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1.  Introduction 
 
MUGI is a specific keystream generator for stream cipher applications proposed in [SpM]. Due 
to its design rationale, it is mainly suitable for software implementations. Efficient hardware 
implementations are also possible, but are more complex than the usual designs based on linear 
feedback shift registers (LFSRs), nonlinear combining functions, and irregular clocking. 
 
It is interesting to note that in mathematical terms, the structure of MUGI is essentially one of a 
combiner with memory, which is a well-known type of keystream generators (see [G96a]). 
Specific features are the following: 

• the nonlinear combining function has a large internal memory size and is based on a 
round function of the block cipher AES [AES] 

• the driving linear finite-state machine (LFSM) providing input to the combining function 
is not an LFSR with a primitive connection polynomial 

• the LFSM receives feeback from a part of the internal memory of the combining 
function 

• the output at a given time is a binary word taken from the internal memory of the 
combining function. 

 
A security analysis of MUGI is presented in [EvM]. The main claims from [EvM] are 
essentially that MUGI is not vulnerable to common attacks on block ciphers and also to some 
attacks on stream ciphers. However, some general methods for analyzing stream ciphers based 
on combiners with memory, most notably the so-called linear cryptanalysis of stream ciphers 
[G92, G94, G96a, G96b], are not addressed in [EvM] at all. Since MUGI can essentially be 
regarded as a combiner with memory, such methods are in principle also applicable to MUGI. 
Also, the underlying LFSM of MUGI, the so-called buffer, is not analyzed in [EvM].  
 
Linear cryptanalysis of stream ciphers is essentially different from linear cryptanalysis of block 
ciphers because of the underlying iterative structure in which the initial state is unknown. It 
essentially consists in finding linear relations among the unknown internal variables, possibly 
conditioned on the known output sequence, which hold with probabilities different from one 
half. It has two main objectives:  

• to reconstruct the secret key, in particular, the initial state of the keystream generator 
• to derive a linear statistical distinguisher which can distinguish the output sequence from 

a purely random sequence.  
Surprisingly, the recently introduced, so-called cryptanalysis of stream ciphers with linear 
masking [CHJ02] is not original and is just a special case of the linear cryptanalysis of stream 
ciphers mentioned above. However, [CHJ02] also contains a conceptually new, so-called low-
diffision statistical distinguisher for certain types of stream ciphers. 
 
A new method od cryptanalyzing block ciphers, potentially applicable to AES, is recently 
proposed in [CP02]. It is essentially based on the multiply-and-linearize method applied to an 
overdefined system of relatively sparse quadratic binary equations that can be associated with S-
boxes of AES. Since the same S-boxes are used in MUGI, this new method also deserves some 
attention. 
 
This report is organized as follows. Section 2 contains a brief description of MUGI. Analysis of 
the LFSM of MUGI is presented in Section 3, a related transformation of the underlying system 
of nonlinear recurrences is given in Section 4, and the linear cryptanalysis of MUGI is 
developed in Section 5. Section 6 is devoted to low-diffusion statistical distinguishers and 
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Section 7 to using overdefined systems of sparse equations associated with S-boxes. Finally, 
Section 8 contains a summary of weaknesses and strengths of MUGI. 
 
 
2. Description of MUGI 
 
A concise description of MUGI is specified here in as much detail as needed for the analysis. 
More details can be found in [SpM]. 
 
2.1 Keystream Generation 
 
The keystream generator is a finite-state machine (FSM) whose internal state has two 
components: 

• a linearly updated component, called buffer, b , where each b  is a 64-bit 
word; the size of this component is  bits 

1510 bbb L= i
102

• a nonlinearly updated component, called state, a , where each a  is a 64-bit 
word; the size of this component is 192 bits. 

210 aaa= i

The next-state or update function is invertible and has two components, ),( λρϕ = , where ρ  
updates  and a λ  updates b , that is, 
 

)),(),,((),(),( )()()()()()()1()1( tttttttt babababa λρϕ ==++ . 
 
The ρ  component is an invertible nonlinear function defined in terms of an invertible 64 -
bit function  by a kind of Feistel structure depicted in Fig. 1. The function  is shown in Fig. 
2. It is derived from the round function of AES and as such consists of 8  8 -bit S-boxes and 
two linear 32 -bit, MixColumn, transformations from AES (see [AES]). C  and C  are 64-
bit constants. 
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Figure 1:  The ρ  update function. 
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The λ  component is an invertible linear function defined by the following equations: 
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(For a 64-bit word x ,  and  denote the rotations of xi< xi> x  by  bits to the left and right, 
respectively.) 

i

 
The 64-bit output of the keystream generator at time  is defined as . t )(

2
ta

 
The described structure is essentially a specific combiner with memory, which is a well-known 
type of keystream generators (see [G96a]), in which: 
 

• the nonlinear combining function has a large internal memory size and is based on a 
round function of block ciphers 

• the driving LFSM providing input to the combining function is not necessarily an LFSR 
with a primitive connection polynomial; in fact, it will be shown that the design of  
LFSM for MUGI is not good 

• the LFSM may be non-autonomous, that is, may have an input taken from a part of the 
internal memory of the combining function 

• the output at a given time is not a single bit, but a binary word taken from the internal 
memory of the combining function. 
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2.2   Initialization 
 
The initial internal state  (  of the keystream generator is produced from the 128-bit 
secret key K  and the 128-bit initialization vector IV  in the following three 
stages, by using the keystream generator itself. In the first two stages only the 

), )0()0( ba

10KK= 10IVIV=
ρ  function is 

used. 
 
