Evaluation Report on the
ECAES Cryptosystem

1 Introduction

This document is an evaluation of the ECAES Cryptosystem. Our work is based on
the analysis of document [8], which provides both the specification and self-evaluation
of the scheme, as well as on the research paper [1], where additional security arguments
can be found. Note that document [8] uses the alternative name ECIES for Elliptic
Curve Integrated Encryption Scheme, while the A of ECAES stands for augmented.
The present report is organized as follows: firstly, we briefly review the cryptosystem;
next we discuss the security level of the cryptographic primitive which underlies the
scheme and analyze its relation to the difficulty of the discrete logarithm problem on
elliptic curves; finally, we evaluate the security level of the scheme itself in the light of
strong security notions such as semantic security and security against adaptive chosen-
ciphertext attacks. This is as requested by IPA.

2 Brief description of the scheme

2.1 Specification review

ECAES is based on the hardness of the discrete logarithm problem over an elliptic
curve. The cryptosystem uses elliptic curves E over some prime p, |p| = m or elliptic
curves over Fom . In the first case, possible values for m are

{112,128, 160,192, 224, 256, 384, 521}
and, in the second case:
{113,131, 163,193, 233, 283, 409, 571}

Once the curve E has been chosen, a base point G is chosen on E, which generates a
subgroup of prime order n, such that, denoting by #(E) the number of points in the
curve and defining the cofactor h by h = #(E)/n, inequality h < 4 holds.
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ECAES is a hybrid encryption scheme built on an adaptation of the El Gamal
cryptosystem (see [13]) to the context of elliptic curves. The basic function f on which
ECAES is based is defined by

f:{0,....n—-1} — FE
r — r-G

where r - GG is obtained, by means of the usual elliptic curve addition, as the sum
of r times G. Inverting f is precisely the elliptic curve discrete logarithm problem
(ECDLP). Clearly, f is one-to-one. The inverse function, denoted logg, is believed
to be hard to compute. Another function used by the scheme is the Diffie-Hellman
function:
DH; : E? — FE
X, Y — logg(V) - X =logg(X) Y
A variant of this function is the cofactor Diffie-Hellman function:

DH, : B> — E
X,Y — h-logg(Y) - X =h-logg(X)- Y

We will omit subscript G in the above when the context is clear.
Besides the curve parameters, the public key of ECAES consists of an element of
the curve of order n, say (). The secret key d is the discrete logarithm of () in base G.
Before going further, we introduce a more formal framework, that will be useful
when we later perform the security analysis. A public-key encryption scheme on a
message space M consists of three algorithms (K, €, D):

e the key generation algorithm C(1™) outputs a random pair of secret-public keys
(sk, pk), relatively to a security parameter m

e the encryption algorithm &y (M;r) outputs a ciphertext C' corresponding to the
plaintext M € M, using random coins r

e the decryption algorithm Dg(C) outputs the plaintext M associated to the ci-
phertext C.

Thus, the key generation algorithm K(1™) of the ECAES Cryptosystem produces,
on input m, a public key pk consisting of a curve F, a base point G, its order n and an
element ) of order n. In the case of elliptic curves over F,, the equation of the curve
is

v =2 +ar+b
and the curve parameters form a tuple (p,a,b, G,n,h) (where h is the cofactor) and
the public key is given by this tuple, plus the public element ). In the case of elliptic
curves over Fom , the equation of the curve is

vV +ry=2"+ar+b
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and the curve parameters form a tuple (m, f,a,b, G,n, h), where f is an irreducible
polynomial of degree m over Fy, which defines the extension field Fom, and A is the
cofactor, and the public key is similarly given by this tuple plus the public element ).
The secret key sk = d is the discrete logarithm of () in base G.

We now turn to encryption and decryption.

Encryption &y (M;r) first produces an ephemeral key pair (r, R), where r is ran-
domly chosen in {1,n — 1} and R = r - G. Next it computes a shared field element z,
the first coordinate of a curve element computed as DH(Q, R) = r-Q (or - alternatively
-as DH'(Q,R) = h -7 - Q). By “shared”, we mean that the recipient of the message is
also able to obtain z, as will be seen in the sequel.

From the shared field element z, key material is generated. The scheme uses a MAC
scheme and a symmetric encryption scheme. Both are keyed. Thus, an encryption key
EK and a MAC key MK, of appropriate length, are needed. They are obtained by
means of a hash function H, which is unkeyed and applied to z and - optionally - to
publicly shared information. Finally, the symmetric encryption scheme, keyed by EK
is applied to the message M, thus producing an encrypted message EM. Finally, a tag
D is appended, applying the MAC scheme, keyed by M K, to EM (optionally followed
by another piece of shared information). The final cryptogram is C' = R||EM||D.

At this point, we wish to note that we have not been too careful with notations in
the above description. For example, writing C' = R||EM||D treats R as a bit string or
a byte string, whereas it is actually a point on an elliptic curve. Document [8] provides
the adequate conversion routines, using - or not - the so-called point compression. We
believe that our approach is suitable for performing a high level security analysis. This
is why we use simplified notations and ignore type conversions.

With respect to the scheme presented in [1], there is a slight difference, since the
latter includes R in the input to H.

Decryption Dg(C) is based on recovering z. Granted the secret key d, it is possible
to obtain the shared field element z as the first coordinate of DH(Q, R) = d - R (or -
alternatively - of DH'(Q, R) = h-d - R). Once z has been retrieved, one can compute
the two keys FK and M K, check the correctness of the tag D and decrypt EM, thus
recovering the plaintext.

