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1 Executive Summary 
 
This is a report on the analysis of the stream cipher MUGI [WFHP02]. For this 
algorithm the evaluators have 
 

(i) investigated the security of MUGI against various attacks; 
(ii) evaluated basic cryptographic properties; 
(iii) evaluated statistical properties; 
(iv) examined the algebraic structure of MUGI; 
(v) surveyed the speed in software; 
(vi) compared MUGI with the PANAMA and MULTI-S01 stream ciphers. 

 
MUGI is a stream cipher that at each iteration outputs 64 bits from a keystream 
generator for its keystream. 
 
MUGI is loosely designed on the stream cipher PANAMA but has significant 
differences, which will be highlighted. The evaluators have attempted to cryptanalyse 
MUGI with not only all the standard attacks on stream ciphers, but also using 
differential and linear cryptanalysis, which are more usually associated with the 
cryptanalysis of block ciphers. At this time none of these attacks have proved 
successful. 
 
A full range of standard statistical tests has been carried out on MUGI and no 
potentially threatening statistical weaknesses have been found. 
 
The evaluators conducted extensive analysis on the algebraic interaction of the stages 
in both the state and buffer and while many interesting relationships have been found, 
no exploitable weakness has as yet been uncovered. We believe this is the area where 
potential weaknesses may be found and from where an attack is most likely to arise. 
The cipher is new, and more extensive evaluation is required before exploitable 
weaknesses can be confidently discounted. 
 
MUGI is reasonably fast in software due to its simplicity. The evaluators did not 
develop a hardware implementation so no figures are presented. The cipher is 
amenable to parallelisation so we speculate that it is fast in hardware. 
 
A comparison of MUGI to the ciphers PANAMA and MULTI-S01 is provided. The 
evaluators believe that PANAMA has some features that make it superior to MUGI, 
while on the other hand MUGI does not contain the major flaw identified in the 
integrity check mechanism of MULTI-S01, as MUGI is to be used for data 
confidentiality and not data integrity. 
 



2 Description of MUGI 
 
An overview of the operation of MUGI is presented in this section. We examine 
MUGI, taking the designer’s view and the generalized PANAMA-like keystream 
generator, but also more specifically as a keystream generator based upon a single 19 
stage Non-linear Feedback Shift Register (NFSR). 
 
2.1 General Description 

 
MUGI is a Pseudo Random Number Generator (PRNG) designed for use as a                
stream cipher. Its structure is based on the PRNG, PANAMA [DC98] that can be used 
as either a stream cipher or hash function. A schematic that is a generalisation of the 
structure in both PANAMA and MUGI is presented in Figure 1 below.      
 

 

 

 

 

 

 

Figure 1 - The Scheme of a PANAMA-like Keystream Generator 

2.1.1 MUGI: A PANAMA-like Keystream Generator 
 
In MUGI, the internal state consists of a buffer b that is a 16-stage Linear Feedback 
Shift Register (LFSR), and a state a that is a 3-stage NFSR. Each stage of the buffer 
and state holds a 64-bit value, referred to as a unit. The update function of MUGI 
consists of a linear function λ and a non-linear function ρ that updates the buffer and 
state respectively. The output filter produces 64 bits of the output of state a at each 
iteration. 
 
Denoting stage i (0≤i≤15) of the buffer as bi and stage j (0≤j≤2) of the state as             
aj, the details of function λ are as follows: 
                      
                                    bi[t+1]  =   bi-1[t] (i ≠ 0,4,10) 
                                    b0[t+1]  =   b15[t]⊕  a0[t] 
                                    b4[t+1]  =   b3[t]⊕  b7[t]  
                                    b10[t+1] =  b9[t] ⊕  (b13[t]< < < 32)  
 
where bi

 [t+1] and ai[t+1] are the content of stage i of buffer b and respectively state a 
after the completion of t iterations of MUGI and (M < < < k) indicates a k-bit rotation              
to the left, of M. 



 
 Similarly, the details of function ρ are as follows: 
 
                                    a0[t+1]    =    a1[t]  
                                    a1[t+1]    =    a2[t] ⊕   F(a1[t], b4[t])  ⊕   C1  
                                    a2[t+1]    =    a0[t] ⊕   F(a1[t], b10[t] < < < 17)  ⊕   C2  
where C1 and C2 are known constants and F is a function that uses the components of 
the round function of the AES [DR98].  
 

2.1.2 MUGI: a 19-stage Non-linear Feedback Shift Register 
 
Because of the interaction of both the state and the buffer it is possible to view             
MUGI as a 19-stage NFSR as in Figure 2 below. For the evaluators, this view 
sometimes gives a clearer picture of the interactions between buffer and state and 
makes it easier to trace the path of the contents of each stage during operation. 

 
Figure 2 - Alternative View of MUGI 

 
2.2  The Operation of MUGI 
 
MUGI has an initialisation phase and an output phase. A detailed description of both 
phases is given. 
 

2.2.1 Initialisation Phase 
 
The initialisation phase of MUGI consists of several procedures. Firstly, the                 
128-bit secret key, considered as two 64-bit blocks K0 and K1 are entered                 
into the state a as follows: 
                                                       a0   =   K0  
                                                       a1   =   K1  
                                                       a2   =   (K0 < < < 7) ⊕   (K1 > > > 7) ⊕  C0  
 
where (M > > > k) represents a k-bit rotation to the right of M, and C0 is a                
known fixed constant. 



 
The second procedure uses the function ρ to put key dependent data in the              
buffer b as follows: 
 

b(K)15-i    =    (ρi+1 (a, 0))0    0≤i≤15 
 

where ρi+1 is the  (i+1)-th iteration of ρ and the input to ρ from b is 0 for                
each i. 
 
The third step in this process is to update the contents of state a to state a(K).        
This is done as follows: 
 

a(K) = ρ16(a, 0) 
 

The fourth procedure introduces to state a, a 128-bit, publicly known             
initialisation vector, I as follows: 
 
                                          a(K, I)0 = a(K)0 ⊕  I0 
                                          a(K, I)1 = a(K)1 ⊕  I1 
                                          a(K, I)2 = a(K)2 ⊕  (I0 < < < 7) ⊕  (I1 > > > 7) 
 
where I0 and I1 are respectively the left and right halves of I. 
 
This state, a(K, I), is again updated by ρ to produce: 
 

a’(K, I) = ρ16(a(K, I), 0) 
 
The final procedure in the initialisation process updates a’(K, I) to produce: 
 

a[1]= Update16(a’(K, I), b(K)) 
 

where Update(X, Y) = (ρ(X,Y), λ(X, Y)). 
 
2.2.2 Output Phase 
 
Each application of the Update function produces new values for a0, a1                    
and a2. The 64-bit block a2 is selected as the output and XOR’d with the                   
plaintext when MUGI is used in stream cipher mode. 



 
3 Structural Analysis of MUGI Components 
 
MUGI has several components. In this section a detailed description and analysis of 
these components is given. 
 
3.1 Non-linear Component of MUGI 
       
The nonlinearity of MUGI rests entirely with the function F in Figure 3. F has both 
linear and non-linear components. The non-linear component consists of         eight 
identical S-boxes each being exactly the same as the S-box used in the AES. The 
input to F is obtained by XOR’ing 64-bit a1 with a 64-bit value from the buffer. Each 
S-box in F takes an 8-bit F-input and produces an 8-bit output. F has two further 
components both of which are linear.  The output of the first four S-boxes is input to a 
Maximum Distance Separable(MDS) matrix, the same one as appears in the AES. The 
output of the second four S-boxes is also passed to the same MDS matrix. The final 
output of F is obtained from the output of the MDS matrices by byte shuffling. Figure 
3 illustrates the function F. 

 

 

 

 

 

 

 

 

 

Figure 3 - Outline of MUGI F Function 
 
 

3.2  Algebraic Analysis of MUGI Components and Operations 
 

The MUGI stream cipher can be studied as the interaction between two finite state 
machines (FSM’s), following the PANAMA-like design paradigm. In MUGI, the 
buffer consists of 16 64-bit units. The non-linear section of MUGI has 3 64-bit units, 
which are called the non-linear state. In this section expressions are derived that 
describe the algebraic behaviour of these parts of MUGI, with resolution at the unit 
level. MUGI could also be described by computation graph analysis at the 32-bit word, 
the 16-bit word and at the byte level, but such interesting phenomena at the unit level 
exist, that these other, more detailed, analyses are left to future work. 
 



Let the values held by the buffer units at time t be denoted b[0,…,15][t] and let the non-
linear state be similarly denoted as the triple a0[t], a1[t] and a2[t]. The two FSM’s 
interact via b4, b10 and a0, where the buffer values b4 and b10 are used to affect the 
non-linear part in the manner of keys affecting a Feistel round of a block cipher, while 
the non-linear state value a0 is used to affect the updating of the (otherwise) linear 
buffer in the manner of noise affecting an LFSR.  
 
The values of a2[t>0] are given as output so they can be assumed known in a standard 
known plaintext scenario. The evaluators use the notation Z(t) to denote the output 
unit at time t.  

3.2.1 Algebraic Structures in the Initialisation Process 
 
Before a single word of output is issued, MUGI mixes keys into the state and buffer 
using four stages of initialisation. Stage 1 assigns the state with key material, while 
stage 2 mixes the state material through all 16 words of buffer. Stage 3 diffuses 
initialisation vectors through the state, and the final stage runs 16 rounds of the update 
function on both the state and the buffer, discarding all output. 
 
In the second stage of initialisation, the fifteenth word of the buffer (b15) is assigned 
the output  (ρ1(a, 0))0, which is the value of the state variable a0 after a single 
invocation of the ρ function. The ρ function simply shifts the value of a1 to a0. Since 
each buffer word is only updated once in the second stage, at the end of  stage, b15 
contains the lower 64 bits of the key K, which entered the state as a1. Stage 3 
initialisation does not touch the buffer at all, meaning that at the start of the final stage, 
after 32 rounds of the ρ function, half of the key material is present in the buffer in its 
unmixed state. An attacker has to work backwards through only 16 rounds to obtain 
K1. While there is no known way of doing this faster than brute force, this is still 
significantly less effort than is suggested by the lengthy and complex initialisation 
process. 
 
The contents of the buffer at the end of stage 2, and also at the start of stage 4 is 
shown in the following equations. 
 

   b15  = K1 

                           b14  = (K0 <<< 7) ⊕  (K1 >>> 7) ⊕ F(b15, 0) ⊕ C1 

                           b13  = K0  ⊕ (K0 <<< 7) ⊕  (K0 >>> 7) ⊕ F(b14, 0) ⊕ C2 
 
for b12...b0 

beven  =  K0 ⊕ (K0 <<< 7) ⊕  (K1 >>> 7) ⊕ F(beven+1) ⊕ b15  ⊕ beven+2 ⊕ beven+1⊕  C1 

bodd   =  K0  ⊕ (K0 <<< 7) ⊕  (K1 >>> 7) ⊕ F(bodd+1) ⊕ b15 ⊕ bodd+2 ⊕ bodd+1 ⊕ C2 

 
The state at the end of stage 2 is shown in the equations below. 
 
                                  a0 = b0 

                                  a1 = b2 ⊕ F(b1, 0) ⊕ F(b0, 0) ⊕ C1 ⊕  C2 

                                  a2 = b1 ⊕ F(b0, 0) ⊕ C2 
 



In stage four, the key material K1 quickly becomes mixed with other buffer and state. 
In round one of stage four, the key material is mixed with the state variable a0[0]. By 
round five, it becomes entangled with other buffer material in the form of b4[5]= b15 

[0]⊕  a0[0]⊕ b3[0]⊕ b7[0]. 
 
There is a peculiarity in this stage of initialisation, in that the tap on b10 rotates one 
variable by half the length of the buffer word. When material passes through b10, it 
acquires material from b13 which is rotated once. The material in b10 makes its way to 
b13, and is again rotated for use at the b10 tap. This second rotations by 32 bits is the 
inverse of the first. While this doesn't present a security problem, it provides no 
additional security at the cost of a few extra clock cycles (word-swapping on 32-bit 
architectures, where registers can be scarce, or inefficient variable rotation on some 
64-bit architectures). 
 
Following initialisation, the first word of output contains the key material K1, but by 
now it is thoroughly mixed in the form of a0[15]⊕  F(a1[15], (b11[0]⊕ a0[4]⊕  b15[0]⊕  
a0[0]⊕  b3[0] ⊕  b7[0]) <<< 17) ⊕ C2 
 

3.2.2 Algebraic Structures in the Buffer 
 
Let R32(x) perform a 32-bit rotation on the 64-bit value x. This will be used for 
convenience to replace (x < < < 32) and (x > > >32). Of course R32(R32(x))=x and 
this fact is used later in our analysis. Also x⊕ R32(x) has only 32 effective unknown 
bits, as the R32() operation is also a swap of the two 32-bit words. Hence x⊕ R32(x) 
has the same word twice, for any x. 
 
The buffer update operation can be expressed by the following equations. 
 

                                               b0[t]=a0[t-1] ⊕   b15[t-1] 
b1[t]=b0[t-1] 
b2[t]=b1[t-1] 
b3[t]=b2[t-1] 

                                                           b4[t]=b3[t-1] ⊕  b7[t-1] 
b5[t]=b4[t-1] 
b6[t]=b5[t-1] 
b7[t]=b6[t-1] 
b8[t]=b7[t-1] 
b9[t]=b8[t-1] 

                                                          b10[t]=b9[t-1] ⊕  R32(b13[t-1]) 
b11[t]=b10[t-1] 
b12[t]=b11[t-1] 
b13[t]=b12[t-1] 
b14[t]=b13[t-1] 
b15[t]=b14[t-1] 

 
These express the buffer values in terms of other buffer values at the previous times, 
and are useful for implementation. In contrast, the evaluator’s task is to express the 
buffer contents in terms of some values in future times. With this motivation, reversed 



buffer operation can be considered, in which the above equations are reversed. Given 
a0 is known, it follows that  
 

b3[t]=b4[t+1] ⊕  b7[t] 
                                                    b9[t]=b10[t+1] ⊕  R32(b13[t]) 

b15[t]=b0[t+1] ⊕  a0[t] 
and 

    bn[t]=bn-1[t+1]           for other values of n. 
 

It is now possible to derive some new equations from these that are useful in 
cryptanalysis. Firstly, consider that by substituting several times in consecutive 
equations in the above lists expressions across any number of iterations can be 
achieved, and this opens the way to define each buffer location in terms of a0, b4 and 
b10 only. For example the following equations: 
 

b9[t]=b4[t-5] 
                                                                 b13[t]=b10[t-3] 
 
can be used to obtain an interesting result that expresses each b4 value in terms of 
future b10 values only. 
 
Now consider the equation 
 

b10[t]=b9[t-1] ⊕  R32(b13[t-1]) 
 
and substitute b4[t-6] for b9[t-1], and b10[t-4] for b13[t-1], giving 
 

b10[t]=b4[t-6] ⊕  R32(b10[t-4]). 
 
Now re-arrange to make b4 the subject and let t=t+6 yielding 
 

b4[t]=b10[t+6] ⊕  R32(b10[t+2])…………….…1 
 
All this information comes from an analysis of the buffer alone. This equation is true 
for all t and shows that the entire b sequence is defined by a simple linear recursion on 
the b10 sequence. Each bit of every b4[t] is given as the XOR of two bits from the 
nearby b10 sequence. 
 
There are other interesting expressions to be found in the buffer. Start with 
 

b0[t]=b4[t+4] ⊕  b7[t+3] 
 
and substitute  b0[t]=a0[t-1]⊕ b15[t-1], and b7[t+3]=b10[t+6]⊕ R32(b13[t+5]) and 
b13[t+5]=b10[t+2] to give 
 

a0[t-1] ⊕  b15[t-1] = b4[t+4] ⊕  b10[t+6] ⊕  R32(b10[t+2])……2 
 
This result connects all three of the data streams that link the linear with the non-
linear stage of MUGI. Re-arranging the terms (since all operations are XOR and 



hence associative) and uniformly altering all t values (by shifting the equation to 
another time) gives many other equivalent expressions. 
 
