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Executive summary

This report describes a brief cryptographic review of CIPHERUNICORN-E. While
a broad range of attacks were considered, our attention was particularly focused
on differential and linear cryptanalysis as requested. CIPHERUNICORN-E is a
complicated cipher which hinders accurate analysis. This should be constrasted
with other ciphers that permit a reasonably close assessment. However in this
report we draw the following conclusions.

With regards to differential cryptanalysis, the techniques of the designers
appear to be reasonable, given the complexity of the cipher. Some issues appear
to have been overlooked in the self-evaluation report [16] and this suggests that
the bound of 278 for the probability of an exploitable differential might be
better replaced with 2772, With regards to linear cryptanalysis the situation
is less clear. It seems that compromising even a limited number of rounds
of CIPHERUNICORN-E with linear cryptanalytic techniques would be unlikely.
However there might be good grounds to question some of the techniques used
in establishing a bound for a linear cryptanalytic attack. Without considerable
additional and very detailed analysis, it is difficult to comment more on the true
state of the cipher. Nevertheless, no new attacks have been identified. So with
the current state of knowledge, it seems unlikely that practical differential and
linear cryptanalytic attacks can be easily mounted against CIPHERUNICORN-E.

This review took place over a limited time and with limited resources. It
should be anticipated that additional analysis may well find improved results
for the cryptanalysis of this cipher and provide a greater understanding of the
true security offered.



1 Introduction

In this report we present the results of a brief cryptographic review of the
block cipher CiPHERUNICORN-E. This cipher has been submitted to the Cryp-
trec Evaluation process and has already received considerable study by the de-
signers. CIPHERUNICORN-E is a companion to CIPHERUNICORN-A and they
share some functional components. However the specific details of the ciphers
are sufficiently different that little of the analysis from one cipher is of immediate
relevance to the other.

While some effort has been made to consider a broad range of possible attacks
on the cipher, most effort was concentrated on considering the effectiveness of
differential and linear cryptanalysis. The materials provided for this evaluation
were

e Cryptographic techniques specifications: CIPHERUNICORN-E, FY 2000
submission, NEC Corporation. (Undated.)

e Notice of updates to the above report. NEC Corporation. (Undated.)

e Cryptographic techniques specifications: CIPHERUNICORN-E, Version 2,
NEC Corporation. (Undated.) [15].

e Self Evaluation Report: CIPHERUNICORN-E, Version 2, FY 2000 submis-
sion, NEC Corporation. (Undated.)

e Notice of updates to the above report. NEC Corporation. (Undated.)

e Self Evaluation Report: CIPHERUNICORN-E, Version 3, NEC Corporation.
(Undated.) [16].

e Copy of overhead slides: “64-bit Block Cipher CiIPHERUNICORN-E (UNI-
E)”, NEC Corporation. (Undated.)

2 Terminology, definitions, and notation

Throughout this report we will assume that the reader has a basic familiarity
with many different aspects of block cipher design and analysis particularly
differential [1] and linear [11] cryptanalysis.

With differential cryptanalysis, we will typically consider a notion of dif-
ference that is given by bitwise exclusive-or. While other notions of difference
might be considered, the design of CIPHERUNICORN-E is such that this particu-
lar measure is likely to be the most useful. In general, differences will be denoted
by A. For linear cryptanalysis, we will require the use of so-called parity masks
which will typically be denoted by I'. Any specific values to either differences
or parity masks will be presented in hexadecimal notation prefixed by 0x.



CIPHERUNICORN-E relies on several structural components. These include
integer addition modulo 232, denoted by +, and bitwise exclusive-or of both 8
and 32 bit data units denoted by . Four 8-bit to 8-bit substitution boxes Sy—S3
are required and will typically be referred to as S-boxes. The cipher requires the
use of a bitwise shift to the left. The shift of a to the left by r bit positions will
be denoted by a<r. The bitwise and of two words a and b will be denoted by
a A b and the Hamming weight of a word « is the number of ones in the binary
representation of a.

3 Existing analysis of CIPHERUNICORN-E

The designers of CIPHERUNICORN-E have provided the results of their own eval-
uation of the cipher [16]. The bulk of this analysis appears to be concentrated
on the results of extensive statistical testing. While this is not entirely without
some merit, it is very unlikely that such testing, no matter how extensive, will
uncover problems with the cipher. A cipher must pass such tests, but a ci-
pher that has passed these statistical tests is not necessarily secure. In addition
to statistical tests, the designers also discuss the resistance of the cipher to a
wide-range of sophisticated cryptanalytic attacks. In particular, bounds on the
effectiveness of differential and linear cryptanalysis were derived [16].

4 Description of CIPHERUNICORN-E

In this section we give an overview of the important features of CIPHERUNICORN-
E. More details of the cipher can be found in the cipher documentation [15].
CIPHERUNICORN-E is built around the well-established Feistel design used in
DES [13]. The cipher operates on 64-bit blocks with a 128-bit key.