2.2 Comments on the specification

Document [8] is clearly written but mainly directed towards implementors. For exam-
ple, one may wonder why it includes the cofactor Diffie-Hellman function: if X and
Y are in the subgroup of prime order n generated by G, then the cofactor h, which
is bounded by 4, has an inverse modulo n and DH(X,Y) = A~' - DH'(X,Y). Thus,
computing DH and DH’ is strictly equivalent from a complexity theoretic viewpoint.
Inclusion of the cofactor method eases the implementation. When an ephemeral key
pair (7, R) is used in an encrypted message, there is no guarantee for the receiver that it
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has been correctly manufactured. Hence, in order to avoid subtle attacks, the receiver
should check that R is a non unit element of the subgroup generated by G, which
means

1. that R lies on the curve
2. that Ris not O
3. that R is of order n

Using DH' allows to discard the third check, since multiplication by h brings back
anyway into the subgroup of order n.

In terms of security arguments, document [8] is rather sketchy and refers to [1].
The latter is disappointing. By this, we do not mean that the security arguments that
are offered are wrong. We will discuss them in more detail further on in the present
report and, as will be seen, they are mathematically sound. However, the assumption
that is used, which we will later discuss, is certainly contrived. It has been severely
criticized by other researchers. We quote [37]:

The authors make intractability assumptions that are interactive; indeed,
these intractability assumptions amount to little more than a restatement
of the definition of security in terms of the particular implementation they
propose.

Of course, the opinion comes from a competitor and the present report will aim at
clarifying the issue.

3 Security level of the cryptographic primitive

In this section, we investigate the security of the underlying cryptographic primitive,
both in terms of complexity-theoretic reductions and with respect to the recommended
parameters.

3.1 Complexity-theoretic arguments

Documents [8, 1] relate the security of the scheme to a version of the discrete logarithm

for elliptic curves. There are several basic primitives that can be considered.

3.1.1 The elliptic curve decisional and computational Diffie-Hellman hy-
potheses

We keep the notations of section 2.1. Recall that the decisional Diffie-Hellman hypoth-

esis on an elliptic curve E, with a large subgroup of prime order, asserts that it is hard
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to distinguish the distributions Dg and Rg, where
Rg = {(G1,G2, U1, Uy) }

with all four elements taken at random in the large subgroup and
Dg = {(G1, G2, U1, Us)}

with logg, (U1) = logg,(Uz). A quantitative version measures the maximum advantage
AdvDDH(?) of a statistical test 7" that runs in time t. This means the maximum of the
difference of the respective probabilities that 1" outputs 1, when probabilities are taken
over Dg or Rg.

As is well known, there is a standard self-reducibility argument: by randomization,
it is possible to transform an arbitrary tuple (G, Gs, Uy, Us) such that G; # G5 into
a random equivalent one, i.e. the output is in Dy (resp. Rg), if and only if the
input is. Thus, if AdvDDH(%) is significant, one can use a distinguisher to decide, with
probability close to one, whether a tuple is in Dg. This involves performing repeated
tests with the distinguisher, and deciding whether the number of one outputs has a
bias towards Dg or Rg. Based on the law of large numbers, a decision with small
constant error probability requires running O(AdvDDH™?) tests. One can decrease the
error probability drastically by repeating the above computations an odd number of
times and deciding based on the median of the averages. In [27], the authors claim that
one can reach error probability 27" by repeating the test O(p(n)).AdvDDH ', where p
is a polynomial, but the proof is missing. In any case, the loss in the reduction is huge.
Thus, despite its elegance, the self-reducibility argument is a bit misleading in terms
of exact security.

Related to the above is the elliptic curve computational Diffie-Hellman assumption
(ECCDH) and the elliptic curve discrete logarithm assumption. The former states that
it is hard to compute zy -G from G, -G and y -G, while the latter states that it is hard
to compute x from G and z - G. It is obvious that DDH is a stronger assumption than
CDH, which in turn, is stronger than the discrete logarithm assumption. However, no
other relation is known and the only way to solve the hard problems underlying DDH
or CDH is to compute discrete logarithms.

It should be mentioned that the DDH cannot hold in groups with a small subgroup.
This is why cryptographic schemes usually work with a subgroup of an elliptic curve
of large prime order and the current proposal is no exception. Even with this proviso,
there are subtle protocol attacks using invalid keys, i.e. keys that do not belong to the
prescribed large subgroup (see [26]). In the present context, such attacks are addressed
either by performing consistent checks to verify e.g. that elements, that are claimed to
belong to the subgroup generated by G, actually lie within this subgroup. Lightweight
checks are possible if the cofactor Diffie-Hellman function is used.



3.1.2 Security of the shared field element

In this section, we consider the simplified version of the scheme that simply estab-
lishes the shared field element, denoted by z in the above. In this restricted con-
text, It appears that the security of the scheme is closely connected to the decisional
Diffie-Hellman assumption. We will only consider the setting where the Diffie-Hellman
function is applied. With the notations of section 2.1, z is the first coordinate of
P = DH(Q, R). We would like to see that z looks like a random string to a passive
adversary. However, this cannot hold in a simple-minded approach: given an elliptic
curve F over I, or Fom, a field element x is not necessarily the first coordinate of a
point of order n on the curve. We let X be the set of such .