Combining equations 1 and 2 by substituting for b4 gives a new result that removes b4 
from the expression. The following relates the b10 stream with a single value of a0. It 
expresses a b10[t] in terms of future values. 
 

b10[t]=a0[t+5] ⊕  b10[t+16] ⊕  b10[t+12] ⊕  R32(b10[t+12]) ⊕  R32(b10[t+8])….3 
 
Observe that equation 3 has x⊕ R32(x), which has only 32 effective bits. In an attack 
one might guess these 32 bits and thus remove b10 from the equation.  
 
In addition notice that equation 3 can be re-written with b10[t] ⊕  b10[t+16] as the 
subject. In this new expression all the right hand side terms involve times between 
these two extremes of t and t+16.  
 
It is possible to derive similar 16 round difference expressions for all of the different 
buffer units, and with all the right hand side terms selected from the a0, b4 and b10 
streams. There are three different general forms for these expressions, corresponding 
to the three natural parts of the buffer. The derivations of all these separate 
expressions using the basic buffer equations are very tedious, so it appears in 
Appendix A. There are three general forms as follows. 
 
For n ={0,1,2,3} we have 
 

bn[t] ⊕  bn[t+16] =a0[t+15-n] ⊕  b4[t+4-n] ⊕  b10[t+6-n] ⊕   
                                  R32 (a0[t+7-n] ⊕  b4[t+12-n] ⊕  b10[t+14-n]) 
 
 
For n ={4,5,6,7,8,9} we have 
 

bn[t] ⊕  bn[t+16] =  a0[t+19-n] ⊕  b4[t+24-n] ⊕  b10[t+10-n] ⊕  
          R32 (a0[t+11-n] ⊕ b4[t+16-n] ⊕ b10[t+18-n]) 

 
 
For n ={10,11,12,13,14,15} we have 
 

bn[t] ⊕  bn[t+16] =  a0[t+15-n] ⊕  b4[t+20-n] ⊕  b10[t+22-n] ⊕  
R32 (a0[t+23-n] ⊕ b4[t+28-n] ⊕ b10[t+30-n]) 
 

3.2.3 Algebraic Structures in the Non-linear Part of MUGI 
 
Considering the non-linear part of MUGI first note that the a1 value is used twice as 
input to the same 64-bit bijection F, with the addition of different parts of the current 
buffer by XOR at the input to F. Also each a1 value is used in the next iteration as the 
a0 value that affects the buffer, so clearly the a1 values are important. Thus, the task is 
to define these buffer values in terms of the known output values a2=Z.  
 



The non-linear part is defined as 
 
 a0[t]=a1[t-1]………………………………………………………..4 
 a1[t]=C1 ⊕  a2[t-1] ⊕  F(a1[t-1] ⊕  b4[t-1])…………   …………….5 
 a2[t]=C2 ⊕ a0[t-1] ⊕ F(a1[t-1] ⊕ R17(b10[t-1]))…………………….6 
 
Substituting equation 4 into both 5 and 6 to remove all a1 values, leaves a0, a2 and 
buffer values only. Note that C1 and C2 are known constants based on the decimal 
expansion of irrational numbers. 
 
 a0[t-1]=C1 ⊕  a2[t-1] ⊕  F(a0[t]⊕ b4[t-1]) 
 
By applying these expressions (and time shifted versions) we can derive interesting 
equations relating known output a2=Z values with the a0, b4, and b10 sequences. For 
example it can be shown that 
 
R17(b10[t]) + b4[t] = F-1(a0[t+1]+Z[t+2]+c2) + F-1(a[t+3]+Z[t+1]+c1)………7 
 
This expression uses the reduced F() function that is considered in detail in Section 
5.1. The F() function is an SPN style bijection using the 8*8 s-box and 32-bit linear 
transform from the AES. The inverse function F-1() is well defined from the the AES 
specifications. Even though the inverse operation is not used in MUGI, we are able to 
consider it in cryptanalysis. 
 
We note that in equation 7 we can assume knowledge of the Z values and also the C1 
and C2 values are public constants. Equation 7 was derived by considering two 
separate expressions for a1[t] and equating them thus removing a1[t] from the overall 
expression.  
 
An alternative derivation based on equating a0[t+2] leads to this expression: 
 
C1+C2+Z[t]+Z[t+3] = F(a0[t+1]+b4[t]) + F(a0[t+3]+R17(b10[t+2]))………..…8 
 
While being equivalent to equation 7, this version may be more useful as it separates 
the known values from the unknown.  
 
These algebraic techniques can be used for equating Z[t] values also, leading to 
different results. It can be shown that 
 
C1+C2=F(a0[t+1]+R17(b10[t]))+F(a0[t+2]+b4[t+1])+a0[t]+a0[t+3]…………..9 
 
We note that this expression is true for all times t and it does not depend on any part 
of the output sequence. Thus equation 9 represents an inherent property of the non-
linear part of MUGI. The function of the 6 internal values   
a0[t],a0[t+1],a0[t+2],a0[t+3], b4[t+1], and b10[t] is always the same known constant 
for all times t. Thus this set of six values always has some redundancy. 



4. Keystream Properties    
 
For keystream sequences to be used in stream ciphers that provide cryptographic 
security, the keystream must possess certain basic properties. These include a large 
period, large linear complexity and white-noise statistics. 
 
Experiments were conducted by the reviewers using the CRYPT-X package. This is a 
statistical package previously designed by the reviewers for analysing encryption 
algorithms. The relevant pages from the CRYPT-X manual have been included in the 
manual. The experimental results are included below. 
 
Statistical analysis was conducted by the evaluators of MUGI on two different 
keystream types:  one with a variable initial key (K) and a fixed initialisation vector 
(IV), and the other with a fixed initial key (K) and a variable initialisation vector (IV). 
 
4. 1. Period 
 
Estimating the period of the MUGI output sequences is difficult due to the use of the 
nonlinear update function for state a.  The theory regarding the period of the 
sequences produced by linear feedback shift registers (LFSRs) is well known.  For 
autonomous LFSRs of length L with primitive feedback polynomials, the output 
sequences attain the maximal length of 2L-1, provided the initial state of the LFSR is 
nonzero.  For example, if the LFSR used for the buffer was autonomous (no input 
from state a) and had primitive feedback polynomial, then the period of the output 
sequence of b would be 216x64-1 = 21024-1.  However, for nonlinear feedback shift 
registers (NSR) no such theory exists.  
 
An upper bound on the period of sequences produced by MUGI is to take the view 
that MUGI is a finite state machine (FSM), with a single NSR of nineteen 64-bit units, 
as illustrated in Figure 2. At some point in time, the internal state of this FSM will 
return to an earlier internal state.  This will define the period of the output sequence.  
Thus, the maximum period is 219x64=21216.   
 
Of course, for cryptographic applications, we are more interested in a lower bound on 
the period.  However, the use of the nonlinear update function prevents us from 
applying known shift register theory to determine whether the FSM will cycle through 
all states before returning to an initial state, or whether shorter state cycles will occur.   
The buffer uses linear feedback, but is non-autonomous.  The initialisation of the 
buffer with the 128 bit key K provides 2128 initial states for the buffer.  The effect of 
XORing the contents of a0 with the contents of b15 in the linear update function is not 
determined.  However, it is anticipated that this will, in general, lengthen the period of 
the sequence produced by the buffer, so with high probability, the period of the buffer 
sequence will exceed 2128. This may be a conjectured lower bound on the period of 
the keystream sequence.    
 
4. 2. Linear Complexity 
 
The linear complexity of a binary sequence is defined to be the length of the shortest 
binary LFSR which can reproduce the sequence.  The Berlekamp-Massey algorithm 
can construct such an LFSR from a known keystream segment of length only twice 



the linear complexity. Thus, for cryptographic applications, a large linear complexity 
is required.  The MUGI design, with the interdependence of buffer b and state a 
complicates any calculation of the linear complexity.  Considering MUGI as a finite 
state machine, the application of the nonlinear function should ensure that the linear 
complexity greatly exceeds the length of FSM. That is, the linear complexity should 
be well in excess of 19x64 = 1216.  We rely on empirical evidence to estimate the 
linear complexity. 
 
Experimental results, which are included below for linear complexity and statistical 
analysis, were conducted by the reviewers using the CRYPT-X package. This is a 
statistical package which was previously designed by the reviewers for analysing 
encryption algorithms. The relevant pages from the CRYPT-X manual have been 
included in the manual. 
 
Statistical analysis was conducted by the evaluators of MUGI on two different 
keystream types:  one with a variable initial key (K) and a fixed initialisation vector 
(IV), and the other with a fixed initial key (K) and a variable initialisation vector (IV). 
 
The linear complexity checks for the minimum amount of knowledge required to 
reconstruct the whole stream using a linear feed back shift register. It is difficult to 
determine the linear complexity of a sequence from MUGI. In order to obtain 
empirical evidence for the linear complexity and linear complexity profile the tests 
from the CRYPT-X package were applied. 
 
The linear complexity tests were applied to five MUGI keystreams (variable key with 
fixed IV) of length 819,200 bits (this small number was due to the time taken for the 
test).  Results showed linear complexity values close to that expected for random data 
(i.e. half the bit-stream length = 409,600).  
 
Test Key 1 Key 2 Key 3 Key 4 Key 5 
Linear Complexity 409,600 409,600 409,600 409,600 409,599 
LC p-value 0.5 0.5 0.5 0.5 0.1659 
Linear Complexity 
Profile: 

     

Jumps p-value 0.2880 0.6047 0.6392 0.7753 0.2722 
Jump Size p-value 0.6503 0.4123 0.4517 0.5357 0.2203 
 
The linear complexity test was also applied to 100 MUGI keystreams of length 105 
bits (for both variable key with fixed IV, and fixed key with variable IV), and these 
results also showed linear complexity values close to that expected for random data 
(i.e. half the bit-stream length).  For more detailed results see Appendix C.  The 
results for the linear complexity profile indicate that, as the bit-stream increases in 
length, the changes in linear complexity maintain the expected value of half the 
stream length.  These results support the randomness of the keystream output from 
MUGI, based on linear complexity, such that the whole bit-stream is required to re-
construct the stream itself, thus giving an attacker no advantage in being able to create 
the bit-stream with a smaller number of output bits. 
 
 



4. 3. CRYPT-X Statistical Tests  
 

The statistical analysis applied to MUGI keystreams are the tests explained in the 
CRYPT-X package (see Appendix C), namely the frequency, binary derivative, 
change point, subblock, runs distribution (+ longest run), sequence complexity and 
linear complexity tests.  The tests are based on the hypothesis that the measure 
obtained from the output stream supports randomness.  The p-values obtained from 
the tests represent the probability that such sample result (or a less random one) would 
be obtained if the algorithm produces a random stream.  Very small p-values would 
support non-randomness. 
 
The first five tests were applied to one hundred different MUGI keystreams of 1 
Megabyte (223 = 8 388 608 bits), and the two complexity tests were applied to the first 
105 bits of these keystreams (due to the amount of time required for these tests).   
 
The subblock test was applied to the MUGI keystreams by dividing the bit-stream 
into non-overlapping subblocks of length 4 and 8 bits.   
 
The frequency test was also applied to bit positions 1 to 64 in non-overlapping 
subblocks of 64 bits on the one hundred MUGI keystreams.  The number of bits in 
each test was 223/26 = 131,072 bits. 
 
Results of Statistical Analysis 
 
The results give the lowest p-value for any one test as 0.0001, with the proportion of 
p-values falling below 0.1, 0.05 and 0.01 equal to that expected (over all the 14,800 
tests applied) . This supports the randomness of the output from MUGI.  For more 
detailed results see Appendix C.  The tables of results give the number of p-values 
falling in the bottom 10%, 5%, and 1% for each test applied to 100 different MUGI 
keystreams.  It is expected that approximately10 p-values should fall below 0.1, 5 
below 0.5, and 1 below 0.01 from the 100 keystreams tested.  
 
In the results of the statistical analysis of MUGI presented in [Hit01] there is recorded 
a run of length 31 in a sample of length 221 bits. We agree that this is a rare event with 
a small probability.  The length of the longest run, recorded by the reviewers, for the 
samples of 1 megabyte (223 bits) was 34. Combined with the results of the runs 
distribution test applied from CRYPT-X package, this indicates there is no problem 
with the distribution of runs in samples generated by MUGI.  
  
The sequence complexity test provides an effective method of detecting periodicity or 
periodic patterns in the bit-stream.  In the bit-streams tested all sequence complexity 
values exceeded both the threshold value and the average value of sequence 
complexity for bit streams of length 105 bits. These results support that the period of 
the keystreams exceeds the length of the streams tested, and that there was no 
detection of patterns in the MUGI keystreams. 
 
 
 

 



5 Analysis of MUGI 
   
In this section possible cryptanalytic attacks on MUGI and its components are 
examined. 
 
Attacks on stream ciphers are based on a number of assumptions.  For synchronous 
binary additive stream ciphers, including MUGI, known plaintext-ciphertext pairs are 
simply XORed to reveal segments of keystream, z.  Known plaintext attacks are based 
on the assumption that the entire structure of the keystream generator is known, and 
additionally that the cryptanalyst has access to some amount keystream produced by 
the generator.  Generally the task of the cryptanalyst is to use the known plaintext and 
structure to either determine the key, or to construct an equivalent keystream 
generator (one which produces the same known keystreams).  An alternative model is 
considered in [CHJ02]: if an attacker watches the output stream, can the attacker 
distinguish it from a truly random stream? Note that for the keystream generator  
MUGI, in addition to being the output of the keystream generator, a segment of 
known plaintext of length N also reveals the contents of a2, one of the three units of 
the state a, for N iterations. 
 
Depending on the application, the cryptanalyst may have access to only a single 
known keystream z, or to multiple known keystreams zj. This latter case is common 
where the stream cipher must be resynchronised.  Generally for resynchronisation the 
cipher is initialised with a publicly known vector I0, in addition to the secret key K, 
and rekeyed with the same secret key and a different (but possibly related) vector Ij.  
The cryptanalysts’ task is to recover the key K given a set of (zj, Ij) pairs.  Extensions 
of the resynchronisation attack scenarios include having multiple keystreams 
produced by multiple unknown (but possibly related) keys and a single known I, or 
even multiple keystreams produced by varying both K and I, under some assumed 
relationship. 
 
To determine if the cipher used is MUGI, a linear masking attack can be performed. 
For the general cryptanalytic attacks (recovering the key), several methods for 
attacking shift-register based stream ciphers are well known.  These include 
time/memory/data trade-off attacks, correlation attacks and divide and conquer attacks.  
These methods will be outlined briefly in this section, and discussed with respect to 
the MUGI stream cipher under the different attack scenarios in the following sections.  
 
Section 5.1 and section 5.2 consider components of MUGI, while the remaining 
sections of this chapter examine attacks on MUGI as a whole. In this report, the attack 
scenarios which are considered are the following: single keystream and multiple 
keystream with fixed key and varying I. 
 
5.1 Differential and Linear Cryptanalysis of the F function 
 
Differential [BS93] and Linear Cryptanalysis [Mat94] are powerful generic tools that 
can be applied to most ciphers. In differential cryptanalysis, an input difference (often 
XOR) produces an output difference with a certain probability, which if large enough 
can often lead to the determination of the key. Similarly, linear cryptanalysis exploits 
the difference from .5 (called a bias) of the probability that a linear sum (often XOR) 
of input and key bits is equal to a linear sum of output bits. 



 
The F function of MUGI is modelled on the round function of the block cipher            
Rijndael, now the Advanced Encryption Standard(AES). Both functions             
follow the Wide-Trail Strategy [DR98]. The aim of this strategy is to maximize the 
number of active S-boxes in consecutive rounds, meaning that the cumulative 
probabilities of differentials and linear approximations become prohibitive for 
attackers in a very small number of rounds. MUGI reuses AES' single S-box and its 
(32, 32) Maximum Separable Distance (MDS) matrix. The S-box is used eight times 
in a round and provides confusion, while the MDS is used twice and provides 
diffusion. The outputs of the MDS are intertwined in MUGI, in lieu of an AES 
ShiftRow-like operation that mixes different thirty-two bit words. Because the round-
function of MUGI is very similar to that of the AES, much of the analysis for the 
latter should apply here. 

A well-known property of the MDS used by the AES, is that the sum of active (non-
zero) input bytes and output bytes is lower bounded by five. This is termed the branch 
number, and is the key component in realizing the Wide-Trail Strategy. The branch 
number of the MDS strongly influences the number of rounds that can be attacked by 
statistical cryptanalytic techniques like differential and linear cryptanalysis. When 
combined with the other diffusion elements in the AES, the MDS causes the number 
of active S-boxes in four rounds of AES to be lower-bounded by 25 [DR02].  