Firstly, the state  is defined in terms of  a K  and a 64-bit constant C  by: 0

 
   00 Ka =
   11 Ka =
  . 01

7
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7
2 CKKa ⊕⊕= ><

 
The buffer  is then defined by iterating )(Kb ρ  as follows: 
 
  . 150,))0,(()( 0

1
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Secondly, the last produced state a  and  are linearly combined together into  

 by: 
)0,()( 16 aK ρ= IV

),( IVKa
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The ρ  function is again iterated 16 times to produce  . )0),,((16 IVKaρ
 
Thirdly, the keystream generator is initialized by  and  and then iterated 
15 times (both 

)0),,((16 IVKaρ )(Kb
ρ  and λ ) without producing output. The keystream generation starts from the 

16th iteration on. Thus, effectively, the initial contents of both a  and b , at the time when the 
first output is produced, depend on both K  and . However, it is important to note that the 
content of b  at the beginning of the third stage depends on 

IV
K  only. 

 
 
3. Analysis of Buffer 
 
In this section, the buffer is analyzed as a non-autonomous LFSM with one input sequence, 
namely, . The input sequence and all the internal sequences in the buffer are 64-bit 
sequences. Our objective is to derive expressions for the internal sequences in the buffer in 
terms of the input sequence  and the initial state of the buffer, .  
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In view of the λ  update function, the 16 internal sequences in the buffer can be divided in three 
groups, in each group the sequences being phase shifts of each other (see Fig. 3). 
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Figure 3: The buffer as a LFSM. 
 
3.1  Linear Recurrences 
 
From the λ  update function, we directly obtain the following linear recurrences, all holding for 

: 1≥t
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where  denotes the rotation by jR j  bits to the left, which is a linear transformation of a 64-bit 
word. In vectorial notation where vectors are represented as one-column matrices, R  is 
represented as a matrix. The initial state of the buffer can now be represented as 

. Then, by eliminating , we obtain 
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This is a system of two 64-bit linear recurrences (that is, 128 binary linear recurrences) in terms 
of 64-bit sequences b  and b .  4 10

 
3.2   Generating Functions 
 
The system can be solved by using the generating function technique dealing with the z -
transforms of 64-bit sequences. In vectorial notation, the z -transforms or generating functions 
of , b , and  are defined as formal power series 4b 10 0a
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where I denotes the 64  identity matrix. In a simplified notation, we thus have 64×
 
   10

5
10

10
4

4 )1( ∆⊕=⊕⊕ AzBzBz
                                                                                         (3) 21032

4
4

6 )( ∆=⊕⊕ BRzIBz
 
where  
 

t

t

t

t

ttt zbzbbbzb ∑∑
=

−

=

−− ⊕⊕⊕⊕=∆
9

5

)10(
10

3

1

)4(
0

)4(
4

)0(
0

4)0(
41 )(  

  ∑∑
=

−

=

− ⊕⊕=∆
3

1

)4(
1032

)0(
10

5

1

)6(
42

t

tt

t

tt zbRbzb

 
are 64-dimensional vectors (  matrices) whose elements are polynomials in z  defined by 
the initial state of the buffer and whose degrees are at most 9 and 5, respectively. Essentially, 
this is a system of 128 linear equations with coefficients being polynomials in z  and with 
unknowns being 128 generating functions of 64 binary sequences in b  and 64 binary sequences 
in b . 
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3.3   Solution 
 
The system has a unique solution which can be found in the following way. First, by elimination 
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denote the 64  matrix whose coefficients are polynomials in z  of degree at most 16. The 
system can then be written as 
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Unfortunately, it turns out that the polynomial  has a very small exponent (period), equal 
to 48, because of 
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are 64-dimensional vectors (  matrices) whose elements are polynomials in z  defined by 
the initial state of the buffer and whose degrees are at most 31. 
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3.4   Properties 
 
Consequently, both b  and b  have two components, one being a linear transform of the input 
sequence  and the other being a linear transform of the initial conditions contained in  and 

. For both b  and , the other, intrinsic component consists of 64 binary linear recurring 
subsequences produced by the LFSR with the feedback polynomial , or equivalently, by 
the cycling LFSR with the feedback polynomial 1 . Therefore, the period of each of these 
binary subsequences is equal to 48 or divides 48.  
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• This period is unacceptably small for cryptographic applications, especially in view of 

the fact that these subsequences depend only on the secret key and not on the 
initialization vector.  

• In common designs of keystream generators, the linear component, with the feedback 
from the nonlinear component disconnected, normally ensures a large period of the 
corresponding internal state sequence which itself very likely provides a lower bound on 
the period of the keystream sequence. This criterion is not satisfied here.  