4.1 The L function

The most obvious divergence from the Feistel approach at a structural level, is
the use of a key-dependent mixing function L(a,b) — (x,y). This is used after
every two rounds in the Feistel structure and takes as input two 32-bit words
a and b giving as output two words x and y. Between each occurrence of the
L function there are two rounds of the Feistel network. The effectiveness and
impact of the L function will be assessed in Section 5.

4.2 The round function

CIPHERUNICORN-E uses a very complicated round function which is illustrated
in Figure 1. One of the distinguishing features of both CIPHERUNICORN-A and



CIPHERUNICORN-E is that the round function consists of two parallel compu-
tations. We will often describe our analysis of the round function in terms of
two processes which we refer to as Computation I and Computation II.

Computation I is quite traditional. The 32-bit data input is split into four
bytes and processed via a network consisting of ten mini-rounds of exclusive-ors
and S-box look-ups. There are four types of mini-round, each using a different
byte as input but effecting all four bytes. Meanwhile Computation II is a parallel
process that uses the same inputs as were used in Computation I. The results of
this computation are then used to provide a limited interaction with the data in
Computation I. Computation II indicates the choice and ordering of operations
in mini-rounds five to ten and further provides two bytes of data for use in
Computation I prior to mini-rounds nine and ten.

The design of the round function is such that each type of mini-round is used
once (in a fixed order) within the first four mini-rounds. Then each type of mini-
round is also used in mini-rounds five to eight, though the order they appear is
dependent on information derived in the parallel Computation II. Mini-rounds
nine and ten are a repeat of mini-rounds five and six.

We have yet to describe the introduction of key material to the round func-
tion. This happens in several places. First, the 32-bit input to the round
function is added modulo 23? to key material and the results are used as inputs
to Computation I and Computation II. Second, key material is introduced be-
tween mini-rounds four and five where the four bytes of intermediate data are
considered as a 32-bit quantity and combined using integer addition modulo 232
with 32 bits of key material. Third, a four-bit value and two bytes of material
are derived in a key and data-dependent manner via Computation IT for use
in Computation I. The four-bit index is used to choose the type and order of
transformations in mini-rounds five to ten (as described above), the order being
determined via a pre-defined [15] array Sh[-] which does not significantly concern
us here. The two bytes of data are exclusive-ored with some of the intermediate
data in the latter part of Computation I. This is illustrated in Figure 1.



Figure 1: CIPHERUNICORN-E round function with w =9
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4.3 The Y function

The function Y, 5:(x) takes a 32-bit argument as input and returns a 32-bit
output. It is described by the following equations where addition is carried out
modulo 232

= 4+ (z<r),
b = a+ (aks),
Y;",s,t('r) = b+ (b<<t)

The function Y, ;:(x) appears twice (with different values to r, s, and ¢) in
Computation II of the round function. The particular values for the rotation
constants are chosen according to given design principles [15]. Due to the limited
time available it is unknown whether there are any particular weaknesses arising
from the chosen set of values. Analysis in Sections 6 and 7.2 suggests that the
function Y, ;s () can make a tangible contribution to the security of the cipher.

4.4 The S-boxes

Four different 8-bit to 8-bit S-boxes are used in CIPHERUNICORN-E. They have
been designed according to similar principles used in the AES [3, 14]. The
construction and the properties of the S-boxes have not been checked and it is
assumed that they have the properties claimed in the cipher documentation.

4.5 The key schedule

CIPHERUNICORN-E has a rather complicated key schedule requiring the iterated
use of a nested byte-wise Feistel structure [15]. The key schedule has not been
examined closely here. Further work might pay close attention to the implica-
tions of choosing keys with certain bytes values differing in the most significant
bit; particularly since the boundaries between bytes is well-respected through-
out. Provisional analysis failed to find an exploitable weakness, but further work
might be profitable for the cryptanalyst. For the purposes of this report we will
not pay any further attention to the key schedule. We will instead make the
typical assumption that all subkey material throughout the cipher is determined
independently of the rest.

4.6 Initial comments

CIPHERUNICORN-E is built around the well-established Feistel design [13]. The
function L is perhaps intended to provide some moderate key-dependent mixing
between the two Feistel strands. We will discuss this function in more detail
in Section 5. However any additional benefit from L is unclear. Indeed, as we
will show in Section 5, it appears that the function L might potentially reduce
the security of the cipher! As a certificational weakness of this structure, we



will also observe that if this function L were to be used in every other round
(for which it might be argued that this would provide even more complicated
mixing) then the whole cipher would be trivially weak.