The round function of MUGI is 64-bits wide, half the size of the AES round,             
making comparisons of the active S-box tally after four rounds difficult. One            
quantity that can be measured is the efficiency of the intertwined MDS outputs            
to provide increased diffusion as compared to two isolated MDS matrices            
executed in parallel.  

The evaluators tested the MDS structures by looking for self-iterating patterns at the 
byte level. The inputs to the MDS structures map to themselves as the output of the            
structures after four rounds. The number of active S-boxes within each pattern            
were tallied and compared for both structures. The results for the MUGI MDS-           
structure are shown in Table 1, and the results for the isolated MDS matrices            
are shown in Table 2.   

 

Table 1 - Active S-boxes in the MUGI MDS-structure 

# Active S-Boxes # MDS Sets # Active S-Boxes # MDS Sets 

15 8 ≤16 12 

≤ 17 16 ≤ 20 30 

≤ 21 42 ≤ 22 54 

≤ 23 58 ≤ 24 76 

≤ 25 116 ≤ 26 208 

≤ 27 236 ≤ 28 238 

≤ 29 254 ≤ 32 255 

 



Table 2 - Active S-boxes in isolated MDS matrices 

# Active S-Boxes  # MDS Input Sets # Active S-Boxes # MDS Input Sets

11 8 ≤12 13 

≤13 28 ≤16 30 

≤22 48 ≤23 63 

≤24 130 ≤25 162 

≤26 226 ≤27 235 

≤28 238 ≤29 255 

 

This demonstrates that swapping two of the four MDS outputs generally             
contributes more to diffusion than not swapping. There are cases when this is              
not the situation, although these are in the minority. For some inputs (such as              
X X 0 0 0 0 X 0, where X is an active byte), swapping causes twenty active              
bytes over four rounds, whereas not swapping causes twenty-four active              bytes. 
Conversely, swapping sometimes contributes to as many as nine extra active bytes in 
four rounds. 

Testing of the MDS-structures in this way showed that there are many              
mappings in which the input pattern emerges intact as the output of the              
structure after four rounds. These can be used as self-iterating characteristics              
in differential cryptanalysis provided that active S-boxes also preserve the              
self-mapping with high probabilities. The MUGI S-box and MDS structures              
work very well together at preventing self-mapping on a bit level, so that               
most self-iterating MDS patterns do not extend to the full round, but there are               
still useful mappings. 

5.1.1 Differential Attack on the MUGI F Function 
To engineer a successful differential attack against the F function, the              
probability of the differential cannot exceed 2-64, since such an attack would                               

require more than the entire codebook.  

Analysis of the MUGI S-box shows that for any input difference, one output 
difference (DPMax) has a probability of 2-6 and 126 differences have a probability of  
2-7. The remaining output differences have probability zero. Consequently, any 
differential cannot encounter more than 2-64/2-6 = 11 active S-boxes. In all likelihood,  
differentials will not be able to use DPMAX across each S-box, reducing               
further the maximum number of active S-boxes to 8.  

From Table 1, it can be seen that there are no MDS patterns that permit 8 s-boxes 
across four rounds, so no differentials can be constructed across four rounds. The 
branch number of the MDS guarantees that differentials across four rounds with 15 
active S-boxes will pass across three rounds with no fewer than 11 active S-boxes. So               
differential attacks on the F-function apply to no more than two rounds. 

This result has implications upon the success of a differential attack on the ρ function 
past two rounds. For some of the rounds in a multiple-round attack, the a1 state 
variable will need to contain no active bytes. Differences held by the a0 and a2 state 



variables may need to cancel, prior to entry into the F function, a situation that rarely 
occurs because of the tendency of the MDS to increase the number of active bytes, 
rather than to decrease them. This attack is not feasible. 

5.1.2 The Saturation Attack 
 
The Saturation (a.k.a Square) attack can be applied to MUGI's F-function in much the 
same way as for the AES cipher. The attack deals with a set of texts and the 
relationships of corresponding bytes within the texts – individual values of the bytes 
are ignored. For MUGI, the attack uses an alpha set – a set of 256 texts that each 
differ in one or more bytes. The symbol “–“ denotes a constant byte position that has 
the same value in each of the texts. The symbol “A” denotes an active byte position 
that has a unique value for each of the texts. The symbol “⊕ ” describes a balanced 
byte position in which the byte values of the texts sum to zero modulo 256. Finally, 
the symbol “?” covers the remaining cases in which the relationships between 
corresponding bytes in the texts are unknown. 
 
An attack on three rounds of the MUGI F-function is shown in Figure 4. For all cases 
with a single active byte, the output remains the same. 

Round 1  A – – – – – – – 
    ⇓ s-boxes 
   A – – – – – – – 
    ⇓ MDSes 

Round 2  – – A A A A – – 
    ⇓ s-boxes 

   – – A A A A – – 
    ⇓ MDSes 
Round 3  ⊕  ⊕  ⊕  ⊕  ⊕  ⊕  ⊕  ⊕  

    ⇓ s-boxes 
   ?  ?  ?  ?  ?  ?  ?  ?  

Figure 4 - Saturation attack on MUGI F-function 

 
The value of the round key does not affect the saturation attack. The bijective s-boxes 
of the first round do not destroy the any of the relationships within the bytes, but the 
MDS propagates the active byte input to four positions of the output. The second 
round s-boxes maintain the status-quo, but the MDS change the active bytes to 
balanced bytes. Finally, the third-round s-boxes destroy the balanced relationships 
between the texts. 
 
The attack technique involves guessing key material for the last round of the F-
function, the balance of the active set having been destroyed by the time it emerges as 
output. The attacker decrypts to the point where, if the key guess were correct, the 
balance of bytes is restored.  If not, the key guess is incorrect. The attack is effective 
because individual bytes can be guessed independently. 
 
Because MUGI lacks a strong diffusion element between thirty-two bit words, the 
balance of the alpha-set is destroyed in the third round, rather than the fourth, as in the 



AES. However, because MUGI combines key and input material at the start of its 
round, rather than the end, it is trivial to roll back the s-box and MDS operations on 
the fourth-round output. From then, the attacker guesses key bytes, and decrypts to the 
point just before s-box application to check the byte balance. 
 
An attack on four rounds of the F-function involves guessing eight bytes of key 
material. The attack requirements are 512 chosen plaintexts and 512 cipher 
encryptions. As for the AES, the attack can be extended to five rounds for 211 
plaintexts and 240 executions. The attack cannot be extended to six rounds because of 
excessive text requirements. 
  
The authors of [Hit01] show how the attack can be generalized to the ρ function by 
saturating one byte of the a0 state variable through the key. They gain two rounds “for 
free” before the saturated byte reaches the F-function, and are able to continue it for 
four rounds. They state that thirty-two applications of the ρ function upon the state is 
more than adequate in preventing the attack. The evaluators agree with this 
assessment. 

5.1.3 Linear Attack on the MUGI F Function 
The MUGI S-box is not as resilient against linear cryptanalysis as it is               
against differential cryptanalysis. Table 3 shows the number of inputs, for               
any masks, that gives a particular output bias. These biases can be used as the               
basis for linear approximations. 

                                           Table 3 - Linear biases in MUGI S-box 

Bias # Inputs 

0 17 

±2 48 

±4 36 

±6 40 

±8 34 

±10 24 

±12 36 

±14 16 

±16 5 

 

While [Hit01] claims that the maximum bias for the S-box is 2-6, it is                  
clearly 2-4. It is easy to find linear approximations across a single F                  
function round with a probability of 2-16, one such approximation being                  
81F7676700000000→0000000001000000. The branch number of the MDS                  
mandates that there are five active bytes in each single-round expression. Unlike 
differential cryptanalysis, however, in which the number of texts required for an 
attack is inversely proportional to the probability of the differential, linear 
cryptanalysis has much more demanding requirements relating the texts inversely to 



the square of the probability. For the codebook of 264 texts, the approximation can 
incorporate no more than 8 active S-boxes. This limits linear cryptanalysis of the F 
function to three rounds. 

The chances of a successful linear attack on the ρ function are slim for the reasons 
posited by the differential attack argument – one ρ round contains two calls to the F 
function, and cancellation of active bytes is made problematic by the properties of the 
MDS. 

 

5.2 Algebraic Analysis 
 
In section 3.2 algebraic relationships were developed which could prove an aid the 
cryptanalyst. Therefore the cryptanalyst’s task can be seen as exploiting the 
initialisation process, the buffer and nonlinear stage updating equations in order to 
recover information about the initial value of all these units from the sequence of 
known a2 values 
 

5.2.1 Algebraic Analysis of the Initialisation Process 
 
In section 3.2.2 it was shown that at stage 2 of the initialisation process that the buffer 
keeps a record of the state before known initialisation vector(I) material is injected 
into the cipher. When b15 and b14 are known, the key is known and it is trivial to 
extract the remaining buffer material and the state. Guessing b15 and b14 is equivalent 
in effort to guessing the entire 128-bit key. However, it is curious that a word contains 
key material "in the clear" so close to the end of the initialisation process, and that 
with its neighbouring word, all key material for the cipher session can be trivially 
recovered. 
 

5.2.2 Algebraic Analysis of the Buffer 
 
In section 3.2.3 the following equations were derived. 
 
For n ={0,1,2,3} we have 
 

bn[t] ⊕  bn[t+16] =a0[t+15-n] ⊕  b4[t+4-n] ⊕  b10[t+6-n] ⊕   
                                  R32 (a0[t+7-n] ⊕  b4[t+12-n] ⊕  b10[t+14-n]) 
 
 
For n ={4,5,6,7,8,9} we have 
 

bn[t] ⊕  bn[t+16] =  a0[t+19-n] ⊕  b4[t+24-n] ⊕  b10[t+10-n] ⊕  
          R32 (a0[t+11-n] ⊕ b4[t+16-n] ⊕ b10[t+18-n]) 

 
 



For n ={10,11,12,13,14,15} we have 
 

bn[t] ⊕  bn[t+16] =  a0[t+15-n] ⊕  b4[t+20-n] ⊕  b10[t+22-n] ⊕  
R32 (a0[t+23-n] ⊕ b4[t+28-n] ⊕ b10[t+30-n]) 
 
Notice that the left hand side of each of the above equations is the XOR sum of the 
same buffer position now and 16 cycles later, for every time t This is a simple 
expression for the effect that 16 rounds has on the buffer. It can be seen that exactly 
16 rounds are used in each active stage of the initialisation process, as well as being 
the natural length of the buffer itself during keystream output, so it is possible that 
these simple expressions may assist cryptanalysis of MUGI, although to date it has 
not been possible to turn them into an attack. 
 

5.2.3 Algebraic Analysis of the Nonlinear Part of MUGI 
 
In section 3.2.4 a linear expression was obtained for the nonlinear part of MUGI 
which eliminated the a1 value. The resulting expression only involves a0 which is 
related to a2, the known output, a2 itself and the output of the F function.  
 
By combining equations 7, 8 and 9 for the nonlinear part with the expressions for the 
buffer, we may hope to discover results that have application in cryptanalysis. 
However, initial investigations suggest that not all intermediate values cancel out, 
leaving more unknowns than equations. As the secret key is 128 bits = 2 units, any 
interesting attack would have to be based on guessing fewer than two units. However 
we have not yet found any useful expressions that have fewer than two unknown 
values. 
 
5.3 Attacks on MUGI 

5.3.1 Linear Masking Attack Applied to MUGI 
 
The Linear Masking Attack [CHJ01] can be applied to ciphers consisting of two 
repeating functions: one linear and the other nonlinear.  As such, it has direct 
application to MUGI, where the updating function for the buffer b is a linear function 
and the updating function for the state a is a nonlinear function.  The attack model 
considered is: if an attacker watches the output stream, can the attacker distinguish it 
from a truly random stream? If so, how much text, time and space are required? This 
can be viewed as a hypothesis testing problem.  According to the null hypothesis, the 
bits observed as inputs and outputs for one round are random and independent.  
Alternatively, they are generated by the MUGI cipher.  A decision rule is required to 
determine whether the null hypothesis can be rejected in favour of the alternative. 
 
Note: this is not the usual cryptanalytic problem: given a segment of known 
keystream from a keystream generator for which the structure is known,  
 1. Recover the secret key, k or 

2. construct a keystream generator which can produce the same (or very 
nearly) keystream sequence.   

However, some of the stages of this attack are stages that may be performed as part of 
other attacks.  They are outlined briefly below.  



 
The attack is performed in three stages.  The first stage focuses on the nonlinear 
function, to try to find a characteristic that distinguishes it from random (for example, 
a linear approximation which is more often 0 than 1).  The second stage examines the 
linear function, to find a linear combination of the linear process which vanishes.  The 
same combination of the known sequence would then remove the linear part of the 
process, leaving a linear combination of the nonlinear process.  The ‘characteristic’ 
found in the first stage can then be applied.  For example, if a linear approximation is 
found, in the third stage we have a sum of linear approximations of the nonlinear 
process.  
 
In the case of MUGI, the internal state consists of the ‘nonlinear’ state a and the 
‘linear’ state b.  In each step, some bits of a are added to some bits of b, and some 
other bits of b are added to some bits of a.  Then the nonlinear function is applied to a 
and the linear function is applied to b. Finally, some bits of a and b are added together 
to form the output of this step. 
 
More specifically, consider the internal state of MUGI at time t.  The update functions 
to obtain the internal state at time t+1 can be described in terms of the three stages 
outlined above: 

1) two units of b (b4[t] and b10[t]<<<17) are added (XORed) (separately) to 
one unit of a (a1[t]) resulting in a1[t]1 and a1[t]2, and one unit of a (a0[t]) is added to 
one unit of b (b15[t]) 

2) then, the nonlinear function NF(a) is applied to the resulting a: 
a0[t+1] = a1[t], 
a1[t+1] = a2[t] + F(a1[t]1) + C1 
a2[t+1] = a0[t] + F(a1[t]2) + C2 
 

and a linear function is applied to the resulting b: 
 b0[t+1] = b15[t],  

bi+1[t+1] = bI[t] for i = 0, 1, … 14 except i = 4, 10 
b4[t+1] = b3[t] + b7[t]  
b10[t+1] = b9[t] + (b13[t+1] <<< 32) 
 

and finally,  
3) the contents of a2[t+1] are output as the keystream unit at time t+1.  

 
In applying the linear masking attack, note that the MUGI keystream consists only of 
output from the nonlinear function.  Contents of the linear state are not added directly 
into the output.  Hence the major task is in identifying a characteristic such as a linear 
approximation of the nonlinear function which is used to form the output. 
 
Note that in the nonlinear function NF(a), the nonlinearity is concentrated in the F 
operation.  The other operations consist of unit shifts of the register, and XORs.  
 
In order to apply this attack, we need to find some linear combination of inputs and 
outputs of the nonlinear function for which some bias exists. 

This attack is not considered a threat to MUGI as this point in time. 



5.3.2 Key Recovery Attacks 
 
Exhaustive key search.  Try each of the possible keys until a key is found which 
produces the required keystream. 
 
Time/Memory/Data tradeoff attacks on stream ciphers (see [Bab95] and [Gol97]) 
are known plaintext attacks, conducted in two phases.  In the first, preprocessing 
phase, the attacker tries different keys and stores a prefix of the output sequence in a 
table.  In the second (realtime) phase, the attacker has a segment of known keystream 
and uses the precomputed table, with the objective of recovering the internal state at a 
known time.   
 
Let S, M, T, P and D denote the cardinality of the internal state space, the memory (in 
binary words of size equal to log2S) , the computational time (in table lookups), and 
the amount of data (without rekeying, this is the keystream length), respectively. 
 
The preprocessing phase is as follows.  Select M random internal initial states 
{xi}i=1^M.  For each of the xi, compute the output string yi, of length logN, and store 
the pair (xi ,yi) in increasing order of yi in RAM.  In the realtime phase, given a 
known keystream of D+logN-1 bits, a sliding window is used to produce all D 
possible strings of length logN.  These strings are then used to look up the 
precomputed table.  If a match is found with yi, then the internal state was xi .  The 
time-memory tradeoffs satisfy TM = S, P=M and N=T. 
 
Time/Memory/Data tradeoff attacks are no better than exhaustive key search due to 
the large internal state of MUGI.   
 
