
Security Level of Cryptography —

Security evaluation (especially in mode part) for the stream cipher
MULTI-S01

December 2001

Contents

1 Summary 2
1.1 Description of this document . 2
1.2 Background . 2
1.3 Principle findings . 2

2 Stream Ciphers and their Security 3
2.1 Syntax of a stream cipher . 3
2.2 Privacy of a stream cipher . 4
2.3 Authenticity of a stream cipher . 5

3 Stream-Cipher Cores and their Security 6
3.1 Syntax of a stream-cipher core . 6
3.2 Perfect privacy of a stream-cipher core . 6
3.3 Statistical authenticity of a stream-cipher core 7

4 Definition of MULTI-S01 7
4.1 MULTI-S01 as a stream-cipher core . 7
4.2 MULTIS-S01 as a stream cipher . 9

5 Security of MULTI-S01-SCC 12
5.1 Perfect privacy of MULTI-S01-SCC . 12
5.2 Statistical authenticity of MULTI-S01-SCC . 12

6 From Stream-Cipher Core to Stream Cipher 12
6.1 Converting a stream-cipher core to a stream cipher 12
6.2 Theorems that justify a focus on stream-cipher cores 13
6.3 Requisite security property for function P . 14

7 Criticisms and Suggestions 15
7.1 Length restrictions . 15
7.2 Ciphertext length . 15
7.3 Forging probability . 15
7.4 Software speed . 16
7.5 Generic composition as a better alternative . 16

References 18

1

1 Summary

1.1 Description of this document

This document is an evaluation of the MULTI-S01 encryption scheme, as proposed by Hitachi.
The document is based on references [DEF, SELF, SLIDES, EVAL]. It was prepared at the
request of the Information-Technology Promotion Agency, Japan.

This evaluation focuses on the “mode portion” of MULTI-S01. In particular, MULTI-S01
proposes the use of a particular pseudorandom generator, Panama, but the current evalua-
tion does not contain any new cryptanalysis of Panama. Instead, we model the underlying
pseudorandom generator as ideal and proceed from there.

1.2 Background

The object of study. MULTI-S01 is an authenticated-encryption scheme based on a pseu-
dorandom generator (or, more precisely, based on a infinite-output-length pseudorandom func-
tion). In order to encrypt a message M having some positive multiple of 64 bits, one first uses
the generator to produce a pad of length |M |+ 256. The algorithm then specifies how to use
the pad to map the plaintext M into a ciphertext C having |M |+ 128 bits. The sender would
then transmit C to the receiver. The receiver recomputes the same pad κ and then uses it to
recover from C the ciphertext M . During message recovery, the receiver may obtain a signal
invalid instead of recovering a message M in the message space. Typically, the connection
would be dropped in this case. The intent is that any adversarial modification to the ciphertext
should result in the receiver recovering invalid.

Authenticated-encryption methods that correctly intertwine privacy and authenticity in
a single, integrated mode only recently emerged, with the work of [IAPM]. The customary
alternative—providing for privacy and authenticity by separate primitives and the “gluing them
together”—has been called the generic composition paradigm, and it is analyzed in [BeNa].
The main motivation for more tightly comingling privacy and authenticity is a potential savings
in speed.

The methods of [IAPM], as well as later work like [OCB], build an authenticated-encryption
scheme from a block cipher, not a pseudorandom generator. Motivated by the fact that state-
of-the-art pseudorandom generators are faster per byte of output than state-of-the-art block
ciphers, the authors of MULTI-S01 set forth to devise an authenticated-encryption scheme
built on top of a pseudorandom generator. A good idea, even if the authors did not quite pull
it off.

1.3 Principle findings

We summarize our main results and findings:

1. Document [DEF] only looks at how to encrypt a single message M . It is not very clear
about how to encrypt a sequence of plaintexts. This was a major hole in the exposition.

2. We needed to fill this hole before we could proceed with any meaningful analysis. Thus
the exposition of MULTI-S01 we give here goes beyond that in [DEF] to fully specify what

2

we guess to be the intended way to use MULTI-S01 to encrypt a sequence of messages.
Our exposition includes a formal treatment of stream ciphers and stream-cipher cores.

3. There is no formal treatment in the submission (or, more broadly, in the cryptographic
literature) for the security of a stream-cipher authenticated-encryption scheme. We rem-
edy this, developing formal definitions for authenticity appropriate to the stream-cipher
setting. This was essential before we could decide if MULTI-S01 was “right.”

4. The formal treatment allows one to reach the (initially non-obvious) conclusion that,
assuming privacy, an inability to forge after querying a single message implies an inability
to forge after asking a sequence of messages. This result justifies limiting attention to
what first looks to be a weak kind of attack described in [SELF].

5. We found the main criticisms of [EVAL] to be without signficant merit. That evaluation
complained of a lack of “robustness” because one must use distinct keys for distinct
messages. This is an intrinsic aspect of stream ciphers (when using an exposition similar
to that of used in [DEF]) and not a relevant criticism to MULTI-S01. Secondly, [EVAL]
discounted the claims of integrity, perhaps not understanding them, pointing out the
obvious and irrelevant facts that one can forge messages if one knows the key, and that
there is some nonzero probability of forgery. In fact, the claims of integrity made in
[SELF] are valid and are especially meaningful in light of the results we give here.

6. Despite disagreeing with the thrust of [EVAL], we too did not find major merit in
MULTI-S01. The reason is that there are alternative methods, using Carter-Wegman
MACs, which are faster, architecturally cleaner, increase ciphertext length by fewer bits,
and apply to messages of any bit length.

Finally, we mention that, like all stream ciphers, the effective use of MULTI-S01 requires
the receiver to maintain state and that the sender and receiver communicate over a reliable
channel. These are serious restrictions and limit the utility of a stream cipher that does not
bring with it major compensating advantages. We did not find such compensating advantages
in MULTI-S01 and, therefore, would not recommend it for standardization.