The round function itself is very complicated. The fact that there are two
strands of computation running concurrently with only limited interaction be-
tween them raises several questions. At first sight it seemed that the bulk of the
cryptographic strength of CIPHERUNICORN-E might be derived from the use of
the S-boxes in Computation I. Since Computation II is used to vary the flow
of operations in Computation I (of which there are only 16 possibilities) and to
provide 16 bits of data that are combined with Computation I using exclusive-or
(a questionable advantage with regards to a differential attack) then the value
of Computation II was unclear. However more advanced analysis in Section 7.2
suggests that Computation II is vital for the security of the cipher. More par-
ticularly, the function Y appears to make a tangible contribution to the security
of the cipher. It is not clear whether this property should be seen as a positive
attribute of Computation II or a negative attribute of Computation I. However,
on balance, it seems that a less complicated but more robust design to the round
function might have been preferable.

4.7 Some simplifications to CIPHERUNICORN-E

The round function of CIPHERUNICORN-E is too complicated to allow a complete
and accurate analysis. Indeed, it appears to have been a design principle that
the cipher achieve high security goals by being difficult to analyze. This is an
unusual approach. It is more common for cipher designers to aim to provide
as complete an understanding of the behavior of the cipher as possible so as to
fully appreciate the true security level offered.

However we still need to develop an understanding of the cipher. To do this,
we will consider some possible simplifications to the round function.

1. The designers of CIPHERUNICORN-E consider a variant of the round func-
tion that is illustrated in Figure 2. This is identical to the round function
used in the full cipher, except that the integer addition of key material has
been omitted and the function Y has been replaced by a modified function
Y'¢P where

Y™ (z) = 2 ® (x<24) ® (z A 0x££00)<16) & (z A 0x££0000)<8).

Replacing the function Y with the function Y™ appears to be a rea-
sonable cryptanalytic tool. Apart from a few degenerate examples, it
seems unlikely that the analysis resulting from this simplified version will
be catastrophically different to that attained in the full cipher (see Sec-
tion 6). We will denote this variant of the cipher UNI-E-REP-Y thereby
indicating that the function Y has been replaced.



2. A second useful simplification of the round function is derived by omitting
the function Y entirely but retaining the integer addition of key material.
This is illustrated in Figure 3. We will denote this variant of the cipher
UNI-E-NO-Y.

3. A third simplification might be derived by omitting both the function Y
and the integer addition of the key material. However there seems to be
little advantage in considering this variant.

5 The Function L

CIPHERUNICORN-E is essentially a Feistel cipher with some additional key-
dependent mixing performed every two rounds. This mixing is accomplished
by a function L which maps, under the influence of key material kg and k;, two
32-bit words (a,b) to two 32-bit words (z,y) according to the equations

z = a®d(bAk)D(aNkoAki), and
y = bd(aNky) ®(bAkyAky).

It might be presumed that the purpose of this operation is to provide addi-
tional mixing between the two strands of computation within the Feistel struc-
ture. Yet, it appears that the cryptographic significance of this operation is
very limited. The essential cryptographic strength of CIPHERUNICORN-E comes
from the round functions. Indeed, it is not clear whether the mixing function
L might not, under certain exceptional circumstances, make matters easier for
the cryptanalyst.

Some of this has already been observed by the designers of CIPHERUNICORN-
E. In the self-evaluation report [16] it was observed that if kg = Oxffffffff
and ky = OxEEfff££Ef then L(a,b) = (b,a). That is the two 32-bit words of the
Feistel structure are swapped. However it is reasonably observed, that this is
so unlikely that this particular issue should not be viewed as a problem [16].

What might be a problem, though, is a similar phenomenon on a more
limited scale. Suppose that an attacker is interested in mounting a differential
attack with a 32-bit difference given by A = 0x00000001 (say). Further, suppose
that we have a 64-bit input difference given by (A, 0). Then for one in four keys
we have that L(A,0) = (0,A) . Only two out of the 64 key bits needs to take
the value one for this to occur since we don’t care about the other bit positions.
Now consider a single round of a Feistel structure.
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In a differential attack a round is said to be active if there is non-zero input
difference to the round function F'. Typically an attacker will try to reduce the
number of active rounds in a differential attack so as to increase its effectiveness.
Three types of rounds are interesting to us for CIPHERUNICORN-E.

A 0 — 0 A (illustrated) (1)
0 A - A A (2)
0 A = A 0 (3)

The first differential is a trivial differential and the round is not active. The
second and third differentials both provide active rounds. The third one is very
interesting and it is not typically possible for a Feistel cipher. However, the
structure of the round function of CIPHERUNICORN-E is such that this type of
differential could be a (very remote) possibility.

One way to estimate the resistance of a cipher to differential cryptanalysis
(and the approach that is adopted by the designers of CIPHERUNICORN-E [16])
is to provide a lower bound on the probability of an active round, and then to
provide a lower bound on the number of active rounds required for a differential
attack.