Theorem 1 Based on the elliptic curve decisional Diffie-Hellman hypothesis (ECDDH),
it s hard to distinguish the distribution

(G7 Q? R7 Z)

generated by the cryptosystem, from the analogous distribution with z replaced by a
random element of X. More accurately, if there is an adversary A that distinguishes the
above distributions within time bound t, with advantage , then there exists a machine B
that solves the decisional Diffie-Hellman problem with advantage € within time bound

t + 7, where T accounts for a few extra elliptic curve operations and is bounded by
O(m?).

In the above, the advantage in distinguishing two distributions is the absolute value of
the difference of the probabilities that the algorithm outputs 1, with inputs taken from
each.

Proof. Let A be an adversary that distinguishes the two distributions defined in the
theorem. We show how to attack the ECDDH by distinguishing the distributions D
and R, where

R ={(G,Q R, 2)}

with G, @), R at random in the subgroup of order n of E and z taken at random from
X

D ={(G,Q, R, 2)}

with z the first coordinate of P = DH(Q, R) We run the key generation algorithm
and generate an elliptic curve E together with a random element of large prime order
G. We next show how to use A to break the ECDDH: we take the base point of the
cryptosystem to be the first element of the input to A and we complete the public key
by the second element (). This implicitly defines a secret key. Next we assume that a
public key encryption occurs with an ephemeral key, whose public part is R. Finally,
we submit (G, @, R, z) to A. If the original input is from D, the last element of the



tuple is exactly as produced by the cryptosystem. On the other hand, if the input
is from R, the last coordinate is a random element of X. Thus, we have obtained a
distinguisher between D and R, with exactly the same advantage as A. Finally, the
advantage of any algorithm .4 that runs in time ¢ is bounded by AdvDDH(O(t)), where
O(t) = t + 7 accounts for the few extra elliptic curve operations needed to compute
the data to be handled to A.

Remark. It would be desirable to ensure that one gets a bit-string indistinguishable
from a random string with m bits, which would mean that the information z is se-
mantically secure in the sense of the seminal paper [17]. However, we do not see any
argument that would give such guarantee. As mentioned in [1], it is possible to obtain
such a bit-string by applying a randomly keyed universal hash function, following the
method described in [27] and also used in [37]. Recall that, if H is a universal hash
function, keyed by k, with £-bit outputs, then, the leftover hash lemma of [20] implies
that hashing a set of 2} bit-strings produces a distribution (k, Hy(x)), whose distance
to the uniform distribution is < W Here, \ is a few bits below the size of the
security parameter m. Thus in order to get a bound at most 1/2'?® and to obtain a
128 bit encryption key and a 128 bit MAC key, one would need m > 512. This would
only be compatible with the largest suggested parameter for the scheme. In any case,
this is not the path followed by the submission.

3.2 Size of the parameters

As was just observed the security of a simplified version of the scheme appears closely
related to the ECDDH for the class of elliptic curves generated by the cryptosystem,
even if there is a minute security loss in terms of exact security. As will be seen in the
sequel, the scheme is actually based on a formally different security assumption. In any
case, the only method known to attack the decisional Diffie-Hellman problem on elliptic
curves is to solve the underlying discrete logarithm problem (ECDLP). Therefore, in
order to estimate whether the specific restrictions on the curve and the suggested
parameters offer a wide security margin, it is useful to review the performances of the
various algorithms known for the ECDLP. We will distinguish between exponential
algorithms, whose running time depend on the size of the group and subexponential
algorithms, which apply to specific classes of weak curves.

3.2.1 Exponential algorithms

The best algorithm known to date for solving the DLP in any given group G is the
Pollard p-method from [30] which takes computing time equivalent to about /7n/2
group operations. In 1993, van Oorschot and Wiener in [39], showed how the Pollard
p-method can be parallelized so that, if ¢ processors are used, then the expected number



of steps by each processor before a discrete logarithm is obtained is ~ @ In order
to compute the discrete logarithm of Y in base (G, each processor computes a kind of
random walk within elements of the form a -G + b Y, selecting X;,; through one of
the three following rules

1. set Xi-l—l =G + XZ
2. set Xi—|—1 =2- X,
3. set Xz':l =Y + Xz

Decisions on which rule to apply are made through a random-looking but deterministic
computation, using e.g. hash values. “Distinguished” points X; are stored together
with their representations X; = a;-G+b;-Y in a list that is common to all processors.
When a collision occurs in the list, the requested discrete logarithm becomes known.

In recent work (see [16, 41]), it was shown how to improve the above by a mul-
tiplicative factor /2. This takes advantage of the fact that one can simultaneously
handle a point X and its opposite —X. Slightly better improvements can be obtained
for specific curves with automorphisms.

The progress of such algorithms is well documented. In April 2000, the solution
to the ECC2K-108 challenge from Certicom [7] led to the computation of a discrete
logarithm in a group with 2!% elements (see [19]). This is one of the largest effort ever
devoted to a public-key cryptography challenge. The amount of work required to solve
the ECC2K-108 challenge was about 50 times that required to solve the 512-bit RSA
cryptosystem (see [6]) and was thus close to 400000 mips-years.

It is expected that such figures will grow slowly, unless unexpected discoveries
appear in the area. From the predictions in [24], one can infer that the proposed range
of parameters (from 112 to 521 bits) will presumably allow for a choice that guarantees
security for the foreseeable future, at least for the next 50 years.