2 Stream Ciphers and their Security

It is the stated goal of MULTI-S01 to achieve both privacy and authenticity, but there is no
formal definition of either goal in any of [DEF, SELF, EVAL]. More broadly, there are no
definitions in the literature for the security of a stream-cipher based authenticated-encryption
scheme. We remedy this, giving a model and definitions for the desired goals.

Notions of security for authenticated encryption only recently emerged, and are best de-
scribed in [BeNa]. However, the stream-cipher setting is different from the setting considered
in [BeNa] and related works, necessitating new definitions.

2.1 Syntax of a stream cipher

We begin by describing “syntax” for stream ciphers, divorced from any notion of security.
Formally, a stream-cipher is a triple of algorithms SC = (Key, Enc, Dec) as follows:

3

• The key-generator Key is a set endowed with a distribution.

• Encryption algorithm Enc : Key × Par × Msg → {0, 1}∗ is a stateful, deterministic algo-
rithm. It takes a key K ∈ Key, a parameter Q ∈ Par, and a message M ∈ Msg. It returns
a ciphertext C ∈ {0, 1}∗ of length |M |+ r. Here r > 0 is a number (how much longer a
ciphertext is than a plaintext) and Msg is a linear-time testable set (the message space).

• Decryption algorithm Dec : Key × Par × {0, 1}∗ → {0, 1}∗ is a stateful, deterministic
algorithm. It takes a key K ∈ Key, a parameter Q ∈ Par, and a ciphertext C ∈ {0, 1}∗.
It returns either a plaintext M ∈ Msg of length |C| − r or else the distinguished symbol
invalid.

One requires that if K ∈ Key and Q ∈ Par and a sequence of messages M1, · · · , Mm ∈ Msg gets
encrypted, in order, using EncQ

K , resulting in ciphertexts C1, · · · , Cm, then decrypting these
ciphertexts, in order, using DecQ

K , results in plaintexts M1, · · · , Mm.
We say that a ciphertext C is invalid (with respect to a given key K and parameter Q) if

DQ
K(C) = invalid; otherwise, C is valid.

Discussion. The parameter Q is non-standard for stream ciphers, but it is used in MULTI-S01
and must be directly reflected in the definitions. Think of each Q ∈ Par as determining a
separate stream with which one can encrypt communications. All of these streams are logically
separated. Sender and receiver must “know” Q, but it need not be secret. As a typical example,
one might set Q to some first value, Q1, and then, if some message should get dropped, the
receiver could request a “re-synch” and the sender would respond by choosing a new Q-value
Q2 and carrying on, transmitting the new Q-value with the next message.

Making ciphertexts longer than plaintexts by a fixed constants is certainly not necessary,
but it shall be convenient later on.

We emphasize that both Enc and Dec are stateful. This is a fundamental characteristic of
stream ciphers.

2.2 Privacy of a stream cipher

We give a very strong definition of privacy: indistinguishability from random bits (under an
adaptive chosen-message attack). The notion is used, for example, in [OCB].

Fix a stream cipher SC = (Key, Enc, Dec) with parameters r, R. Consider an adversary A
with one of two types of oracles:

• A real encryption oracle EncSC begins by picking a random value K ∈ Key. Then, on
input of (M, Q), it returns EncQ

K(M).

• A random oracle RanSC has the following behavior: on input (M, Q), it returns a string
of |M |+ r random bits.

An adversary A is valid if every query (M, Q) it asks falls in Msg × Par. We only consider
valid adversaries. (Alternatively, have all oracles respond to invalid queries by returning the
emptystring.) We let

AdvPRIV
SC (A) = Pr[AEncSC = 1]− Pr[ARanSC = 1]

4

be the adversary’s “advantage” in distinguishing which of the two types of oracles that is has.
This is our measure of privacy.

Informally, a scheme is private if the encryptions of plaintexts look like the expected number
of random bits. The notion may be stronger than “necessary,” but it is achievable and has
desirable characteristics.

A stream cipher SC is perfectly private if, for any adversary A, AdvPRIV
SC (A) = 0.

2.3 Authenticity of a stream cipher

Definition. Fix a stream-cipher SC = (Key, Enc, Dec). Suppose we run an adversary with two
oracles: an encryption oracle Enc as described already, and a (stateful) decryption oracle Dec.
The decryption oracle has the following behavior. It is initialized with the same string K ∈ Key
that initializes the encryption oracle. Then, on input (C, Q), it returns M = DecQ

K(C). Note
that M may be invalid.

Given a stream cipher SC = (Key, Enc, Dec) and an adversary A, run A with encryption
oracle Enc and decryption oracle Dec. If A ever asks a decryption query that results in
invalid being returned, then A fails: it does not forge. Otherwise—all responses to Dec
are valid—focus on the Enc and Dec queries that use some one particular Q-value. Then
the adversary asks Enc some sequence of messages M1, M2, · · ·, getting responses C1, C2, · · ·.
Interleaved with these queries, the adversary asks it decryption oracle Dec some sequence of
ciphertexts C̃1, C̃2, · · ·, getting back plaintexts M̃1, M̃2, · · ·. We say that the adversary forges
(during this run) if some C̃s is valid (that is, M̃ s ∈ Msg) but C̃1, C̃2, · · · , C̃s is not a prefix of
C1, C2, · · ·. Let AdvAUTH

SC (A) denote the probability that adversary A forges. Let AdvAUTH
SC (m)

denote the maximal value of AdvAUTH
SC (A) over all adversaries A that make Enc queries (M, Q)

where |M | ≤ m and Dec queries (C, Q) where |C| ≤ m − r.

