H(S) K = H(S)
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This SEC 1 document refers to this type of problem as an “unknown key-share
attack.”

Above, PID is the “partner ID”—the entity that the indicated principal
believes it has just spoken to. We regard it as an important characteristic of a
KE protocol that ones partner is whom one believes it to be. For us, this is a
core aspect of a KD protocol, not an optional attribute.

One can similarly have only one of the two parties believe, wrongly, in the
identity of its partner.

One solution to this problem is to include the names of the entities (or their
certificates) in the scope of the key-derivation function H. We conclude the
following:

Summary: The static/static ECDHS insecure in the sense of being suscep-

tible to unknown key-share attack. To overcome this, include identities of

protocol participants in SharedInfo (along with nonces of protocol partici-

pants).

Strong certificates. Another possibility is to require an entity U who wants
a certificate Signca(U↔U ) to “prove” that he is in possession of the secret key
corresponding to U . Implementing this latter approach is problematic, and it
probably should not be relied on. In particular, if the CA asks a party presenting
a PK U to sign a random challenge, or to decrypt a random string, there is no
guarantee that U will not be able to accomplish this by again using the protocols
deployed within the distributed system. That is, “ordinary” proofs of knowledge
are not adequate to realize the strongcert model.

For the strongcert model, even the “economic” incentive is problematic.
Why should I obtain a strongcert certificate when it is not I who benefits from
it, but others who use my certificate? Are we to charge them? That would be
antithetical to creating a widely available PK infrastructure.

The strongcert model can be avoided: secure KD protocols can be con-
structed under cert model, and we feel strongly that reaching beyond the cert
model is expecting too much of the computing infrastructure.

Summary: For practical and useful protocols, the strongcert model should

not be assumed.

Henceforth we will ignore strongcert.

More unknown key-share attacks What has just been demonstrated for
the static/static case actually has nothing to do with whether keys are static or
ephemeral: it is applicable in all scenarios—including the signed/signed cases,
where each entity knows that the public key received from a party U really did
originate with U. It is possible that the designers of ECDHS assumed otherwise,
suggesting that exchanging public key in an authentic manner would improve
upon some (unspecified) security goals:

[the security goals provided by ECDHS depend] on issues like whether
or not public keys are exchanged in an authentic manner . . .[SEC 1,
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p. 45]

Let us examine this, by considering (ephemeral/ephemeral, nocert/nocert, signed/signed,
standard) protocol. It might be realized as follows:

A(a,A), CA B(b,B), CA

x
R← [1, n− 1]

X ← xG
CertAA =

Signca(A↔A) A ‖ X ‖ Signa(X) ‖ CertAA - check CertAA
& extract A
check sig

y
R← [1, n− 1]

Y
R← yG

PID = A
S = yX
K = H(S)
CertBB =

Y ‖ Signb(Y ) ‖ CertBB� Signca(B↔B)
check CertBB

& extract B
check sig
PID = B
S = xY

K = H(S)

(Note that the presence of the certificate does not make this the cert/cert case,
which would mean that the ephemeral keys X and Y had certificates. Here the
certificate is only used to allow the signature to be checked.)

This is no better than before. The adversary Z records X and A’s signature
of it, and Y and B’s signature of it. The adversary Z goes to CA and obtains a
certificate CertZA = Signca(Z↔A) and a certificate CertZB = Signca(Z↔B).
Now the adversary replaces actual certificates with the ones she has obtained,
but keeps the old signatures:

Z ‖ X ‖ Signa(X) ‖ CertZA -

Y ‖ Signa(X) ‖ CertZB�

In short, authenticating the public keys that are exchanged (signing them)
does nothing to address the problem because the signatures only bind the ex-
changed public keys to other public keys, and in the nocert and cert models the
adversary already had the ability to bind these public keys to other entities. As
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before, one would have to go to the (rather problematic) strongcert model, or
(better) to add entity names to SharedInfo, as we did before.

Summary: All versions of ECDHS (excluding the strongcert model) are

susceptible to unknown key-share attack. The problem can be addressed

by including identities in SharedInfo.