In making such estimates it is typical to assume that the attacker can mount
what is referred to as a 2R-attack. That is, the outer two rounds of the cipher
can be removed by the cryptanalyst. (We will indicate such a round by U for
“unwind”.) In fact, these outer rounds are usually required for the recovery of
key material but that does not concern us here. Instead, we merely remark that
for the purposes of a conservative analysis, we will assume that a differential
need only extend over 14 of the 16 rounds of the cipher.

Given this, and our earlier observation about the function L swapping differ-
entials, we can now make the following observation. If differentials of type (3)
are possible, then the function L might allow the following pattern to the rounds
in a differential attack where A denotes an active round, U an “unwound” round,
and “—” an inactive round.

U—--A4 - -AA - -AA--U.

This is instead of what would otherwise be one of the optimal attacks for a
version of the cipher when the function L is not used.

U-A-A-A-A-A-A- AU



We can immediately see that the use of the L function can reduce the number
of active rounds from seven to six. Further, depending on the Hamming weight
of characteristics within the differential, the proportion of keys for which this
happens need not be that significant.

It is now trivial to see (but perhaps still worth observing) that a variant of
CIPHERUNICORN-E where the function L is used after every round of the Feistel
computation would be trivially weak. This might be a little counter-intuitive
since L is intended to provide key-dependent mixing between the strands of the
Feistel structure and it might be argued that including this function after every
round would make matters harder for the cryptanalyst. Yet starting the cipher
with an input exclusive-or difference of (A,0) where A = 0x00000001 (say),
one round of the Feistel network would give the difference (0, A) as input to L.
For one in four keys, the output from L would be (A,0) to be used as input for
the start of the next Feistel round. So on, and so forth, throughout as many
(inactive) rounds of the cipher as we care to go. Over 14 rounds of the cipher
this would give a characteristic holding with probability 1 for a fraction of 2714
of all possible keys. However this does not apply to CIPHERUNICORN-E.

At this level of analysis, one impact of the function L seems to be in possibly
reducing the minimum number of active rounds in a differential attack from
seven to six. This will have an effect on the bounds for the effectiveness of
differential cryptanalysis on CIPHERUNICORN-E.

6 The Function Y

The function Y is a particularly useful function in CIPHERUNICORN-E. It is
described by the following equations where addition is carried out modulo 232

x + (z<r),
b = a+ (aks),
Visi(z) = b+ (b<t).

The typical result of an application of the function Y is to amplify any small
difference between two input words. The intention seems to be to improve the
avalanche of change in the cipher and in this it can be expected to be reasonably
effective. This is particularly the case since change tends to be introduced
towards the arithmetically more significant bits of the word, and it is the most
significant byte of the output from Y that is immediately used as input to the
S-boxes.

It should be observed that fixed characteristics for Y are possible. For ex-
ample, Y(A) = A = 0x80000000. There are also some degenerate cases where
the function Y can actually reduce the Hamming weight of a difference between
two inputs. For example, choosing ¢ = 0x90000000 and b = 0x00000000 we
have an input exclusive-or difference a & b = 0x90000000 yet for Y3 16, the
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output difference Y3 g 16(a) @ Y3 5,16(b) = 0x10000000. However these, and any
other such cases, might be viewed as exceptional.

Unfortunately the function Y is rather difficult to analyze. Certainly it is dif-
ficult to incorporate the role of Y into a broader analysis of the CIPHERUNICORN-
E round function. It might be argued that despite the use of integer addition,
exclusive-or differences between the inputs to Y will be modified by the function
in a reasonably predictable way. Thus it is interesting to consider the resistance
of CIPHERUNICORN-E to differential cryptanalysis when this function is not
present. However, it does appear that the modification Y makes to an input
difference A can be significant. This is particularly the case since it is the only
operation that effectively operates across byte boundaries.

As mentioned in Section 4.7 one simplification to the cipher is to replace the
function Y with Y*®P(-) described by

Y*P(z) = 2 @ ((z A 0xff)<24) @ (z A 0x££00)<16) ® (z A 0x££0000) <k 8).

As an approximation this seems to be reasonable. Small exclusive-or differences
are magnified somewhat and changes are propagated towards the most signifi-
cant bits in a word. At this level of analysis, it is difficult to imagine a circum-
stance where cryptanalysis of the round function used in CIPHERUNICORN-E
will be significantly easier than cryptanalysis of the same round function when
Y is replaced with Y7*¢P,

After a brief review, it seems reasonable to assume that conservative esti-
mates for the resistance of UNI-E-NO-Y to attack are likely to be conserva-
tive estimates for the strength of UNI-E-REP-Y. In turn, such estimates for
UNI-E-REP-Y are likely to provide conservative estimates for the security of
CIPHERUNICORN-E itself.