3.3 Security against subexponential attacks

As is well known, there are two classes of elliptic curves for which non trivial attacks
have been found. They are

1. the supersingular curves
2. the anomalous curves

Supersingular curves over a field I,, with ¢ a power of p, are defined by the condi-
tion that the trace of the Frobenius map is zero modulo p. For such curves, Menezes,
Okamoto and Vanstone (MOV) have shown how to reduce the discrete logarithm prob-
lem to the DLP in an extension field F,x of Fy, with small k. Note that, for elliptic
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curves over a prime field Z,, those curves have exactly p+1 elements and are specifically
excluded by the key generation algorithm which performs the following check

p? # 1 modn forany 1 < B <20

Anomalous curves are those which contain a p-torsion point other than O, or,
equivalently, those whose Frobenius map has trace congruent to one modulo p. For
such curves, work of Semaev ([33]), Riick ([31]), Smart ([38]) and Satoh-Araki ([32]) has
shown how to solve the p-part of the DLP in polynomial time. Note that, for elliptic
curves over a prime field Z,, those curves have exactly p elements and are specifically
excluded by the key generation algorithm.

The MOV reduction constructs an embedding from the curve into the multiplicative
group of a suitable extension field of I, and can be applied in a more general setting
than originally envisioned by the authors. However, if the base point is an element of
order n, n is necessarily a divisor of ¢*¥ — 1. Recently, Balasubramanian and Koblitz
have shown in [2] that this condition was sufficient to carry the MOV reduction. The
key generation algorithm specifically addresses this question. In the case of curves over
FF,, one gets that p* = 1 mod n. From this, it follows that k is at > 20, which is large
enough to turn down subexponential algorithms in the extension field. In the case of
curves over Fom , there is an analogous test

2™B £ 1modn  forany 1 < B <20

with the same consequences.

Another reduction similar to the MOV reduction has appeared in the literature.
It is due to Frey and Riick [15] (see also [14]) and can be stated in the more general
context of Jacobians on which the Tate pairing exists. Let m be an integer relatively
prime to ¢, and let 1, (F,) be the group of roots of unity in F, whose order divides m.
Assume that the Jacobian J(F,) contains a point of order m. Then there is a surjective
pairing

Om S (Byg) X J(Fy)/mJ (Fy) = pim (Fy)

which is computable in O(log q), where J,,,(F,) is the group of m-torsion points. This
pairing, the so-called Tate pairing, can be used to relate the discrete logarithm in the
group Ji,(Fy) to the discrete logarithm in some extension Fy,. In the case of elliptic
curves, considered in the current context, the above is applicable only if the order n of
the base point is a divisor of ¢* — 1. As a consequence, the curves produced by the key
generation algorithm are protected against the FR reduction, exactly due to the same
argument used for MOV reduction.

3.3.1 Conclusion

Based on current estimates, it appears that the range of proposed parameters for
ECAES allows choices that should remain secure for at least fifty years. However, even



if it offers a guarantee that the MOV and FR reductions do not apply, the key genera-
tion algorithm leaves open the possibility to choose curves with complex multiplication
or even Koblitz curves (curves over Fom with a and b in the two-element field). This
is somehow contrary to the current trend, which would recommend having the curve
generated at random and ensuring that there is a point of large prime order by counting
the number of elements of the curve by means of the SEA algorithm [25]. Considering
that the appropriate warnings are given, this does not constitute a strong objection to
the proposal under review.

4 Security Analysis

Document [8] includes a detailed yet intricate proof that the scheme is secure, based
on a non-standard assumption that will be described later, and on security hypotheses
on the encryption scheme and on the MAC scheme. In the present report, we have
tried to include a more standard argument.

4.1 Formal framework

An asymmetric encryption scheme is semantically secure if no polynomial-time attacker
can learn any bit of information about the plaintext from the ciphertext, except its
length. More formally, an asymmetric encryption scheme is (¢, ¢)-IND where IND stand
for indistinguishable, if for any adversary A = (A;, A2) with running time bounded by
t, the advantage

(Ska pk) — K(lm)a (Mﬂa M17 St) A Al(pk)
I ?
bg{o,l} C < Epk(Mb; T) : AQ(ca St) =b

r—Q

Advi™(A) = —1/2

is < €, where the probability space includes the internal random coins of the adversary,
and My, M, are two equal length plaintexts chosen by the adversary in the message-
space M.

Another security notion has been defined in the literature, the so-called non-
malleability [12]. Informally is states that it is impossible to derive, from a given
ciphertext, a new ciphertext such that the plaintexts are meaningfully related. We
won’t discuss this notion any further since it has been proven equivalent to semantic
security in an extended attack model.

The above definition of semantic security covers passive adversaries. It is a chosen—
plaintext or CPA attack since the attacker can only encrypt plaintext. In the extended
model, the adaptive chosen—ciphertext or CCA attack, the adversary is given access to
a decryption oracle and can ask the oracle to decrypt any ciphertext, with the only
restriction that it should be different from the challenge ciphertext. It has been proven
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in [3] that, under CCA, semantic security and non-malleability are equivalent. This is
the strongest security notion currently considered.