6.3 Captured session-key attacks (at-least-one static key)

All of the static/static, static/ephemeral, and ephemeral/static cases, regardless
of certificates or signatures, fail rather badly as soon as we allow for RevealSn
queries. That is, if the adversary can obtain some old session key, then the
adversary can win. Let is illustrate.

Suppose, for concreteness, the following ephemeral/static scenario:

A(a,A), B:B B(b,B), A:A

x
R← [1, n− 1]

X ← xG
A ‖ X ‖ Signa(X) -

check signature
PID = B PID = A
S = xB S = bX

K = H(S) K = H(S)

Now suppose that the adversary Z can obtain a session key K and has
recorded the corresponding flow from A to B that gave rise to it. Then the
adversary can, from that point on, get B to have a shared key with Z which B
believes to be shared with A. The adversary simply repeats the contents of A’s
earlier flow. That flow determines the (already known) session key K.

Adding identities to H is irrelevant. Going to the strongcert The protocol
is fundamentally insecure against RevealSn queries. We conclude:

Summary: If either party uses a static key, then loss of a single session key

destroys future security.

6.4 Key-translate attacks

Here is an attack which many will not regard as a “real” attack.
Assume the standard (as opposed to cofactor) version and, for concreteness,

the (ephemeral/ephemeral, nocert/nocert, unsigned/unsigned) case. Suppose
that A sends B the public key X and the adversary Z replaces it by αX, for some
1 < α < n. When B sends back a public key Y the adversary replaces it by αY .
Then both parties will compute the same shared key S = αyX = αxY = αxyG,
which will be converted into the session key K. Is this a damaging attack?

13



The SEC 1 authors realized that this would be a damaging attack if α could
be chosen so as to force S = αxyG to be 0, or to be one of some small set
of values. Thus they insist that each party rejects a value of S = 0, and they
require each party to check that the public key U which is received from the
other party satisfies nU = 0. But if all the adversary Z accomplished was to
shift the value S from which the session key is derived from its (unknown) value
K to its (unknown) value αK, does it matter?

Conceivably. In some treatments of session-key distribution there is the idea
of a session ID, SID, that should uniquely name each session. The session ID can
be useful in protocols; for example, it can be the basis of auditing. The session
ID should be a common, publicly-knowable value that the communicating peers
hold.

The usual way to define the SID would be as the concatenation of the flows.
But this method does not work in the face of the “key translate” attack we
have shown. One party will have an SID of (X, αY ), while the other party
will have an SID of (αX, Y ). Since they have different session IDs they will
not be considered to be “partners” in their communication. Consequently, in
the formal definitions, it will be fine to RevealSn the session key of one of these
entities and it should not compromise the session key of the other. But of course
it would compromise the session key of the other: they parties hold the same
session keys. From our outside point of view, the parties are partners, despite
their view of the flows being different.

Maybe one could have defined the SID in some other manner—but all the
alternatives seem to be problematic. Just viewing the contents of all flows it
will be information-theoretically impossible to figure out who is partnered with
whom. That is, if the adversary Z gets a frist message from 100 instances of A,
randomly translates each of them, and then sends the translates to 100 instances
of B, we will have no way to ascertain who is partnered with whom. It is only
in the adversary’s head.

One could try to use the session key itself as the basis of partnering. This
too is problematic. Suppose we have a strong reveal query, where S itself will
be manifest to the adversary. Then the adversary α-translates the flow from
A to B. The two entities get different keys, and so they are not partnered
with one another. Doing the strong-reveal query of one party is not supposed
to compromise the other. But it does, since the two pre-session keys (the S-
values) differ by an adversarially-known constant α.

Another way to describe the defect is to go back to the intuition of early
work in authentication, Bellare-Rogaway 93, where it was said that the most
that an adversary should be able to do is to act like a (possibly broken) wire.
Here, in the session-key translation attacks, the adversary is able to depart from
that abstraction with impunity.

