
Evaluation of Security Level of Cryptography:
ESIGN Signature Scheme

Alfred Menezes, Minghua Qu, Doug Stinson, Yongge Wang
Certicom Research

Contact: amenezes@certicom.com

January 15, 2001



2 Protocol specification Page 1

1 Summary

The ESIGN signature scheme was proposed in 1985 by Tatsuaki Okamoto. It has been proven
to be existentially unforgeable against chosen-message attacks assuming that the approximate
e-th root (AER) problem is hard and that the employed hash function is a random function.
While the AER problem has been studied by some researchers, it has not received as much
attention as the integer factorization problem or the discrete logarithm problem. One way to
solve the AER problem is to factor the integer n, where n � p2q and p and q are primes of the
same bitlength. The parameters recommended ensure that ESIGN resists all known attacks for
factoring integers of this form.

2 Protocol specification

2.1 ESIGN key pairs

For the security parameter k � pLen, each entity does the following:

1. Randomly select two distinct primes, p, q, each of bitsize k and compute n � p2q.

2. Select an integer e � 4.

3. A’s public key is � n � e � k � ; A’s private key is � p � q � .
In addition, one needs to specify a hash function H � whose output length is k bits.

2.2 ESIGN signature generation

To sign a message m, an entity A with the private key � p � q � does the following:

1. Compute H ��� m � , and let H � m � be obtained from H ��� m � by deleting the most significant
bit.

2. Pick r uniformly at random from � r � Zpq : gcd � r� p � � 1 	 .

3. Set z � � 0 
 H � m ��
 02k � and α � � I � z �� re � mod n, where the function I ��� converts a binary
string into an integer in the usual way.

4. Set � w0 � w1 � such that

w0
� � α

pq � � (1)

w1
� w0 pq � α � (2)



3 Security level of cryptographic techniques Page 2

5. If w1
�

22k � 1, then go back to step 2.

6. Set t � w0
ere � 1 mod p and s � B3k � � r � t pq � mod n � , where B3k � X � converts an integer X to

a binary string of length 3k (by prepending 0’s if necessary).

7. Output the signature s.

2.3 ESIGN signature verification

To verify A’s signature s on m, B obtains an authentic copy of A’s public key � n � e � k � . B then
does the following:

1. Compute H � � m � , and let H � m � be obtained from H � � m � by deleting the most significant
bit.

2. Check whether the following equation holds:

� B3k � I � s � e mod n ��� k � 0 
 H � m � (3)

where the function � X � k takes the most significant k bits of the input X .

3. If it holds, output “valid”; otherwise output “invalid”.

Note: The signature generation algorithm computes the integer s such that se mod n lies in a
certain interval determined by the message. The signature verification algorithm demonstrates
that se mod n does indeed lie in the specified interval.

Note: In order to speed up the signing time, step 5 in the signature generation process could
be optional. The condition w1

�
22k � 1 ensures the value w1

� se � I � z � is uniformly distributed
in the interval � 0 � 22k � 1 � 1 � as required by the security proof for ESIGN. However, no security
weakness is known if the test is omitted.

Performance note: Fujioka, Okamoto, and Miyaguchi [7] describe an implementation of ES-
IGN (with e � 32) which suggests that it is twenty times faster than RSA signatures (with
e � 216 � 1) with comparable key and signature lengths.

3 Security level of cryptographic techniques

The security objective of any signature scheme is to be existentially unforgeable against a
chosen-message attack. The goal of an adversary who launches such an attack against a le-
gitimate entity A is to obtain a valid signature on a single message m, after having obtained A’s
signature on a collection of messages (not including m) of the adversary’s choice.



4 Security level of cryptographic primitive functions Page 3

ESIGN bases its security on the AER (approximate e-th root) assumption which is defined next.
Let n � p2q, where p and q are primes of the same bitlength. The AER problem is to find x,
given n � e � y, such that a portion (specifically, the

�
n

���
3-most significant bits) of xe mod n equals

the corresponding part of y, i.e., � xe mod n ��� n � � 3 � � y ��� n � � 3. The AER assumption is that there is
no efficient algorithm for solving the AER problem.

The submission includes a proof that the ESIGN signature scheme is existentially unforgeable
against adaptive chosen-message attacks in the random oracle model under the AER assump-
tion. In the random oracle model, the hash function employed is modeled by a random function.

