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Chapter 1

Introduction

1.1 Preface

Let q be a prime power, and let E be an elliptic curve over the field Fq of q elements. As
usual we associate to E a finite set called the set of rational points of E over Fq. We denote
this set by E(Fq). We will explain these terms in Chapter 2. Once we know that E(Fq)
actually is a finite Abelian group, we may define the discrete logarithm problem in E(Fq) as
usual. However, since the use of elliptic curves in cryptography, various algorithms to solve
the discrete logarithm problem in the group of rational points of an elliptic curve have been
found. Hence, in order to keep the discrete logarithm problem intractable, we have to choose
the elliptic curve diligently.

As of today the security of an elliptic curve cryptosystem is determined by the cardinality
of E(Fq). Thus in order to decide whether a group of rational points is suitable for use
in cryptography, we have to know its group order. It turns out that in general this is a
burdensome and nontrivial task. The following methods are known to find a suitable group.

The first approach, mostly referred to as the random approach, first chooses a random curve
E. Using point counting algorithms, the group order of E(Fq) is determined. Once the
cardinality is known, we can decide whether the group is suitable for use in cryptography or
not. If it turns out that the curve does not yield a secure cryptosystem, a new elliptic curve
is chosen.

The second method makes use of the theory of complex multiplication. It is therefore referred
to as the complex multiplication method. We abbreviate this method by CM-method. Its
proceeding is quite different from the random approach. In the complex multiplication method
one first searches for candidates of a suitable group cardinality. This can be done without
knowing the corresponding elliptic curves. Once a suitable cardinality is found, the elliptic
curve is determined using complex multiplication.

Finally, let q = pn be a prime power with n > 1. In addition, let m be a positive divisor of
n, m 6= n. If E is defined over Fpm and if we know the group order of E(Fpm), a theorem of
Weil may be used to get |E(Fq)|. The use of Weil’s theorem was first proposed by Koblitz
([Kob92]). Thus we refer to this method as the Koblitz approach. We remark that in [X9.62]
this approach is called the Weil method.
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In this document we report on these methods to find a suitable group. We give both theoretical
and practical run times of all methods, and we compare the advantages and disadvantages of
either algorithm.

This report is organized as follows: The subsequent section lists the notation we use in this
document. In Chapter 2 we introduce the security conditions we have to impose on an elliptic
curve group. Next, in Chapter 3 we discuss in detail all known algorithms to find such a
group. Finally, Chapter 4 deals with implementation issues.

1.2 Notation

In this evaluation report we use a notation similar to [P1363].
p a rational prime
q a power of p, i.e. q = pn

Fq the finite field of q elements
E an elliptic curve over a finite field
(a, b) the parameters of an elliptic curve
E(Fq) the group of rational points of E over the field Fq
|E(Fq)| the group order of E(Fq)
O the point at infinity
G a base point of an elliptic curve cryptosystem
r the cryptographic prime factor
k the cofactor

In the framework of the CM-method we make use of the following symbols.
∆ an imaginary quadratic discriminant
O∆ the imaginary quadratic order of discriminant ∆
h(∆) the class number of discriminant ∆
hc(∆) the crossover class number

As usual we describe the complexity of an algorithm in terms of its bit-complexity. The
bit-complexity estimates the number of basic operations a processor has to perform when
executing an algorithm. Throughout this document we estimate the bit-complexity of an
algorithm as its ’ordinary’ bit-complexity, that is we assume that a schoolbook implementation
of the algorithm is used. From a practical point of view this is more reasonable than using
theoretical bit-complexities of optimized algorithms. Often the optimized variants are not
implemented, as their complexity is only asymptotically superior to the ordinary algorithm.

Furthermore by log we denote the natural logarithm, that is the logarithm to the base e. In
addition, the logarithm to the base 2 is written as log2 .