Divide and conquer attacks on keystream generators work on each component of the 
keystream generator separately, and sequentially solve for the subkeys.  Generally, for 
shift register based keystream generators, the objective of the attack is to recover the 
initial contents of a subset of the component shift registers from a known segment of 
the keystream sequence.  Using a divide and conquer attack on MUGI that determines 
the individual shift register states sequentially reduces the overall number of internal 
states to be searched from a product of 21024 * 2192 to a sum of 21024 + 2192.  The 
approach is to guess an initial state of a component, then use some means of 
evaluating the guess (such as a linear consistency test or correlation attack).  Fast 
correlation attacks reconstruct the initial state of the component without having to test 
exhaustively. Note that this is worse than exhaustive key search. 
 
For MUGI, the two shift registers are not independent: each feeds into the other.  This 
makes the divide and conquer attack outlined above difficult.  It may be better to 
consider MUGI as a single 19 stage shift register. Now for the divide and conquer 
attack, consider the division of the state space into stages rather than registers.  The 
attack should target stage a1, because it is used as input to F function in updating a1 
and a2 (there are no other nonlinear operations) – see Section 2.  
 
 



Correlation Attacks 
Correlation between two binary segments is a measure of the extent to which they 
approximate each other.  Correlation attacks on shift register based keystream 
generators are based on statistical dependencies between the observed keystream 
sequence and underlying shift register sequences.  For divide and conquer correlation 
attacks, the idea is to use the correlation between the known keystream segment and 
the shift register sequences to sequentially recover the initial contents of the shift 
registers.  For MUGI, a divide and conquer correlation attack requires a measure of 
correlation between the internal states of a and the output sequence (the contents of  
one third of the internal state).   
 
This approach is compounded by the buffer b and state a not being autonomous. No 
measure of correlation was identified to improve this attack over exhaustive search. 
 
An alternative to correlation for divide and conquer attacks, to determine whether a 
guessed value of a1 is correct, is to use linear consistency checks based upon 
numerous buffer equations. To date, these investigations have not led to an effective 
cryptanalysis.  
 
Under the resynchronization scenario, the extra information available by having 
multiple keystreams encrypted under different key/IV combinations provides further 
opportunities for cryptanalysis. However, to date our investigations have not 
discovered an effective method of attack using this approach. 



 
6 Comparison of MUGI with PANAMA and MULTI-S01 
 
6.1 Comparison with PANAMA 
 
In this section the evaluators discuss several structural differences between MUGI and               
PANAMA. The evaluators note that MUGI is stated to be designed “in the style” of 
Panama. Before discussing the differences the evaluators consider the similarities. 
 
Both ciphers employ a design of two finite state machines that interact. One                    
of these is a linear device and the other is nonlinear. The output of both               
ciphers is taken from the output of the nonlinear section. Both ciphers use a               
natural block size that is greater than a single word on the current generation               
of popular microprocessors, and so they output several 32-bit words for each               
of their internal cycles. This allows the computational cost of the cipher to be               
amortised over several output words, thus increasing the speed of encryption. 
 
Panama uses blocks of 8 words each, and has a linear part with 32 of these               
blocks, thus the memory size of the linear part is 256 words. The nonlinear               
part of PANAMA has two of these blocks and a single word of feedback,               
making 17 words. The state size of PANAMA is 273 words. 
 
In contrast, MUGI uses a block size of 64 bits (also called a unit) and has a               
linear part with 16 of these blocks and a nonlinear part with 3 blocks, making               
a state size of 38 words. This is a lot fewer than PANAMA. 
 
The nonlinear stage of PANAMA has a special operation on 17 words that is               
very software efficient considering the good properties it has. The               
combination of bit-sliced (i.e. parallel) Boolean operations defines each               
output bit as a highly nonlinear function of 7 input bits, all from different               
input words. The internal rotations ensure good diffusion. The symmetry               
properties of the mapping ensure that every bit in all of its 17-words of               
output is equally strong. There are no weakly modified bits. 
 
In contrast, MUGI uses one round of a target heavy Feistel structure as its               
nonlinear stage. One third of the state is not changed during this process. The               
other bits are all highly nonlinear functions of 33 bits from 3 of the 6 input               
words. The properties of this pair of identical F-functions were discussed               
earlier in Section 5.1. This nonlinear part is very different to that used in               
PANAMA and this difference makes it difficult to carry the security               
arguments for PANAMA across to MUGI.  The structure of MUGI needs               
more analysis as it has some weaknesses that are discussed in Section 5.               
These properties of MUGI need further investigation. 
 
The difference between these ciphers that should impact the most upon the              
security of the schemes is the exact way the feedback networks are arranged.              
In particular, PANAMA does not use the keystream output for any feedback,               
whereas MUGI uses all the output as feedback into the next nonlinear stage.              
This use of output must be considered a weakness compared with the prudent               



design choice made in PANAMA. Recall also that PANAMA has much more               
state memory than MUGI. These serious structural differences indicate that               
PANAMA may be more secure than MUGI.  

 
6.2 Comparison of MUGI and MULTI-S01 
 
In order to compare MUGI and MULTI-S01 the evaluators reference the Executive 
Summary of their Evaluation Report on MULTI-S01 from January 17 2001 [D+01]. 
In this report the evaluators highlighted a major flaw in the integrity check 
mechanism. MUGI does not have this flaw since MUGI only aims to provide a data 
confidentiality service not a data integrity service as well. 
 
The confidentiality service for MUGI can best be compared to that of MULTI-S01 
using a comparison of PANAMA since the actual keystream for encryption for 
MULTI-S01 is produced using PANAMA. For the comparison of MUGI and 
PANAMA refer to Section 6.1. 
 



 
7 Implementation 
 
The following section discusses some implementation issues, including the procedure 
MUGI uses to resynchronize, some metrics for a software implementation of MUGI, 
and the feasibility of a fast hardware implementation. 
 
7.1 Rekeying Procedure 
 
Communication systems that are based upon unreliable channels  (such as IP or 
wireless protocols) require frequent resychronisation for synchronous stream ciphers 
like MUGI. This involves all entities involved in a session rekeying the algorithm at 
particular points in time. 
 
The MUGI specification makes no explicit mention of rekeying. However, it provides 
a mechanism for inserting public Initialization Vector (IV) material into the state, and 
indirectly into the buffer. This occurs during stage three of the initialisation process, 
when the 128-bit IV is split, and its halves combined with state variables a0 and a1 
respectively. A condensed version of the IV is combined with a2. 
 
The combination of the key K and IV acts as a new key without the need for 
expensive key agreement or out-of-band key transport protocols. However, the buffer 
and state contents at the end of stage two must be cached and indexed against K, or 
the entire initialization process must be revisited. There is a time-memory tradeoff 
here, with the former approach consuming 1216 bytes per key, and the latter 16 
rounds of the ρ function. 
 
[Hit01] notes that the initialisation process for the MUGI cipher makes it resistant 
against resynchronisation attacks. The evaluators agree with this comment. 
 
7.2 Software Implementation 
 
In software, a MUGI round can be implemented as two invocations of the AES-like F 
function, with additional operations being two fixed rotations, seven XORs and seven 
assignments. For all but the last stage of the initialisation phase, only one invocation 
of the F-function is needed per round. The seemingly expensive rotation of the sixteen 
buffer words can be modelled instead as a circular buffer with a decrementing offset 
variable, involving two additions and a mask, rather than seventeen assignments. 
 
The F function is very simple, consisting of a single XOR of state and buffer material, 
followed by eight parallel applications of a (8, 8) s-box and two intertwined MDS 
matrix multiplications. The MDS matrices can be integrated into the s-boxes to form 
four (8, 32) s-boxes, each applied twice in the course of the round. 
 
A test implementation using these techniques was developed on an Intel Pentium III 1 
GHz machine with a 32 Kb L1 cache. The implementation was coded in ANSI-C and 
compiled with gcc on a Linux 2.4 kernel. The throughput of the cipher was 320 
Megabits/second.  
 



This result was obtained by calling the API many times with a limited set of data to 
avoid cache penalties. Unlike the evaluation in [Hit01], which reports a speed of 294 
Megabits/second on a Pentium III 800 MHz, this result considers all the factors 
involved in calling the MUGI API, including setting up the stack on function 
invocation, tearing it down on exit, and writing the update result to memory. This is a 
more realistic model for measuring throughput. In either case, the positive result can 
be attributed to the simplicity of the round function. The throughput is expected to 
benefit significantly when the cipher is implemented in the architecture's native 
assembly language. 
 
The size of the implementation was 1776 bytes plus an additional 4096 bytes for the 
s-boxes. This can be reduced by about two-thirds at the expense of approximately 
fifty percent of throughput. 
 
It should be noted that because MUGI operates on 64-bit words, it will perform more 
efficiently on 64-bit architectures than the 32-bit architectures widely used today 
(such as the test platform). For example, a rotation on 64-bit words can be natively 
modelled as two shifts and an or operation. When implemented on a 32-bit platform, 
this becomes four shifts, two ors and an assignment, with a consequent drop in 
efficency. 
 
7.3 Hardware Implementation 
We did not develop a hardware implementation of MUGI. However, the cipher 
appears amenable to parallelization and ASIC implementations in the range of a few 
Gigabits/second should be easy to achieve. Within the F function, the MDS can be 
incorporated into the s-boxes, and the result of each s-box computed independently. 
Each state variable in the r-function can also be calculated independently. The buffer 
is linear and has dependencies only upon values in the previous round. The rounds of 
the algorithm must be executed serially.  
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Appendix A.   
 
The Derivation of General Buffer Change Equations Over 16 
Iterations. 

 
First consider n=0,1,2,3. We look at n=3 as the others are similar after a time shifted 
first line. 
 
Let n=3 Then, from the buffer definition we have b3[t]=b4[t+1] + b7[t]. 
 
By substituting for b7 we obtain b3[t]=b4[t+1] + b10[t+3] + R32(b13[t+2]). 
Substituting for b13 gives 
 
b3[t]= b4[t+1] + b10[t+3] + R32(a0[t+4]) + R32(b3[t+8])………………….1 
 
Now this can be shifted by t=t+8 and rotate all values by 32 giving 
 
R32(b3[t+8])=R32(b4[t+9]) + R32(b10[t+11]) + a0[t+12] +b3[t+16]……….2 
 
Now substitute 2 into 1 and gather b3 terms to the left hand side. 
 
b3[t]+b3[t+16] = a0[t+12] + b4[t+1] + b10[t+3]  
                            + R32(a0[t+4] + b4[t+9] + b10[t+11])……………………..3 
 
Which satisfies the general form stated earlier. 
The above process can be repeated for n=0,1, and 2 by starting with  

 
b0[t]=b4[t+4] + b7[t+3], 
b1[t]=b4[t+3] + b7[t+2], 

and 
b2[t]=b4[t+2] + b7[t+1]. 

 
These all lead to the same general form that is parameterised by n. 
 
 
Now consider n=4,5,6,7,8, and 9. We first look at n=9 as the others are similar after a 
time shifted first line. 
 
Let n=9 Then, from the buffer definition we have b9[t]=b10[t+1] + R32(b13[t]). 
 
By substituting for b13 we obtain b9[t]=b10[t+1] + R32(b0[t+3] + a0[t+2]). 
Substituting for b0 gives 
 
b9[t]= b10[t+1] + R32(b4[t+7] + b7[t+6] + a0[t+2]) 
 
we note that b7[t+6]=b9[t+8], so we have 
 
b9[t]= b10[t+1] + R32(b4[t+7] + b9[t+8] + a0[t+2])……………………………4 
 



Now this can be shifted by t=t+8 and rotate all values by 32 giving 
 
R32(b9[t+8])=R32(b10[t+9]) + b4[t+15]) + b9[t+16] + a0[t+10]…….………..5 
 
Now substitute 5 into 4 and gather b9 terms to the left hand side. 
 
b9[t]+b9[t+16] = a0[t+10] + b4[t+15] + b10[t+1]  
                            + R32(a0[t+2] + b4[t+7] + b10[t+9])……………………..3 
 
Which satisfies the general form stated earlier. 
The above process can be repeated for n=4,5,6,7 and 8 by starting with  

 
b4[t]=b10[t+6] + R32(b13[t+5]), 
b5[t]= b10[t+5] + R32(b13[t+4]), 
b6[t]= b10[t+4] + R32(b13[t+3]), 

            b7[t]= b10[t+3] + R32(b13[t+2]), 
and 
 b8[t]=b10[t+2] + R32(b13[t+1]). 
 
These all lead to the same general form that is parameterised by n. 
 
 
 
Now consider n=10,11,12,13,14, and 15. We first look at n=15 as the others are 
similar after a time shifted first line. 
 
Let n=15 Then, from the buffer definition we have b15[t]=b0[t+1] + a0[t]. 
 
By substituting for b0 we obtain b15[t]=b4[t+5] + b7[t+4] + a0[t]. 
Substituting for b7 gives and shifting b13[t+6] to b15[t+8] gives 
 
B15[t]= b4[t+5] + b10[t+7] + R32(b15[t+8]) + a0[t]………………….………….7 
 
Now this can be shifted by t=t+8 and rotate all values by 32 giving 
 
R32(b15[t+8])=R32(b4[t+13]) + b10[t+15] + a0[t+8]) + b15[t+16]…….………..8 
 
Now substitute 8 into 7 and gather b9 terms to the left hand side. 
 
b15[t]+b15[t+16] = a0[t] + b4[t+5] + b10[t+7]  
                            + R32(a0[t+8] + b4[t+13] + b10[t+15])…………………………..9 
 
Which satisfies the general form stated earlier. 
The above process can be repeated for n=10,11,12,13 and 14 by starting with  

 
b10[t]= b0[t+6] + a0[t+5] , 
b11[t]= b0[t+5] + a0[t+4] , 
b12[t]= b0[t+4] + a0[t+3] , 

            b13[t]= b0[t+3] + a0[t+2] , 
and 



 b14[t]= b0[t+2] + a0[t+1. 
These all lead to the same general form that is parameterised by n. 
 





Appendix B. CRYPT-X Statistical Tests 
 
This appendix gives a mathematical description of the statistical tests used from the 
CRYPT-X statistical package. In each case an example is given to illustrate a 
particular test. The first five tests examine the hypothesis that the bit stream was 
based on Bernoulli trials where the proportion of ones and zeros is 2

1 . The two 
complexity tests examine the knowledge that a small subsection of the bit stream can 
be used to produce the remainder of the stream. If this is possible the string would not 
be considered to be random, especially in relation to its use in a stream cipher. 
The recommended size of a sample stream to test depends on the size of the average 
message which is being encrypted using the keystream. i.e. if an average cryptogram 
has size five million bits then one should use test samples of this length. It should be 
noted that not all of the tests can be applied to a string of this length due to 
computational limitations.  For example, in the linear complexity test one would need 
to examine a smaller substring of the keystream.  It is recommended that strings of 
length at least 100000 bits be used for testing. 
Frequency Test 
The frequency test checks that there is an equal proportion of ones and zeros in the bit 
stream. For randomness the proportion of ones and zeros in the bit stream should be 
approximately equal, since any substantial deviation from equality could result in a 
successful cryptanalytic attack on the cipher. For example, assume that a cryptanalyst 
attacking the stream cipher knows the type of plaintext being used, e.g. standard 
English text coded in 8-bit ASCII, and the keystream has 4

3 of the bits zero. Under this 
assumption the cryptanalyst knows the frequency distribution of the plaintext in terms 
of single bits, digraphs and trigraphs. With this knowledge the cryptanalyst could 
recover a substantial amount of the plaintext, using ciphertext alone. 
The number of ones in a random binary sequence follows a binomial distribution, 
with mean 2

n and variance 4
n .  This may be approximated using a normal distribution.  

The following notation is used: 

 

sequence. theinonesofproportionˆ
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The aim of the frequency test is to determine how the proportion of ones, , in the 
sample stream of length n bits, fits into the hypothesised distribution where the 
proportion of ones, and the variance, 

p̂

5.0=π n4
12 =σ . This is a two-tailed test [BHAT 

77].  The standardised normal test statistic is: )5.0ˆ(2 −= pnz .  The significance 
probability value, p, of the normal distribution is calculated for this statistic. This 
measures the probability of obtaining a number of ones equal to or further from the 
mean of 2

n  than this sample gives for the hypothesised (where π and 5.0= n4
1σ 2 = ). 