• Another weakness is that the degree of  is only 32, and with an appropriate design 
it could have been as large as 16 , which is the size of the internal state of the 
buffer. 
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• The polynomial  also defines a sequential linear transform of the buffer sequence 
that is equal to a sequential linear transform of the input sequence coming  from the 
nonlinear component. Its low degree and small period facilitate the initial state 
reconstruction and finding statistical distinguishers for the keystream sequence (see 
Sections 4-6). 
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Yet another interesting property to analyze is the dependence of the intrinsic binary linear 
recurring subsequences upon the initial conditions. A careful analysis reveals (details are 
omitted) that for both b  and b  each such subsequence depends on only 32 bits of the initial 
state of the buffer. More precisely, for both b  and b  and for any 1 , the 
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subsequence depends on the j -th and the ( -th binary subsequences of b , that is, on 
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• This means that mixing between different binary subsequences in the buffer, provided by  
the linear transform , is not good.  

 
In addition, for both b  and  and for any 1 , the 4 j -th binary subsequence depends on 
the -th and the -th binary subsequences of the input 64-bit sequence a .   64)32+
 
4. Elimination of Buffer 
 
The obtained expressions (5) and (6) for the generating functions of the 64-bit buffer sequences 
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Finally, by combining (8) with (10) and (9) with (11), we get the following recurrences 
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The recurrences are nonlinear because of nonlinear  F . As the first 16 outputs (  are not 
known, it is interesting to consider (12) and (13) only for t . 
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One can also obtain different recurrences by using the polynomial   of degree 32 instead of 
the polynomial  1  They will hold for  t , but each will involve  three times which 
makes them less useful. 

)(zf
.48z⊕ 32≥ 1−F

 
In principle, there are two general ways of using (12) and (13).  

• One is to try to eliminate a  from these two recurrences, possibly with certain 
approximation probabilities, thus yielding a recurrence in a  holding with a certain 
probability which will represent a statistical distinguisher between the keystream 
sequence and a purely random sequence (i.e., a sequence of mutually independent 
uniformly distributed random variables).  

1

2

• The other is to assume that a  is known, in the known-plaintext scenario, and try to 
solve the corresponding nonlinear equations (or their approximations) for a  for 
particular , e.g., for t . This might open the door for a further attack targeting the 
secret key. 

2
)(

1
t

t 15=

 
Both ways are essentially addressed in the following sections. 
 
 
5. Linear Cryptanalysis  
 
Linear cryptanalysis of stream ciphers is essentially different from linear cryptanalysis of block 
ciphers because of the underlying iterative structure in which the initial state is unknown, 
whereas the output sequence is assumed to be known in the known-plaintext scenario. A general 
way of conducting the linear cryptanalysis of stream ciphers is to linearize the next-state and 
output functions, with certain approximation probabilities, and to analyze the LFSM resulting 
from these linear approximations (see [G92, G94, G96a, G96b]). The obtained LFSM is in fact 
a LFSM approximation of the keystream generator, which itself is a nonlinear FSM. It can be 
analyzed with respect to the following two general objectives [G94]: 

• to reconstruct the secret key, in particular, the initial state of the keystream generator 
• to derive a linear statistical distinguisher which can distinguish the keystream sequence 

from a purely random sequence.  
 
Linearizing the next-state function of MUGI reduces to linearizing the nonlinear function F or 
its inverse . More precisely, we will linearize equations (8) and (9), where the sequences b  
and b  are determined by (5) and (6). In turn, linearizing  reduces to linearizing the S-boxes 
of AES. The effectiveness of  the linear cryptanalysis depends on the way this linearization is 
performed and on the underlying approximation probabilities. 

1−F 4

10
1−F

 
5.1   Linear Approximations for F   
 
Our objective in this section is to derive linear approximations to F  or . In particular, 
especially effective are the linear approximations involving only one active S-box, as the 
underlying approximation probability is then most different from one half.  

1−F

 
First note that the 64 -bit  can be divided into two separate 32 -bit functions G , 
where G  is a composition of S-boxes and the linear MixColumn transformation. An S-box is a 
composition of the multiplicative inversion in GF(256), with 0 mapped to 0, and an invertible 
affine transformation. Linearizing G  then consists of linearizing the S-boxes and of linearly 

64× F 32×
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transforming the obtained linear approximations by the MixColumn transformation. If we want 
only one S-box to be active, then we have to find a linear approximation to any linear 
combination of 8 input bits for any chosen S-box and then to express the found linear 
combination of  8 output bits of this S-box in terms of 32 output bits of G  by using the linear 
MixColumn transformation. Effectively, we thus linearize the inverse function G .  1−

β

8/

, βα

1−

 
What remains to be examined is how to find linear approximations for individual S-boxes. The 
correlation between a linear input function α  and a linear output function  of an S-box can be 
measured by the correlation coefficient    
 

)Pr()Pr(),( βαβαβα ≠−==c . 
 
It is well known that the maximal correlation coefficient magnitude is 1 . We examined the 
linear approximations by computer simulations, that is, we computed the correlation coefficients 
for every ( )0,0(), ≠βα . Table 1 displays the number of β  correlated to any given α  with a 
given correlation coefficient magnitude. The same table is valid for the inverse S-box. 
 