The attack of this subsection is not a strong, practical attack—many would
say, with justification, that it is a non-attack. But it illustrate that desirable,
clean, definitions are not being achieved.
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6.5 Reveal$ attacks

When formalizing security one may wish to allow a Reveal$ query that lets the
adversary obtain the internal coins of an instance of a protocol. There are two
versions: one in which a principal may erase his coins, and one in which he may
not. The distinction will not be important for us.

A Reveal$ query models something quite different from the RevealSn query
that has been introduced in earlier works. The latter captures the possibil-
ity that a session key may be leaked (even intentionally) by the protocol the
authenticated key exchange was furnishing a session key for. In contrast, a
Reveal$ query models the possibility that the computing environment on which
the instance ran used an inadequate source of randomness, or got compromised.
Suppose, for example, that a user authenticates from a public work station.
When the user is done using this workstation it might be possible for an ad-
versary to come in and obtain the secret coins that had previously been used.
Alternatively, the machine may have been hacked beforehand so as to issue pre-
dictable coins. Alternatively the source of randomness on the public workstation
might depend on a broken system clock, or on non-existent network traffic.

In general, we would like that compromise of the coins of an instance com-
promises only that instance. But this is not the case with ECDHS. Consider,
for concreteness, the (ephemeral/ephemeral, nocert/nocert, signed/signed, stan-
dard) scheme. Let α = X ‖ Signa(A) be the first flow (it is sent by A). If the
adversary Z ever learns the secret coins a associated to A = aG then she can
establish new sessions with B wherein she knows the secret key. All the ad-
versary Z has to do is to replay the flow α, get back the response β, and, by
assumption, she now has everything needed to compute the session key K.

This is a deficiency roughly comparable to disrupting the forward secrecy:
loss of something that shouldn’t be leaked but could, possibly, be leaked, is
having consequences worse than what is possible and desirable.

Summary: ECDHS strongly assumes that secret coins used by authenticat-

ing parties will remain secret forever.

6.6 Attacks intrinsic to 2-flow AKEs

This section discusses limits of authenticated key-exchange protocols under the
assumption that there are only two flows, and the second flow is independent
of the first. All versions of ECDHS fall into this category.

1. No forward secrecy in the strong-corruption model. In modeling
the possibility of a party being corrupted there are a couple of choices:
one may give out just the static public key of the corrupted party, or
one may release the complete state of that party. Following [BPR00] we
call these the weak corruption model and the strong corruption model,
respectively As indicated in that paper, forward secrecy is not achievable
in the strong-corruption model by two-flow protocols. The difficulty is the
following. Let the initiator be denoted by A and the responder by B. Then
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if A is corrupted after B has terminated but before A has received the
response, then B will hold a fresh key but the adversary Z can necessarily
compute the shared session key K, since the adversary has the exact same
information that A would have had the it received B’s final flow.

2. No A-to-B authentication. When the responder B accepts a key he
has no idea if the flow he is responding to recently came from A—it could
be years old, for all he knows. This is intrinsic in any two-flow protocol.
There is no key-confirmation from initiator-to-responder

3. No B-to-A authentication. When the initiator A accepts a key fol-
lowing receipt of flow 2, she has no idea if the party from whom she just
received a message is the party that was. This property is certainly not in-
trinsic to 2-flow protocols—but it is intrinsic to any 2-flow protocol where
the second flow is independent of the first.

We believe that a well designed AKE protocol would allow for an (optional)
third flow that would provide for the properties unachievable by any two-flow
protocol.

Summary: ECDHS inherits some limitations intrinsic to two-flow AKE

protocols.

6.7 Annonymity attacks

The structure of ECDHS provides no anonymity. When used in a “strong”
mode, like (static/static, signed/signed), the presence of the digital signatures
make identities manifest. There may be environments wanting authenticated
key exchange where some level of annonymity is also a goal.

Summary: If supporting anonymity is a goal, ECDHS is inappropriate.