A small significance probability indicates a significant result (i.e., the stream is 
considered to be non-random). For large values of n ( ) a highly significant 
result (significance probability < 0.001) indicates a possible weakness in the cipher 
and it is recommended that no further tests be carried out on this sample as the 
imbalance of ones and zeros may effect their results.  

100000>n



It should be noted that passing the frequency test does not mean the stream is not 
patterned. The following highly patterned streams, where the number of ones and 
zeros are equal, will pass the frequency test: 
11111111..........00000000......... 
10101010101010..................... 
Hence further testing is required to obtain knowledge of any patterns in the stream. 
Example: 
Test stream: 
10100010000101110001011000111010101010101010000001 
Calculations and results:  

   
504

12

50n

×=σ
=

 

    
42.0ˆ

211

=
=

p
n

   13137.1)5.042.0(50z −=−=  
    2579.0p =
Interpretation: 

25.79 % of bit streams of length 50 will have a number of ones equal to or further 
from the mean of 25, for the hypothesised distribution, than this sample.  This sample 
satisfies the frequency test. 

Binary Derivative Test 
The binary derivative is a new stream formed by the exclusive-or operation on 
successive bits in the stream. Successive binary derivative streams may be obtained 
from each new binary derivative, each one being of length one less than its 
predecessor [CARR 88]. 
The proportion of ones in the i-th binary derivative gives the proportion of 
overlapping (i+1)-tuples from the original stream in one of two known groupings of 
these (i+1)-tuples.  This will be explained for i  and . 1= 2=i
When  (first binary derivative) we are looking at the overlapping two-tuples: 00, 
01, 10, 11 (in the original stream). 

1=i

The proportion of ones in the first binary derivative, , gives the proportion of the 
total number of 01 and 10 patterns in the original stream. 

)1(p̂

)1(p̂ > ½ means there is a larger proportion of the group of 01 and 10 two-tuples (in 
the original stream). 

)1(p̂ < ½ means there is a larger proportion of the group of 00 and 11 two-tuples (in 
the original stream). 
A combination of the frequency test on the original stream and its first binary 
derivative is equivalent to testing that there is an equal number of these four 
overlapping two-tuples in the original stream. This replaces the well-known Serial 
Test [DAWS 91]. 
When  (second binary derivative) we are looking at overlapping three-tuples: 
000, 001, 010, 011, 100, 101, 110, 111 (in the original stream).  The proportion of 
ones in the second binary derivative, , gives the proportion of the total number of 
001, 011, 100, 110 patterns in the original stream. 

2=i

)2(p̂

)2(p̂  > ½ means there is a larger proportion of the group of 001, 100, 110, and 011 
three-tuples. 



)2(p̂  < ½ means there is a larger proportion of the group of 000, 010, 101, and 111 
three-tuples. 
A combination of the frequency test on the original stream and a similar test on the 
first and second binary derivatives, tests that there is an equal number of the eight 
overlapping three-tuples in the original stream, for practically all cases. If a cipher 
gives a satisfactory result to these tests AND also the change point test, then it can be 
considered to generate equal numbers of the overlapping three-tuples. 
Notation: 
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The frequency test is applied to each stream and the standardised normal variable is 
found for the proportion of ones in each of the first two binary derivatives: 

)5.0)(ˆ(2)( −−= ipiniz , for i .   2,1=
The significance probability value, p , of the normal distribution is calculated for 
each statistic.  A small significance probability indicates a significant result.  For large 
n ( ) a highly significant result (significance probability < 0.001) indicates 
a possible weakness in the cipher. 

i

100000>n

Example: 
Test stream: 
 10100010000101110001011000111010101010101010000001 
Calculations and results: 
D1 : 1110011000111001001110100100111111111111111000001 
D2 : 001010100100101101001110110100000000000000100001 
 
Frequency test on first binary derivative (D1) : 
    30)1(n1 =
   5.242

1n =−  
   61224.0)1(ˆ 150

30
1
)1(1 === −−n

np  

   57143.1)5.061224.0(492)1(z =−=  
    1161.01 =p
Interpretation: 

11.61 % of bit streams of length 49 will have a number of ones equal to or further 
from the mean of 24.5, for the hypothesised distribution, than this sample.  This 
sample satisfies the frequency test on the first binary derivative. 

Since the frequency test is satisfied for the original stream and the first binary 
derivative then the cipher can be regarded as producing an equal number of 
overlapping two-tuples. 
Frequency test on second binary derivative (D2) : 
    16)2(n1 =
   242

2n =−  
   333.0)2(ˆ 250

16
2
)2(1 === −−n

np  

   3094.2)5.0333.0(482)2(z −=−=  
    0209.02 =p



Interpretation: 
2.09 % of bit streams of length 48 will have a number of ones equal to or further 
from the mean of 24, for the hypothesised distribution, than this sample. This 
sample satisfies the frequency test on the second binary derivative. 

Even though the frequency tests on the original stream and the first and second binary 
derivatives were all satisfied, the cipher will still have to satisfy the change point test 
before regarding it as producing an equal number of overlapping three-tuples. 
Change Point Test 
At each bit position, t, in the stream the proportion of ones to that point is compared 
to the proportion of ones in the remaining stream. 
The difference or change in these proportions is compared for all positions in the bit 
stream. The bit where the maximum change occurs is called the change point.  The 
test applied determines whether this change is significant for a binomial distribution 
where the proportion of ones in the stream is expected to be 0.5. 
This test is very useful for detecting patterned streams which have passed the 
frequency test on the stream and the first two binary derivatives. Even if 2

1=π and the 
stream has passed the frequency test it could be, for n = 106, that 4

1=π  for the first 
500000 bits and 4

3=π  for the second 500000 bits.  This is not considered to be a 
good pseudorandom sequence to be used as a keystream, and the change point test 
would detect such cases. 
This test is also useful for checking that there is an equal number of overlapping 
three-tuples for streams which have passed the frequency test on the original stream 
and also on the first two binary derivatives. 
The hypothesis to be tested is that there is no change in the proportion of ones 
throughout the whole stream. The statistic [PETT 79] used is  
where 
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The maximum absolute value of this statistic is found: 
  nttU K1for  ,])[(ABS of MaximumMax ==
The significance probability, p, associated with this statistic is approximated by:  
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For small values of p the actual significance probability is smaller than that calculated. 
The smaller the value of p then the more significant the result.  For large streams  a 
highly significant result, p < 0.001, indicates a possible weakness in the algorithm. 



Example: 
Test stream: 
 s = 10100010000101110001011000111010101010101010000001 
Calculations and results: 
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Interpretation: 

The actual significance probability of the change in the proportion of ones is 
less than 53.9%.   This result indicates there is no significant change in the 
proportion of ones  in the bit stream.  This sample satisfies the change point test. 

Subblock Test 
The stream is divided into S non-overlapping subblocks, each of length b.  Any 
fractional subblocks remaining are ignored.  For a stream of length n, the number of 
subblocks is the integral part of  b

n , i.e. S =  b
n . 

For  a subblock size of b ≤ 16 a test of uniformity is applied – i.e., there should be an 
equal number of each b bit pattern.  The test compares the observed number of each b 
bit pattern with bS 2 . 

The test statistic used is ∑
−

=

−=
12

0i

2
i

b
2

b

Sf
S
2

b2b5 ×

χ   [BEKE 82], where fi is the frequency of 

subblock pattern whose equivalent decimal value is i.  This statistic is compared with 
a chi-square distribution with degrees of freedom equal to 2 .  For values of b > 6 
the normal distribution may be used to approximate the chi-square distribution.  
Limitations:  The minimum length required for the stream to test for randomness 
using b-bit subblocks is  bits. 

1b −

For  a subblock size of b > 16 the repetition test [GUST 96],  is applied.  The 
repetition test measures the number of repeated patterns in a sample of S subblocks, 
each containing b bits. Given the binary stream is divided into S b-bit subblocks then, 
for a random stream, each of the N  possible binary b-bit patterns is equally 
likely to occur.  As the block length increases and 

b2=
∞→N , with a sample of size 

where ∞→S 0N
S → , then the distribution of the number of subblock repetitions in 

the sample approaches a Poisson distribution with a mean of )1( N
S

eNS
−

−−=λ .  
When N8=S the mean converges to 32, for large values of b (say b > 16).  The 
Poisson distribution is well approximated by the normal distribution for  λ .   32=
The test requires a count of the number of subblock repetitions, r. (Note that if a 
particular pattern occurs three times, then this would add two to the number of 
repetitions).  
The number of b-bit subblocks required for the test is N8=S , and gives . 32≈λ
The procedure is to sort the subblocks and then determine the number of repetitions, r. 



The test statistic is 
λ
λ−= rz (standard normal statistic for a Poisson distribution with 

a mean equal to λ ), and is compared with the standard normal distribution.  A two-
tailed test applies since both too few or too many repetitions may indicate non-
randomness of the stream.   
The required stream length to apply the repetition test using b-bit subblocks is 

32
b

2b +× bits.  This is considerably less than the length of stream required to apply the 
uniformity test for subblocks of the same size.  Since the stream lengths required are 
very large, no sample stream will be shown.  Instead, the following data will be used 
to illustrate a test calculation for the uniformity test: 
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Interpretation: 
40.42% of all possible streams of length 100000 will have a distribution of 8-bit 
subblocks less uniform than this sample shows.  This sample satisfies the 
subblock test for subblocks of length 8. 

The following data is used to illustrate a test calculation for the repetition test: 
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Interpretation: 
14.44% of all possible streams of length 36864 will have a 18-bit subblock 
repetition count further from the mean (32) than this sample shows.  This 
sample satisfies the subblock test for subblocks of length 18. 



Runs Test 
The runs distribution test compares the distribution of the number of runs of ones 
(blocks) and zeros (gaps) with that expected under randomness. For a random binary 
stream where 2

1)0Pr()1 ==Pr( there should be an equal number of  number of blocks 
and gaps of the same length. Based on Golomb's postulates, the expected number of 
runs of length i for a random binary stream should be i2

1 of the number of runs, and for 
each length there should be an equal number of runs of ones and zeros, i.e. 

1i2
s

i1i0 )r(E)r(E +== Run , where Runs indicates the number of runs in the binary stream.  
The hypothesis to be tested is that the distribution of runs in the stream fits a binomial 
population for which 2

1)0Pr()1Pr( == .  The test applied is adapted from [MOOD40]. 
The long runs are added together to form new variables s0k and s1k corresponding to 

the number of gaps and blocks of length k or more, where s  and  is the 

number of zeros in the stream. 

∑
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=
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ki
i0k0 r 0n

By adding the long runs together a certain amount of information will be lost. In order 
to minimise the amount of information lost, it is recommended here that 

 1logk 5
1n

2 −= + . 
For a stream of length n = 106 this would give a maximum value of k = 16, and hence 
the number of gaps of length 16 or more would be added together to give s0,16 and the 
number of blocks of length 16 or more would be added together to give s1,16. 
Explanation of terms: 
  = number of bits in stream n
 = number of ones in the bit stream 1n
 = number of runs of 0 of length i i0r
 = number of runs of 0 of length i for i < k i0s
 = number of runs of 0 for lengths ≥ k k0s
 = number of runs of 1 of length i i1r
 = number of runs of 1 of length i for i < k i1s
 = number of runs of 1 for lengths ≥ k k1s
The variables: 
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are asymptotically normally distributed with zero means and variances and 
covariances: 
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Test procedure: 
1. Determine k.   
2. Take a sample stream of n bits from a stream cipher.  Determine the number of 

runs of each length to give and for k .   i1s i0s ,...,1i =
3. Calculate foru using above formulae.  k2,...,1jj =

3. Determine  [S = which is a ]ijσ k2k2 × matrix.  Calculate  

[ ] [ ] 1
ij

ij1S −− σ=σ= .  

This will require obtaining the inverse of a matrix of up to elements 
for bits.  Calculate 

)1024(322

610n ≤ ∑σ== −
ji

ij1T uuS uuQ which follows a 

distribution (chi-squared distribution with 2k degrees of freedom). There 
are terms in this sum. 

2
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The significance probability value, p, of the chi-squared distribution is calculated for 
this statistic. A small value of p indicates a significant result. For large streams a 
highly significant result, p , indicates a possible weakness in the algorithm. %1.0<
The runs test can be used to support results from the previous tests. Failure of the runs 
test indicates that there is a bad distribution of run lengths or that there are no runs 
recorded above a certain length that are expected to occur for streams of the sample 
size. The zero frequencies recorded will result in a higher chi-squared statistic thus 
giving a smaller significance probability. 
Example: 
 Test stream: 
  10100010000101110001011000111010101010101010000001 
Calculations and results: 
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Q = 8.4733.. follows a  distribution. 2
4χ

p = 0.076 
Interpretation:   

7.6% of bit streams of length 50 will have a distribution of run lengths further 
from the expected distribution than this sample gives.  This sample satisfies the 
runs distribution test. 

The length of the longest run was also recorded. 

Given a bit stream of length N, the expected number of runs = 
2

1N + . 

Hence, for a bit stream of length 2n, the expected number of runs ≈ 2n-1. 

Applying Golomb's Postulates, it is expected that i2
1  of the runs have length i in an 

infinite random binary stream. So in a random bit stream of length 2n, the expected 
number of runs of length k ≈ 2n - k - 1. 
 
Sequence Complexity Test 
The sequence complexity, c(s), is the number of different substrings encountered as 
the stream, s, is viewed from beginning to end [LEMP 76]. 
Example  (n = 16)  : 
     s = 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 
Marking in different substrings : 
     s = 1/0/0 1/1 1 1 0/1 1 0 0/0 0 1 0/ 
Here the sequence complexity c(s) = 6 
A threshold value of sequence complexity is used to measure the randomness of a 
sequence.  This threshold value is nlog

n
2

where n is the total bits in the stream. A stream 
with a sequence complexity measure below this threshold value would be considered 
to be patterned, ie not random. For the example given, the threshold value 44

16 == . 
Hence the stream is not considered patterned. 



An expected value for the sequence complexity of a random stream of the same length 
is calculated using the following algorithm [GUST 96]: 
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It is expected that a good pseudo-random number sequence has a sequence 
complexity which is close to this value. It should be noted that the expected value of 
sequence complexity is always greater than the threshold value. However, a bit stream 
will only be considered to not satisfy the sequence complexity test if the value of c(s) 
is less than the threshold value. 
The sequence complexity is used to replace the autocorrelation test which is 
commonly used to determine any periodicity in the pseudorandom number generator. 
Periodicity would greatly reduce the number of "different" substrings encountered. 
Hence c(s) would be low and fall below the threshold value.  [DAWS 91]  
Example 
Test stream: 
 10100010000101110001011000111010101010101010000001 
Calculations and results: 
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Interpretation: 
This sample stream is considered random based on the sequence complexity test. 

Linear Complexity Test 

(1)   Linear Complexity 
The linear complexity test checks for the minimum amount of knowledge (bits) 
needed to reconstruct the whole stream.  Every finite stream, s, can be produced by a 
linear feedback shift register (LFSR).  The length of the shortest LFSR which will 
produce the stream is said to be the linear complexity of the stream, which will be 
denoted by L(s). 
If the value of L(s) is L then 2L consecutive terms can be used to reconstruct the 
whole sequence using the Berlekamp Massey algorithm.  [MASS 69]  Hence, in order 
to avoid stream reconstruction, the value of L should be large. 
Example: 
 01011001010100100111100000110111001100011101011111101101 
This shortest recurrence relation which will create this sequence is: 
  )()1()4()5()6( tututututu ⊕+⊕+⊕+=+
where ⊕  is addition mod 2, and the first bit is u(0). 
For example: 



 If 0=t  then  . 
01100

)0()1()4()5()6(
⊕⊕⊕=

⊕⊕⊕= uuuuu

 If 1=t  then  . 
10001

)1()2()5()6()7(
⊕⊕⊕=

⊕⊕⊕= uuuuu

 If 2=t  then  . 
01010

)2()3()6()7()8(
⊕⊕⊕=

⊕⊕⊕= uuuuu

This means that the linear complexity, L(s), of this sequence is six.  If any twelve 
consecutive bits are known then the whole sequence can be reconstructed. [MASS 69] 
It should be noted that some keystreams can pass all the previous tests yet possess a 
very small linear complexity. An example of this is an m-sequence (see [RUEP 84]). 
An m-sequence has a period of length and a linear complexity of L.  An m-
sequence has the best possible distribution of zeros and ones for a sequence of 
period . In this fashion an m-sequence appears to be statistically random in 
terms of tests 0 to 0. In fact m-sequences are commonly used as white noise 
generators. However, in terms of their use in a stream cipher an m-sequence offers 
very low security. Knowledge of only 2L consecutive bits of the keystream is needed 
to derive the defining LFSR and hence determine the whole keystream.   