Discussion. The authenticity notion can be understood as follows. Imagine a sender and
receiver speaking over a channel. An adversary attacking a stream cipher and able to mount
a chosen-plaintext attack can ask the sender to encrypt M1, · · · , M q, giving rise to ciphertexts
C1, · · · , Cq that the adversary sees. The adversary knows that if it sends to the receiver
C1, C2, . . . , Cq this will give rise to the recovery of valid messages (namely, M1, · · · , M q). Any
prefix of M1, . . . , M q will also give rise to a sequence of valid messages. So we say that the
adversary A wins if it can get anything else to be deemed valid.

For example, if the adversary gets a sequence of ciphertexts C1, C2, C3, C4 for plaintexts
M1, M2, M3, M4 and, using this data, the adversary concocts C̃3 where C̃3 �= C3 and yet the
sequence of ciphertexts C1, C2, C̃3 are all valid, then the adversary has forged. Note that Dec
is stateful and so, for example, the third message in the sequence C1, C2, C2 should certainly
not be regarded as valid.

While we had the decryption oracle return the actual plaintext, it makes for an equivalent
definition for the oracle to return only an indication of valid/invalid. This is because the
adversary wins (forges) as soon as it obtains a nontrivial and valid decryption-oracle response.
The value of that response is never used.

We have decided to give the adversary no credit—it does not forge—if the decryption oracle
returns invalid. This is meant to capture the expectation that a connection is dropped after
an authentication failure. Alternatively, we could allow the adversary to play on, and possibly
forge.

5

3 Stream-Cipher Cores and their Security

A stream-cipher core is a lower-level object than a stream cipher. From a stream-cipher core
one can build a stream cipher in a standard way, and yet a stream-cipher core is a conceptually
different and simpler object. A stream-cipher core lets you encrypt just one message, using a
key of the appropriate length for that message. There is no state and no parameter Q for a
stream-cipher core, and the security definitions are simpler. And here we shall only consider
information-theoretic security definitions for stream-cipher cores.

In this section we describe the syntax for a stream-cipher core and then we give notions of
privacy and authenticity for these objects.

3.1 Syntax of a stream-cipher core

A stream-cipher core is a triple of algorithms SCC = (K, E ,D) as follows:

• The key-generator K is a probabilistic algorithm K : N → {0, 1}∗. It takes a number
m > 0 (the length of the plaintext that needs to be encrypted) and (depending on internal
coin tosses) it returns a string K ∈ {0, 1}∗ having length m + R, for some constant R.

• Encryption algorithm E is a deterministic function that takes a message M ∈ Msg and a
key K of length |M |+R and returns a string C = EK(K) of length |M |+r. Here r > 0 is
a number (how much longer a ciphertext is than a plaintext) and Msg is a a linear-time
testable set (the message space).

• Decryption algorithm D takes a ciphertext C ∈ {0, 1}∗ and a stringK of length |C|+R−r
and returns a value M = DK(M) which is either a string in Msg of length |C| − r or else
is the distinguished symbol invalid.

We require that for any m, K ∈ K(m), and M ∈ Msg, if C = EK(M) then DK(C) = M .
We say that C is invalid (with respect to a given key K) if DK(C) = invalid; otherwise,

C is valid.

Obtaining keys from infinite strings. We assume that the distribution K(m) can be
obtained as follows: choose an infinite random string κ and process bits of κ left-to-right until
one obtains an adequate number of bits—say nbits(κ, m) bits. Then output a function of those
bits as the key K = extract(κ, m) ∈ {0, 1}m+R. Functions nbits and extract are associated to
the stream-cipher core SCC.

By the assumption of the last paragraph we may use κ ∈ {0, 1}ω to name a key for E or D:
that is, Eκ(M) or Dκ(C) instead of EK(M) or DK(C).

Discussion. The restrictions that ciphertexts are a fixed amount longer than plaintexts, r
bits, and that keys are a fixed amount longer than plaintexts, R bits, are unnecessary but
simplify our later definitions.

3.2 Perfect privacy of a stream-cipher core

A stream-cipher core SCC = (K, E ,D) with parameters r, R and message space Msg is said
to be perfectly private if, for every M ∈ Msg, the distribution [K R←K(|M |) : EK(M)] is the
uniform distribution on |M |+ r bits.

6

3.3 Statistical authenticity of a stream-cipher core

We give a strong notion of authenticity for a stream-cipher core SCC = (K, E ,D) with param-
eters r, R and message space Msg:

AdvauthSCC (m) = max
M,C,C̃

{Pr
κ
[Dκ(C̃) �= invalid | Eκ(M) = C}

The maximum is over all M, C, C̃ such that C �= C̃ and |M | ≤ m and |C| ≤ m + r and the
conditioning event above is nonempty.

Explanation. The definition above can be understood as follows. An adversary asks for
the ciphertext C of a single message M having at most m bits. Based on this, it tries to
concoct a forgery C̃ for some (possibly unknown) message M̃ that has at most m bits. The
forgery is with respect to the same underlying key that encrypted M . The value AdvauthSCC (m)
upperbounds the probability that the adversary will succeed in this game. It is a pessimistic
upperbound, insofar as we fix an (M, C) that is most advantageous for the adversary.

4 Definition of MULTI-S01

We will take two different views about what MULTI-S01 is: a stream-cipher core and a stream
cipher. Only the former object is clearly specified in [DEF], but perhaps the latter may be
viewed as implicit.

The description of MULTI-S01 given here does not closely follow that in [DEF]. In partic-
ular, we have had to introduce our own abstraction boundaries, both as a way to clarify what
is going on in MULTI-S01 and also as a way to facilitate a more scientific exposition of the
security properties of MULTI-S01.

4.1 MULTI-S01 as a stream-cipher core

We first describe MULTI-S01 as a stream-cipher core MULTI-S01-SCC = (K, E ,D). Thus K
shall be a probabilistic function and E and D shall be deterministic ones. One samples from
K(m) to determine a key K to be used to encrypt a message M of length m. To encrypt
another message, sample to determine another key.

