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1 Summary

MY-ELLTY is an elliptic curve digital signature scheme that provides partial message recovery.
If parameters are selected carefully, then the scheme appears to be secure, although no proof
of this is known. The main drawback of the proposal is that the choice of the hash functions
for the ECMR-192-h, ECMR-OEF-h and ECMR-160-h specifications of MY-ELLTY has out-
put bit lengths that are too small. As a result, the hash function is not collision-resistant and
consequently the proposed ECMR-192-h, ECMR-OEF-h and ECMR-160-h schemes are not
existentially unforgeable against chosen-message attacks. While there is an obvious way to fix
this weakness in the MY-ELLTY signature scheme (increase the number of bits from the hash
output), one then has to reduce the size of the recoverable message part.

We also observed that the security proof provided is wrong because it incorrectly applies the
forking lemma of Pointcheval and Stern.

2 Protocol specification

The submission proposed the MY-ELLTY scheme with three different parameters: ECMR-
192-h, ECMR-OEF-h, and ECMR-160-h. We mainly concentrate on the scheme ECMR-192-h
which offers higher security than ECMR-160-h. The ECMR-OEF-h scheme is analogous to
ECMR-192-h, except that ECMR-OEF-h is based on elliptic curves over fields GF

�
pm � for

some prime p and integer m.

2.1 EC Domain parameters

Elliptic Curve domain parameters are comprised of:

1. a field size p, 192-bit prime;

2. two field elements a and b in GF
�
p � which define the equation of the elliptic curve E over

GF
�
p � (i.e., y2 � x3 � ax � b);

3. two field elements xG and yG in GF
�
p � which define a finite point G � �

xG � yG
� of prime

order in E
�
GF

�
p ��� ;

4. the order q of the point G.

2.2 MY-ELLTY key pairs

An entity A’s key pair is associated with a particular set of EC domain parameters D � �
p � a � b � q � G � .
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MY-ELLTY KEY PAIR GENERATION. Each entity A does the following:

1. Select a random or pseudorandom integer x in the interval
�
1 � q � 1 � .

2. Compute Y � xG.

3. A’s public key is Y ; A’s private key is x.

2.3 MY-ELLTY signature generation

To sign a message m, an entity A with domain parameters D � �
p � a � b � q � G � and associated key

pair
�
x � Y � does the following:

Input: The elliptic-curve parameters
�
p � a � b � q � G � , the signer’s secret key x

�
0 � x � q � , and a

message m of length at least 96 bits.

Output: A signed message r � s � mnr, where r ��� 0 � 1 � 192, s � GF
�
q � , and mnr is the m with its

96 leftmost bits deleted.

Procedure:

1. Let the first 96 bits of m be denoted by mre, and the remainder of m be mnr.

2. Compute h � H
�
m � , where H is the SHA-1 hash function with outputs truncated to 96

bits.

3. Concatenate mre and h, and obtain the 192-bit value d
�
d � mre � h � .

4. Generate a random integer k such that 0 � k � q.

5. Compute the point
�
x1 � y1

� � kG on E (using affine coordinates for point representation).

6. Compute r � d 	 x1.

7. Compute r 
 � r mod q. If r 
 � 0, then return to step 4.

8. Compute s � �
r 
 k � r 
�� 1 � � x � 1 �
� 1 mod q. If s � 0, then return to step 4.

9.
�
r� s � is the signature.

10. Concatenate the signature
�
r� s � and mnr, and output r � s � mnr as the signed message.
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2.4 MY-ELLTY signature verification

To verify A’s signed message
�
r� s � mnr

� , B obtains an authentic copy of A’s domain parameters
D � �

p � a � b � q � G � and associated public key Y . B then does the following:

Input: The elliptic-curve parameters
�
p � a � b � q � G � , the signer’s public key Y , the signed mes-

sage r � s � mnr, where r � � 0 � 1 � 192, s � GF
�
q � , and mnr is a bit string of arbitrary length.

Output: Recovered 192-bit message d or ”invalid”.

Procedure:

1. Divide the signature message into the first 384-bit signature
�
r� s � and the remainder mnr.

2. Compute r 
 � r mod q.

3. Verify that r 
 �� 0 and 0 � s � q; if not, then output ”invalid”.

4. Compute the point
�
x2 � y2

� � � �
1 � r 
 � s ��� r 
 � G � �

s � r 
 � Y on the elliptic curve (using affine
coordinates for point representation).

5. Compute d � r 	 x2.

6. d is the recovered message.

7. Let mre be the first 96 bits of the message d, and h be the remainder.

8. Concatenate mre and mnr, and obtain the value m
�
m � mre � mnr

� .