4.2 Chosen ciphertext security of key encapsulation

Before we turn to the actual security analysis, we would like to focus on what can
be called key encapsulation, a term introduced in [37], but which we use here with a
slightly different meaning. This requires extending theorem 1 to the context of CCA—
adversaries: the attacker is allowed to query a decryption oracle by submitting an
element R of the elliptic curve and receiving the key H(z) as the answer, where H (z)
is computed from (G, @, R) as prescribed by the cryptosystem. Unfortunately, no such
proof appears possible: the difficulty lies in the simulation of the decryption queries.
Before we explain how documents [8, 1] solve the matter, we turn to the random oracle
model, deriving the key material as the image of z by the random oracle H, as suggested
in document [8], rather than H(R, z), as in [1]. Again, it does not appear possible to
write up a proof by lack of a correct simulator: when receiving a query R, the simulator
should provide H(z), as prescribed by the cryptosystem. A natural option is to search
in the H-list, a dynamic data structure consisting of all queries to the random oracle
H . together with the respective answers, hoping to find the appropriate value of z.
Although the approach is sound, the new difficulty is to spot the correct query, which
amounts to solve an instance of the ECDDH problem. Thus, we are naturally led to
consider the so-called gap problems (see [28]).

4.2.1 Gap—Diffie-Hellman Problem

In the following, we review the version of the so-called gap problems that is needed in
the current context. Besides the original definition, we consider a weaker assumption.
We first define oracles, that an adversary can call. Notations are straightforward and
come from 2.1 and 3.1.1.

e an ECDDH oracle: on input (G,Q, R, P), it perfectly answers whether P =
DH;(Q, R) or not.

e 0 J-ECDDH oracle: on any input (G, Q, R, P), it answers whether P = DHq(Q, R)
or not, with some error probability 6. More precisely, the advantage of this oracle
is greater then 1 — 4:

Pr[ECDDH(G, Q, R, P)

=1[(G,Q, R, P) € Dg] S1_s
— Pr[ECDDH(G, Q, R, P) = 1 €

P
(G, Q, R, P)

Rg]

The reason why we introduce the second oracle is that, as already noted in section 3.1.1,
if § is significantly smaller than 1, one can use this d-oracle (O((1 — &) ?) times) to
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decide, with an error probability as small as one may want, whether an element is in
Dg or not.

We now define the elliptic curve Gap Diffie-Hellman problem, which consists in
solving the ECCDH problem having access to an ECDDH oracle. A weaker assumption
is the intractability of the §-Gap Diffie-Hellman problem, which consists in solving the
ECCDH problem, having an access to a 6-ECDDH oracle.

Although this does not appear in the submission, we will show that ECAES is secure
against CCA adversaries, provided the Gap Diffie-Hellman problem is intractable and
this can be extended to the formally weaker version of the hypothesis. It can be
observed that both versions of the gap problem are polynomially equivalent (at least
under a non-uniform reduction). Indeed, let A be an adversary that computes the
Diffie-Hellman function after x queries to an ECDDH oracle, with probability ¢ (where
k and 1/e are polynomially bounded). Then, from any 6-ECDDH oracle, one can
build a §'-ECDDH oracle, achieving ¢’ < £/2k. Therefore, if one simulates the perfect
oracle, called by A, using this 6'-ECDDH simulator, then A succeeds in solving the
computational Diffie-Hellman problem with probability € — x x §' > ¢/2. Still, even
if both problems are polynomially equivalent, the computational cost of the above
reduction may be huge, depending on the original value of 4. In the following, we denote
by SuccGDH(é, t, k) the maximal success probability of any adversary in computing the
DH function, within time ¢ after less than k queries to a 6-ECDDH oracle.

4.2.2 Security Analysis

We turn to the semantic security of key encapsulation against CCA adversaries. Let A
be an attacker receiving inputs taken from two distributions as follows:

1. either, from the distribution
D0 = (G7 Q: R7 H(Z))
generated by the cryptosystem

2. or else from the analogous distribution D; where z is replaced by a random
element of X’ (notations are those from section 3.1.2).

A is allowed to query a decryption oracle by submitting triples (G, @, R'), with R’ # R
and receiving the corresponding key material. In the random oracle model, we establish
the following exact security result, where the advantage of A is the difference of the
probabilities that A outputs 1.

Theorem 2 Let A be a CCA-adversary as above, with running time < t and advantage
€, making qp decryption queries and qg oracle calls. Then

€
3 = Succ®®(6,,2-qu - (gp + 1)) +2-(qp +1) - qu - 6
wheret' < t+2-(qp+1)-qu-7
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and where T denotes the running time of the 6-ECDDH oracle.

Proof: It will be convenient to allow implicit calls to the oracle H. This means
submitting an elliptic curve point R and receiving H(z), where z is the first coordinate
of DH(Q, R). Of course, implicit calls and explicit calls should not contradict each
other.

From A, we build a machine B, as in the proof of theorem 1.

1. B receives its input (G, @, R), a triple of elements from F; it takes the base point
of the cryptosystem to be the first element G of the input. Next, it completes
the public key by the second element (). This implicitly defines a secret key. It
then assumes that a public key encryption occurs with an ephemeral key, whose
public part is R.