12L −

12L −

For large n, L(s) is approximately normally distributed with 81
862

2
n , =σ=µ  [RUEP 

84], [KREY 81].  Using the standardised normal statistic ))(( 286
81 nsL −=z  the 

significance probability value, p, of the normal distribution is calculated.  
Since only low values of L(s) signify a possible weakness to the cipher, only a 
one-tailed test (lower tail) need apply. A small value of p indicates a significant result. 
For large streams a highly significant result ( p ) indicates a possible weakness 
in the algorithm. 

%1.0<

The linear complexity test by itself can classify as random, streams which may be 
highly patterned, or contain large substrings which are highly patterned. Some of the 
previous test results should support this. e.g. a stream of 1−2

n  zeros followed by a 
one, and then followed by a repetition of these 2

n  terms, has a linear complexity of 2
n . 

This stream would be classified as being random using the linear complexity test. 
Clearly, such a stream is highly patterned and would not satisfy the previous tests. 
However, it is possible to construct a stream of length n which would pass all the 
previous statistical tests, and have a linear complexity of approximately 2

n  yet would 
contain a large highly patterned substring.  Hence the following linear complexity 
profile tests are carried out. 

(2) Linear Complexity Profile 
Since some highly patterned streams can give a linear complexity measure close to 2

n a 
second test measures the change in the linear complexity profile of the stream as each 
bit is added. Let s(i) be the substring formed by taking the first i bits of s.  If L(s(i)) 
for i = 1,...,n  denotes the linear complexity of s(i) then the values of s(i) are defined 
to be the linear complexity profile of s and should follow approximately the 2

i line 
[MASS 69].  A failure in this test would highlight any large deviations from the 2

i line, 
which would appear for strings passing the linear complexity test and containing any 
large highly patterned substrings. A change in linear complexity signifies a jump.  
There are two tests relating to the Linear Complexity Profile: 



 
(3) Linear Complexity Profile – Number of Jumps 

Let the total number of jumps be F.  For large n, F is approximately normally 
distributed with 4

n=µ  and 8
n2 =σ  [CART 87].  The standardised statistic for the 

number of jumps is )( 4
8 n
n F −=

%1.0

z .  The significance probability, p, for this 
standardised statistic is calculated.  Since a small number of jumps would indicate a 
sequence within which patterns may exist, a one-tailed test (lower tail) is applied.  A 
small value of p ( ) indicates that the number of jumps in linear complexity 
is low, and there may be patterns in the stream which would indicate a possible 
weakness in the cipher. 

p <

(4) Linear Complexity Profile – Jump Size 
If a stream passes the test on the number of jumps in linear complexity, then the 
distribution of jump heights may be investigated.  The height of a jump is the 
difference in linear complexity when a change occurs. Let the total number of jumps 
in linear complexity be F, where is the number of jumps of height i. For a random 
string based on Bernoulli trials where the probability of a one on each trial is one half, 
the probability, p that a given jump has height i is given by

if

i
i

2
1

i )(p = . Hence the 
expected number of jumps of height i, e , is given by . i Fpe ii ×=

The chi-squared statistic used is ∑
=

−=χ
m

1i i

2
ii2

e
)ef(

1−m

 [CART 87].  The maximum value 

of  is determined from the condition for the chi-squared test, that .  The 
number of degrees of freedom, , is determined from the sample taken. 

mi = 5ei >

The significance probability value, p, of the chi-squared distribution is calculated for 
this statistic. A small significance probability indicates a significant result – i.e., the 
stream is considered to be non-random. For large samples a highly significant 
result, , indicates a possible weakness in the algorithm.   %1.0p <

Example 
Test stream: 
 10100010000101110001011000111010101010101010000001 
Calculations and results: 
Linear Complexity Test 
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Interpretation: 
50 % of bit streams of length 50 will have a linear complexity less than this 
sample.  This sample satisfies the linear complexity test. 

Hence bits (the whole stream) is needed to reconstruct the stream using 
the Berlekamp-Massey algorithm. 

50)(2 =× sL



Linear Complexity Profile - Number of jumps 
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Interpretation: 
84.13% of streams of length 50 will have a number of jumps in linear 
complexity less than this sample.  This sample satisfies the test on the number 
of jumps in linear complexity. 

Linear Complexity Profile – Jumps size 
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Interpretation: 
Approximately 7.07% of bit streams of length 50 will have a sump size 
distribution further from the expected distribution than this sample gives.  The 
sample satisfies the test on the distribution of the linear complexity jump size. 



Results of CRYPT-X Tests 
 
The p-value obtained from a test represents the probability of obtaining a result 
further than the test statistic lies from that expected, if the algorithm produces a 
random stream. Very small p-values would support non-randomness for the given 
measure. 
 
Results for Keystreams with Variable Key and Fixed IV 
 
Length of each MUGI keystream = 220 bytes (8,388,608 bits). 
Length of each MUGI keystream  (Complexity tests) = 100,000 bits.  
Number of keystreams for each test = 100 
 
The table below gives the number of p-values falling below 0.1, 0.05 and 0.01 from 
the 100 MUGI keystreams tested.  In a sample of 100 keystreams, the expected count 
for the number of p-values less than 0.1 is 10, for 0.05 is 5, and for 0.01 is 1. 
 
 Number of p-values below:  
Test .10 .05 .01 
Frequency 13 5 0 
Binary Derivative (1) 12 4 0 
Binary Derivative (2) 10 2 0 
Change Point 24 11 2 
Subblock b = 4 11 6 1 
Subblock b = 8 12 7 2 
 
Runs Distribution 3 0 0 
Linear Complexity 5 5 2 
LC profile - Jumps 15 7 3 
LC Profile - Jump Size 21 14 5 
 
Longest Run Max = 34 Next = 30 
Sequence Complexity Max = 6144 Min = 6097 
 
Further analysis was applied to the results when more than k of the p-values were 

greater than k(.01)%.  An upper 99% limit for the count when k = 10 is calculated 

using: 

( ).1 1 .1
100 0.1 2.326

100

 −
 +
 
 

 = 17 

The corresponding values for k = 5 and k = 1 are: 10 and 3. 
Counts falling above these values would be classified as significant. 
 
The results for the Change Point test and the Linear Complexity Jumps Size test are 
the only ones that show this significance.   
 
 
 



 Longest Run 
 
For a random bit stream of length 220, the expected number of runs of length 34 ≈ 220 - 

34 - 1 = 2-15. This implies that it is highly unlikely that a run of length 34 will appear in 
a bit stream of this length. 
 
The expected number of runs of length 22 ≈ 220 - 22 - 1 = 2-3 ≈ 0.125, which supports 
that this is a more likely occurrence for the length of the longest run. 
 
It would appear that the length of the longest run exceeds what would be expected in 
bit streams of this length.  It should be noted that the length of the longest run may not 
exceed 34 for much longer streams.  Hence we cannot conclude that this result shows 
any weakness in the MUGI algorithm.  
 
 
Sequence Complexity  
 
For  streams of length 105 bits the threshold value = 6,021 and the mean value = 6,056 
Both the minimum and maximum values obtained are above these values, and hence 
there is no indication on non-randomness based on the sequence complexity test. 
 
Linear Complexity 
 
The results for the linear complexity profile indicate that, as the bit-stream increases 
in length, the changes in linear complexity maintain the expected value of half the 
stream length.  These results support the randomness of the keystream output from 
MUGI, based on linear complexity, such that the whole bit-stream is required to re-
construct the stream itself, thus giving an attacker no advantage in being able to create 
the bit-stream with a smaller number of output bits. 
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Appendix C. Crypt-X Results 
 
Results of Frequency Test Applied to Bit Positions in 64-bit Subblocks 
 
MUGI Keystreams with Variable Key and Fixed IV 
 
Length of each MUGI keystream = 220 bytes (8,388,608 bits). 
Number of 64-bit subblocks =  223/26 = 217 bits (131,072 bits) 
Number of keystreams for each test = 100 
 
The table below gives the number of p-values falling below 0.1, 0.05 and 0.01 from 
the 100 MUGI keystreams tested.  In a sample of 100 keystreams, the expected count 
for the number of p-values less than 0.1 is 10, for 0.05 is 5, and for 0.01 is 1. 
 

Number of p-values less than: Bit Position in 64-bit 
Subblocks 0.1 0.05 0.01 
Position = 1 9 3 1 
Position = 2 15 6 2 
Position = 3 5 1 0 
Position = 4 6 4 2 
Position = 5 12 6 1 
Position = 6 11 6 1 
Position = 7 6 5 1 
Position = 8 11 3 0 
Position = 9 17 8 1 
Position = 10 9 7 1 
Position = 11 12 6 0 
Position = 12 9 9 2 
Position = 13 8 5 2 
Position = 14 11 5 0 
Position = 15 8 2 0 
Position = 16 10 6 0 
Position = 17 14 9 1 
Position = 18 6 2 0 
Position = 19 12 8 3 
Position = 20 7 3 0 
Position = 21 10 6 0 
Position = 22 6 2 0 
Position = 23 9 4 2 
Position = 24 14 8 2 
Position = 25 13 5 1 
Position = 26 8 6 0 
Position = 27 9 4 2 
Position = 28 8 2 0 
Position = 29 9 6 2 
Position = 30 14 7 1 
Position = 31 9 4 1 
Position = 32 11 4 0 
Position = 33 8 7 2 



Position = 34 10 4 1 
Position = 35 4 1 1 
Position = 36 6 6 0 
Position = 37 9 3 1 
Position = 38 11 7 1 
Position = 39 6 3 0 
Position = 40 5 0 0 
Position = 41 8 4 0 
Position = 42 14 12 4 
Position = 43 10 6 0 
Position = 44 8 6 0 
Position = 45 14 7 1 
Position = 46 9 3 2 
Position = 47 3 2 0 
Position = 48 16 7 1 
Position = 49 6 4 0 
Position = 50 9 2 0 
Position = 51 15 8 1 
Position = 52 6 3 1 
Position = 53 4 1 0 
Position = 54 8 3 0 
Position = 55 11 5 1 
Position = 56 12 6 0 
Position = 57 12 4 2 
Position = 58 11 4 2 
Position = 59 8 3 2 
Position = 60 10 9 0 
Position = 61 13 8 1 
Position = 62 14 8 2 
Position = 63 13 8 4 
Position = 64 11 6 0 
 
Further analysis was applied to the results when more than k of the p-values were 

greater than k(.01)%.  An upper 99% limit for the count when k = 10 is 17, and the 

corresponding values for k = 5 and k = 1 are: 10 and 3. 

Counts falling above these values would be classified as significant. 
 
The results of the frequency test on all bit positions in 64-bit subblocks show that bit 
positions 42 and 63 show some significance.  This is not reflected in all three columns 
shown, and does not indicate a cause for concern. 
 
The minimum p-value obtained over all 7,400 CRYPT-X tests was 0.0002. 
The number of  p-values below 0.1, 0.05 and 0.01 was 743, 375 and 74.  These give 
proportions very close to their expected values of 0.1, 0.05 and 0.01 respectively. 
 



Results of Statistical Randomness Tests on MUGI with Fixed Key & Variable IV 
 
Length of output stream = 8,388,608 bits. 
Length of output stream = 100,000 bits. (Complexity Tests) 
Number of streams = 100 
Sequence Complexity on 105 bits: Threshold value = 6,021     Mean value = 6,056 
 
 Number of p-values below:  
Test .10 .05 .01 
Frequency 11 4 0 
Binary Derivative (1) 8 4 1 
Binary Derivative (2) 10 2 0 
Change Point 22 7 2 
Subblock b = 4 10 2 0 
Subblock b = 8 15 8 2 
 
Runs Distribution 6 2 0 
Linear Complexity 2 2 1 
LC profile - Jumps 16 10 3 
LC Profile - Jump Size 19 10 2 
 
Longest Run Max = 30 Next =  28 
Sequence Complexity Max = 6147 Min =  6056 
 
Further analysis was applied to the results when more than k of the p-values were 

greater than k(.01)%.  An upper 99% limit for the count when k = 10 is calculated 

using: 

( ).1 1 .1
100 0.1 2.326

100

 −
 +
 
 

 = 17 

The corresponding values for k = 5 and k = 1 are: 10 and 3. 
Counts falling above these values would be classified as significant. 
 
The results for the Change Point test and the Linear Complexity Profile - Jump size 
are the only ones that show this significance.   
 
Longest Run 
 
For a random bit stream of length 220, the expected number of runs of length 30 ≈ 220 - 

30 - 1 = 2-11. This implies that it is highly unlikely that a run of length 30 will appear in 
a bit stream of this length. 
 
The expected number of runs of length 22 ≈ 220 - 22 - 1 = 2-3 ≈ 0.125, which supports 
that this is a more likely occurrence for the length of the longest run. 
 
It would appear that the length of the longest run exceeds what would be expected in 
bit streams of this length.  It should be noted that the length of the longest run may not 



exceed 30 for much longer streams.  Hence we cannot conclude that this result shows 
any weakness in the MUGI algorithm.  
 
 



Results of Frequency Test Applied to Bit Positions in 64-bit Subblocks 
MUGI Keystreams with Fixed Key and Variable IV 
 
Length of each MUGI keystream = 220 bytes (8,388,608 bits). 
Number of 64-bit subblocks =  223/26 = 217 bits (131,072 bits) 
Number of keystreams for each test = 100 
 
The table below gives the number of p-values falling below 0.1, 0.05 and 0.01 from 
the 100 MUGI keystreams tested.  In a sample of 100 keystreams, the expected count 
for the number of p-values less than 0.1 is 10, for 0.05 is 5, and for 0.01 is 1. 
 

Number of p-values less than: Bit Position in 64-bit 
Subblocks 0.1 0.05 0.01 
Position = 1 12 4 0 
Position = 2 12 4 1 
Position = 3 3 1 0 
Position = 4 12 7 2 
Position = 5 13 5 1 
Position = 6 10 6 1 
Position = 7 9 6 1 
Position = 8 4 2 0 
Position = 9 12 4 0 
Position = 10 9 3 0 
Position = 11 12 9 0 
Position = 12 7 3 0 
Position = 13 9 3 0 
Position = 14 18 12 4 
Position = 15 15 8 4 
Position = 16 9 4 0 
Position = 17 11 7 2 
Position = 18 11 4 1 
Position = 19 10 4 2 
Position = 20 9 5 2 
Position = 21 14 8 1 
Position = 22 5 2 1 
Position = 23 4 1 0 
Position = 24 6 1 0 
Position = 25 13 9 3 
Position = 26 9 6 0 
Position = 27 10 4 2 
Position = 28 7 5 2 
Position = 29 10 8 2 
Position = 30 11 5 3 
Position = 31 8 5 2 
Position = 32 10 5 1 
Position = 33 13 7 0 
Position = 34 8 3 1 
Position = 35 8 1 0 
Position = 36 6 3 1 



Position = 37 11 5 1 
Position = 38 12 5 1 
Position = 39 11 5 1 
Position = 40 11 2 0 
Position = 41 13 10 3 
Position = 42 7 4 1 
Position = 43 10 7 4 
Position = 44 14 11 2 
Position = 45 13 4 0 
Position = 46 8 4 1 
Position = 47 5 3 0 
Position = 48 7 6 0 
Position = 49 12 5 0 
Position = 50 11 5 2 
Position = 51 9 5 2 
Position = 52 8 3 0 
Position = 53 8 6 0 
Position = 54 7 3 1 
Position = 55 13 3 1 
Position = 56 11 3 0 
Position = 57 11 6 1 
Position = 58 10 4 1 
Position = 59 13 6 0 
Position = 60 12 10 2 
Position = 61 9 3 0 
Position = 62 12 7 2 
Position = 63 13 4 3 
Position = 64 9 3 1 
 
Further analysis was applied to the results when more than k of the p-values were 

greater than k(.01)%.  An upper 99% limit for the count when k = 10 is 17, and the 

corresponding values for k = 5 and k = 1 are: 10 and 3. 