Chapter 2

Elliptic Curves in Cryptography

In this chapter we review the security conditions we have to impose on an elliptic curve group
for use in cryptography. As usual we distinguish two different cases. First, in Section 2.1 we
list the requirements if q = p is a large prime. Second, in Section 2.2 we turn to elliptic curves
defined over a finite field of characteristic 2.

2.1 Elliptic Curve Groups over Fp

Let q = p be a prime, p ≥ 5. An elliptic curve over Fp is a pair E = (a, b) ∈ F2
p with

4a3 + 27b2 6= 0. A point on E is a solution (x, y) ∈ F2
p of y2 = x3 + ax + b or the point at

infinity O obtained by considering the projective closure of this equation. The set of points
on E over Fp is denoted by E(Fp). It carries a group structure with the point at infinity
acting as the identity element. It is called the group of rational points of E over Fp.

In the scope of this report we call the elliptic curve group E(Fp) cryptographically strong if
it satisfies the following conditions which make the cryptosystems, in which E(Fp) is used,
secure and efficient.

We first consider security. If E(Fp) is used in a cryptosystem, the security of this cryptosystem
is based on the intractability of the discrete logarithm problem in E(Fp). Several discrete
logarithm algorithms are known. To make their application impossible, we require that E(Fp)
satisfies the following conditions.

1. We have |E(Fp)| = k · r with a prime r > 2160 and a positive integer k.

2. The primes r and p are different.

3. The order of p in the multiplicative group F×r of Fr is at least B, where B ≥ 20.

The first condition excludes the application of generic discrete logarithm algorithms. Their
running time is roughly the square root of the largest prime factor of the group order (see for
example [vOW99]). We make use of the bound 2160 as proposed in [X9.62], as this bound is
consensus in the cryptographic community. The second condition makes the anomalous curve
attack impossible (see [SA98], [Sem98], [Sma99]).
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The last condition excludes the attacks of Menezes, Okamoto, Vanstone ([MOV91]), and the
attack of Frey, Rück ([FR94]). Both methods reduce the discrete logarithm problem in E(Fp)
to the discrete logarithm problem in a finite extension field of Fp. The degree of this extension
over Fp is at least the order of p in F×r , where in general equality holds, as shown in [BK98].
The third condition is based on the assumption that the discrete logarithm problem in a finite
field of order of magnitude pB is intractable. The bound B = 20 is explicitely given in [SEC1].
In [X9.62] the standard requires B ≥ 21 (Annex A.1.1 of [X9.62]). Furthermore, we point
out that the German Information Security Agency [GIS01] requires B ≥ 104. However, if the
first condition holds and if B ≥ 20, an attacker will have to compute a discrete logarithm in
a finite field of order of magnitude at least 23200. This is currently not possible, and following
Lenstra/Verheul ([LV01]) will stay impossible for at least the next 40 years. We therefore
consider B ≥ 20 to be a good choice.

Let us now consider efficiency. Suppose that an elliptic curve E over a prime field Fp satisfies
the security conditions. If this curve is used in a cryptosystem, the efficiency of this system
depends on the efficiency of the arithmetic in Fp. So p should be as small as possible. It
follows from a theorem of Hasse that

(
√
|E(Fp)| − 1)2 ≤ p ≤ (

√
|E(Fp)|+ 1)2 . (2.1)

Hence, we try to make |E(Fp)| as small as possible. Now the first security condition implies

|E(Fp)| = k · r (2.2)

with a prime number r > 2160 and a positive integer k, the so called cofactor. The security
of the cryptosystem, in which E(Fp) is used, is based on the intractability of the discrete
logarithm problem in the subgroup of order r in E(Fp). This security is independent of k.
Therefore, k can be as small as possible. An explicit bound of k is given in [SEC1]. We
therefore refine the first security condition as follows:

4. We have |E(Fp)| = k · r with a prime number r > 2160 and a positive integer k ≤ 4.

We remark that this requirement is stricter than the notion of trialdivision with a bound 255,
as proposed in [X9.62], Annex A.3.2 . However, our practical results give evidence that curves
with k ≤ 4 are found in reasonable time.