Illustration. We begin with a picture. Encryption under MULTI-S01 is depicted in Figure 1.
Referring to that picture, a message M which is a positive multiple of 64 bits is broken into
64-bit pieces M1 · · ·Mm. A keystream AB1 · · ·Bm S is then used to encrypt M , where each A,
Bi, and S is 64 bits. The value R is a fixed constant, say R = 064. Two primitives are employed:
xor of 64-bit values (denoted ⊕) and GF(264)-multiplication of 64-bit values (denoted ⊗). The
resulting ciphertext C = C1 · · ·Cm+2 is transmitted to the receiver. The receiver recovers
M in the natural way, but rejects M if the recovered values S′ or R′ are different from the
anticipated values S and R.

Key generation. The function K takes a number m (the message length for the message we
will subsequently encrypt) and outputs a key K. For MULTI-S01, the key K output by K(m)
consists of 64 random-but-nonzero bits followed by m + 192 random bits.

7

M1

B1

A

C1

F1

M2

C2

F2

B2

A

M3

B3

A

C3

F3

M4

B4

A

C4

F4

S

B5

A

C5

F5

R

B6

A

C6

P1 P2 P3 P4 P5 P6

= = ====

Figure 1: The encryption function at the core of MULTI-S01. All blocks are 64 bits. We are
encrypting the 4-block message M = M1M2M3M4 into ciphertext C = C1C2C3C4C5C6 with
key K = A B1B2B3B4B5B6 S and “redundancy” R.

function K(m)
begin

A
R←{0, 1}64 \ {064}

B
R←{0, 1}m+128

S
R←{0, 1}64

K ← A ‖ B ‖ S
return K

end

Encrpytion. First, fix a constant R ∈ {0, 1}64 (the “redundancy”). The constant R is used
for both encryption and decryption. Let M ∈ ({0, 1}64)+ be the message we wish to encrypt.
That is, M is a positive multiple of the blocksize, which is 64 bits. Document [DEF] assumes
that |M | ≤ 238 (ie., M has at most 232 blocks). So, overall, the message space for MULTI-S01
is Msg = {{0, 1}64, {0, 1}2·64, . . . , {0, 1}232·64}. Let K be a key determined by running K(|M |).
That is, the key K used to encrypt M is four blocks longer than M , but the first block is
nonzero. We now define EK(M) as follows:

8

function EK(M)
begin

Parse M into 64-bit blocks M1 · · ·Mm

Parse K into 64-bit blocks A B1 · · ·BmBm+1Bm+2 S
Let Mm+1 ← S
Let Mm+2 ← R
Let F0 ← 064

for i ← 1 to m + 2 do
Fi ← Mi ⊕ Bi

Ci ← A ⊗ Fi ⊕ Fi−1

od
return C ← C1 · · ·CmCm+1Cm+2

end

Above, ⊕ is used to denote xor of 64-bit strings, while ⊗ is used to denote multiplication
of points in the finite field GF(264) using a standard representation of field points as 64-bit
strings, as specified in [DEF]. As usual, the multiplication operator is given higher precedence
than the addition operator: A ⊕ B ⊗ C means A ⊕ (B ⊗ C).

Decryption. The decryption function for MULTI-S01 is defined as follows.

function DK(C)
begin

If |C| is not divisible by 64 then return invalid

Let c ← |C|/64
If c ≤ 2 or c > 232 then return invalid

Let m ← c − 2
Parse C into 64-bit blocks C1 · · ·CmCm+1Cm+2

Parse K into 64-bit blocks A B1 · · ·BmBm+1Bm+2 S
Let F0 ← 064

for i ← 1 to m + 2 do
Fi ← A ⊗ (Ci ⊕ Fi−1)
Mi ← Fi ⊕ Bi

od
If Mm+1 �= S or Mm+2 �= R then return invalid

return M ← M1 · · ·Cm

end

Note that decryption may return the distinguished symbols invalid to indicate that the ci-
phertext received should be regarded as inauthentic.

4.2 MULTIS-S01 as a stream cipher

One deficiency of document [DEF] is its lack of clarity about how protocol MULTI-S01-SCC =
(K, E ,D) should be used to encrypt a sequence of messages M1, M2, M3, · · ·. The document

9

describes how to construct from an underlying, fixed-length key K (say 256 bits) a keystream
K of the appropriate type and length to encrypt a single message M , but it goes no further. We
describe that method and then extend it to solve the “real” problem at hand—the construction
of a stream cipher from the MULTI-S01 stream-cipher core.

Note that in this subsection we shall be simultaneously handling two issues: how to use a
fixed length key K (say 256 bits) instead of a key K that depends on the message length; and
how to encrpyt a sequence of plaintexts, not just one.

Description of single-message mode. The MULTI-S01 specification [DEF] addresses the
encryption and decryption of a single message, M , this message having a nonzero multiple of
64 bits, using a fixed-length key K. The method works as follows. The sender and receiver
are assumed to share a key K drawn from some set Key. They also share a “deviation pa-
rameter” Q, drawn from some set Par. Using a function P : Key × Par → {0, 1}ω, the sender
and receiver map K and Q to a (|M | + 256)-bit keystream K = PK(Q). The ciphertext the
sender computes and transmits to the receiver is C = EK(M). The encryption and decryption
methods are now as follows:

function EncQ
K(M)

begin
κ ← PK(Q) (κ an infinite string)
i ← 1
while κ[i..i + 63] = 064 do i ← i + 64
K ← κ [i..|M |+ 255]
return EK(M)

end

function DecQ
K(M)

begin
κ ← PK(Q)
i ← 1
while κ[i..i + 63] = 064 do i ← i + 64
K ← κ [i..|M |+ 255]
return DK(M)

end

The stream cipher is MULTI-S01-SC = (Key, Enc, Dec). This should not be confused with the
stream-cipher core MULTI-S01-SCC = (K, E ,D). The former uses a “short” key K while the
latter uses a “long” key K.

In single-message mode, the deviation parameter Q should be used for at most one message:
with every message one must choose a new deviation parameter Q. This will be relaxed shortly.