9. Compute h 
 � H
�
m � .

10. If h � h 
 output the message m. Otherwise, output “invalid”.

3 Security level of cryptographic techniques

The security objective of any signature scheme is to be existentially unforgeable against a
chosen-message attack. The goal of an adversary who launches such an attack against a le-
gitimate entity A is to obtain a valid signature on a single message m, after having obtained A’s
signature on a collection of messages (not including m) of the adversary’s choice.

The submitters have provided a proof that the general MY-ELLTY signature scheme is exis-
tentially unforgeable against chosen-message attack in the random oracle model, i.e., when the
hash function is modelled by a random function. However, the proof is wrong because it in-
vokes the forking lemma incorrectly. In order to apply the forking lemma, it is required that
the commitment kG cannot be modified after receiving the challenge. This is guaranteed by
hashing both kG and the message m, and not only m.
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In the submitted version of ECMR-192-h signature scheme, only 96 bits (80 bits in ECMR-160-
h) of the hash output of SHA-1 are used in the signature generation process. Thus, since finding
a collision of the truncated hash function takes about 248 steps, the security of the signature
scheme is at most 48 bits. Hence MY-ELLTY ECMR-192-h (and also MY-ELLTY ECMR-
160-h and MY-ELLTY ECMR-OEF-h) is not secure against existential forgery attacks. For
further discussion of why collision-resistance of the hash function is crucial for security, see

�
4.1.

The obvious way to fix this weakness in the MY-ELLTY signature scheme is to increase the
number of bits from the hash output. However, one then has to reduce the size of the recoverable
message part mre.

4 Security level of cryptographic primitive functions

4.1 Attacks on the hash function

DEFINITION. A (cryptographic) hash function H is a function that maps bit strings of arbitrary
lengths to bit strings of a fixed length t such that:

1. H can be computed efficiently;

2. (preimage resistance) For y selected uniformly at random from � � 0 � 1 � t it is computa-
tionally infeasible to find a bit string x such that H

�
x � � y.

3. (second preimage resistance) Given x1, it is computationally infeasible to find a different
bit string x2 such that H

�
x1

� � H
�
x2

� .

4. (collision resistance) It is computationally infeasible to find distinct bit strings x1 and x2

such that H
�
x1

� � H
�
x2

� .

SECURITY REQUIREMENTS. The following explains how attacks on MY-ELLTY can be suc-
cessfully launched if the hash function H is not collision resistant, or second preimage resistant.

1. If H is not collision resistant, then an entity A may be able to repudiate signatures as
follows. A first generates two messages m and m 
 such that the first 96 bits of m and m 

are equal, and H

�
m � � H

�
m 
 � ; such a pair of messages is called a collision for H . She

then signs m, and later claims to have signed m 
 (note that every signature for m is also a
signature for m 
 ).

2. If H is not collision resistant, then an entity B could use the birthday attack to swindle A
as follows. B prepares two versions (m1 and m2) of a contract, where m1 is favorable to
A and m2 bankrupts A, and also where the first 96 bits of m1 and m2 are equal. B makes
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several subtle changes to each document and compares whether H
�
m 
1 � � H

�
m 
2 � , where

m 
1 (m 
2) is a subtle variant of m1 (m2), and where the first 96 bits of m 
1 and m 
2 are equal.
When B finds two such variants, B obtains the signature

�
r� s � of m 
1 from A. Then

�
r� s � is

also a signature of m 
2.

3. If H is not second preimage resistant, then an entity B may be able to forge signatures as
follows. B generates a message m, find another message m 
 such that H

�
m � � H

�
m 
 � , and

obtains the signature
�
r� s � of m 
 from A. Then

�
r� s � is also a signature of m.

IDEAL SECURITY. A t-bit hash function is said to be have ideal security [17] if both: (i) given a
hash output, producing a preimage (or a second preimage) requires approximately 2t operations;
and (ii) producing a collision requires approximately 2t

�
2 operations (this is the best that can be

hoped for, in view of the birthday attacks).

Thus, for the MY-ELLTY signature schemes, even for the ideal hash function, an attacker can
produce a collision in approximately 248 operations.

5 Security level of cryptographic primitive problem: the el-
liptic curve discrete logarithm problem

One way in which an adversary can succeed is to compute A’s private key d from A’s domain
parameters

�
p � a � b � q � G � and public key Q. The adversary can subsequently forge A’s signature

on any message of its choice.

PROBLEM DEFINITION. The elliptic curve discrete logarithm problem (ECDLP) is the follow-
ing: given an elliptic curve E defined over a finite field GF

�
p � , a point P � E

�
GF

�
p � � of order

n, and a point Q � lP where 0 � l � n � 1, determine l.