Counts falling above these values would be classified as significant. 
 
The results of the frequency test on all bit positions in 64-bit subblocks show that bit 
positions 14, 15, 43 and 44 show some significance.  This is only reflected in position 
14 for all three columns shown.  For further investigation of this result, a graph of the 
number of ones in the 100 MUGI keystream samples (with fixed key and variable IV) 
in position 14 of 64-bit subblocks is shown below. 
 



 
 

The average number of ones in bit position 14 was 65,542. While this was higher than 
the expected value of 65,536 (half the number of bits) there were more of the 18 
extreme values (those with p-values less than 0.1) falling below the mean.  The 
number of ones have been inserted for the four samples with a p-value less than 0.01.    
 
The minimum p-value obtained over all 7,400 CRYPT-X tests was 0.0001. 
The number of  p-values below 0.1, 0.05 and 0.01 was 758, 367 and 81.  These give 
proportions very close to their expected values of 0.1, 0.05 and 0.01 respectively. 
 
 





 
Appendix D. An Implementation of MUGI in ANSI C 
 
This appendix contains code for the implementation of MUGI that is described in 
section 7.2. 
 

D.1 The mugi.h header file 
 
/** 
 * @file mugi.h 
 * Definitions for the MUGI PRNG 
*/ 
 
#ifndef _MUGI_H_ 
#define _MUGI_H_ 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "defs.h" 
 
#ifdef _OPT_ 
extern word32 sbox[1024]; 
#else 
extern word32 sbox[256]; 
#endif 
 
/* Status codes */ 
#define MUGI_OK 0 
 
/* Internals */ 
#define STATE_SIZE  3 
#define BUFFER_SIZE 16 
 
typedef struct  
{ 
    int offset; 
    word64 a[STATE_SIZE]; 
    word64 b[BUFFER_SIZE]; 
 
#ifndef _OPT_ 
    word64 C[3]; /* mugi constants */ 
#endif 
} Mugi; 
 
/** 
 * Initialize the Mugi PRNG 
 * @param  m    [In/Out]  mugi generator 
 * @param  key  [In]      128 bit key 
 * @param  IV   [In]      128 bit IV 
 * @returns MUGI_OK on success 
 */ 
int     Initialise(Mugi* m, const word128 key, const word128 IV); 
 
 



/**  
 * Extract a 64-bit word from the MUGI PRNG 
 * @param  m [In/Out]  mugi generator 
 * @returns pseudo-random word 
 */ 
word64  Update(Mugi *m); 
 
#ifdef __cplusplus 
} 
#endif 
#endif 

D.2 The mugi.c Source File 
/** 
 * @file mugi.c 
 * Contains implementation of the MUGI PRNG 
 */ 
 
#include "mugi.h" 
 
#define ROL7(x)   (x << 7  | x >> 57) 
#define ROL17(x)  (x << 17 | x >> 47) 
#define ROL32(x)  (x << 32 | x >> 32) 
#define ROL57(x)  (x << 57 | x >> 7) 
 
#define XTIME(a) ((a & 0x80) ?  ((a << 1) ^ 0x11B) : (a << 1)) 
 
#define SBOX1(x, y) y ^= sbox[(x&0xFF)+768]; x>>=8; 
#define SBOX2(x, y) y ^= sbox[(x&0xFF)+512]; x>>=8; 
#define SBOX3(x, y) y ^= sbox[(x&0xFF)+256]; x>>=8; 
#define SBOX4(x, y) y ^= sbox[(x&0xFF)]; x>>=8; 
 
/* Pentium II: does not benefit from function->macro conversion */ 
word64 F(word64 a, word64 b) 
{ 
    word64 x = a ^ b;  
    word64 y = 0, y0, y1, z;      
 
    SBOX1(x, y)  
    SBOX2(x, y)  
    SBOX3(x, y)  
    SBOX4(x, y)  
 
    y0 = y;   
    y  = 0;     
 
    SBOX1(x, y)   
    SBOX2(x, y)  
    SBOX3(x, y)  
    SBOX4(x, y)  
 
    y1 = y;  
    z   = (y0 << 32 | y0) & 0xFFFF00000000FFFF;  
    y1  = (y1 << 32 | y1) & 0x0000FFFFFFFF0000;  
    z  |= y1;  
  
    return z; 
} 
 



 
#define _RHO(a, b4, b10, t0)  \ 
    t0   = a[2]; \ 
    a[2] = a[0] ^ F(a[1], ROL17(b10)) ^ 0x3C6EF372FE94F82B; \ 
    a[0] = a[1]; \ 
    a[1] = t0   ^ F(a[1], b4) ^ 0xBB67AE8584CAA73B; 
 
#define OFFSET(base, offset)  ((base + offset) & 0xF) 
 
#define _LAMBDA(b, a, offset) \ 
    offset--; \ 
    b[OFFSET(10, offset)] ^= ROL32(b[OFFSET(14, offset)]); \ 
    b[OFFSET(4, offset)] ^= b[OFFSET(8, offset)]; \ 
    b[OFFSET(0, offset)] ^= a; 
 
/** 
 * Initialize the Mugi PRNG 
 * @param  m    [In/Out]  mugi generator 
 * @param  key  [In]      128 bit key 
 * @param  IV   [In]      128 bit IV 
 * @returns MUGI_OK on success 
 * @note not fully optimized 
 */ 
int Initialise(Mugi *m, const word128 key, const word128 IV) 
{ 
    word64 t0; 
    int idx = 0; 
 
    m->offset = 0; 
    m->a[0] = key.h; 
    m->a[1] = key.l; 
    m->a[2] = ROL7(key.h) ^ ROL57(key.l) ^ 0x6A09E667F3BCC908; 
 
    for (idx = 0; idx < 16; idx++) { 
         _RHO(m->a, 0, 0, t0); 
         m->b[OFFSET(15-idx, m->offset)] = m->a[0]; 
    } 
    m->a[0] ^= IV.h; 
    m->a[1] ^= IV.l; 
    m->a[2] ^= ROL7(IV.h) ^ ROL57(IV.l) ^ 0x6A09E667F3BCC908; 
 
    for (idx = 0; idx < 16; idx++) { 
        _RHO(m->a, 0, 0, t0); 
    } 
    for (idx = 0; idx < 16; idx++) { 
        Update(m); 
    } 
    return MUGI_OK; 
} 
 
 



/** 
 * Extract a 64-bit word from the MUGI PRNG 
 * @param  m [In/Out]  mugi generator 
 * @returns pseudo-random word 
 */ 
word64 Update(Mugi *m) 
{ 
    /* proxying makes this much faster on the Intel PIII*/ 
    word64 b4  = m->b[OFFSET(4, m->offset)]; 
    word64 b10 = m->b[OFFSET(10, m->offset)]; 
    word64 res = m->a[2]; 
    word64 t0  = 0; 
 
    _LAMBDA(m->b, m->a[0], m->offset); 
    _RHO(m->a, b4, b10, t0); 
    return res; 
} 
 

D.3 The sbox.c Source File 
 
#include "defs.h" 
 
word32 sbox[1024] = 
{ 
    0xC66363A5, 0xF87C7C84, 0xEE777799, 0xF67B7B8D,  
    0xFFF2F20D, 0xD66B6BBD, 0xDE6F6FB1, 0x91C5C554,  
    0x60303050, 0x02010103, 0xCE6767A9, 0x562B2B7D,  
    0xE7FEFE19, 0xB5D7D762, 0x4DABABE6, 0xEC76769A,  
    0x8FCACA45, 0x1F82829D, 0x89C9C940, 0xFA7D7D87,  
    0xEFFAFA15, 0xB25959EB, 0x8E4747C9, 0xFBF0F00B,  
    0x41ADADEC, 0xB3D4D467, 0x5FA2A2FD, 0x45AFAFEA,  
    0x239C9CBF, 0x53A4A4F7, 0xE4727296, 0x9BC0C05B,  
    0x75B7B7C2, 0xE1FDFD1C, 0x3D9393AE, 0x4C26266A,  
    0x6C36365A, 0x7E3F3F41, 0xF5F7F702, 0x83CCCC4F,  
    0x6834345C, 0x51A5A5F4, 0xD1E5E534, 0xF9F1F108,  
    0xE2717193, 0xABD8D873, 0x62313153, 0x2A15153F,  
    0x0804040C, 0x95C7C752, 0x46232365, 0x9DC3C35E,  
    0x30181828, 0x379696A1, 0x0A05050F, 0x2F9A9AB5,  
    0x0E070709, 0x24121236, 0x1B80809B, 0xDFE2E23D,  
    0xCDEBEB26, 0x4E272769, 0x7FB2B2CD, 0xEA75759F,  
    0x1209091B, 0x1D83839E, 0x582C2C74, 0x341A1A2E,  
    0x361B1B2D, 0xDC6E6EB2, 0xB45A5AEE, 0x5BA0A0FB,  
    0xA45252F6, 0x763B3B4D, 0xB7D6D661, 0x7DB3B3CE,  
    0x5229297B, 0xDDE3E33E, 0x5E2F2F71, 0x13848497,  
    0xA65353F5, 0xB9D1D168, 0x00000000, 0xC1EDED2C,  
    0x40202060, 0xE3FCFC1F, 0x79B1B1C8, 0xB65B5BED,  
    0xD46A6ABE, 0x8DCBCB46, 0x67BEBED9, 0x7239394B,  
    0x944A4ADE, 0x984C4CD4, 0xB05858E8, 0x85CFCF4A,  
    0xBBD0D06B, 0xC5EFEF2A, 0x4FAAAAE5, 0xEDFBFB16,  
    0x864343C5, 0x9A4D4DD7, 0x66333355, 0x11858594,  
    0x8A4545CF, 0xE9F9F910, 0x04020206, 0xFE7F7F81,  
    0xA05050F0, 0x783C3C44, 0x259F9FBA, 0x4BA8A8E3,  
    0xA25151F3, 0x5DA3A3FE, 0x804040C0, 0x058F8F8A,  
    0x3F9292AD, 0x219D9DBC, 0x70383848, 0xF1F5F504,  
    0x63BCBCDF, 0x77B6B6C1, 0xAFDADA75, 0x42212163,  
    0x20101030, 0xE5FFFF1A, 0xFDF3F30E, 0xBFD2D26D,  
    0x81CDCD4C, 0x180C0C14, 0x26131335, 0xC3ECEC2F,  
    0xBE5F5FE1, 0x359797A2, 0x884444CC, 0x2E171739,  
    0x93C4C457, 0x55A7A7F2, 0xFC7E7E82, 0x7A3D3D47,  



    0xC86464AC, 0xBA5D5DE7, 0x3219192B, 0xE6737395,  
    0xC06060A0, 0x19818198, 0x9E4F4FD1, 0xA3DCDC7F,  
    0x44222266, 0x542A2A7E, 0x3B9090AB, 0x0B888883,  
    0x8C4646CA, 0xC7EEEE29, 0x6BB8B8D3, 0x2814143C,  
    0xA7DEDE79, 0xBC5E5EE2, 0x160B0B1D, 0xADDBDB76,  
    0xDBE0E03B, 0x64323256, 0x743A3A4E, 0x140A0A1E,  
    0x924949DB, 0x0C06060A, 0x4824246C, 0xB85C5CE4,  
    0x9FC2C25D, 0xBDD3D36E, 0x43ACACEF, 0xC46262A6,  
    0x399191A8, 0x319595A4, 0xD3E4E437, 0xF279798B,  
    0xD5E7E732, 0x8BC8C843, 0x6E373759, 0xDA6D6DB7,  
    0x018D8D8C, 0xB1D5D564, 0x9C4E4ED2, 0x49A9A9E0,  
    0xD86C6CB4, 0xAC5656FA, 0xF3F4F407, 0xCFEAEA25,  
    0xCA6565AF, 0xF47A7A8E, 0x47AEAEE9, 0x10080818,  
    0x6FBABAD5, 0xF0787888, 0x4A25256F, 0x5C2E2E72,  
    0x381C1C24, 0x57A6A6F1, 0x73B4B4C7, 0x97C6C651,  
    0xCBE8E823, 0xA1DDDD7C, 0xE874749C, 0x3E1F1F21,  
    0x964B4BDD, 0x61BDBDDC, 0x0D8B8B86, 0x0F8A8A85,  
    0xE0707090, 0x7C3E3E42, 0x71B5B5C4, 0xCC6666AA,  
    0x904848D8, 0x06030305, 0xF7F6F601, 0x1C0E0E12,  
    0xC26161A3, 0x6A35355F, 0xAE5757F9, 0x69B9B9D0,  
    0x17868691, 0x99C1C158, 0x3A1D1D27, 0x279E9EB9,  
    0xD9E1E138, 0xEBF8F813, 0x2B9898B3, 0x22111133,  
    0xD26969BB, 0xA9D9D970, 0x078E8E89, 0x339494A7,  
    0x2D9B9BB6, 0x3C1E1E22, 0x15878792, 0xC9E9E920,  
    0x87CECE49, 0xAA5555FF, 0x50282878, 0xA5DFDF7A,  
    0x038C8C8F, 0x59A1A1F8, 0x09898980, 0x1A0D0D17,  
    0x65BFBFDA, 0xD7E6E631, 0x844242C6, 0xD06868B8,  
    0x824141C3, 0x299999B0, 0x5A2D2D77, 0x1E0F0F11,  
    0x7BB0B0CB, 0xA85454FC, 0x6DBBBBD6, 0x2C16163A,  
    0xA5C66363, 0x84F87C7C, 0x99EE7777, 0x8DF67B7B,  
    0x0DFFF2F2, 0xBDD66B6B, 0xB1DE6F6F, 0x5491C5C5,  
    0x50603030, 0x03020101, 0xA9CE6767, 0x7D562B2B,  
    0x19E7FEFE, 0x62B5D7D7, 0xE64DABAB, 0x9AEC7676,  
    0x458FCACA, 0x9D1F8282, 0x4089C9C9, 0x87FA7D7D,  
    0x15EFFAFA, 0xEBB25959, 0xC98E4747, 0x0BFBF0F0,  
    0xEC41ADAD, 0x67B3D4D4, 0xFD5FA2A2, 0xEA45AFAF,  
    0xBF239C9C, 0xF753A4A4, 0x96E47272, 0x5B9BC0C0,  
    0xC275B7B7, 0x1CE1FDFD, 0xAE3D9393, 0x6A4C2626,  
    0x5A6C3636, 0x417E3F3F, 0x02F5F7F7, 0x4F83CCCC,  
    0x5C683434, 0xF451A5A5, 0x34D1E5E5, 0x08F9F1F1,  
    0x93E27171, 0x73ABD8D8, 0x53623131, 0x3F2A1515,  
    0x0C080404, 0x5295C7C7, 0x65462323, 0x5E9DC3C3,  
    0x28301818, 0xA1379696, 0x0F0A0505, 0xB52F9A9A,  
    0x090E0707, 0x36241212, 0x9B1B8080, 0x3DDFE2E2,  
    0x26CDEBEB, 0x694E2727, 0xCD7FB2B2, 0x9FEA7575,  
    0x1B120909, 0x9E1D8383, 0x74582C2C, 0x2E341A1A,  
    0x2D361B1B, 0xB2DC6E6E, 0xEEB45A5A, 0xFB5BA0A0,  
    0xF6A45252, 0x4D763B3B, 0x61B7D6D6, 0xCE7DB3B3,  
    0x7B522929, 0x3EDDE3E3, 0x715E2F2F, 0x97138484,  
    0xF5A65353, 0x68B9D1D1, 0x00000000, 0x2CC1EDED,  
    0x60402020, 0x1FE3FCFC, 0xC879B1B1, 0xEDB65B5B,  
    0xBED46A6A, 0x468DCBCB, 0xD967BEBE, 0x4B723939,  
    0xDE944A4A, 0xD4984C4C, 0xE8B05858, 0x4A85CFCF,  
    0x6BBBD0D0, 0x2AC5EFEF, 0xE54FAAAA, 0x16EDFBFB,  
    0xC5864343, 0xD79A4D4D, 0x55663333, 0x94118585,  
    0xCF8A4545, 0x10E9F9F9, 0x06040202, 0x81FE7F7F,  
    0xF0A05050, 0x44783C3C, 0xBA259F9F, 0xE34BA8A8,  
    0xF3A25151, 0xFE5DA3A3, 0xC0804040, 0x8A058F8F,  
    0xAD3F9292, 0xBC219D9D, 0x48703838, 0x04F1F5F5,  
    0xDF63BCBC, 0xC177B6B6, 0x75AFDADA, 0x63422121,  
    0x30201010, 0x1AE5FFFF, 0x0EFDF3F3, 0x6DBFD2D2,  