Panama, and what IS Panama. The definition of MULTI-S01 [DEF] suggests that P
be the function Panama described in [PANA]. The inventors refer to this function as a
pseudorandom generator. We comment that the name pseudorandom generator is not quite
correct—neither for what Panama is nor for the object that MULTI-S01 requires. Namely, a
pseudrandom generator is an algorithm P : Key → {0, 1}ω but MULTI-S01 needs an algorithm
P : Key × Par → {0, 1}ω. (Here {0, 1}ω means an “infinite” sequence of random bits. In
actuality, one is only using some finite prefix of this infinite string.) Such a map is more properly
called an infinite-output-length pseudorandom function. Panama is an infinite-output-length
pseudorandom function. It has a signature Panama : {0, 1}256 ×{0, 1}256 → {0, 1}ω, meaning
that the key length and the deviation-parameter length are each 256 bits. Therefore, using
Panama as above, MULTI-S01 allows one to encrypt a message M (having a positive multiple
of 64 bits) using a 256-bit key K and a 256-bit deviation parameter Q into a ciphertext
C = EncQ

K(M).

10

Stream-per-message mode. The definition of MULTI-S01 given in [DEF] is not specific
about how one should encrypt a sequence of messages M1, M2, · · ·. One possiblity is what
we call stream-per-message mode: for each message M i the sender chooses a new deviation
parameter Qi and then transmit Ci = EncQi

K (M i) along with adequate information for the
receiver to recover Qi. As an exmple, one could encrypt the i-th message as i and Ci =
Enci

K(M i), where i, as a superscript to E , indicates the string in Par encoding the number i
in the usual way (recall Q = {0, 1}256 when using Panama). If the sender and receiver are
communicating over a reliable channel then i would not need to be explicitly transmitted,
since the receiver can maintain the matching value himself. If the sender and receiver are
communicating over an unreliable channel then i could be transmitted in the clear, as one
does not need for Qi to be secret. It is essential that the values Q1, Q2, Q3, · · · used for
M1, M2, M3, · · · are all distinct.
Multi-message mode: constructing a proper stream cipher. We expect that the
inventors of MULTI-S01 didn’t really envision the use of stream-per-message mode. Besides
the inefficiency associated to re-keying the pseudorandom function, stream-per-message mode
goes against the basic idea of how stream ciphers are supposed to be used. That idea entails
that the sender and receiver share an effectively infinite string κ and use its pieces for each
of the different messages that get sent. Namely, the sender wants to transmit some sequence
of messages M1, M2, · · ·. To accomplish this, the sender will partition the string κ into pieces
K1, K2, · · ·, as needed, and the sender will use Ki to encrypt M i into ciphertext Ci.

The fact that MULTI-S01 chose to use a pseudorandom function instead of a pseudorandom
generator suggests that the inventors have in mind still more flexibility: allowing the sender to
“re-synch” at will—choose a new value Q and then transmit a message sequence M1, M2, · · ·
using the keystream κ determined by K and Q. The mode, which we call multi-message mode,
is MULTI-S01-SC = (Key, Enc, Dec), defined as follows:

function EncQ
K(M)

begin
static in(Q) ← 1 for all Q ∈ Par
κ ← PK(Q)
while κ[in(Q)..in(Q) + 63] = 064

do in(Q) ← in(Q) + 64
K ← κ [in(Q)..|M |+ 255]
in(Q) ← in(Q) + |M |+ 256
return EK(M)

end

function DecQ
K(M)

begin
static in(Q) ← 1 for all Q ∈ Par
κ ← PK(Q)
while κ[in(Q)..in(Q) + 63] = 064

do in(Q) ← in(Q) + 64
K ← κ [in(Q)..|M |+ 255]
in(Q) ← in(Q) + |M |+ 256
return DK(M)

end

Note that our treatment of multi-message mode is a proper extension of single-message mode:
the two modes agree when presented a sequence of distinct Qi-values.

At this point we have a stream-cipher core, MULTI-S01-SCC, and a stream cipher proper,
MULTI-S01-SC.

11

5 Security of MULTI-S01-SCC

Though the language of [EVAL] is quite different from that introduced here, [EVAL] does, in
effect, give valid proofs for the privacy and authenticity of MULTI-S01-SCC. We now state
the requisite theorems, as adapted from [EVAL].

5.1 Perfect privacy of MULTI-S01-SCC

For the MULTI-S01 stream-cipher core, privacy is perfect. This is quite natural. Referring
to Figure 1, note that B6 is uniformly distributed and A is non-zero so A ⊗ B6 is uniformly
distributed. This value is independent of the value A⊗P6⊕F5 it gets xor’ed with to form C6,
and so C6 is uniformly distributed. The same reasoning now applies to C5, C4, · · · , C1, and we
can conclude the following.

Theorem 1 MULTI-S01-SCC is perfectly private.

5.2 Statistical authenticity of MULTI-S01-SCC

Possibly the most interesting part of [SELF] was an argument along the following lines. Suppose
that an adversary sees a MULTI-S01-SCC ciphertext C for a plaintext M produced under a
random key K = ABS. Information theoretically, the ciphertext tells the adversary nothing
about A. In the absence of any information about A (even with complete information about
B, S), a candidate ciphertext C̃ different from C will be valid with a probablity easily bounded
using some case analysis and the fundamental theorem of algebra. In our language, the result
from [SELF] is as follows.

Theorem 2 AdvauthMULTI-S01-SCC(m) ≤ (m/64 + 2)/(264 − 1).

(The division by 64 is simply to convert to blocks, the addition of 2 accounts for the lengthening
of the ciphertext, and the subtraction by 1 is because A �= 064.) Though we found the exposition
of this result in [SELF] somewhat lacking, the result and proof approach are correct, so we do
not repeat that work here.