The security proof of the ESIGN signature scheme is similar to the security proof of Bellare
and Rogaway for the Full Domain Hash (FDH) RSA signature scheme. The proof guarantees
resistance to attacks that do not use specific properties of the hash function, assuming only that
the AER problem is intractable. As with all proofs in the random oracle model, it should not
be regarded as an unconditional security proof due to known (albeit theoretical) pitfalls in the
random oracle model (see [5]).

4 Security level of cryptographic primitive functions

4.1 Attacks on the hash function

DEFINITION. A (cryptographic) hash function H is a function that maps bit strings of arbitrary
lengths to bit strings of a fixed length t such that:

1. H can be computed efficiently;

2. (preimage resistance) For y selected uniformly at random from � 0 � 1 	 t , it is computation-
ally infeasible to find a bit string x such that H � x � � y.

3. (second preimage resistance) Given x1, it is computationally infeasible to find a different
bit string x2 such that H � x1 � � H � x2 � .

4. (collision resistance) It is computationally infeasible to find distinct bit strings x1 and x2

such that H � x1 � � H � x2 � .
HASH FUNCTION SECURITY REQUIREMENTS. The following explains how attacks on ES-
IGN can be successfully launched if hash function is not collision resistant or second preimage
resistant.

1. If the hash function is not collision resistant, then an entity A may be able to repudiate
signatures as follows. A first generate two messages m and m � such that H � m � � H � m � � ;
such a pair of messages is called a collision for H . She then signs m, and later claims to
have signed m � (note that every signature for m is also a signature for m � ).



5 Security level of cryptographic primitive problem Page 4

2. If H is not collision resistant, then an entity B could use the birthday attack to swindle A
as follows. B prepares two versions (m1 and m2) of a contract, where m1 is favorable to
A and m2 bankrupts A. B makes several subtle changes to each document and compares
whether H � m �1 � � H � m �2 � , where m �1 (m �2) is a subtle variant of m1 (m2). When B finds
two such variants, B gets the signature s of m �1 from A. Then s is also a signature of m �2.

3. If the hash function H is not second preimage resistant, then an entity B may be able to
forge signatures as follows. B generates a message m, find another message m � such that
H � m � � H � m � � , and gets the signature s of m � from A. Then s is also a signature of m.

IDEAL SECURITY. A t-bit hash function is said to be have ideal security [9] if both: (i) given a
hash output, producing a preimage (or a second preimage) requires approximately 2t operations;
and (ii) producing a collision requires approximately 2t � 2 operations (this is the best that can
be hoped for, in view of the birthday attacks). The hash function used in ESIGN is a k-bit
hash function and is required to have ideal security. The fastest method known for attacking
ESIGN by exploiting properties of hash function is to find collisions for the hash function. Since
this is believed to take 2k � 2 steps, attacking ESIGN in this way is computationally infeasible.
Note, however, that this attack imposes an upper bound of 2k � 2 on the security level of ESIGN,
regardless of the size of the primary security parameter n. Of course, this is also the case with
all present signature schemes with appendix.

5 Security level of cryptographic primitive problem: the ap-
proximate eth roots problem

ESIGN was originally proposed by Okamoto and Shiraishi [11] and was motivated by the digital
signature mechanism OSS devised by Ong, Schnorr, and Shamir [12]. The OSS scheme was
shown to be insecure by Pollard in a private communication to them. Ong, Schnorr, and Shamir
[12] modified their original scheme but this too was shown insecure by Estes et al. [6].

ESIGN bases its security on the AER (approximate e-th root) assumption which is defined next.
Let n � p2q, where p and q are primes of the same bitlength. The AER problem is to find x,
given n � e � y, such that a portion (specifically, the

�
n

���
3-most significant bits) of xe mod n equals

the corresponding part of y, i.e., � xe mod n ��� n � � 3 � � y ��� n � � 3. The AER assumption is that there is
no efficient algorithm for solving the AER problem.

The original version of ESIGN [11] proposed e � 2 as the appropriate value for the public
key. Brickell and DeLaurentis [3] demonstrated that this choice was insecure. Their attack also
extends to the case e � 3; see Brickell and Odlyzko [4]. Okamoto [10] then revised the method
by requiring e

�
4. No weakness for these values of e have been reported in the literature.