 

{ }cc =),(| βαβ 16 36 24 34 40 36 48 16  { }cc =),(| βαβ 5  
c   8/64 7/64 6/64 5/64 4/64 3/64 2/64 1/64 0 c±

 

 5 16 36 24 34 40 36 48 16  
  8/64 7/64 6/64 5/64 4/64 3/64 2/64 1/64 0 

 
Table 1: Distribution of correlation coefficient magnitudes for an S-box. 

 
We also considered linear approximations for the whole G  by taking into account the 
MixColumn transformation. For each 

1−

α  involving only the 8 input bits to any individual S-box, 
we thus determined all the corresponding β , involving the corresponding 32 output bits of the 
MixColumn transformation. An interesting conclusion is that each pair ( )  such that 

=|),(| βαc  8/64 or 7/64 involves at least 10 input and output bits. In addition, it is interesting to 
note that for each α  involving the 16 input bits to any pair of S-boxes, each pair ( ), βα  such 
that |),(| βαc  is close to being maximal, ( , involves at least 5 input and output bits. 
However, observe that the correlation coefficient reduced because of two S-boxes being active. 

2)64/8

 
5.2 LFSM Approximations for MUGI 
 
We will use equations (8) and (9) in which, for convenience, t  is substituted for t . A basic 
way of linearization is to find linear approximations to 64 component Boolean functions of  . 
In this case linearization is performed by substituting a 64 -bit vectorial linear function for  

 in (8) and (9). A more general way is to find linear approximations to some 64 linearly 
independent linear combinations of 64 component Boolean functions of  F . In this case 
linearization is performed by applying an invertible matrix L  to the left-hand sides of (8) and 
(9) and by substituting a matrix  for  on the right-hand sides of (8) and (9). Namely, we 
thus get for t  

1−
1−F

64×

1

1−F

2L 1−F
1≥

 
)(

112
)1(

22
)(

12
)1(

41
)1(

11
ttttt eCLaLaLbLaL ⊕⊕⊕=⊕ −−−

                                                     (14) 
)(

222
)(

22
)2(

12
)1(

10
17

1
)1(

11
ttttt eCLaLaLbLaL ⊕⊕⊕=⊕ −−<−

                                                (15) 
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where  and  are the 64-bit approximation-error sequences whose binary component 
subsequences are expressed as nonbalanced Boolean functions of the corresponding inputs to 

. The more nonbalanced these functions, the better the underlying linear approximations to 
. However, we will see that the effectiveness of the linear cryptanalysis does not depend 

only on that. The linear approximation L  to  and the corresponding correlation 
coefficients are obtained by using the linear approximations to S-boxes as explained in Section 
5.1. 

1e 2e

1−F
1

−FL 1

2
1

1
−FL

 
5.2.1  Basic Equation 
 
Equations (14) and (15) in fact define an LFSM with input sequences e  and e . The LFSM  
can be solved for  and  by using the generating function method already applied in Section 
3. Let   

1 2

1a 2a

∑
∞
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=
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t
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denote the generating functions of  , , , and e , respectively. Then we get 1a 2a 1e 2
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and accordingly 
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z
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in view of  . By rearranging the terms we obtain )0(

0
)1(

1 aa =−
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121214122121 1
)( aLCL

z
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where  and  are determined in terms of  by (5) and (6), respectively,  and 4B 10B 0A
 

)0(
010 azAA ⊕= . 

 

For simplicity, let C  and  denote the generating functions of the constant sequences, of 
period equal to 1, corresponding to the constants C  and , respectively. Altogether, we 
finally obtain 

′
1

′
2C

1 2C
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Here  and  are not known. However, E  and  are generating functions of nonbalanced 
sequences and as such in fact make (16) and (17) a system of binary linear recurrences each 
holding with a probability different from one half. Therefore, it is desirable that  has as few 
terms as possible. This is why it is better to use its polynomial multiple 1  with only two 
terms. Consequently, (16) and (17) can be written in a different form where  is replaced by 

 and all the other terms are multiplied by 1 , because 1 . We 
thus get 
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where we introduced the following abbreviated notation: 
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The matrices F  and  depend on the performed linearization and and it is very likely 

that at least one of them is invertible, because of L being invertible. Note that 

)(1 z )(2 zF

1
″∆ and 1

″∆  are 
64-dimensional vectors whose elements are polynomials in  defined by the initial state of the 
whole keystream generator (  and  a ) and whose degrees are at most  48.  