We explain an additional security condition required by the German Information Security
Agency GISA ([GIS01]). The third condition implies that the endomorphism ring End(E(Fp))
of the elliptic curve over the algebraic closure of Fp is an imaginary quadratic order. The
GISA requires the following.

5. The class number of the maximal order which contains End(E(Fp)) is at least 200.

The reason for this condition is that among all curves over a prime field only very few have
endomorphism rings with small class numbers. So those curves may be subject to specific
attacks. However, no such attacks are known. As this condition is not considered in any
international cryptographic standard, we do not take it into account.

To summarize we say that an elliptic curve group E(Fp) is cryptographically strong if it
satisfies the conditions from Table 2.1. They are labelled (O1) - (O3), where ’O’ stands for
odd.
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(O1) |E(Fp)| = k · r, r > 2160 prime, k ≤ 4
(O2) p 6= r
(O3) ps 6≡ 1 mod r, 1 ≤ s < 20

Table 2.1: Security conditions for an elliptic curve group E(Fp)

2.2 Elliptic Curve Groups over F2n

In this section let q = 2n. An elliptic curve over F2n is a pair E = (a, b) ∈ F2
2n with b 6= 0.

A point on E is a solution (x, y) ∈ F2
2n of y2 + xy = x3 + ax2 + b or the point at infinity

O. Again the set of points on E over F2n is denoted by E(F2n) and again it carries a group
structure with the point at infinity acting as the identity element.

The security and efficiency conditions on E(F2n) are similar to the requirements of Section
2.1. We summarize them in Table 2.2. They are labelled (E1) - (E3), where ’E’ stands for
even.

(E1) |E(F2n)| = k · r, r > 2160 prime, k ≤ 4
(E2) 2ns 6≡ 1 mod r, 1 ≤ s < 20
(E3) n is prime

Table 2.2: Security conditions for an elliptic curve group E(F2n)

We remark that the anomalous curve condition is r 6= 2 in this case. As (E1) requires r to be
a large prime, the anomalous curve condition follows from (E1). In addition we point out that
the primality of n is not required by any standard. However, recent results in the framework
of the Weil descent make the condition (E3) necessary (see [GHS02a], [GHS02b]).

Finally, we remark that in contrast to the GISA we do not require that E may not be defined
over F2. Hence we allow the use of the two elliptic curves (0, 1) and (1, 1) as proposed by
Koblitz ([Kob92]).
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Chapter 3

Generation Methods

In this chapter we discuss various methods to find a cryptographically strong elliptic curve
group. The task we have to solve is as follows: Let r0 and k0 be positive integers with
r0 ≥ 2160 and k0 ≤ 4. In addition to the requirements of Chapter 2 we have to find an elliptic
curve group whose order factors as k · r with r ≥ r0 and k ≤ k0. Thus the integers r0 and k0

serve as bounds for r and k, respectively, to define an individual security and efficiency level.

Before actually investigating the generation methods we turn to the important question of
primality testing.

3.1 Primality Tests

Testing integers for primality is an important task in public key cryptography. However, as
primality proving is rather slow probabilistic primality tests are used in practice. The term
’probabilistic’ means that the primality test may output a wrong answer.

Throughout the different cryptographic standards the Miller-Rabin test is proposed for use
in practice (e.g. [X9.62], Annex A.2.1). Let i be an integer and T a positive integer. If the
Miller-Rabin test says that i is composite, the answer is true. However, if the Miller-Rabin
test claims i to be prime, the answer is wrong with a probability at most 1/4. Thus in order
to decrease the error probability, the Miller-Rabin test is performed independently T times
for the input i. A common number of independent tests is T = 50, as proposed in [X9.62],
Annex A.2.1 . Then the probability of accepting a composite i as prime number is at most
2−100. This error bound is sufficient for practical applications. We write isPrime(i, 50) to
denote the Miller-Rabin test. isPrime(i, 50) returns false, if i is shown to be composite
within at most 50 tests. It returns true otherwise.