    0x4C81CDCD, 0x14180C0C, 0x35261313, 0x2FC3ECEC,  
    0xE1BE5F5F, 0xA2359797, 0xCC884444, 0x392E1717,  
    0x5793C4C4, 0xF255A7A7, 0x82FC7E7E, 0x477A3D3D,  
    0xACC86464, 0xE7BA5D5D, 0x2B321919, 0x95E67373,  
    0xA0C06060, 0x98198181, 0xD19E4F4F, 0x7FA3DCDC,  
    0x66442222, 0x7E542A2A, 0xAB3B9090, 0x830B8888,  
    0xCA8C4646, 0x29C7EEEE, 0xD36BB8B8, 0x3C281414,  
    0x79A7DEDE, 0xE2BC5E5E, 0x1D160B0B, 0x76ADDBDB,  
    0x3BDBE0E0, 0x56643232, 0x4E743A3A, 0x1E140A0A,  
    0xDB924949, 0x0A0C0606, 0x6C482424, 0xE4B85C5C,  
    0x5D9FC2C2, 0x6EBDD3D3, 0xEF43ACAC, 0xA6C46262,  
    0xA8399191, 0xA4319595, 0x37D3E4E4, 0x8BF27979,  
    0x32D5E7E7, 0x438BC8C8, 0x596E3737, 0xB7DA6D6D,  
    0x8C018D8D, 0x64B1D5D5, 0xD29C4E4E, 0xE049A9A9,  
    0xB4D86C6C, 0xFAAC5656, 0x07F3F4F4, 0x25CFEAEA,  
    0xAFCA6565, 0x8EF47A7A, 0xE947AEAE, 0x18100808,  
    0xD56FBABA, 0x88F07878, 0x6F4A2525, 0x725C2E2E,  
    0x24381C1C, 0xF157A6A6, 0xC773B4B4, 0x5197C6C6,  
    0x23CBE8E8, 0x7CA1DDDD, 0x9CE87474, 0x213E1F1F,  
    0xDD964B4B, 0xDC61BDBD, 0x860D8B8B, 0x850F8A8A,  
    0x90E07070, 0x427C3E3E, 0xC471B5B5, 0xAACC6666,  
    0xD8904848, 0x05060303, 0x01F7F6F6, 0x121C0E0E,  
    0xA3C26161, 0x5F6A3535, 0xF9AE5757, 0xD069B9B9,  
    0x91178686, 0x5899C1C1, 0x273A1D1D, 0xB9279E9E,  
    0x38D9E1E1, 0x13EBF8F8, 0xB32B9898, 0x33221111,  
    0xBBD26969, 0x70A9D9D9, 0x89078E8E, 0xA7339494,  
    0xB62D9B9B, 0x223C1E1E, 0x92158787, 0x20C9E9E9,  
    0x4987CECE, 0xFFAA5555, 0x78502828, 0x7AA5DFDF,  
    0x8F038C8C, 0xF859A1A1, 0x80098989, 0x171A0D0D,  
    0xDA65BFBF, 0x31D7E6E6, 0xC6844242, 0xB8D06868,  
    0xC3824141, 0xB0299999, 0x775A2D2D, 0x111E0F0F,  
    0xCB7BB0B0, 0xFCA85454, 0xD66DBBBB, 0x3A2C1616,  
    0x63A5C663, 0x7C84F87C, 0x7799EE77, 0x7B8DF67B,  
    0xF20DFFF2, 0x6BBDD66B, 0x6FB1DE6F, 0xC55491C5,  
    0x30506030, 0x01030201, 0x67A9CE67, 0x2B7D562B,  
    0xFE19E7FE, 0xD762B5D7, 0xABE64DAB, 0x769AEC76,  
    0xCA458FCA, 0x829D1F82, 0xC94089C9, 0x7D87FA7D,  
    0xFA15EFFA, 0x59EBB259, 0x47C98E47, 0xF00BFBF0,  
    0xADEC41AD, 0xD467B3D4, 0xA2FD5FA2, 0xAFEA45AF,  
    0x9CBF239C, 0xA4F753A4, 0x7296E472, 0xC05B9BC0,  
    0xB7C275B7, 0xFD1CE1FD, 0x93AE3D93, 0x266A4C26,  
    0x365A6C36, 0x3F417E3F, 0xF702F5F7, 0xCC4F83CC,  
    0x345C6834, 0xA5F451A5, 0xE534D1E5, 0xF108F9F1,  
    0x7193E271, 0xD873ABD8, 0x31536231, 0x153F2A15,  
    0x040C0804, 0xC75295C7, 0x23654623, 0xC35E9DC3,  
    0x18283018, 0x96A13796, 0x050F0A05, 0x9AB52F9A,  
    0x07090E07, 0x12362412, 0x809B1B80, 0xE23DDFE2,  
    0xEB26CDEB, 0x27694E27, 0xB2CD7FB2, 0x759FEA75,  
    0x091B1209, 0x839E1D83, 0x2C74582C, 0x1A2E341A,  
    0x1B2D361B, 0x6EB2DC6E, 0x5AEEB45A, 0xA0FB5BA0,  
    0x52F6A452, 0x3B4D763B, 0xD661B7D6, 0xB3CE7DB3,  
    0x297B5229, 0xE33EDDE3, 0x2F715E2F, 0x84971384,  
    0x53F5A653, 0xD168B9D1, 0x00000000, 0xED2CC1ED,  
    0x20604020, 0xFC1FE3FC, 0xB1C879B1, 0x5BEDB65B,  
    0x6ABED46A, 0xCB468DCB, 0xBED967BE, 0x394B7239,  
    0x4ADE944A, 0x4CD4984C, 0x58E8B058, 0xCF4A85CF,  
    0xD06BBBD0, 0xEF2AC5EF, 0xAAE54FAA, 0xFB16EDFB,  
    0x43C58643, 0x4DD79A4D, 0x33556633, 0x85941185,  
    0x45CF8A45, 0xF910E9F9, 0x02060402, 0x7F81FE7F,  
    0x50F0A050, 0x3C44783C, 0x9FBA259F, 0xA8E34BA8,  
    0x51F3A251, 0xA3FE5DA3, 0x40C08040, 0x8F8A058F,  



    0x92AD3F92, 0x9DBC219D, 0x38487038, 0xF504F1F5,  
    0xBCDF63BC, 0xB6C177B6, 0xDA75AFDA, 0x21634221,  
    0x10302010, 0xFF1AE5FF, 0xF30EFDF3, 0xD26DBFD2,  
    0xCD4C81CD, 0x0C14180C, 0x13352613, 0xEC2FC3EC,  
    0x5FE1BE5F, 0x97A23597, 0x44CC8844, 0x17392E17,  
    0xC45793C4, 0xA7F255A7, 0x7E82FC7E, 0x3D477A3D,  
    0x64ACC864, 0x5DE7BA5D, 0x192B3219, 0x7395E673,  
    0x60A0C060, 0x81981981, 0x4FD19E4F, 0xDC7FA3DC,  
    0x22664422, 0x2A7E542A, 0x90AB3B90, 0x88830B88,  
    0x46CA8C46, 0xEE29C7EE, 0xB8D36BB8, 0x143C2814,  
    0xDE79A7DE, 0x5EE2BC5E, 0x0B1D160B, 0xDB76ADDB,  
    0xE03BDBE0, 0x32566432, 0x3A4E743A, 0x0A1E140A,  
    0x49DB9249, 0x060A0C06, 0x246C4824, 0x5CE4B85C,  
    0xC25D9FC2, 0xD36EBDD3, 0xACEF43AC, 0x62A6C462,  
    0x91A83991, 0x95A43195, 0xE437D3E4, 0x798BF279,  
    0xE732D5E7, 0xC8438BC8, 0x37596E37, 0x6DB7DA6D,  
    0x8D8C018D, 0xD564B1D5, 0x4ED29C4E, 0xA9E049A9,  
    0x6CB4D86C, 0x56FAAC56, 0xF407F3F4, 0xEA25CFEA,  
    0x65AFCA65, 0x7A8EF47A, 0xAEE947AE, 0x08181008,  
    0xBAD56FBA, 0x7888F078, 0x256F4A25, 0x2E725C2E,  
    0x1C24381C, 0xA6F157A6, 0xB4C773B4, 0xC65197C6,  
    0xE823CBE8, 0xDD7CA1DD, 0x749CE874, 0x1F213E1F,  
    0x4BDD964B, 0xBDDC61BD, 0x8B860D8B, 0x8A850F8A,  
    0x7090E070, 0x3E427C3E, 0xB5C471B5, 0x66AACC66,  
    0x48D89048, 0x03050603, 0xF601F7F6, 0x0E121C0E,  
    0x61A3C261, 0x355F6A35, 0x57F9AE57, 0xB9D069B9,  
    0x86911786, 0xC15899C1, 0x1D273A1D, 0x9EB9279E,  
    0xE138D9E1, 0xF813EBF8, 0x98B32B98, 0x11332211,  
    0x69BBD269, 0xD970A9D9, 0x8E89078E, 0x94A73394,  
    0x9BB62D9B, 0x1E223C1E, 0x87921587, 0xE920C9E9,  
    0xCE4987CE, 0x55FFAA55, 0x28785028, 0xDF7AA5DF,  
    0x8C8F038C, 0xA1F859A1, 0x89800989, 0x0D171A0D,  
    0xBFDA65BF, 0xE631D7E6, 0x42C68442, 0x68B8D068,  
    0x41C38241, 0x99B02999, 0x2D775A2D, 0x0F111E0F,  
    0xB0CB7BB0, 0x54FCA854, 0xBBD66DBB, 0x163A2C16,  
    0x6363A5C6, 0x7C7C84F8, 0x777799EE, 0x7B7B8DF6,  
    0xF2F20DFF, 0x6B6BBDD6, 0x6F6FB1DE, 0xC5C55491,  
    0x30305060, 0x01010302, 0x6767A9CE, 0x2B2B7D56,  
    0xFEFE19E7, 0xD7D762B5, 0xABABE64D, 0x76769AEC,  
    0xCACA458F, 0x82829D1F, 0xC9C94089, 0x7D7D87FA,  
    0xFAFA15EF, 0x5959EBB2, 0x4747C98E, 0xF0F00BFB,  
    0xADADEC41, 0xD4D467B3, 0xA2A2FD5F, 0xAFAFEA45,  
    0x9C9CBF23, 0xA4A4F753, 0x727296E4, 0xC0C05B9B,  
    0xB7B7C275, 0xFDFD1CE1, 0x9393AE3D, 0x26266A4C,  
    0x36365A6C, 0x3F3F417E, 0xF7F702F5, 0xCCCC4F83,  
    0x34345C68, 0xA5A5F451, 0xE5E534D1, 0xF1F108F9,  
    0x717193E2, 0xD8D873AB, 0x31315362, 0x15153F2A,  
    0x04040C08, 0xC7C75295, 0x23236546, 0xC3C35E9D,  
    0x18182830, 0x9696A137, 0x05050F0A, 0x9A9AB52F,  
    0x0707090E, 0x12123624, 0x80809B1B, 0xE2E23DDF,  
    0xEBEB26CD, 0x2727694E, 0xB2B2CD7F, 0x75759FEA,  
    0x09091B12, 0x83839E1D, 0x2C2C7458, 0x1A1A2E34,  
    0x1B1B2D36, 0x6E6EB2DC, 0x5A5AEEB4, 0xA0A0FB5B,  
    0x5252F6A4, 0x3B3B4D76, 0xD6D661B7, 0xB3B3CE7D,  
    0x29297B52, 0xE3E33EDD, 0x2F2F715E, 0x84849713,  
    0x5353F5A6, 0xD1D168B9, 0x00000000, 0xEDED2CC1,  
    0x20206040, 0xFCFC1FE3, 0xB1B1C879, 0x5B5BEDB6,  
    0x6A6ABED4, 0xCBCB468D, 0xBEBED967, 0x39394B72,  
    0x4A4ADE94, 0x4C4CD498, 0x5858E8B0, 0xCFCF4A85,  
    0xD0D06BBB, 0xEFEF2AC5, 0xAAAAE54F, 0xFBFB16ED,  
    0x4343C586, 0x4D4DD79A, 0x33335566, 0x85859411,  



    0x4545CF8A, 0xF9F910E9, 0x02020604, 0x7F7F81FE,  
    0x5050F0A0, 0x3C3C4478, 0x9F9FBA25, 0xA8A8E34B,  
    0x5151F3A2, 0xA3A3FE5D, 0x4040C080, 0x8F8F8A05,  
    0x9292AD3F, 0x9D9DBC21, 0x38384870, 0xF5F504F1,  
    0xBCBCDF63, 0xB6B6C177, 0xDADA75AF, 0x21216342,  
    0x10103020, 0xFFFF1AE5, 0xF3F30EFD, 0xD2D26DBF,  
    0xCDCD4C81, 0x0C0C1418, 0x13133526, 0xECEC2FC3,  
    0x5F5FE1BE, 0x9797A235, 0x4444CC88, 0x1717392E,  
    0xC4C45793, 0xA7A7F255, 0x7E7E82FC, 0x3D3D477A,  
    0x6464ACC8, 0x5D5DE7BA, 0x19192B32, 0x737395E6,  
    0x6060A0C0, 0x81819819, 0x4F4FD19E, 0xDCDC7FA3,  
    0x22226644, 0x2A2A7E54, 0x9090AB3B, 0x8888830B,  
    0x4646CA8C, 0xEEEE29C7, 0xB8B8D36B, 0x14143C28,  
    0xDEDE79A7, 0x5E5EE2BC, 0x0B0B1D16, 0xDBDB76AD,  
    0xE0E03BDB, 0x32325664, 0x3A3A4E74, 0x0A0A1E14,  
    0x4949DB92, 0x06060A0C, 0x24246C48, 0x5C5CE4B8,  
    0xC2C25D9F, 0xD3D36EBD, 0xACACEF43, 0x6262A6C4,  
    0x9191A839, 0x9595A431, 0xE4E437D3, 0x79798BF2,  
    0xE7E732D5, 0xC8C8438B, 0x3737596E, 0x6D6DB7DA,  
    0x8D8D8C01, 0xD5D564B1, 0x4E4ED29C, 0xA9A9E049,  
    0x6C6CB4D8, 0x5656FAAC, 0xF4F407F3, 0xEAEA25CF,  
    0x6565AFCA, 0x7A7A8EF4, 0xAEAEE947, 0x08081810,  
    0xBABAD56F, 0x787888F0, 0x25256F4A, 0x2E2E725C,  
    0x1C1C2438, 0xA6A6F157, 0xB4B4C773, 0xC6C65197,  
    0xE8E823CB, 0xDDDD7CA1, 0x74749CE8, 0x1F1F213E,  
    0x4B4BDD96, 0xBDBDDC61, 0x8B8B860D, 0x8A8A850F,  
    0x707090E0, 0x3E3E427C, 0xB5B5C471, 0x6666AACC,  
    0x4848D890, 0x03030506, 0xF6F601F7, 0x0E0E121C,  
    0x6161A3C2, 0x35355F6A, 0x5757F9AE, 0xB9B9D069,  
    0x86869117, 0xC1C15899, 0x1D1D273A, 0x9E9EB927,  
    0xE1E138D9, 0xF8F813EB, 0x9898B32B, 0x11113322,  
    0x6969BBD2, 0xD9D970A9, 0x8E8E8907, 0x9494A733,  
    0x9B9BB62D, 0x1E1E223C, 0x87879215, 0xE9E920C9,  
    0xCECE4987, 0x5555FFAA, 0x28287850, 0xDFDF7AA5,  
    0x8C8C8F03, 0xA1A1F859, 0x89898009, 0x0D0D171A,  
    0xBFBFDA65, 0xE6E631D7, 0x4242C684, 0x6868B8D0,  
    0x4141C382, 0x9999B029, 0x2D2D775A, 0x0F0F111E,  
    0xB0B0CB7B, 0x5454FCA8, 0xBBBBD66D, 0x16163A2C 
}; 
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