11



Figure 2: Modified CIPHERUNICORN-E round function with w = 15.
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Figure 3: Second modified CIPHERUNICORN-E round function with w = 11.
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7 Differential Cryptanalysis

Differential cryptanalysis [1] is a powerful technique. While some advanced
variants have been proposed [6, 7, 10], these will not be our concern in this
report. In this style of analysis the cryptanalyst attempts to predict (with
some probability) the evolution of a difference between two inputs as they pass
through the encryption process. The notion of difference can vary depending
on the cipher, but it seems that bitwise exclusive-or would be most appropriate
for CIPHERUNICORN-E.

The evolution of the difference can be expressed in different ways. It is typical
to trace this evolution in an exact manner, defining an input and output for each
operation in the encryption process. Under certain assumptions, the probability
of this path (which is called a characteristic) is estimated by the product of
the probabilities at each step in the process. It is typical to assume that a
cryptanalyst is trying to identify a 14-round characteristic when attacking a 16-
round cipher. Often the two outer rounds of the cipher can be removed in what
is frequently called a 2R-attack (we have already observed this in Section 5).

The success of the attack is dependent on the probability of the identified
characteristic. Actually, it is more accurate to say that the success of the attack
depends on the accumulated probability of all possible characteristics that have
the same starting and ending difference. Thus accumulation of all relevant
characteristics is typically termed a differential [9]. Throughout this section we
will switch between characteristics and differentials as the need arises.

In the self-evaluation report [16] the designers provided conservative esti-
mates for the resistance of this cipher to differential cryptanalysis. In this
section we will look at their technique, consider our own separate independent
approach and provide our conclusions on the resistance of CIPHERUNICORN-E
to differential cryptanalysis.

7.1 Differential cryptanalysis of UNI-E-REP-Y

In this section we will consider the round function shown in Figure 2 and used
by the designers to evaluate the resistance of CIPHERUNICORN-E to differential
cryptanalysis.

In the limited time available it was not possible to identify a better differ-
ential path than the one outlined in Figure 3.3 of the designers’ self-evaluation
report [16]. An upper bound for the probability of the differential is estimated
by 27!2. This is likely to be conservative. Following our comments in Section 5,
it might be advisable to use this in deriving a bound of (2712)¢ = 2=72 for the
probability of a useful differential when attacking the cipher rather than the
value (2712)7 = 2784 given in the self-evaluation report [16]. The fraction of the
keys for which the bound of 2772 might apply would depend on the Hamming
weight of the difference. Taking a conservative approach we might assume the
Hamming weight to be 1 for which the characteristic would apply to 27* of the
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keyspace. However it should be noted that such estimates are conservative and
overlook a large number of significant issues. It seems unlikely that a charac-
teristic or differential could be identified which would actually hold with such
probabilities for any reasonable fraction of the key space.

7.2 Differential cryptanalysis of UNI-E-NO-Y

In this variant of the round function we omit Y but keep the 32-bit integer
addition of key material. This alternative simplification is illustrated in Figure 3.
When we look at the round function in CIPHERUNICORN-E (see Figure 1) we see
that between the first four mini-rounds of Computation I and the subsequent
four mini-rounds, two things happen. First some key material is added to the
intermediate data, and second, the ordering of the remaining mini-rounds is
determined by information derived from Computation II.

One class of orderings is particularly interesting. Suppose that mini-round
five is in fact identical to mini-round four. This happens with probability %.
In this case, we potentially have the following characteristic over the first eight
mini-rounds of Computation I holding with some probability p,

(0,0,0,A) =5 (0,0,0,A).

For this to occur we would need the following set of characteristics to hold in
mini-rounds four and five. Here &g, 1, 02, and d3 are intermediate non-zero
differences whose specific values are not important to us since they are entirely
internal to the round function. Note that these internal differences might be
modified depending on the action of the integer addition modulo 232.

A5 AL s A5, A6
+
(0o [[01 || 0211 d5) — (g || 07 || 05 1] 5 )
YL IR (LN (N (NG I (NN
Let us suppose that the key in the integer addition has the value 0x00000002,

for example. Then there are values for A which will provide a differential

(0,0,0,A) N (0,0,0,A) with non-zero probability. One such value is A =

0x10 and in this case
(0,0,0,0x10) =% (0,0,0, 0x10)
with probability p = 277. Thus the differential
(0,0,0,0x10) =3 (0,0,0,0x10)

holds with probability 2~7 over the first eight mini-rounds of Computation I for
one in four of the orderings of mini-rounds five to eight.
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However the key 0x00000002 only occurs with probability 2732, So it is
interesting to consider for what fraction of keys some exploitable effect might
be manifested. Experiments suggest that if we consider randomly chosen keys of

the form Ox******02, then the probability of the differential (0,0,0,0x10) 25
(0,0,0,0x10) is at least 272 in roughly 10% of cases. In roughly 1% of the cases
the probability of the differential is at least 2719, Of course we have already
identified one value for which p = 2=7 (namely 0x00000002).