2

z
)0(b )0(

2
)0(

1
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The objective is to eliminate unknown A  from (18) and (19). If F  is invertible, then we 
have , where F   is the adjunct matrix of  F ,  and accordingly 
obtain  

1
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By rearranging the terms we finally get the basic equation: 
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.  (20) 

 
If, as above, t  is taken as the initial time, then the first 16 elements of the output sequence, 

, are unknown, but the initial state of the buffer, b , represented by and ∆ , depends 
on the secret key only. Alternatively, if t  is taken as the initial time, then the output 
sequence, represented by , is known, but the initial state of the buffer (i.e., b ) depends on 
the initialization vector as well. The choice can influence the analysis whose objective is to 
reconstruct the secret key from the known output sequence for a number of initialization vectors. 
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5.2.2  Initial State Reconstruction 
 
Let us put the basic equation (20) into the following form: 
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          (21)

 

and let us take t  as the initial time. Then 16= ″∆ and 1
″∆2 are in fact determined by the initial 

conditions  and   where  is known. The effective number of binary 
unknowns is thus 18 . 
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It is important to note that if we are able to reconstruct the state b  and  a  at time 

, then we can reconstruct the initial state b  and   simply by reversing the 
equations for the next-state function of  MUGI even if the output sequence is unknown (as is the 
case in this situation). More precisely, the next-state function can be reversed in the following 
way: 
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Also, the 128-bit secret key can be directly obtained from b  by reversing the update 
equations for 

)0(
1

)0(
0 b

ρ . Accordingly, reconstructing the secret key is not more difficult than 
reconstructing  b  and, altogether, than reconstructing the internal state b  and  

  . In fact, this should be regarded as a weakness of the initialization algorithm.  

)0(
1

)0(
0 b )16(

)16(
1

)16(
0 aa

 
In the time domain, the left-hand side of (21) is a 64-bit sequence, x , denoted as X  in the 
generating function domain, which depends on the initial conditions, and the last two terms on 
the right-hand side of (21) are linear transforms of the known sequence a  and of the constant 

sequences corresponding to C  and C , respectively. The first term on the right-hand side of 
(21) is the noise term depending on the performed linear approximations. Consequently, (21) 
means that the linear recurring sequence 

2

′
1

′
2

x  depending on the initial conditions which is 
ultimately periodic with period of only 48 is termwise correlated to a sequential linear transform 

of  and of the constant sequences  corresponding to C  and C . More precisely, this is the 
case for each of the 64 constituent binary subsequences. The effectiveness  of the correlation 
equation (21) is determined by how much the probabilities for the 64 underlying binary noise 
subsequences deviate from one half, and the corresponding correlation coefficients can be 
positive or negative.  

2a ′
1

′
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Accordingly, the periodic part of the 64-bit linear recurring sequence x , that is, the 
corresponding 48 64-bit words can in principle be reconstructed by a sort of a fast correlation 
attack. These 48 64-bit words in fact define a system of 48  binary equations among the 
unknown 17  initial state bits, b  and  , which can thus be obtained by solving the 
system. This is because  does not affect the periodic part of  the sequence , due to 
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where the periodic part depends only on a , and not on a . To get the whole initial state, the 
64-bit part a  has to be guessed and this can be achieved in  steps.  

)0(
0

)0(
1

)16(
1

642
 
What facilitates the attack is that the period of the sequence x  is only 48, so that the required 
low-weight parity checks are easily obtained by considering the sequence at times being the 
integer multiples of 48. More precisely, to reconstruct a bit of a binary constituent subsequence 
of x , we need O  bits of the corresponding binary output subsequence and the 
complexity is O . The reconstructed bit value is simply obtained by the majority count. 
Here c  denotes the (positive or negative) correlation coefficient of the corresponding 
binary noise subsequence where 

)48( 2−c
)2−c(

p21−=
p  is the probability that the noise bit is equal to 1. In order to 

estimate  we will use a well-known fact that the correlation coefficient of a binary sum of 
mutually independent binary random variables is equal to the product of their individual 
correlation coefficients. 

c
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So, the feasibility of the attack depends on the correlation coefficients c  for the underlying 64 
binary noise subsequences. Recall that the generating function of the 64-bit noise sequence is 
given by the linear transform 
 

211
*

12 )(det)()( EzFEzFzFE ⊕= .                                                                          (22) 
 
The correlation coefficients of the binary noise subsequences of e  and  depend on the 
linearization of the S-boxes and their magnitudes are equal to 2  or are close to this value (see 
Section 5.1). The underlying probabilistic assumption is that the noise subsequences are 
mutually independent sequences of mutually independent and uniformly distributed binary 
random variables. The correlation coefficient magnitude of the i -th constituent binary 
subsequence of the resulting noise sequence e , defined by (22), is then given as |  
where m  (depending on i ) denotes the total number of binary terms from e  and  present in 
this subsequence or, equivalently, the total number of nonzero binary coefficients of the 
(involved) polynomials in the i -th row of the matrix F  and in the polynomial 

. In turn, this depends on the linearization of F , that is, on the properties of the S-
boxes and the linear MixColumn transformation.  