6 From Stream-Cipher Core to Stream Cipher

As we have just explained, [SELF] contains what amounts to a proof of perfect privacy and
statistical authenticity for the MULTI-S01-SCC stream-cipher core. At first glance, this falls
well short of proving what is actually desired: proving that the stream cipher MULTI-S01-SC
achieves privacy and authenticity. We now argue that this is not problem: under our definitions,
the manner in which MULTI-S01-SCC is promoted from a stream-cipher core to a stream cipher
automatically promotes privacy and authenticity, too.

6.1 Converting a stream-cipher core to a stream cipher

Let SCC = (K, E ,D) be a stream-cipher core with parameters r, R and associated functions
nbits(·, ·) and extract(·, ·). Let P : Key × Par → {0, 1}ω be a function. Consider the following
way to extend stream-cipher core SCC = (K, E ,D) to a stream cipher SC = (Key, Enc, Dec):

12

function EncQ
K(M)

begin
static in(Q) ← 1 for all Q ∈ Par
κ ← PK(Q)
m ← |M |
K ← extract(κ[in(Q)..], m)
in(Q) ← in(Q) + nbits(κ[in(Q)..], m)
return EK(M)

end

function DecQ
K(M)

begin
static in(Q) ← 1 for all Q ∈ Par
κ ← PK(Q)
m ← |M |
K ← extract(κ[in(Q)..], m)
in(Q) ← in(Q) + nbits(κ[in(Q)..], m)
return DK(M)

end

The above extension agrees with how we have extended MULTI-S01 from a stream-cipher core
to a stream cipher. In particular, our earlier exposition coincides with the above where extract
and nbits are defined by

function nbits(κ, m)
begin

i ← 0
while κ[i + 1..i + 64] = 064 do i ← i + 64
return i + m + 256

end

function extract(κ, m)
begin

i ← 0
while κ[i + 1..i + 64] = 064 do i ← i + 64
return κ[i + 1..m + 256]

end

The information-theoretic extension of a stream-cipher core. One can think of
the function P : Key × Q → {0, 1}ω in a couple of ways: as a typical pseudorandom function,
such as Panama, where Key = {0, 1}κ is a finite set; or as the function P(K, Q) = K(Q),
where Key is a map from Par to {0, 1}ω. The latter gives an information-theoretic extension
of a stream-cipher core to a stream cipher; the former, a complexity-theoretic one.

6.2 Theorems that justify a focus on stream-cipher cores

The following results effectively justify the security treamement of [SELF]. In that work,
the authors argue that MULTI-S01-SCC achieves perfect privacy and that MULTI-S01-SCC
achieves the expected degredation in authenticity. By looking at security only with respect
to the stream-cipher core, the analysis effectively pays attention only to what happens if
one encrpyts a single message and tries to forge a single ciphertext after having seen a single
plaintext/ciphertext pair. It turns out that this is enough. Our first theorem speaks to privacy.

13

Theorem 3 Let SCC = (K, E ,D) be a stream-cipher core and let SC = (Key, Enc, Dec) be
its information-theoretic extension. Suppose SCC is perfectly private. Then SC is perfectly
private, too.

Theorem 3 seems reasonably obvious and so we omit its proof.

Our next theorem speaks to the authenticity of the information-theoretic extension of a
stream-cipher core. Note that privacy is necessary for this second result.

Theorem 4 Let SCC = (K, E ,D) be a stream-cipher core and let SC = (Key, Enc, Dec) be
its information-theoretic extension. Assume that SCC is perfectly private. Then, for any m,
AdvAUTH

SC (m) ≤ AdvauthSCC (m).

Proof sketch. Let A be an adversary that attacks the stream cipher SC = (Key, Enc, Dec)
obtained from stream-cipher core SCC = (K, E ,D). Without loss of generality (by the standard
averaging argument), assume that A is deterministic. We construct a tuple (M, C, C̃) where
|M | ≤ m, |C| = |M | + r, |C̃| ≤ m + r, and such that Prκ[Dκ(C̃) �= invalid | Eκ(M) = C] ≥
AdvAUTH

SC (A).
To construct (M, C, C̃), start off by running adversary A. This adversary has two oracles:

EncSC and DecSC . When A makes a query (M, Q) to its EncSC oracle, answer with |M |+ r
random bits, and record the query and its answer. Let (M1,Q, . . . , Ma(Q),Q) record the sequence
of queries asked by A using parameter Q, and let (C1,Q, . . . , Ca(Q),Q) record the corresponding
answers. When A makes a query (C, Q) to its DecSC oracle, let (C̃1,Q, . . . , Cb(Q),Q) record the
sequence of queries, to date, having parameter Q. Then if (C̃1,Q, . . . , Cb(Q),Q) is a prefix to
(C1,Q, . . . , Ca(Q),Q), return Ca(Q),Q. Otherwise, consider (M, C, C̃) to be a “candidate triple.”

Note that we have simulated the “correct” behavior for EncSC because of the perfect
privacy of SC.

By our definitions of stream-cipher authenticity, if C̃ is not a valid forgery then the adver-
sray A has not and will never forge on this run. On the other hand, if C̃ is a valid forgery then
the adversary A has succeeded on this run.

When A forges it produces a candidate triple (M, C, C̃). The value AdvAUTH
SC (A) can be

regarded as a a weighted sum
∑

λM,C,C̃ Pr[A forges | candidate triple (M, C, C̃)]. Thus there
is a tuple (M, C, C̃) such that Pr[A forges | candidate triple (M, C, C̃)] ≥ AdvAUTH

SC (A).

6.3 Requisite security property for function P

None of [DEF, SELF, EVAL] discuss the properties that P needs to have in order for MULTI-S01
to be secure. But a necessary and sufficient property for P is that it be secure in the usual
sense of a pseudorandom function. We now review that notion.