2. B tosses a random coin b. If b = 0, B computes a correct tuple (G, Q, R, H(z)) as
prescribed (note that such computation requires one implicit call to the oracle); if
b =1, B picks a random value p and forms (G, @, R, p). In both cases, B handles
the tuple to A, which returns a bit ¥’

3. when the execution of the distinguisher has ended, B outputs a tentative value
for DHg (@, R), from the queries asked to H (see below)

Of course, during the entire simulation, B has to simulate answers from the random
oracle, which means ensuring the consistency between implicit and explicit calls. This
is done by maintaining, besides the H-list, a list of implicit calls together with their
answers. For each fresh query u to H (i.e. not on the H-list), B computes the two
elliptic curve points P;, P, whose first coordinate is u (if they exist) and queries
the §-ECDDH oracle at (G, @, R, P;), where R ranges over all queries currently in the
implicit list. As soon as it finds an element such that the answer of the §-ECDDH
oracle is positive, B returns the corresponding value H (u). If none is found, the oracle
picks a random answer and adds it to the H-list. Fresh implicit calls at R are handled
similarly. For each string u appearing as a question in the H-list, B computes the two
elliptic curve points Py, P, whose first coordinate is u (if they exist) and queries the
6-ECDDH oracle at (G, Q, R, P;). As soon as it finds an element such that the answer
of the 6-ECDDH oracle is positive, B returns the corresponding value H (u). If none is
found, the oracle picks a random answer and adds it to the implicit list. We also define
a plaintext-extractor as follows:

e On a query (G,Q, R') to the decryption oracle, B makes an implicit query at R’
and returns the answer. Note that, if an answer is computed from the H-list and
the implicit list, as explained above, the extractor returns this value, whereas it
is otherwise random.
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Finally, we explain what is the final answer of B is, besides the bit computed by A.
When execution has ended, B makes an implicit query at R. If an answer is computed
from the H-list and the implicit list, B returns this answer as a solution to the ECCDH
instance.

Altogether, the simulator makes gp 4+ 1 implicit calls to the oracle, one for each
decryption query and one for the final step. Proper bookkeeping allows to perform the
consistency checks by calling the §-ECDDH oracle at most 2¢g - (¢p + 1) times.

We wish to compare the behavior of several games

1. game G;, where the decryption queries are answered by an actual decryption
oracle, and the random oracle is perfect (note that there is no implicit call here)

2. game Gy, where the decryption queries are answered by the plaintext-extractor,
using a perfect ECDDH oracle. Calls to the random oracle, both implicit and
explicit, are still assumed perfect

3. game G3, which is as G, but where the oracle is simulated until B is able to output
an answer. Further oracle queries are answered by a “true” oracle.

4. game G, which is as G3 but stops (without calling the oracle), as soon as B is
able to return a potential solution to the ECCDH instance

5. game G5, where a 6-ECDDH oracle is used.

We observe that the probability that ¥’ = b in game G; is (61 + (1 — 6)), where

6y be the probability that algorithm A outputs 1 on inputs taken from Dy, while 6, is
the probability that it outputs 1 when they are taken from D;. This is 1/2 4+ 5. We
relate the probabilities of the same event in all games, repeatedly using the simple yet
useful lemma from [37]

Lemma 1 Let E, F, and E', F' be events of two probability spaces such that both
Pr[E|-F] = Pr[E'|=F'] and Pr[F] = Pr[F'] <e.

Then,
|Pr[E] — Pr[E']| <e

Proof: We write
Pr[E] = Pr[E|~F]| Pr[-F| + Pr[E|F] Pr[F]

Pr[E'| = Pr[E'|-F'| Pr[-F'] + Pr[E|F']| Pr[F']

Hence
Pr[E] — Pr[E'] = Pr[E|-F](Pt[~F] — Pr[~F"]) + (Pr[E|F| Pr[F] — Pr[E|F'| Pt[F'])
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The right hand side becomes Pr[E|F|Pr[F| — Pr[E|F'| Pr[F'], which is bounded by €.

To go from G; to Gy, we note that the plaintext-extractor perfectly simulates de-
cryption if implicit and explicit calls are perfect.

The simulation in game G is perfect since it cannot conflict with the implicit
constraint coming from the challenge. Indeed, R cannot be implicitly queried since
implicit queries are only asked in relation with decryption queries. The z-coordinate
z of R cannot be explicitly queried either, because this would mean that B has earlier
found the value of DH(Q, R).

To go from G3 to G4, we just have to exclude the event of probability SuccGDH((S, t,2-
gy - (gp + 1)) that B has correctly computed DH(Q, R). This bounds the difference of
the probabilities that each game outputs one.

To go from G, to G5, one just needs to estimate the probability that the -ECDDH
oracle returns a wrong answer. Since it is queried 2(¢p + 1)gy times, the failure
probability is bounded by 2(¢p + 1)gg9d.

At this point, we have bounded the difference of probabilities for G; and G5 by:

Succ®®H(6,t,2 gy - (qp+1)+2-(gp+1) -qu - 6

Note that game G5 runs within time bound ¢ < ¢+ 2(gp + 1)qyu T, where 7 denotes the
running time of the 6-ECDDH oracle. To conclude, consider the probability of that Gs
outputs a correct guess b’ = b. In Gs, the value of H at the z-coordinate z of R is left
random. Thus, bit &’ is independent of b and the probability of having b’ = b is exactly
1/2. This finishes the proof of the theorem.

4.3 The intractability hypothesis of [8]

Documents [8, 1] claim to avoid the random oracle. However, they use a contrived
and non-standard assumption. The assumption states that it is difficult to distinguish
tuples (G, Q, R, H(z)), computed as prescribed by the cryptosystem, even calling an
oracle which returns H(z'), when queried at R' # R. Thus, this assumption is exactly
the statement that key encapsulation is secure.