7 Positive Results

7.1 A good case for ECDHS

For getting good security results we consider the scheme depicted in Figure 2.
Here we assume the (ephemeral/ephemeral, nocert/nocert, signed/signed, stan-
dard) case. We have also instantiated the optional string SharedInfo as the
concatenation of the identities of the parties. (The order is important.) We
have made the trust assumptions provided by any certificates implicit, so cer-
tificates are not flowed in the protocol. We believe that this protocol meets a
reasonable notion of security under reasonable assumptions and that this can be
proven. In this section we will state our claim more precisely, and then provide
some justification for this claim.
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A(a,A),B:B B(b,B),A:A

x
R← [1, n− 1]

X ← xG
σX ← Signa(X)

A ‖ X ‖ σX -
check sig σX

y
R← [1, n− 1]

Y
R← yG

σY ← Signb(Y )
PID = A
SID = X ‖ Y
S = yX
K = H(A ‖ B ‖ S)

B ‖ Y ‖ σY�
check sig σY

PID = B
SID = X ‖ Y

S = xY
K = H(A ‖ B ‖ S)

Figure 2: Protocol P . Each entity is assumed to already be in possession of an
authentic copy of the public key of any other entity with which it communicates.

We will prove security under the computational Diffie-Hellman (CDH) as-
sumption and the assumption that the signature scheme being used is secure.
We begin by outlining these assumptions more precisely.

CDH. Let G denote the group over which we work, with G denoting a generator
and n the group size. We assume some fixed representation for group elements,
and implicitly switch between group elements and their string representations.
A DH-adversary D gets as input two random group elements xG and yG which
we call the challenge points. The adversary outputs a list of group elements,
z1, . . . , zq, and we say that it wins if this list contains the Diffie-Hellman key
xyG associated to the challenge points. We define

Advcdh
G (D) = Pr[x, y ← {1, . . . , n} : xyG ∈ D(xG, yG)], and

Advcdh
G (t, q) = max

D
{ Advcdh

G (D) } ,

where the maximum is over all adversaries that run in time at most t and output
a list of q group elements. Here t includes the description size of adversary D.

Signatures. We let SIG = (SigKG,Sign,Vf) denote the signature scheme
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in use. (Assume for simplicity that all entities use the same scheme.) The
description of the scheme includes: a (randomized) key-generation algorithm
SigKG which produces a secret signing key sk and matching public verification
key pk; a signing algorithm Sign that takes sk and a message M to produce a
signature σ = Signsk(M); a verification algorithm Vf that takes pk, a message
M and a candidate signature σ to output a bit. We say that σ is a valid signature
of M under pk if Vfpk(M,σ) = 1. Obviously, the signing algorithm produces
valid signatures. The scheme is assumed to withstand forgery under chosen-
message attack [GMR84], concretized as follows. A signing adversary (also
called a forger) F that attempts to break the signature scheme takes as input a
public key pk, and is given access to an oracle Signsk(·) for producing signatures
under the corresponding secret key. It wins if it outputs a message-signature
pair in which the message is new (meaning, was not a query to the signing
oracle) and the signature is valid. We let Advsig

SIG(F ) denote the probability
that F wins, taken over the choice of keys, coins of the signing oracle, and coins
of F . We let Advsig

SIG(t, q) denote the maximum, over all F having running time
at most t and making at most q sign-oracle queries, of Advsig

SIG(F ).

KD security. We use the syntax, model and definitions of security of [BPR00],
appropriately modified and restricted. Specifically, we consider an asymmetric
setting rather than the symmetric setting they consider; we do not divide the
entities into clients and servers, but view them alike; and we are not concerned
with dictionary attacks. Let us now briefly overview and detail the main ele-
ments of our setup.