Finally, the bit-complexity of isPrime(i, 50) is O(log3 i) ([Coh95]). We remark that very
recently a deterministic polynomial time primality test was published ([AKS02]). However,
its applicability in practice is not yet clear.
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3.2 Finding Suitable Elliptic Curve Groups over Fp

In this section we present two methods to find a cryptographically strong elliptic curve group
over a finite prime field. First, the random approach is discussed in Section 3.2.1. Second,
we present the CM-method in Section 3.2.2. We remark that the Koblitz approach is not
applicable in the case of a finite prime field. In Section 3.2.3 we show how to find a point of
order r. Finally, in Section 3.2.4 we compare the random approach to the CM-method.

Before turning to the algorithms we describe the algorithm isStrongP(r0, k0, p,N). It requires
positive integers r0 and k0 as input with r0 ≥ 2160 and k0 ≤ 4, respectively. In addition the
algorithm gets a prime p and a positive integerN . The algorithm implements the requirements
(O1) - (O3) of Table 2.1, where we substitute 2160 by r0 and 4 by k0 in (O1). It returns a
prime r if N = k · r is the order of a cryptographically strong elliptic curve group over Fp
with r ≥ r0 and k ≤ k0. Otherwise isStrongP returns 0.

Algorithm 3.1: isStrongP(r0, k0, p,N)
Input: Positive integers r0 and k0 with r0 ≥ 2160 and k0 ≤ 4.

A prime p and the order N of a group of rational points of an elliptic curve over Fp.
Output: A prime r if N = k · r is the order of a cryptographically strong elliptic curve group over Fp

with r ≥ r0 and k ≤ k0, and 0 otherwise.

1: //check if N is in the Hasse interval
2: if |N − (p+ 1)| > 2

√
p then

3: return (0);
4: r ← 0; k ← 0; //initialize both r and k with 0
5: //check condition (O1) by trialdivision
6: for i← 1; i ≤ k0; i← i+ 1 do
7: if i | N AND isPrime(N/i, 50) = true AND N/i ≥ r0 then
8: r ← N/i; k ← i; break;
9: if r = 0 then

10: return (0);
11: //check condition (O2)
12: if p = r then
13: return (0);
14: //check condition (O3)
15: pr ← 1 mod r;
16: for i← 1; i ≤ 19; i← i+ 1 do
17: pr ← p · pr mod r;
18: if pr = 1 then
19: return (0);
20: return (r);

We estimate the bit-complexity of isStrongP(r0, k0, p,N). First, the computation of
√
p in

line 2 and the trialdivision in line 7 are negligible. As we have N = O(p), the Miller-Rabin
test in line 7 is of bit-complexity O(log3 p). Finally, the multiplication and reduction modulo
r in line 17 are of bit-complexity at most O(log3 p), too. Thus in all isStrongP(r0, k0, p,N)
is of bit-complexity O(log3 p).
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3.2.1 Random Approach

We present an algorithm to randomly generate a cryptographically strong elliptic curve group
E(Fp). We denote this algorithm by randomApproachP(r0, k0). Its input are positive integers
r0 and k0 with r0 ≥ 2160 and k0 ≤ 4. The algorithm outputs a prime p, positive integers r and
k, and an elliptic curve E such that |E(Fp)| = k · r and such that isStrongP(r0, k0, p, k · r)
returns r.

The first task is to find a prime p. As of today no attacks on elliptic curve cryptosystems are
known which exploit special properties of some field Fp. Thus the choice of the prime p is
not critical. However, we have to consider the boundary conditions r ≥ r0 and k ≤ k0. We
write b for the bitlength of k0 · r0. We propose to choose p such that k0 · r0 ≤ p ≤ 2b. The
method getPrime(r0, k0) returns such a prime. The user may choose his own implementation
of getPrime. For instance, one may want to use primes in the interval [k0 · r0, 2b] which are
generated by some pseudorandom number generator as described in FIPS 186 ([FIPS186]).