In the sequel, we will show that any public-key encryption scheme, based on a
secure key encapsulation protocol and built along the lines of [8], is secure provided
the symmetric encryption scheme and the MAC scheme in use are secure. Thus, as
suggested in [37], it seems actually that the security proof of [1] tells nothing significant
on the public key part.

We find that the arguments in [8] are even somehow misleading in terms of security.
The proof that was carried in the previous section involves a security loss 2(¢p +1)qx0.
This can be decreased to 2¢yd if the random oracle is fed with (R, z) in place of just z.
This would also decrease the computational cost of the reduction by a factor ¢p. The
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arguments in [8], claiming that the security analysis is the same, regardless of whether
or not R is an input to the hash function, do not account for this security loss.

4.4 From key encapsulation to chosen ciphertext security

Following [36], we give a formal definition of a key encapsulation scheme. It consists
of three algorithms (I, £, D):

e the key generation algorithm C(1™) outputs a random pair of secret-public keys
(sk, pk), relatively to a security parameter m

e the encapsulation algorithm £y (r) outputs a ciphertext C' using random coins r

e the decryption algorithm Dg (C) outputs the key material k£ associated to the
ciphertext C' (and thus depending on the above random coins 7.)

The security of such a scheme has been considered in section 4.2. It states that an
attacker cannot distinguish the distribution consisting of a ciphertext and the cor-
responding key material from the analogous distribution where the key material is
replaced by a random string, even if he can query ciphertexts (other than the challenge
ciphertext). For such a scheme, we denote by Ade’E’D(t, gp) the maximal advantage
for any adversary in distinguishing both distributions, within time bound ¢, after ¢p
queries to the decryption oracle.

For any such scheme, provided it produces enough key material, one can derive an
hybrid encryption scheme exactly as in [1]. We prove the following.

Theorem 3 Let A be a CCA-adversary attacking the hybrid cryptosystem, within time
bound t, with advantage €, making qp queries to the decryption oracle. Then

e < AP qp) + AdVEP () + gp x Succ™ (¢, 1)
where ' < t+ O(qp)

and where AdvEP ('), Succ™(#',1), respectively denote the security level of the sym-
metric encryption scheme and the MAC scheme, as defined below.

Before going further in the proof, let us first define more formally the security
notions for the symmetric encryption and the MAC schemes.

4.4.1 Symmetric Encryption

A symmetric encryption scheme with a key-length £, on messages of length ¢, consists
of two algorithms (E, D) which depend on a k-bit string k, called the secret key:
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e the encryption algorithm Ey (m) outputs a ciphertext ¢ corresponding to the plain-
text m € {0,1}%, in a deterministic way;

e the decryption algorithm Dy (c) recovers the plaintext m associated to the cipher-
text c.

A security notion similar to those used for asymmetric encryption is considered,
known as semantic security [17]: a symmetric encryption scheme is semantically secure
if no polynomial-time attacker can learn any bit of information about the plaintext
from the ciphertext, besides its length. More formally, a symmetric encryption scheme
is (t,e)-IND if, for any adversary A = (A, Ay) with running time bounded by ¢,
Adv™(A) < e, where

Adv™(A) = Pr [(mo,mq,s) < Ai(k),c + Ex(ms) : As(c,s) =b] —1/2
kB o131k
v&10,1}
In the above, probabilities include the random coins of the adversary, and mg, m; are
two identical-length plaintexts in the message-space {0, 1}*.
We denote by AdvE’D(t) the maximal advantage of any adversary, against the se-
mantic security of the scheme (E, D), within time bound t.

4.4.2 Message Authentication Code

A Message Authentication Code (a.k.a. MAC) with key-length & consists of two algo-
rithms (MAC.Gen, MAC.Ver), which depend on a k-bit string k, called the secret key:

e the MAC generation algorithm MAC.Geny (M), outputs a tag 7 on an input mes-
sage M,

e the MAC verification algorithm MAC.Ver (M, 7) outputs 1 or 0. A 1 answer
means that 7 is a valid tag of M.

It is required that for any key k and any message M,
MAC.Very (M, MAC.Gen, (M)) =1

On the other hand, it should be hard for an adversary to build a valid message/tag
pair without the secret key, even if it has access to MAC oracle returning the value of
MAC.Geny (M) or of MAC.Ver, (M, 7). As usual, the adversary is not allowed to query
the oracle at the message for which it produces a forgery.

More formally, a MAC is (¢, ¢, ¢)-unforgeable if, for any adversary A with running
time bounded by ¢, allowed to ask at most ¢ queries to the oracles, Succ™(A) < ¢,
where

Succ™(A) = Pr [(M,7) + AMACCen()MACVen() . MAC. Ver (M, T) = 1]
k&{0,1}*
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In the above, probabilities also include the random coins of the adversary, and the
forgery (M, 7) involves a tag 7 which has not been obtained from MAC.Geny(-).

As for symmetric encryption scheme, we let Succ™(t, ¢) denote the maximal success
probability of any adversary, after at most ¢ queries to the oracles, within time t.

In the following, we will specifically consider a scenario, where the adversary asks
a single query. In this setting, it is known that MACs built from universal hash
functions [11] meet the corresponding security criterion, without any cryptograhic as-
sumption.