The scheme is specified via the protocol P summarized in Figure 2, and
an associated long-lived-key generator LL responsible for producing the static
keys used by the parties. In this case the long-lived key generator simply gives
each entity a secret signing key and matching public verification key, these pairs
being independently generated according to the algorithm SigKG. Associated
to an adversary Z attacking the scheme is an experiment measuring its success.
We recall that in model of [BPR00] the adversary is viewed as interacting with
oracles of the form Πi

U, representing instance i of entity U, and communicates
with them via oracle queries. The types of queries allowed and their semantics
determines the kinds of attacks being captured. We will allow the following
subset of the queries defined in [BPR00]:

Send (U, i, M) — This sends message M to oracle Πi
U. The oracle com-

putes what the protocol says to, and sends back the response. Should the
oracle accept, this fact, as well as the SID (session ID) and PID (partner
ID), will be made visible to the adversary. Should the oracle terminate,
this too will be made visible to the adversary. To initiate the protocol with
initiator A trying to enter into an exchange with responder B the adversary
should send message M = B to an unused instance of A. A Send-query
models the real-world possibility of an adversary Z causing an instance to
come into existence, for that instance to receive communications fabricated
by Z, and for that instance to respond in the manner prescribed by the
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protocol.

RevealSn (U, i) — If oracle Πi
U has accepted, holding some session key K,

then this query returns K to the adversary. This query models the idea (go-
ing back to Denning and Sacco [DS81]) that loss of a session key shouldn’t
be damaging to other sessions. A session key might be lost for a variety
of reasons, including hacking, cryptanalysis, and the prescribed-release of
that session key when the session is torn down.

Corrupt (U, U) — The adversary obtains the secret key of entity U, and
also replaces the public key of U by a value U of its choice. (We adopt
what [BPR00] called the weak corruption model, meaning the adversary
does not get the internal state of active instances. As discussed already
and in [BPR00], forward secrecy for two-flow protocols is impossible in
the stronger model.) This query models the possibility of subverting a
principal by, for example, witnessing a user type in his password, installing
a “Trojan horse” on his machine, or hacking into a machine. Obviously
this is a very damaging type of query. Allowing it lets us deal with forward
secrecy and the extent of damage which can be done by breaking into a
server.

Test (U, i) — If Πi
U has accepted, holding a session key K, then the fol-

lowing happens. A coin b is flipped. If it lands b = 0, then K is returned
to the adversary. If it lands b = 1, then a random session key, drawn from
the distribution from which session keys are supposed to be drawn, is re-
turned. This type of query is only used to measure adversarial success—it
does not correspond to any actual adversarial ability. You should think of
the adversary asking this query just once.

Oracle (M) — Finally, we give the adversary oracle access to the function H
used in key-derivation. It is selected at random from the set of all functions
mapping some appropriate domain to {0, 1}k. Here k is the desired length
of the session key, and the domain is some finite set that includes all strings
of the form A ‖ B ‖ S where A,B are taken from the (finite) set of
possible identities and S is taken from the group. In particular, we are in
the random oracle model [BR93].

The notion of security we target, from [BPR00], is that of authenticated key
exchange with (weak) forward secrecy. As per this definition, the adversary
wins if the oracle to which it issues its Test query has terminated, the session
key of this oracle is fs-fresh, and the adversary correctly guesses the value of
the challenge bit b associated to the query. The advantage Advake-wfs

P,LL (Z) of the
adversary is obtained by doubling the winning probability, and then subtract-
ing one. Fs-freshness is defined based on a partnering function determined by
session ids, and we refer to [BPR00] for the details of this notion as well as
the notion of termination. We are interested in the maximal advantage of an
adversary as a function of her resources. The adversary resources of interest
are:
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t — the adversary’s running time. By convention, this includes the amount
of space it takes to describe the adversary.

qse, qre, qco, qH — these count the number of Send, RevealSn, Corrupt, and
Oracle queries, respectively.

qen — the number of different entities that are “active,” meaning an oracle
associated to this entity has received some query, or a flow claiming to be
from this entity has been sent.

When we write Advake-wfs
P,LL (resources), overloading the Adv-notation, it means

the maximal possible value of Advake-wfs
P,LL (Z) among all adversaries that expend

at most the specified resources.

Security claim. The claim we make is the following.