5.1 Known Attacks

This subsection overviews the algorithms known for solving the ECDLP and discusses how
they can be avoided in practice.

1. NAIVE EXHAUSTIVE SEARCH. In this method, one simply computes successive multi-
ples of P: P, 2P, 3P, 4P������� until Q is obtained. This method can take up to n steps in the
worst case.

2. POHLIG-HELLMAN ALGORITHM. This algorithm, due to Pohlig and Hellman [21], ex-
ploits the factorization of n, the order of the point P. The algorithm reduces the problem
of recovering l to the problem of recovering l modulo each of the prime factors of n; the
desired number l can then be recovered by using the Chinese Remainder Theorem.
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The implications of this algorithm are the following. To construct the most difficult in-
stance of the ECDLP, one must select an elliptic curve whose order is divisible by a large
prime n. Preferably, this order should be a prime or almost a prime (i.e. a large prime n
times a small integer h). For the remainder of this section, we shall assume that the order
n of P is prime.

3. BABY-STEP GIANT-STEP ALGORITHM. This algorithm is a time-memory trade-off of
the method of exhaustive search. It requires storage for about

�
n points, and its running

time is roughly
�

n steps in the worst case.

4. POLLARD’S RHO ALGORITHM. This algorithm, due to Pollard [22], is a randomized
version of the baby-step giant-step algorithm. It has roughly the same expected running
time ( � πn � 2 steps) as the baby-step giant-step algorithm, but is superior in that it requires
a negligible amount of storage.

Gallant, Lambert and Vanstone [11], and Wiener and Zuccherato [32] showed how Pol-
lard’s rho algorithm can be sped up by a factor of

�
2. Thus the expected running time of

Pollard’s rho method with this speedup is
� �

πn � � 2 steps.

5. PARALLELIZED POLLARD’S RHO ALGORITHM. Van Oorschot and Wiener [20] showed
how Pollard’s rho algorithm can be parallelized so that when the algorithm is run in par-
allel on r processors, the expected running time of the algorithm is roughly

� �
πn � � � 2r �

steps. That is, using r processors results in an r-fold speed-up.

6. POLLARD’S LAMBDA METHOD. This is another randomized algorithm due to Pollard
[22]. Like Pollard’s rho method, the lambda method can also be parallelized with a linear
speedup. The parallelized lambda-method is slightly slower than the parallelized rho-
method [20]. The lambda-method is, however, faster in situations when the logarithm
being sought is known to lie in a subinterval

�
0 � b � of

�
0 � n � 1 � , where b � 0 � 39n [20].

7. MULTIPLE LOGARITHMS. R. Silverman and Stapleton [26] observed that if a single
instance of the ECDLP (for a given elliptic curve E and base point P) is solved using
(parallelized) Pollard’s rho method, then the work done in solving this instance can be
used to speed up the solution of other instances of the ECDLP (for the same curve E and
base point P). More precisely, if the first instance takes expected time t, then the second
instance takes expected time

� �
2 � 1 � t � 0 � 41t. Having solved these two instances, the

third instance takes expected time
� �

3 � �
2 � t � 0 � 32t. Having solved these three in-

stances, the fourth instance takes expected time
� �

4 �
�

3 � t � 0 � 27t. And so on. Thus
subsequent instances of the ECDLP for a particular elliptic curve become progressively
easier. Another way of looking at this is that solving k instances of the ECDLP (for the
same curve E and base point P) takes only

�
k as much work as it does to solve one

instance of the ECDLP. This analysis does not take into account storage requirements.

Concerns that successive logarithms become easier can be addressed by ensuring that the
elliptic parameters are chosen so that the first instance is infeasible to solve.
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8. SUPERSINGULAR ELLIPTIC CURVES. Menezes, Okamoto and Vanstone [16, 15] and
Frey and Rück [9] showed how, under mild assumptions, the ECDLP in an elliptic curve E
defined over a finite field GF

�
p � can be reduced to the ordinary DLP in the multiplicative

group of some extension field GF
�
qk � for some k

�
1, where the number field sieve

algorithm applies. The reduction algorithm is only practical if k is small — this is not the
case for most elliptic curves, as shown by Balasubramanian and Koblitz [4]. To ensure
that the reduction algorithm does not apply to a particular curve, one only needs to check
that n, the order of the point P, does not divide qk � 1 for all small k for which the DLP
in GF

�
qk � is tractable — in practice, when n � 2160 then 1 � k � 20 suffices [2].