4.4.3 Proof of theorem 3

We consider an attacker A = (A;, Ay) and use this adversary as usual.
1. run the key generation algorithm for the key encapsulation scheme

2. next run A; on the public data to get a pair of messages { My, M;} as well as a
state information st. Choose a random bit b, run the key encapsulation scheme
to get C' and the key material, followed by the encryption EM of M, and the
MAC D of EM, using the derived key material.

3. run Ay(C||EM]||D, st) and finally get an answer b'. Eventually, output bit b = ¥'.
As in the proof of theorem 2, we will envision several games:

e game Gy, where the decryption queries are answered by an actual decryption
oracle

e game Go, where the key material to encrypt/MAC the test message M, is replaced
by a random string and where queries whose initial part matches with C' are
decrypted using the same random string

e game G3, which is as G, but where all queries whose initial part matches with C
are rejected

We observe that the probability that G; outputs 1 (and thus &’ = b) is exactly 1/2 +¢.
Indeed, game G; provides the adversary with the real-life setting. As in the proof of
theorem 2, we bound the difference of probabilities between G; and Gjs.

In order to bound the difference between G; and G, observe that both can be
played by calling the decryption oracle for key encapsulation rather than the actual
decryption oracle. Game G; needs as an additional input the key material corresponding
to C' and, similarly, game G, will need the random key material. Thus, we have
obtained a distinguisher between the distribution consisting of a ciphertext and the
corresponding key material (in game G;) and the analogous distribution where the key
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material is replaced by a random string (in game Gs). This bounds the difference by
AdVEP (' gp).

To go from game G, to game G3, we have to bound the probability that G3 rejects
a valid ciphertext. We relate this event to the ability to forge a MAC, by defining a
further simulation. This simulation is similar to G3 with the following differences

1. the tag D of the challenge ciphertext (C, EM, D) is generated using a single call
to the MAC.Gen oracle

2. a random index k € {1,---,qp} is chosen and the tag D' included in the k-th
decryption query, whose initial part matches with C, is returned together with
the corresponding encrypted message EM'.

The simulator returns a MAC forgery (E'M, D) with probability at most Succ™*(¢', 1).
Note that this exactly means that, in game Gs, the x-th query (C, EM', D') is a valid
ciphertext. This allows to bound the difference between the probabilities of games G
and Gs by gp x Succ™(¢',1).

In the more general setting, where the MAC adversary can ask many queries to the
oracles, one can replace this bound by Succ™(#, ¢p), since one can spot the forgery
by oracle calls.

To conclude, consider the probability of that G3 outputs one. In this game, a random
string is drawn as a session key and used to encrypt a randomly chosen test message
M, under this key. The adversary outputs one if he has correctly guessed bit b. This is
exactly the situation of a semantic distinguisher as defined in section 4.4.1. Therefore,
the advantage of the adversary in this latter game Gs is bounded by Adv®P(#'). This
concludes the proof.

4.5 The discrepancy between [1] and [8]

We are now in a position to further comment on the discrepancy between [1] and [8].
Recall that document [8] derives the key material as the image of z by the random
oracle H, whereas [1] uses H(R, z).

Combining theorems 2 and 3, one gets the following:

Theorem 4 Let A be a CCA-adversary against the ECAES encryption scheme, with
running time bounded by t and advantage €, making qp decryption queries and qy
oracle calls. Then

e < Succ®®H(6, ¢, 2qx(qp + 1)) + AdVEP () 4 gp x Succ™ (', 1)
+2qu(gp +1)6
where ' < t+2qr(gp +1) -7+ O(gp)

and where T denotes the running time of the )-ECDDH oracle.
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The estimates in the previous security result would have been considerably better
deriving the key material from (R, z). Indeed, the resulting modified key encapsulation
scheme satisfies the following:

Theorem 5 Let A be a CCA-adversary against the modified key encapsulation scheme
with running time < t and advantage €, making qp decryption queries and qg oracle
calls. Then

e < Succ®®H(6, 1,2 qu) +2qu - 0
where t' < t+2qy-T

Proof: We use a similar adversary B as in the proof of theorem 2, but with a more
efficient simulation. This simulation still maintains two lists, the H-list and the list
of implicit queries, but the workload to ensure consistency decreases. This is because
a query to H of the form (R, u) can only conflict with an implicit query at R. To
check consistency, one just needs to call the 6-ECDDH oracle at (G,Q,R,Pi), where
P; and P; are the two elliptic curve points Py, P,, whose first coordinate is u (if they
exist). Altogether, this produces 2gy queries to the 6-ECDDH oracle. Details are
straightforward.

Thus, there is a security loss when discarding R from the input to the hash function.
We regret that no part of the submission accounts for this security loss.

5 Conclusions

Based on our analysis, we believe that the cryptosystem ECAES is presumably se-
cure, with the proposed parameters, for the foreseeable future. However, based on the
submission, we have the following restrictions:

e The non-standard assumption on which ECAES relies is exactly the statement
that the session key is semantically secure against chosen ciphertext attacks, and
therefore does not tell anything significant on the public key part of the scheme.
As a consequence, the security of this part can only be termed heuristic.

e Although we have shown that a more standard security proof is possible, it would
have to use random oracles and to rely on the so-called gap problems.

e Contrary to earlier versions, the submission has reduced the amount of data used
as an input to the hash function that derives the session key. Our analysis seems
to indicate that the change duly entails a security loss. However, no part of the
submission accounts for this security loss.
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