Theorem 1 Let G be a group and SIG a signature scheme. Let P be the key
exchange protocol of Figure 2 over these primitives, and LL the associated long-
lived-key generator. Then

Advake-wfs
P,LL (t, qse, qen, qH) ≤ q2

se · Advcdh
G (t, qH) + 2qen · Advsig

SIG(t, qse) .

In other words, the protocol is a secure authenticated key exchange with (weak)
forward security under the assumption that the CDH problem is hard in the
underlying group and the signature scheme being used is secure against chosen-
message attack. The theorem provides the concrete relations between the ad-
vantages.

7.2 Sketch of proof of Theorem 1

Let Z be an adversary attacking the key distribution protocol in our model. We
associate to it two other adversaries.

DH adversary. We describe a DH-adversary D who attempts to solve the
computational Diffie-Hellman problem over G. As described above, D gets in-
puts X = xG and Y = yG, and is attempting to output a list of group elements
that contains the DH-key S = xyG. In order to do this it will use Z as a sub-
routine. Our adversary D begins by picking random integers gl, gu, l satisfying
1 ≤ gl < gu ≤ qse and 1 ≤ l ≤ qH, where qse is the number of Send queries made
by Z and qH is the number of H-queries made by Z. It then starts running Z. It
will faithfully execute the experiment of running the adversary, itself choosing
all static or ephemeral secret and public keys, with the following exceptions.
Say the gl-th Send query is made to Πi

U and the gu-th Send query is made to
Πj

V. If either U or V is corrupted at the time of the Send query, D fails. Else it
responds to the gl-th Send query by returning X as the ephemeral key, and to
the gu-th Send query by returning Y as the ephemeral key. (The other parts of
the flow, including the signature, are computed by D depending on the identity
of the entity to which the query is sent.) If RevealSn queries are ever made to
Πi

U or Πj
V then it fails. If not, however, it can complete the simulation. In that
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case, it looks at the list of all H-oracle queries made. Each element of this list
has the form A ‖ B ‖ S where A,B are identities and S is a group element. It
edits the list to delete the identities, leaving a list of all group elements occurring
in H-oracle queries, and outputs this list.

Forger. We describe a forger F who has input pk and oracle access to Signsk(·),
and is trying to output a forgery relative to pk. It begins by picking at random
an integer l in the range 1 ≤ l ≤ qen where qen is the number of different entities
that are active in the execution of Z, as described above. It then begins running
Z, and sets the public key of the l-th entity invoked to pk. In the simulation,
it chooses all quantities itself, and invokes its signing oracle whenever it needs
to produce signatures under pk. If the entity whose public key is pk receives a
Corrupt query then F fails. If some oracle receives a valid signed flow purporting
to come from the entity whose public key is pk, but the corresponding message
has not been queried of the signing oracle and the entity was uncorrupted at
the time, then F outputs the message-signature pair as its forgery, and halts.
(Note this entity may be corrupted later, and F would not be able to return
the secret key sk, but F has succeeded and halted prior to this.)

Analysis. We claim that

Advake-wfs
P,LL (Z) ≤ q2

se · Advcdh
G (D) + 2qen · Advsig

SIG(F ) . (1)

Taking into account the resource usage of the adversaries yields the theorem.
We now very briefly justify Equation (1). In the “real” experiment of executing
the adversary Z, we define the event NA to be true if there exist U,V, i,W , σ
such that

Πi
U accepts flow V ‖ W ‖ σ and U was uncorrupted at the time this

happens, but

there do not exist j, τ such that Πj
V output a flow V ‖ W ‖ τ at a time

when V was uncorrupted.