The problem is related to the RSA problem which is one of finding x, given n � e � y, such that
y � xe � mod n � . Clearly, if one can efficiently solve the RSA problem then one can also



5 Security level of cryptographic primitive problem Page 5

efficient solve the AER problem. The submission conjectures that the RSA and AER prob-
lems are polynomial-time equivalent (and that the integer factorization and AER problems and
polynomial-time equivalent when e is even); however no proof of this is known.

One way in which an adversary can break the scheme is to compute A’s private key � p � q � from
A’s public key � n � e � k � . If this is done, the adversary can subsequently forge A’s signature on
any message of its choice.

Problem Definition. The integer factorization problem is the following: given an integer n,
determine the factorization of n.

Known algorithms for integer factorization

This subsection overviews the algorithms known for factoring and discusses how they can be
avoided in practice.

1. Trial division. Once it is established that an integer is composite, before expending vast
amount of time with more powerful techniques, the first thing that should be attempted
is trial division by all “small” primes. Here “small” is determined as a function of the
size of n. As an extreme case, trial division can be attempted by all primes up to

�
n. If

this is done, trial division will completely factor n but the procedure will take roughly
�

n
divisions in the worst case when n is a product of two primes of the same size.

2. Pollard’s rho factoring algorithm. Pollard’s rho algorithm is a special-purpose factoring
algorithm for finding small factors of a composite integer. Let f : S � S be a random
function, where S is a finite set of cardinality m. Let x0 be a random element of S, and
consider the sequence x0 � x1 � � � � defined by xi � 1

� f � xi � for i
�

0. Since S is finite, the
sequence must eventually cycle, and consists of a tail of expected length � nπ

�
8 followed

by an endless repeating cycle of expected length � nπ
�
8. A problem that arises in the

factorization problem is of finding distinct indices i and j such that xi
� x j . The expected

time for finding such a collision is O � �
p � where p is a prime factor of n.

3. Pollard’s p-1 factoring algorithm. Pollard’s p � 1 factoring algorithm is a special-
purpose factoring algorithm that can be used to efficiently find any prime factors p of
a composite integer n for which p � 1 is smooth with respect to some relatively small
B. Let n be an integer having a prime factor p such that p � 1 is B-smooth. The run-
ning time of Pollard’s p � 1 algorithm for finding the factor p is O � B lnn

�
lnB � modular

multiplication.

4. Elliptic curve factoring. The elliptic curve factoring method (ECM) has an expected
running time of O � exp � � �

2 � o � 1 � � � ln p � 1 � 2 � lnln p � 1 � 2 � � to find a prime factor p of n. It
is the fastest factoring algorithm known when the running time is measured in terms of



6 Recommended parameters Page 6

the smallest prime factor of n, and is thus useful for finding factors of n in some situations
when n has a prime factor that is significantly smaller than the other prime factors of n.

5. Quadratic sieve factoring. The quadratic sieve factoring algorithm has the same ex-
pected running time as the elliptic curve factoring algorithm in the special case when n is
the product of two primes of equal size. However, for such numbers, the quadratic sieve
is superior in practice.

6. Number field sieve factoring. The general version of the number field sieve factoring
algorithm has an expected running time of O � exp � � �

c � o � 1 � � � lnn � 1 � 3 � ln lnn � 2 � 3 � � to
factor n, where c is approximately 1 � 923. This is asymptotically superior to the quadratic
sieve factoring method. This superiority has also been validated by numerous researchers
through extensive experimentation.

7. Factoring n � p2q. Although it is not known whether n � p2q is easier to factor than
n � pq, some special algorithms to factor n � p2q have been studied in [1, 13]. These
techniques are specific to the elliptic curve factoring method, and are just several times
faster than the traditional ECM. The fastest algorithm known for factoring both integers
n of the form n � p2q and n � pq (where the primes p and q have the same bit length) is
the number field sieve (NFS) method, whose running time depends only on the bit length
of n.

8. Factoring n � prq. Boneh, et al. [2] presented an algorithm for factoring n � prq with
large r using the LLL algorithm. Their algorithm, however, is only effective for the case
where r is large (at least � log p � 1 � 2). If r is constant or small, the running time of their
algorithm is exponential in the bitsize of n. For n � p2q, their algorithm is less efficient
than the ECM and NFS methods.