We can now extend this phenomenon to the full, modified round function
shown in Figure 3. The path of this differential is illustrated in Figure 4 and
there exist values to the additive key material in the round such that the simple
differential 0x00000010 — 0x00000000 holds over the entire round function
of UNI-E-NO-Y with probability 27 x 272 = 279, The additional factor of 272
is due to the probability of having mini-round five identical to mini-round four.
The key values that allow this differential are & = 0x00000002 with all other
additive keys in the round set to zero.

Of course, there is considerable key dependence in this probability. Depend-
ing on the sophistication of the analysis much of this can be accounted for.
However, for our purposes, we will adopt a worst-case analysis and assume that
there exists a differential for a round of UNI-E-NO-Y that holds with probabil-
ity 272 for some portion of the keyspace. Note that this is exactly the style of
differential we considered in Section 5 and it would lead to a bound (for some
fraction of the key space) on the probability of the differential of around 2754
over fourteen rounds of the cipher.

While it is difficult to gauge the effect of these findings on CIPHERUNICORN-
E, it does suggest that the role of function Y is important. If we now include
the function Y that we removed to facilitate this analysis, then the probability
of the differential we have identified would likely fall by a factor of 216 per round
due to the exclusive-or of the byte material towards the end of Computation I.
With the time available for this review, it was not immediately clear how the
attacker might best try and control this effect.

16



Figure 4: Simple differential for the round function in Figure 3.
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7.3 Unanticipated effects

Throughout this analysis, experimentation revealed little evidence of any sub-
stantially irregular effects when comparing a naive (yet typical) analysis of dif-
ferential cryptanalysis and its performance in actuality. By this we mean that
any experiments provided results that were broadly in line with analytic ex-
pectations. As an example, a full implementation of the differential described
in Section 7.2 provided good confirmation of the probabilities predicted. Over
224 randomly chosen texts, the differential 0x00000010 — 0x00000000 for one
round of UNI-E-NO-Y held with probability 2233% ~ 279 when the keys had
the values indicated in Section 7.2.

Due to the magnitude of the probabilities involved, extensive experimenta-
tion was out of the question. Further, it is not clear what value other exper-
imentation might have. While the results of Section 8.2 imply that there can
be unforeseen interactions within the cipher, limited experimentation here sug-
gests that in the absence of results to the contrary, multiplying the probabilities
of identified characteristics and differentials does not immediately seem to be
unreasonable.

7.4 Implications for the full cipher

Given the complexity of CIPHERUNICORN-E we are left with little alternative
but to study much simplified versions of the cipher. Yet if we make too many
changes to allow for analysis, then it is hard to assess how close to the true
behavior of the cipher the variant remains.

Two simplifications are natural ones to make. The first is to replace the func-
tion Y with a function that has similar properties yet is simpler to analyze. The
second is to remove the function Y altogether. While some advanced analysis
has revealed interesting behavior in the round function of CIPHERUNICORN-E,
the upper bound on the probability of a differential across one round of the
cipher provided by the designers might still be viewed as reasonable (though
less conservative than might previously have been expected).

The function Y appears to be important for the security of the cipher. With-
out this function, a differential for one round of the modified cipher could be
identified that holds with probability 279 for some fraction of the key space.
Nevertheless, for CIPHERUNICORN-E it seems unlikely that a non-trivial differ-
ential for a single round could be readily identified holding with a probability
much greater than 272 for even a small proportion of the keyspace. Best cur-
rent estimates provide an upper bound on the probability of a differential for
CIPHERUNICORN-E of 2772, So with current understanding, it would be rea-
sonable to view CIPHERUNICORN-E as being practically resistant to differential
cryptanalysis.
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Figure 5: Improved linear characteristic for the round function in Figure 2.
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8 Linear Cryptanalysis

While linear cryptanalysis [11] has been very effective in an analysis of DES [12],
it is often less effective against other ciphers. There are several enhancements
and more advanced considerations when we consider the resistance of a cipher
to linear cryptanalysis [5, 8, 17]. However the resistance of a cipher to even
the most basic techniques is often such that these enhancements have negligible
effect.

In linear cryptanalysis we are concerned with predicting the value of a single
bit of information. This bit is typically formed as the exclusive-or combination
of different bits in a word. The bits from a word a, say, that contribute to the bit
of information are indicated by a (0, 1)-vector I' and the value of the bit can be
conveniently represented by the familiar dot product a-I'. This single bit value
will have the values zero and one with a certain probability p. The effectiveness
of a linear cryptanalytic attack can be measured in terms of the bias € where
€ = |1/2 — p|. In the self-evaluation report [16] a measure we will refer to as
the correlation coefficient LP is used for an assessment of linear cryptanalysis.
The two notions are very closely related, but in this report we will continue to
assess linear cryptanalysis using the bias directly.