An elliptic curve E over GF
�
p � is said to be supersingular if the trace t of E is divisible by

the characteristic p of GF
�
p � . For this very special class of elliptic curves, it is known that

k � 6. It follows that the reduction algorithm yields a subexponential-time algorithm for
the ECDLP in supersingular curves. For this reason, supersingular curves are explicitly
excluded from use in the MY-ELLTY by the above divisibility check.

More generally, the divisibility check rules out all elliptic curves for which the ECDLP
can be efficiently reduced to the DLP in some small extension of GF

�
p � . These in-

clude the supersingular elliptic curves and elliptic curves of trace 2 (elliptic curves E over
GF

�
p � for which #E

�
GF

�
p ��� � q � 1).

9. PRIME-FIELD ANOMALOUS CURVES. An elliptic curve E over GF
�
p � is said to be

prime-field-anomalous if #E
�
GF

�
p ��� � p. Semaev [24], Smart [28], and Satoh and Araki

[23] showed how to efficiently solve the ECDLP for these curves. The attack does not
extend to any other classes of elliptic curves. Consequently, by verifying that the number
of points on an elliptic curve is not equal to the cardinality of the underlying field, one
can easily ensure that the Semaev-Smart-Satoh-Araki attack does not apply.

10. CURVES DEFINED OVER A SMALL FIELD. Suppose that E is an elliptic curve defined
over the finite field GF

�
2e � . Gallant, Lambert and Vanstone [11], and Wiener and Zuc-

cherato [32] showed how Pollard’s rho algorithm for computing elliptic curve logarithms
in E

�
GF

�
2ed ��� can be further sped up by a factor of

�
d — thus the expected running

time of Pollard’s rho method for these curves is
� � πn � d � � 2 steps. For example, if E is

a Koblitz curve (see the submission), then Pollard’s rho algorithm for computing elliptic
curve logarithms in E

�
GF

�
2m � � can be sped up by a factor of

�
m. This speedup should

be considered when doing a security analysis of elliptic curves whose coefficients lie in a
small subfield.

11. CURVES DEFINED OVER GF
�
2m � , m COMPOSITE. Galbraith and Smart [10], expanding

on earlier work of Frey [7, 8], discuss how the Weil descent might be used to solve the
ECDLP for elliptic curves defined over GF

�
2m � where m is composite (such fields are

sometimes called composite fields). More recently, Gaudry, Hess and Smart [12] refined
these ideas to provide some evidence that when m has a small divisor l, e.g. l � 4, the
ECDLP for elliptic curves defined over GF

�
2m � can be solved faster than with Pollard’s
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rho algorithm. See also Menezes and Qu [18] for an analysis of the Weil descent attack.
In light of these results, it seems prudent to not use elliptic curves over composite fields.

It should be noted that some ECC standards, including the draft ANSI X9.63 [3], explic-
itly exclude the use of elliptic curves over composite fields. The ANSI X9F1 committee
also agreed in January 1999 to exclude the use of such curves in a forthcoming revision
of ANSI X9.62.

12. NON-APPLICABILITY OF INDEX-CALCULUS METHODS. Whether or not there exists a
general subexponential-time algorithm for the ECDLP is an important unsettled question,
and one of great relevance to the security of MY-ELLTY. It is extremely unlikely that
anyone will ever be able to prove that no subexponential-time algorithm exists for the
ECDLP. However, much work has been done on the DLP over the past 24 years, and more
specifically on the ECDLP over the past 16 years, and no subexponential-time algorithm
has been discovered for the ECDLP. Miller [19] and J. Silverman and Suzuki [27] have
given convincing arguments for why the most natural way in which the index-calculus
algorithms can be applied to the ECDLP is most likely to fail.

13. XEDNI-CALCULUS ATTACKS. A very interesting line of attack on the ECDLP, called the
xedni-calculus attack was recently proposed by J. Silverman [25]. One intriguing aspect
of the xedni-calculus is that it can be adapted to solve both the ordinary discrete logarithm
and the integer factorization problems. However, it was subsequently shown by a team
of researchers including J. Silverman (see Jacobson et al. [13]) that the attack is virtually
certain to fail in practice.

14. HYPERELLIPTIC CURVES. Hyperelliptic curves are a family of algebraic curves of arbi-
trary genus that includes elliptic curves. Hence, an elliptic curve can be viewed as a hyper-
elliptic curve of genus 1. Adleman, DeMarrais and Huang [1] (see also Stein, Müller and
Thiel [30]) presented a subexponential-time algorithm for the discrete logarithm problem
in the jacobian of a large genus hyperelliptic curve over a finite field. However, in the
case of elliptic curves, the algorithm is worse than naive exhaustive search.