Once p is known the further proceeding is as follows: Choose parameters a and b with
4a3 + 27b2 6≡ 0 mod p, determine the order of the group of rational points of the curve
(a, b) over Fp, and finally check if this group is cryptographically strong.

We first explain how to choose a and b. It is common to choose parameters verifiably at
random. This method is e.g. explained in [X9.62], Annex A.3.3.2 . The basic idea is to make
use of the one-way property of a cryptographic hash function. By h we denote such a hash
function and by l the length in bits of the output of h. We assume l ≥ 160 (e.g. SHA-1 or
RIPEMD-160). In order to generate a curve verifiably at random one first chooses a bitstring
of length at least l. We write SEED for this string. Once SEED is known the value h(SEED) is
used to compute a and b deterministically by a publicly known algorithm. Thus if we provide
SEED, the hash function h, and the deterministic algorithm to compute (a, b) from h(SEED),
any entity may verify that a and b actually are computed using SEED. The one-way property
of h guarantees that the parameters actually are chosen at random. In this report we write
getParametersP(p,SEED) for any algorithm which returns an elliptic curve E defined over
Fp verifiably at random.

If the curve E = (a, b) is chosen we have to determine the group order of E(Fp). Currently,
the best known algorithm for this task is the SEA-algorithm. The SEA-algorithm is due to
Schoof, Elkies and Atkin (see for instance [Mül95], [BSS99]). We write SEA(p,E). It requires
a prime p and an elliptic curve E defined over Fp as input. The algorithm returns |E(Fp)|. We
denote the result of SEA(p,E) by N . If isStrongP(r0, k0, p,N) 6= 0 we are done. Otherwise
we have to invoke getParametersP(p,SEED), SEA(p,E), and isStrongP(r0, k0, p,N) until we
succeed.

We point out two methods for speeding up randomApproachP. First, one may use an early-
abort-strategy. The fundamental idea of the SEA-algorithm is to write N = p+ 1− t, where t
is called the trace of E over Fp. The SEA-algorithm computes the trace t modulo some small
primes pi. Then t is recovered using the Chinese Remainder Theorem. If we know t mod pi
for such a small prime, we can check if pi | N . Thus if this is true and if in addition pi > k0,
the condition k ≤ k0 is false for the current chosen curve. This early-abort-strategy has no
cryptographic implications.

A second enhancement is due to the fact that |E′(Fp)| = p+1+ t, where E′ denotes a twisted
elliptic curve of E over Fp (the term twisted elliptic curve is defined in Section 3.2.2). Thus
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Algorithm 3.2: randomApproachP(r0, k0)
Input: Positive integers r0 and k0 with r0 ≥ 2160 and k0 ≤ 4.
Output: Primes p and r, and a positive integer k.

An elliptic curve E over Fp with |E(Fp)| = k · r and such that isStrongP(r0, k0, p, k · r) = r.

1: p← getPrime(r0, k0);
2: while true do
3: E ← getParametersP(p,SEED);
4: N ← SEA(p,E);
5: r ← isStrongP(r0, k0, p,N);
6: if r 6= 0 then
7: return (p,E, r,N/r);

if E(Fp) turns out to fail the test isStrongP, we may test E′(Fp) without performing the
SEA-algorithm. However, this approach is not covered by the above mentioned algorithm to
choose a curve verifiably at random. Nevertheless, if E is chosen verifiably at random, it is
easy to extend the above algorithm to allow the use of E′, too.

Depending on the implemented SEA-algorithm the bit-complexity of randomApproachP(r0, k0)
may be shown to be O(log5+ε k0 · r0) up to O(log7 k0 · r0) where ε > 0 (see [BSS99], [Bai02b]).