1
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12 (( z
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In theory, the attack would be effective only if  the total complexity is faster than the exhaustive 
search over the initial states, that is, if  18 , that is, if m . Note that the 
exhaustive search requires 18  64-bit output values to be produced. To be on the conservative 
side, it is here assumed that one round of MUGI (i.e., producing one 64-bit output value) has the 
same complexity as one elementary operation in the described attack. It seems that such 
linearizations of F  are likely to exist, but the problem may be to find them. In practice, since 
the secret key of MUGI has only 128 bits, the attack would be effective if 18 , 
that is, if m . Such linearizations of   are very unlikely to exist. This may be related to 
the diffusion properties of the linear MixColumn transformation and is an interesting topic for 
further investigations. 
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5.2.3  Linear Statistical Weakness  
 
The basic equation (20) can also be put into the form 
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where the matrix  
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defines a sequential linear transform of the output sequence a . This equation specifies a linear 
statistical distinguisher between the output sequence and a purely random sequence. Namely, all 
the terms on the right-hand side of (23) except the noise term are polynomials in  and as such 
vanish in the time domain after a sufficiently large t  depending on the degrees of polynomials 
in and det . So, (23) means that a linear transform of the output sequence is 
termwise correlated to the all-zero 64-bit sequence where the approximation/correlation noise is 

2
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*
12 )()( zFzF )(1 zF
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defined by ( . Equivalently, the 64 constituent binary subsequences, obtained as linear 
transforms of the output sequence, are bitwise correlated to the all-zero binary sequence, where 
the corresponding correlation coefficients can be approximated as squares of the correlation 
coefficients of the corresponding binary noise subsequences of e . If c  is such a correlation 
coefficient, then the output sequence length required for detecting the weakness in the 
corresponding binary subsequence is O . The output sequence length required to detect the 
weakness by using all the 64 subsequences is then O . 
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The correlation coefficient of the i -th constituent binary noise subsequence is now 
approximately given as c  with the same notation as in Section 5.2.2. Accordingly, in 
theory, the statistical distinguisher would be effective  if  the total required output sequence 
length (proportional to the complexity) is smaller than the expected period for the size of the 
internal state, that is, if  2 , i.e., if m . It seems that such linearizations of F  
may exist. In practice, since the secret key of MUGI has only 128 bits, the attack would be 
effective if 2 , that is, if m . Such linearizations of  F  are extremely unlikely 
to exist. 
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5.3   LFSM Approximations for Simplified MUGI 
 
We will now conduct linear cryptanalysis of a simplified MUGI in which the feedback from the 
nonlinear component (i.e., the 64-bit sequence a ) to the linear component (i.e., the buffer) is 
disconnected. The resulting keystream generator then becomes weaker and our objective is to 
examine its resistance to linear cryptanalysis. It is reasonable to regard the obtained complexity 
results for the simplified MUGI as lower bounds to the complexity of attacks on the full version 
of MUGI. 
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In this case, the buffer sequences b  and  depend only on the initial state of the buffer and 
are thus determined by (5) and (6) where the first terms corresponding to the input sequence a  
are removed. They are both periodic with a very small period of 48. It is of separate interest to 
notice that the nonlinear recurrences (12) and (13) obtained by eliminating  and b  then have 
a simple form of 
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The linearization method from Section 5.2 is then essentially the same as linearizing F  in 
these expressions. More precisely, in the generating function domain, (16) and (17) become 
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Equivalently, (18) and (19) remain to be true, but with simplified expressions: 
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Because of L  being invertible, both matrices F  and  are invertible. For example, the 
inverse matrix of   is given as   
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Note that   is by definition the characteristic polynomial of the matrix  . So, 
by eliminating unknown  from (18) and (19) we get the same basic equation (2), but with 
simplified expressions for the involved component terms. The conclusions from Sections 5.2.2 
and 5.2.3 remain to be true, but in this case the number, m , of binary terms in the equivalent 
noise sequence is expected to be smaller, as the coefficients of the matrices  F  and  
are then polynomials with a smaller number of terms. 
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It is interesting to analyze a special case when the matrices L  and  commute, that is, when 

. The basic equation (20) then takes a simplified form, which, in fact, can be directly 
obtained by eliminating A  from (18) and (19). Namely, it then follows that the matrices 

 and   commute so that we have 
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which by rearranging the terms becomes 
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The generating function of the 64-bit correlation noise sequence is then given as 
 

221121 )()( ELzLEzLLzE ⊕⊕⊕=  
 
so that the number, m , of terms in each row of E  is explicitly determined by the number of 
binary terms in each row of L  and the number of terms in each row of L .  The number of 
terms in a row of   is the number of binary terms in the corresponding linear combination of 
output bits of   and the number of terms in a row of   is the number of binary terms in the 
corresponding linear combination of input bits of  F . What is relevant is the sum of the two 
numbers. The results obtained by computer simulations, reported in Section 5.1, show that this 
sum can be as small as 10. The total number of terms in the corresponding row of 

1 2

1L
1−F 2L

1−

E  is then 20. 
The resulting correlation coefficient magnitude is then | . If linearizations with two 602| −=c
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active S-boxes are considered, then the total number of terms can reduce to 10, but the overall 
correlation coefficient magnitude remains the same.  
 
It follows that the initial state reconstruction attack from Section 5.2.2 is then effective in theory 
and on the borderline to be effective in practice, whereas the linear statistical weakness from 
Section 5.2.3 is detectable in theory, but not in practice. 
 