8.1 Linear cryptanalysis of simplified variants

In this section we will consider the round function shown in Figure 2. This
was used by the designers in evaluating the resistance of CIPHERUNICORN-E to
linear cryptanalysis. Whether or not we believe this simplified round function
to be sufficiently representative of the round function itself, and even though
the results of Section 8.2 cast some doubt on the methodology used, there could
be a slightly better linear approximation than that identified by the designers.

The designers identify a linear approximation that holds with an estimated
correlation coefficient of LP = 279390, Using exactly the same technique we can
identify a linear approximation that appears to hold with correlation coefficient
LP = 2762, The active components of this linear approximation are illustrated
in Figure 5. If we were to use the same methodology and terminology as was
used in the self-evaluation report [16] we might estimate that

LP = {input mask # 0 for (Sp||S1||S2)}?
= {input mask # 0 for (Sp||S1)}
{input mask # 0 for (Sp||S2)}
{input mask =0 for (Sp||S2)}*
{input mask # 0 for S;}?
= {input mask # 0 for S3}*
(2726)2 5 2738 5 9788 5 (27 BB0)L 5 (9-6)6 _ 962
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Thus it is reasonably straightforward to use the designers’ own techniques [16]
to find slight improvements and we might be tempted to bound the correlation
coefficient LP of a linear approximation to a round of CIPHERUNICORN-E by
2762 instead of 27639 This has no practical impact on the security of the
cipher. Indeed, work by Chabaud and Vaudenay [2] and Selcuk [18] suggests
that the low correlation values these per round estimates imply for the cipher
as a whole, are not very useful. What is more important is that no avenue
for mounting a practical linear cryptanalytic attack is evident from this short
review.

Since the linear approximation in Section 8.1 and Figure 5 did not involve
Computation II, then the form of the function Y'(-) was immaterial. Thus the
linear approximation for UNI-E-REP-Y identified in Section 8.1 is also applica-
ble to UNI-E-NO-Y. Computation I appears to be particularly resistant to linear
cryptanalysis. It is not obvious how we might identify an interaction with Com-
putation IT that would make a linear cryptanalytic attack significantly easier.

8.2 Unanticipated effects

The cryptanalyst has few tools available in trying to assess the security of a
cipher with regards to linear cryptanalysis. The typical approach is to consider
the bias and correlations of sub-components in the cipher and then to combine
these (using the so-called piling-up lemma [12] or multiplication of correlation
coefficients) into an estimate for the magnitude of a bias or correlation for the
cipher as a whole.

It is well-known that the piling-up lemma cannot be applied without con-
siderable care. Due to unexpected interactions in the cipher, or unforeseen
additional correlations, overall estimates derived in this way can end-up be-
ing in some considerable error. To try and gauge whether this might be the
case with CIPHERUNICORN-E some limited experiments were completed. These
were designed to try and assess whether simply composing the biases or linear
correlations would be a reasonable way to estimate the security of a cipher.

It is very difficult to know where to look for such effects. The biases are
expected to get small quickly, so if we are to experimentally assess the bias of
a linear approximation the components must necessarily be very simple. This
in turn provides reduced opportunities for significant dependencies to build.
However, consider the very simple network described here.
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We can test many different linear approximations across this network. There
may well be some significant dependencies between the strands, but it is difficult
to identify what they might be. We will illustrate the complications that take
place by looking at two sets of simple approximations

(0x8e, —,0x83,0x1f) — (0xd9,—,0x83,0x1f) (1)
(0x30, —,0x83,0x1f) — (0xd9,—,0x83,0x1f) (2)
Off-line analysis might have suggested the following constructions for these

approximations. Approximation (1) might have be composed as the concatena-
tion of three approximations A, B, and C given by

(—, —,0x83,0x1f) =3 (=, —,0x83,0x1f)
(0x8e,—,—,—) =%  (0%d9,—,—,—)
(0xd9, —, 0x83,0x1£) 257 (0xd9, —, 0x83, 0x1f)
s . 26 .. 9-3.3 16 _ o—4
Independently these approximations have biases 5z5 ~ 2 » 556 = 277, and

28~ 2733 respectively. Meanwhile Approximation (2) might be composed as

(—, —,0x83,0x1f) 2% (=, —, 0x83,0x1f)
(0x30,—,—,—) =% (0xd9,—,—,—)
(0xd9, —, 0x83, 0x1£) 2557 (0xd9, —, 083, 0x1f)
Independently these approximations have biases 2% ~ 2733, 18 = 274 and
28~ 2733 respectively.

If we were to use the piling-up lemma, we would predict that the bias of
both Approximations (1) and (2) would be

273.3 X 274.0 X 273.3 X 22.0 _ 278.6-

Yet when we come to experimentally measure these biases we find that out of
224 random texts Approximation (1) gives a bias of 27%? whereas there is no
detectable bias for Approximation (2).
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To see what is happening, we might consider the value of the three con-
stituent approximations simultaneously since they are not independent. In the
following table we consider all 2'6 possible inputs to the two left-most strands
(since these are what matter for this approximation) and we count the number
of times the constituent approximations A, B, and C take the value zero or one
for both Approximations (1) and (2).