Summary: If n is carefully chosen, namely n � p2q where p and q are randomly chosen primes
of the same bitlength which is at least 320 (so n has bit length at least 960), then all known
algorithms for factoring n are thwarted.

6 Recommended parameters

The recommended ESIGN parameters are as follows:

� k: larger than or equal to 320 (the size of n should be more than 960 bits), and

� e: larger than or equal to 8.



7 Performance comparison Page 7

In Table 1, the security levels of ESIGN with these parameters are compared with other submit-
ted schemes, with RSA, and with symmetric schemes (e.g., the Advanced Encryption Standard–
AES). Some of the comparisons among symmetric key cryptography, RSA security, and ECDSA
security are adapted from Lenstra and Verheul [8].

Table 1: Rough Comparison of Security Levels

Symmetric
Key Size

RSA
Modulus

Size

ESIGN
Modulus

Size

ACE
Modulus

Size

ECDSA
Key Size

MY-ELLTY
Key Size

40 160
48 192
76 960 960 960 152
80

(SKIPJACK)
1024 1024 1024 160

112
(Triple-DES)

2048 2048 2048 224

128
(128-bit AES)

3072 3072 3072 256

192
(192-bit AES)

7680 7680 7680 384

256
(256-bit AES)

15360 15360 15360 512

7 Performance comparison

Table 1 presented comparable key lengths of several schemes. Generally, the ESIGN signature
scheme is faster than both ECDSA and RSA signature schemes with comparable key lengths.
ACE, RSA, and ESIGN have roughly the same public key size for comparable security level.
ACE and RSA have roughly the same private key size for comparable security level. ESIGN’s
private key size is roughly 2

�
3 of the ACE (or RSA) private key size for comparable security

level. ECDSA and MY-ELLTY have significantly smaller key size for comparable security
level. However, the hash function used in MY-ELLTY is not collision resistant, thus it is not
secure against attacks on the hash function.



References Page 8

References

[1] L.M. Adleman and K.S.McCurley. Open problems in number theoretic complexity II,
Proc. of ANTS I, LNCS 877, pages 291–322, 1995.

[2] D. Boneh. G. Durfee, and N. Howgrave-Graham. Factoring N � prq for large r. Advances
in Cryptology, Crypto 99, LNCS 1666, pages 326–337, 1999.

[3] E.F. Brickell and J.M. DeLaurentis. An attack on a signature scheme proposed by Okamato
and Shiraishi. Advances in Cryptology, Crypto 85, LNCS 218, pages 28–32, 1986.

[4] E.F. Brickell and A.M. Odlyzko. Cryptanalysis: A survey of recent results. G.J. Simmons,
editor, Contemporary Cryptology: The Science of Information Integrity, pages 501–540,
IEEE Press, 1992.

[5] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. Proc.
of the STOC, pages 209–218, ACM Press, 1998.

[6] D. Estes, L.M. Adleman, K. Kompella, K.S. McCurley, and G.L. Miller. Breaking the
Ong-Schnorr-Shamir signature scheme for quadratic number fields. Advances in Cryptol-
ogy, Crypto 85, LNCS 218, pages 3–13, 1086.

[7] A. Fujioka, T.Okamoto, and S. Miyaguchi. ESIGN: An efficient digital signature imple-
mentation for smart cards. Advances in Cryptology, Eurocrypt 91, LNCS 547, pages 446–
457, 1991.

[8] A. Lenstra and E. Verheul. Selecting cryptographic key sizes. Distributed in the 3rd work-
shop on Elliptic Curve Cryptography (ECC 99). Available from http://www.cryptosavvy.
com/

[9] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

[10] T. Okamoto. A fast signature scheme based on congruential polynomial operations. IEEE
Transactions on Information Theory, 36:47–53, 1990.

[11] T. Okamoto and A. Shiraishi. A fast signature scheme based on quadratic inequalities.
Proceedings of the 1985 IEEE Symposium on Security and Privacy, pages 123–132, 1985.

[12] H. Ong, C.P. Schnorr, and A. Shamir. An efficient signature scheme based on quadratic
equations. Proceedings of the 16th Annual ACM Symposium on Theory pf Computing,
pages 208–216, 1984.

[13] R. Peralta and E. Okamoto. Faster factoring of integers of a special form, IEICE Trans.
Fundamentals, E79-A, 4:489–493, 1996.