15. EQUIVALENCE TO OTHER DISCRETE LOGARITHM PROBLEMS. Stein [29] and Zuc-
cherato [33] showed that the discrete logarithm problem in real quadratic congruence
function fields of genus 1 is equivalent to the ECDLP. Since no subexponential-time algo-
rithm is known for the former problem, this may provide further evidence for the hardness
of the ECDLP.

5.2 Experimental Results

The best general-purpose algorithm known for the ECDLP is the parallelized version of Pol-
lard’s rho algorithm which has an expected running time of

� �
πn � � � 2r � steps, where n is the

(prime) order of the base point P, and r is the number of processors utilized.
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CERTICOM’S ECC CHALLENGE. Certicom initiated an ECC challenge [5] in November 1997
in order to encourage and stimulate research on the ECDLP. Their challenges consist of in-
stances of the ECDLP on a selection of elliptic curves. The challenge curves are divided into
three categories listed below. In the following, ECCp-k denotes a random curve over a field
GF

�
p � , ECC2-k denotes a random curve over a field GF

�
2m � , and ECC2K-k denotes a Koblitz

curve (see the submission) over GF
�
2m � ; k is the bitlength of n. In all cases, the bitsize of the

order of the underlying finite field is equal or slightly greater than k (so curves have either prime
order or almost prime order).

1. Randomly generated curves over GF
�
p � , where p is prime: ECCp-79, ECCp-89, ECCp-

97, ECCp-109, ECCp-131, ECCp-163, ECCp-191, ECCp-239, and ECCp-359.

2. Randomly generated curves over GF
�
2m � , where m is prime: ECC2-79, ECC2-89, ECC2-

97, ECC2-109, ECC2-131, ECC2-163, ECC2-191, ECC2-238, and ECC2-353.

3. Koblitz curves over GF
�
2m � , where m is prime: ECC2K-95, ECC2-108, ECC2-130,

ECC2-163, ECC2-238, and ECC2-358.

RESULTS OF THE CHALLENGE. Escott et al. [6] report on their 1998 implementation of the
parallelized Pollard’s rho algorithm which incorporates some improvements of Teske [31]. The
hardest instance of the ECDLP they solved was the Certicom ECCp-97 challenge. For this task
they utilized over 1200 machines from at least 16 countries, and found the answer in 53 days.
The total number of steps executed was about 2 � 1014 elliptic curve additions which is close
to the expected time ((

�
πn ��� 2 � 3 � 5 � 1014, where n � 297). Escott et al. [6] conclude that

the running time of Pollard’s rho algorithm in practice fits well with the theoretical predictions.
They estimate that the ECCp-109 challenge could be solved by a network of 50,000 Pentium
Pro 200MHz machines in about 3 months.

6 Recommended parameters

The submission recommended three set of parameters for the scheme. The elliptic curve for
ECMR-192-h is over a 192-bit prime field, the elliptic curve for ECMR-160-h is over a 160-
bit prime field, and the elliptic curve ECMR-OEF-h is over the 160-bit field GF

�
p5 � where

p � 232 � 185.

In Table 1, the security levels of the MY-ELLTY with parameters recommended in the sub-
mission are compared with other submitted schemes, with RSA, and with symmetric schemes
(e.g., the Advanced Encryption Standard–AES). Some of the comparisons among symmetric
key cryptography, RSA security, and ECDSA security are adapted from Lenstra and Verheul
[14].
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Table 1: Rough Comparison of Security Levels

Symmetric
Key Size

RSA
Modulus

Size

ESIGN
Modulus

Size

ACE
Modulus

Size

ECDSA
Key Size

MY-ELLTY
Key Size

40 160
48 192
76 960 960 960 152
80

(SKIPJACK)
1024 1024 1024 160

112
(Triple-DES)

2048 2048 2048 224

128
(128-bit AES)

3072 3072 3072 256

192
(192-bit AES)

7680 7680 7680 384

256
(256-bit AES)

15360 15360 15360 512

7 Performance comparison

Table 1 presented comparable key lengths of several schemes. Generally, the ESIGN signature
scheme is faster than both ECDSA and RSA signature schemes with comparable key lengths.
ACE, RSA, and ESIGN have roughly the same public key size for comparable security level.
ACE and RSA have roughly the same private key size for comparable security level. ESIGN’s
private key size is roughly 2 � 3 of the ACE (or RSA) private key size for comparable security
level. ECDSA and MY-ELLTY have significantly smaller key size for comparable security
level. However, the hash function used in MY-ELLTY is not collision resistant, thus it is not
secure against attacks on the hash function.
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