[ Approximation || value of A | value of B | value of C || count

©) 0 0 0 13398
(1) 0 0 1 8874
(1) 0 1 0 10318
(1) 0 1 1 6834
(1) 1 0 0 8778
(1) 1 0 1 5814
(1) 1 1 0 6930
(1) 1 1 1 4590
©) 0 0 0 13090
(2) 0 0 1 8670
(2) 0 1 0 10626
(2) 0 1 1 7038
(2) 1 0 0 9086
(2) 1 0 1 6018
(2) 1 1 0 6622
(2) 1 1 1 4386

For both approximations we can look at these counts and observe different
features. For instance, to see the bias of constituent approximation B in both
cases we can add the counts in those rows for which B takes the value 0. We
have that

(13398 + 8874 + 8778 + 5814) = (13090 + 8670 + 9086 + 6018) = 36864

and approximation B (in isolation) in both cases has bias

(36864 — 32768)

__o—4
216 =27

However consider the bias of Approximations (1) and (2) in their entirety.
If we count the number of times that Approximation 1 takes the value 0, this
can occur when all constituent approximations A, B, and C take the value 0, or
when exactly one of them does. Thus the bias of Approximation 1 is given by

(13398 + 6834 + 5814 + 6930) — 32768 ~ 983
916 ~
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whereas the bias of Approximation 2 is given by

(13090 + 7038 + 6018 + 6622) — 32768 —0
216 -

This is a dramatic illustration of the fact that there are considerable dependen-
cies between the different components of the cipher. Using exactly the same
techniques, we find that two approximations that we might expect to have the
same bias, in fact behave very differently.

There has not been sufficient time in this short review to consider these issues
in much greater depth. It is clear however, that the routine use of the piling-up
lemma, or the equivalent process of multiplying correlation coefficients, can lead
to misleading results in estimating the security of the cipher.

8.3 Implications for the full cipher

Given the exceptional complexity of CIPHERUNICORN-E an accurate assessment
of the effectiveness of linear cryptanalysis is not easy. Nevertheless, advanced
but limited analysis has revealed the potential for unforeseen effects within the
cipher. While it is very unclear what implications these effects might have,
it would still be a surprise if a practical linear cryptanalytic attack could be
mounted on the cipher. It seems that the complexity of Computation I alone is
such that compromising even a limited number of rounds of CIPHERUNICORN-
E with linear cryptanalytic techniques seems unlikely. While there might be
good grounds to question the typical approach of multiplying the correlations
of different components in estimating the correlations over substantial portions
of the cipher, the full implications of this cannot be gauged at the moment. So
with our current state of knowledge, the absence of practical attacks means that
we might still view CIPHERUNICORN-E as being practically resistant to linear
cryptanalysis.

9 Conclusions

In this report we have presented the results of a brief cryptographic review of the
block cipher CiIPHERUNICORN-E. In particular we focused on the applicability
of differential and linear cryptanalytic techniques.

Best current estimates provide an upper bound on the probability of a dif-
ferential for CIPHERUNICORN-E of 2772, With our current understanding it
would be reasonable to view CIPHERUNICORN-E as being practically resistant
to differential cryptanalysis.

The function Y appears to provide a tangible contribution to the security of
CIPHERUNICORN-E. Without this function, a differential holding with probabil-
ity 2754 over 14 rounds of the cipher could be identified. For CIPHERUNICORN-E
itself, however, it seems unlikely that an active differential for a single round
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could be readily identified with a probability much greater than 27'2 for even
a small proportion of the keyspace.

The function L does not seem to have been fully accounted for in the design-
ers’ self-evaluation report. As a result, the bound of 27%* for the probability
of an exploitable differential given in the self-evaluation report [16] might be
better replaced with the 2772 stated above.

With regards to linear cryptanalysis, the situation is less clear. The com-
plexity of the round function alone is such that compromising even a limited
number of rounds of CIPHERUNICORN-E with linear cryptanalytic techniques
seems unlikely. However, there might be good grounds to question some of
the techniques used in establishing a bound for a linear cryptanalytic attack.
Without considerable additional and very detailed analysis, it is impossible to
comment further. Nevertheless, no new attacks have been identified. So while
the current state of knowledge suggests that the status of CIPHERUNICORN-E is
open, on current evidence a practical linear cryptanalytic attack seems unlikely.

This review took place over a limited time and with limited resources. It
should be anticipated that additional analysis with increased resources may well
find improved results in the cryptanalysis of this cipher and provide a greater
understanding of the true security that is offered.
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