 
6.  On Low-Diffusion Statistical Distinguishers 
 
The concept of low-diffusion statistical distinguishers for certain types of stream ciphers is 
introduced in [CHJ02]. Here we present a more general and more precise treatment of the 
subject. Consider a general type of keystream generator with the binary internal state vector 

 consisting of two components one of which, b , is updated linearly. More precisely, 
let the component next-state functions and the output function have the following form, 
respectively: 

),( )()( tt ba )(t
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t baz ηη ⊕=
 
where ,,,, aba ηλλµ  and bη  are all linear functions, and ρ  is a nonlinear function. In general, the 
linearly updated component can be solved to yield 
 
                                                                                                     (28) )()1( t

aa
t
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where Λ  and Λ  are sequential linear transforms and Λ  is binary, that is, in the generating 
function domain it is represented by the matrix  where  is a binary 
polynomial and 

b a b

I)zp( ,1)0(),( =pzp
I  is the identity matrix of appropriate dimension. In this regard, see (10) and 

(11) for MUGI. As such, Λ  is invertible and commutes with any sequential linear transform 
(i.e.,  for every sequential linear transform 

b

bΛbLΛ L= L ). If ρ  is invertible, then this can be 
used to eliminate the linear component from the update equations, namely,  
 
  )1()1(1)( −+− Λ=Λ⊕Λ t

aa
t

b
t

b aaa λµρ
 
(see Section 4 for MUGI). This is a nonlinear recurrence for the internal state component a , 
but as a  is generally not obserbavle, it does not yield a statistical distinguisher. What is 
observable in the known-plaintext scenario is the output value z . However, (27) generally 
does not allow  to be expressed in terms of , unless 

)(t

)(t

)(t

)(ta )(tz aη  is invertible. 
 
Suppose now that aη  is invertible.  In this case, we first get 
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t

a
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 and then in view of  (28) 
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This again can be solved to yield 
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t
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and then 
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where Λ  and Λ  are sequential linear transforms and Λ  is binary (its dimension is adjusted 
to the dimension of the sequence it is applied to).  Note that (29) and (30) are linear recurrences, 
but cannot be solved to directly yield the sequences a  and  because of unknown initial 
conditions. If that was possible, then (25) would directly define a very effective statistical 
distinguisher. However, in principle (29), (30), and (25) represent a basis for finding statistical 
distinguishers. 

′
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′
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′
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For example, for the so-called low-diffusion statistical distinguisher [CHJ02] we just have to 

note that we can compute the same sequential linear transform, namely Λ , of both the 64-bit 
input and output sequences to 

′
b

ρ  in (25). More precisely, we have 
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which means that we can compute, in terms of the known output sequence z , the paired 
sequence 

 ,   where    u    and    .                 (31) 
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As  Λ  is binary, when computed for a given value of t , each pair is in fact a bitwise sum of 
the current and some previous inputs and outputs to 

′
b

ρ , that is, 
 
 ( ))()()()()()( 11 , mm tttttttttt uuuuuu −−−− ⊕⊕⊕⊕⊕⊕ ρρρ LL .                                   (32) 
 
A set of sufficiently many such pairs can in principle be statistically distinguished from a purely 
random sequence. The complexity predominantly depends on the number of nonzero terms in 

, but also on the bit-size of  the input/output to ′Λb ρ . To this end, it may be desirable to reduce 
this bit-size by considering linear functions of the input and output to ρ . Namely, instead of 

 we can consider (  where . In a special case of 4 
terms only ( ), an approximation to the probability distribution of the pairs is given in 
[CHJ02] for a probabilistic model in which the function 

), )(tuρ( )(tu ), )()( t
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t
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ρ   is assumed to be random. In general, 
the larger the number of terms, the larger the complexity of the statistical distinguisher.  
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In the case when there is no feedback to the linearly updated component, we have 0=aλ  and  

, so that the linear transform  Λ  may in principle have a smaller number of terms 
than in the case with feedback. 

bb Λ=′Λ ′
b

 
The main point of the described low-diffusion statistical distinguisher is that a  can be 
expressed in terms of , i.e., that 

)(t

)(tz aη  is invertible. In the case of MUGI,  this assumption is not 
satisfied and, in fact, a large portion of  the 192-bit a  remains to be unknown, that is, the 64-
bit . Accordingly, this statistical distinguisher is not applicable to MUGI. What one can 
obtain by eliminating the linearly updated component are the nonlinear recurrences (12) and 
(13) in the unknown 64-bit sequence . However, it has to be noted that the number of terms in 

 for MUGI is only 2, because of a bad design of the buffer. 
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7.  On Using Overdefined Equations for S-boxes 
 
The nonlinear part of an S-box in AES realizes the multiplicative inversion in GF(256) and 
maps zero to zero. As such it can be described by the equation  for . On the basis of 
this, it is pointed out in [CP02] that one can associate with an S-box  39 linearly independent 
and relatively sparse quadratic binary equations in 8 input and 8 output binary variables. They 
hold with probability 1, so they are not approximations. Among them, there are 23 bi-affine 
equations which do not include products of input or output variables solely.  

1=xy 0≠x

 
For AES, one can thus write down a large system of quadratic binary equations obtained by 
associating 39 or 23 equations with each S-box and by taking into account the key-scheduling 
algorithm too. The system can be treated by the multiply-and-linearize method to obtain a large 
overdefined system of linear equations in new variables. The method essentially consists in 
multiplying the equations by (appropriate) products of binary variables and by replacing the 
obtained products by new binary variables. The complexity of the method is determined by the 
number of variables in the resulting system of linear equations. It is shown in [CP02] that AES 
with 128-bit key is not vulnerable to this method. It is also shown that AES with 256-bit key is 
on the borderline to be vulnerable, but the complexity estimate is based on the questionable 
assumption that the resulting linear equations are linearly independent.  
 