Let P : Key × Par → {0, 1}ω. Consider an adversary A having one of two oracles: a “real”
oracle or a “random” oracle. A real oracle behaves as follows. It begins by choosing a random
key K

R← Key. Then, to any query (X, �), the oracle returns the first � bits of PK(X). A
random oracle behaves as follows. It begins by associating to every string X an infinite string
of random bits ρ(X). Then, to any query (X, �), the oracle returns the first � bits of ρ(X).
The advantage that A gets in attacking the pseudorandom function P is the real number

AdvprfP (A) = Pr[AReal = 1]− Pr[ARand = 1]

14

where the oracles “Real” and “Random” act in the way we have just described. Informally, a
“good” pseudorandom function is a map P for which AdvprfP (A) is small (close to 0) whenever A
is computationally reasonable algorithm (it runs in a reasonable amount of time and obtains
from its oracle a reasonable number of bits).

7 Criticisms and Suggestions

Much of this report has focussed on verifying that, fundamentally, MULTI-S01 is correct :
properly used, MULTI-S01 does provide privacy and authenticity, with the expected bounds,
assuming Panama (say) is secure in the sense of an infinite-output-length pseudorandom
function. Thus we find no basis for the main criticisms of [EVAL] that vaguely questioned
the privacy and authenticity of MULTI-S01. All the same, we are not very supportive of the
MULTI-S01 technique. Let us explain the reasons.

7.1 Length restrictions

MULTI-S01 requires that messages to be encrypted have a length which is a positive multiple
of 64 bits. While mandatory padding techniques can of course be used to ensure this, a modern
and refined encryption algorithm can and should do better, saving on communication bits. One
would prefer a solution for which ciphertext lengths will not be increased unnecessarily, and it
is not hard to construct such techniques. Generic composition of a Vernam cipher and a MAC
is one such a technique.

7.2 Ciphertext length

The length of a MULTI-S01 ciphertext C for a plaintext M is |C| = |M |+128. (If mandatory
padding is added so as to address the issue of the last subsection, the length of a ciphertext
for a plaintext M becomes longer still.) This would be fine if the forgery probability were ap-
proximately ‖M‖ ·2−128, say. (Here ‖M‖ means |M |/64.) But it is not; the forgery probability
is approximately ‖M‖ · 2−64. For such a forgery probability one should not be spending 128
extra bits, but no more than 64. Indeed we do not understand why the inventors choose to
expend two blocks in order to get authenticity in MULTI-S01 when it would seem to be simple
to make do with one.

7.3 Forging probability

The forging probability of approximately ‖M‖ ·2−64 may be larger than is acceptable for some
applications. We would suggest that a new authenticated-encryption scheme should be able to
transmit a message in a way so as to have forging probability more like ‖M‖ · 2−128. Ideally,
one should be able to truncate a 128-bit tag so that if τ bits are transmitted then one gets a
forging probability of approximately 2−τ . Even if the tag were extended to 128 bits, results
like this may not be true with the method of MULTI-S01 as the security impact of truncation
on the tag is far from clear.

15

7.4 Software speed

The main motivation for integrating privacy and authenticity is to obtain speed benefits
unobtainable (or difficult to obtain) through generic composition. But data presented in
[SELF, SLIDES], as well as back-of-envelope calculations, suggest that MULTI-S01/Panama

does not obtain speeds superior to those obtainable by generic composition. Consider the
Pentium III speeds reported in [SLIDES] (which appear to be the fastest figures reported):
17.6 cycles/byte for 256 KByte messages. This is inferior with speeds reported by Lipmaa for
OCB-AES128 encryption: 16.9 cycles/byte for 1 KByte messages.

The authors of [SELF] suggest that performance suffers on a 32-bit processor like a Pen-
tium III because of the lack of available 64-bit instructions (discounting MMX instruction).
But the inventors’ figures for a 64-bit platform are not particularly better: [SLIDES] reports
17.7 cycles/byte for a 4 KByte message.

Key setup is quite slow for MULTI-S01/Panama; the authors of [SELF] report key setup
times of about 32,000 cycles. Compared to AES key-setup, this is enormous, and it largely
limits MULTI-S01 applicability to contexts in which a long-lived session is being initiated.

In view of the added difficulty of using a stream cipher compared to an authenticated-
encryption scheme based on a block cipher, we feel that the target speed for a stream-
cipher-based authenticated-encryption scheme needs to be a substantial amount faster than
the speed obtained by a block-cipher-based authenticated-encryption scheme like IAPM or
OCB or generic composition with with a software-optimized MAC. Thus a stream-cipher-
based authenticated-encryption scheme ought to reach for speeds of 10 cycles/byte, or faster,
until the performance-advantage starts to become attractive. If one chooses an infinite-output-
length pseudorandom function that does pad-generation in roughly 5 cycles/byte, as reported
for SEAL, or 7 cycles/byte, as reported for Panama, then one has roughly 5 cycles/byte left
to spend on authenticity and still out-perform an AES-based solution. This would seem to be
quite doable using an aggressively optimized MAC (recall that UMAC performs at about 1
cycle/byte).

Fundamentally, the “overhead” of MULTI-S01 (meaning the work done beyond Panama) is
more than desired because every 64 bits of message results in multiplying two GF(264)-values,
neither of which are fixed beyond the scope of a single message. A GF(264)-multiplication
requires several cycles. To get impressive performance one will have to base the authenticity-
enabling calculations on something faster than a GF(264)-multiplication of frequently-changing
values. We given an example of such a technique in the next section.

7.5 Generic composition as a better alternative

The alternative to any tightly-integrated authenticated-encryption scheme is generic compo-
sition. The generic composition paradigm has been studied in [BeNa]. Though that work did
not directly address stream ciphers, stream ciphers are no less appropriate as starting points
for generic composition.

There are three natural approaches to generic composition: encrypt-and-mac, encrypt-
then-mac, and mac-then-encrypt. The analysis in [BeNa] shows that encrypt-then-mac has
the most desirable security characteristics. Though the results of that paper do not directly
apply to stream ciphers, we believe that the results in [BeNa] can, all the same, be lifted to

16

deal with stream ciphers and that, once one does so, the overall conclusion will remain the
same: encrypt-then-mac will have the best security properties.