In the same experiment, the adversary eventually makes a Test query. Denote it
by Test (U, i). We assume that the oracle Πi

U to which the query is made had
terminated and had a fs-fresh session key prior to this query, since otherwise
the adversary loses. Let V be the PID of Πi

U. Let (A,B) = (U,V) if U played
a sender role, and (A,B) = (V,U) if U played a receiver role. Let X∗ ‖ Y ∗ be
the SID of Πi

U, and let S∗ = x∗y∗G be the associated DH key, where X∗ = x∗G
and Y ∗ = y∗G. We now define the event CQ to be true if H-oracle query
A ‖ B ‖ S∗ was made by the adversary Z. Let win(Z) denote the event that Z
wins, meaning guesses correctly the value of the challenge bit b chosen by the
oracle to which it issues the test query. Simple conditioning tells us that

Pr[win(Z) ]
= Pr

[
win(Z) | CQ

]
· Pr[CQ ] + Pr [ win(Z) | CQ ] · Pr[CQ ]

≤ Pr
[
win(Z) | CQ

]
+ Pr[CQ ]
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= Pr
[
win(Z) | CQ

]
+ Pr

[
CQ | NA

]
· Pr[NA ] + Pr [ CQ | NA ] · Pr[NA ]

≤ Pr
[
win(Z) | CQ

]
+ Pr

[
CQ | NA

]
+ Pr[NA ] .

Equation (1) follows from the following claims:

Pr
[
win(Z) | CQ

]
=

1
2

(2)

Pr
[
CQ | NA

]
≤ qse(qse − 1)

2
· Advcdh

G (D) (3)

Pr[NA ] ≤ qen · Advsig
SIG(F ) (4)

We omit justification of these claims.

8 Exposition

The exposition on SEC 1 is, by and large, excellent. The main problem with
respect to ECDHS is what has already been discussed: that the goals associated
to each scenario are not clearly specified.

There are very few typos or ambiguities. We enumerate some that we no-
ticed.

1. Throughout. The use of should in this document should probably be
made consistent with RFC language. (Most things that say should are
obligatory; they should be must.)

2. Throughout. Numerous missing hyphens. Eg: key-deployment procedure,
key-agreement operation, key-derivation function(s),

3. p. 6. a and b have not been introduced at the point when they are used
to talk about a Koblitz curve.

4. p. 7. “be a prime field so that” → “be a prime field where”

5. p. 11. Step 2.2.2 of the Algorithm in section 2.3.3 is done inefficiently
It requires an unnecessary multiplication and inversion. This step can be
done more efficiently as follows: If q = 2m set ỹP = 0 if xP = 0. Otherwise,
let xP = zm−1x

m−1+ . . .+z1x+z0 and yP = wm−1x
m−1+ . . .+w1x+w0 .

Let k be the smallest positive integer such that zk 6= 0. Set ỹP = wk. This
point compression method in F2m is much faster and easier to implement
than the point compression method currently described in the standard.

6. p. 17, 20, 22, 24, 46, 48. to receive assurance, not to receive an assurance

7. p. 18, Section 3.1.1.2.1, item 1, “odd” is unnecessary given the rest of this
sentence.

8. p. 18, Section 3.1.1.2.1, item 5, maybe you should explicitly allow a prob-
abilistic primality test, as one could conceivably read this as disallowed.
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9. p. 18. xG and yG are undefined in the algorithm of 3.1.1.2.1. Add a
definition of (xG, yG) = G.

10. p. 18. bottom of page, step 8: the q should be a p.

11. p. 18. What about the fifth method, that the EC domain parameters are
taken from SEC 2? (Well, I guess you could say that this falls under (3),
but the statement “in an authentic manner” makes it sound as if some
sort of certificate is expected. (Have you signed the SEC 2 document?)

12. p. 19, 21: “random seed” → “a specified seed” (to make sure you are not
implying that you are checking that the seed is random.)

13. p. 33. It is not pa3-key TDES in CBC mode (with a 0-IV) is not designed
to provide semantic security against CPA or CCA. Even with a random
IV, the scheme definitely does not provide security against CCA.

14. p. 45. third paragraph – “simultaneously” – there is no requirement for
simultaneity, and, in fact, achieving it would be impossible.

15. p. 45. third paragraph – last sentence – this sentence overlooks the possi-
bility of the adversary having subverted the key sharing.

16. p. 46, 48. “security level elliptic curve domain parameters” → “elliptic
curve domain parameters”

17. p. 64. “point on E on large prime order” (should be of )
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