Since MUGI is a keystream generator, the system of nonlinear equations is produced in a 
different way from that of a block cipher like AES. For example, one can consider the system in 
18 64-bit initial state variables obtained by assuming that 19 consecutive 64-bit outputs are 
known. More precisely, the initial state variables are b and , whereas a  and (  
are assumed to be known. The 128-bit secret key can then easily be obtained from the 
reconstructed initial state as explained in Section 5.2.2. The 

)0( )0(
1

)0(
0 aa )0(

2 )18
1

)(
2 =t
ta

ρ  update function of MUGI is not 
the same as the round function of AES, but the two are similar. To get the system, one then has 
to iterate ρ  18 times, which is much bigger then 10, which is the number of rounds in AES 
with 128-bit key. The complexity of the multiply-and-linearize method would then very likely 
be lower than 2  but much higher than  6418⋅ 1282 .
 
Another way of getting the system would be to write down directly the system in 128 binary 
secret key variables from the first two or three known 64-bit outputs. One then has to take into 
account the initialization algorithm which altogether takes 48 iterations of ρ  in order to 
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produce the first 64-bit output. Again, in light of [CP02], the complexity of the multiply-and-
linearize method would very likely be (much) higher than 2 . 128

 
One can of course ask the question if the method from [CP02] can be improved. For example, is 
it possible to derive sequential variants of the multiply-and-linearize method that would employ 
some sort of chaining the variables, which may reduce the total number of variables and hence 
the complexity? This does not appear to be likely mainly because of an interesting property of 
the quadratic equations associated with an S-box that each of them includes at least one mutual 
product of an input and an output variable. Because of this, it is difficult to perform chaining 
(composition) of these equations in iterative structures like in AES or MUGI. 
 
 
8.  Summary of Weaknesses and Strengths 
 
Our main finding is that the linearly updated component of MUGI, the so-called buffer, is not 
designed properly. We proved that if the feedback from the nonlinearly updated component is 
disconnected, then the binary subsequences of the buffer are linear recurring sequences with the 
linear complexity of only 32 and with the period of only 48. This is what can be called the 
intrinsic response of the buffer. Accordingly, the buffer does not provide a large lower bound on 
the period of output sequences of MUGI which is normally the case with many designs of 
keystream generators. Furthermore, as each such subsequence depends on only 32 bits of the 
initial state of the buffer, the mixing between the 16  bits of the initial state of the buffer is 
not good.  

64⋅

 
As a consequence of this small period, it is shown that the buffer sequence can easily be 
eliminated from the update equations for the nonlinearly updated component of MUGI, the so-
called state, thus yielding the nonlinear recurrences involving only the output sequence and a 
part of the state sequence. It is then pointed out that this may facilitate the cryptanalysis of 
MUGI such as the linear cryptanalysis as well as finding the statistical distinguishers for MUGI. 
 
However, the period of MUGI is not expected to be small, primarily because of a large bit-size 
of the internal state and because of the 1-1 next-state function, but not because of a good design 
of the linearly updated component. A theoretical analysis of the period is thus very likely to be 
intractable.  
 
The linear cryptanalysis of MUGI performed by linearizing the next-state function and by 
solving the resulting linear finite-state machine shows that MUGI may in theory be vulnerable 
to the initial state reconstruction attack faster than the exhaustive search over the 1152-bit initial 
states (the whole internal state has 1216 bits, but 64 bits are taken to the output). This is again a 
consequence of the bad design of the buffer, but the attack is very unlikely to be faster than the 
exhaustive search over the 128-bit secret key. This is due to good linear correlation properties of 
the S-boxes and good diffusion properties of the linear MixColumn transformation, both from 
AES. Moreover, it is also argued that the linear statistical distinguishers may exist in theory, but 
not in practice, as their complexity is expected to be much higher than the exhaustive search 
over the 128-bit secret key. It is also shown that the simplified version of MUGI obtained by 
removing the feedback to the buffer is more vulnerable to the linear cryptanalysis. So, this 
feedback is also one of the strengths of MUGI. 
 
It is pointed out that the 128-bit secret key can easily be recovered from the reconstructed 
internal state of MUGI at any time. This is a weakness of the initialization algorithm, which is 
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itself relatively complex, but does not have the property that it should be infeasible to recover 
the secret key from the initial state. 
 
An in-depth general analysis of low-diffusion statistical distinguishers is conducted and it is 
argued that they are not applicable to MUGI, primarily because of the fact that only a part of the 
whole state vector is taken to the output, so that a large portion of it remains to be unknown. 
 
In addition, it is also argued that MUGI is very unlikely to be vulnerable to the multiply-and-
linearize attack based on overdefined systems of quadratic binary equations associated with S-
boxes of AES. This is related to the large bit-size of the internal state and a relatively 
complicated initialization algorithm. 
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