To use encrypt-then-mac for a stream cipher takes a bit of care. To start with, as-
sume a message authentication code MAC : Kmac × {0, 1}∗ → {0, 1}τ . Assume that the
sender and receiver share an encryption key Kenc drawn from some set Kenc, and assume
that they share a MAC key Kmac drawn from some set Kmac. Assume one has a privacy-
only stream cipher in which, to encrypt a message M , the sender computes a ciphertext
C = EKenc(M) = MakePad(statesender) ⊕ M . The functions E and MakePad depend on, and
mutate, the internal variable statesender. Likewise, to decrypt a ciphertext C, the receiver com-
putes M = DKenc(C) = MakePad(statereceiver)⊕ C. These functions depends on, and mutate,
the internal variable statereceiver.

To modify the privacy-only Vernam cipher to provide for authenticity too, have the sender
send, instead of C, the ciphertext C ′ = 〈C, MACKmac(〈statesender, C〉)〉. Have the receiver, on
receipt of 〈C∗, T ∗〉, compute the expected tag T ′ = MACKmac(〈statereceiver, C∗〉). If T ′ = T ∗

then the receiver recovers the plaintext M by M = DKenc(C). Otherwise, the decryption gives
invalid. Note that MAC generation and MAC verification does not mutate any internal state,
and note that the scope of the MAC includes (and must include) the state which the sender
and receiver maintain when using a stream cipher. Typically, this state is a counter of just a
few bytes. Assume in what follows that it is 16 bytes.

The efficiency of the approach above depends, almost entirely, on the efficiency of the MAC:
the computational overhead for authenticity is, very nearly, the computational overhead of
MACing a message having the same length as the plaintext. The question is, therefore, if one
can MAC using an overhead less than the overhead of MULTI-S01 (meaning the computational
work done by MULTI-S01 above and beyond computing the keystream).

The answer to this would seem to be yes. As an example, the UMAC message authenti-
cation code [UMAC] authenticates messages with approximately 1 cycle/byte. But one can
argue that it is much more complex and less suited for hardware than MULTI-S01. Therefore
we sketch an example message authentication code (a standard Carter-Wegman MAC) more
in the spirit of MULTI-S01.

Let C be the message we wish to MAC. Let paddedC = C ‖ 1 ‖ 0i, where i is the
smallest value such that |paddedC | is divisible by 64. Partition paddedC into 64-bit blocks
Cm−1 · · ·C1C0. Let the MAC key be Kmac = α ‖ β where |α| = |β| = 64. To MAC C, compute
MACαβ(C) = AESβ(statesender)⊕ Hα(paddedC) where

Hα(paddedC) = αm ⊕ Cm−1 ⊗ αm−1 ⊕ Cm−2 ⊗ αm−2 ⊕ · · · ⊕ C1 ⊗ α ⊕ C0

As before, ⊕ and ⊗ refer to addition and multiplication in GF(264). Correctness of this method
as a MAC is standard; it depends on H being a good xor-universal hash-function family.

To efficiently compute Hα(paddedC), start a 64-bit register A with the value 01271. Re-
peatedly take the value of A, multiply it by α, then add in (xor) the next value Ci (as one reads
left-to-right down Cm−1 · · ·C1C0). The computational efficiency of this method is better, per
byte, than multiplying two points in GF(264) since one of the two points, being fixed for as
long as one uses the underlying authenticated-encryption key, can be preprocessed into tables
to permit more the efficient computation, if desired. Indeed one could move to using GF(2128)
and still preserve efficiency. All in all, the generic composition approach, as sketched above,
would seem to be faster and more flexible than the approach take by MULTI-S01.

17

References

[BeNa] M. Bellare and C. Namprempre. Authenticated encryption: Relations among
notions and an analysis of the generic composition paradigm. Advances in Cryptol-
ogy – ASIACRYPT ’00. Lecture Notes in Computer Science, vol. 1976, 2000.

[DEF] Hitachi, Ltd. A Symmetric Key Encryption Algorithm: MULTI-S01 — An
Integrity-Aware Block Encryption Based on Cryptographic Pseudorandom Num-
ber Generator. Undated manuscript with copyright 2000, 2001. Note: Hitachi main-
tains website http://www.sdl.hitachi.co.jp/crypto/s01/index.html for infor-
mation about MULTI-S01.

[EVAL] Anonymous. Evaluation of MULTI-S01. Unpublished and confidential manuscript.
January 17, 2001.

[IAPM] C. Jutla. Encryption modes with almost free message integrity. Advances in
Cryptology – EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045,
Springer-Verlag, 2001.

[OCB] P. Rogaway,M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode
of operation for Efficient Authenticated Encryption. Proceedings of the 8th ACM
Conference on Computer and Communications Security (CCS-8), ACM Press, 2001.

[PANA] J. Daemen and C. Clapp. Fast Software Encryption, 5th International Workshop
(FSE ’98), Lecture Notes in Computer Science, vol. 1372, Springer-Verlag, 1998.

[SELF] Hitachi, Ltd. Self-Evaluation Report MULTI-S01 (revised for 2001 submit-
tion[sic]). Undated manuscript with copyright 2000, 2001.

[SLIDES] S. Furuya (Hitachi Ltd.) A stream cipher for Cryptrec: MULTI-S01. Transparen-
cies from an undated talk, copyright 2001.

[UMAC] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC:
Fast and secure message authentication. Advances in Cryptology — CRYPTO ’99.
Lecture Notes in Computer Science, vol. 1666, Springer-Verlag, 1999.

[XCBC] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryp-
tion and XECB authentication modes. Fast Software Encryption, Lecture Notes in
Computer Science, Springer-Verlag, 2001.

18