3.2.2 Complex Multiplication Approach

In this section we discuss the CM-method to find an elliptic curve group over Fp. It is out of
the scope of this report to present in detail the theory of complex multiplication. We remark
that none of the relevant standards comprises a detailed algorithm if a security level r0 and
k0 is defined in advance. We therefore sketch the algorithm cryptoCurve as developed in
[Bai02a]. A rather abstract description of an algorithm using the CM-method may be found
in the standards of IEEE ([P1363]) or of ANSI ([X9.62], [X9.63]).

The central term in the framework of the CM-method is that of an imaginary quadratic
discriminant. We denote such a discriminant by ∆. It is a negative integer with ∆ ≡
0, 1 mod 4. By O∆ we denote the imaginary quadratic order of discriminant ∆, that is we
have O∆ = Z[∆+

√
∆

2 ]. In addition we write h(∆) for the class number of O∆. If p is a prime
number then p is said to be a norm in O∆ if integers t, y exist such that

t2 −∆y2 = 4p . (3.1)

If p is a norm in O∆, using complex multiplication, elliptic curves E1,p and E2,p over Fp with
endomorphism ring O∆ and

|E1,p(Fp)| = p+ 1− t, |E2,p(Fp)| = p+ 1 + t (3.2)

can be constructed as follows (see [AM93], [BSS99], [Bai02a]).

Let H ∈ Z[X] be the minimal polynomial of j(∆+
√

∆
2 ) where j is the elliptic modular function.

The degree of H is h(∆). Modulo p the polynomial H splits into linear factors. Let jp be a
zero of H mod p that is, jp is an integer such that H(jp) ≡ 0 mod p. We assume ∆ < −4 in
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what follows (the cases ∆ = −3 and ∆ = −4 are not covered in this report). Then we have
jp /∈ {0; 1728}. Let sp be a quadratic nonresidue mod p. With

κp =
jp

1728− jp
, (ap, bp) = (3κp, 2κp) (3.3)

we have
{E1,p, E2,p} = {(ap, bp), (aps2

p, bps
3
p)}. (3.4)

The elliptic curves E1,p and E2,p are said to be twisted elliptic curves over Fp. After this
construction it is not known which of the curves is E1,p and which is E2,p. However by
choosing points on each curve and testing whether their order is a divisor of p + 1 + t or
p+ 1− t, the curves E1,p and E2,p can be identified.

The crucial observation is that we can decide whether one of the groups E1,p(Fp) or E2,p(Fp)
is cryptographically strong before we actually construct those curves. We only need to know
the prime number p and its representation (3.1). Then we know the group orders of E1,p(Fp)
and E2,p(Fp) from (3.2). Using those orders and algorithm isStrongP we can check the
security conditions (O1), (O2), and (O3).

In general most of the time is spent to compute the polynomial H. The reason is that
the coefficients of H become rather large, even for a discriminant of a small class number.
However, as explained in [P1363], [X9.62], [X9.63], and [Bai02a] depending on the value
∆ mod 24 one may use alternative polynomials whose coefficients are very small compared
to H. Although working with these polynomials accelerates the CM-method significantly in
practice, the bit-complexity of the CM-method is invariant. We remark that Enge and Morain
recently proposed further alternative polynomials speeding up the CM-method ([EM02]).

Let h0 be a positive integer (its meaning will become clear soon). In [Bai02a] the algorithm
cryptoCurve(r0, k0, h0) is described. It implements the above proceeding. The input pa-
rameter h0 allows to choose an individual lower bound of the class number of the imaginary
quadratic discriminant in use. Its output is a discriminant ∆ with h(∆) ≥ h0, a prime p of
bitlength blog2 k0 · r0c + 1, a prime r with r ≥ r0, a positive integer k ≤ k0, and an elliptic
curve group E(Fp) of order k · r such that isStrongP(r0, k0, p, r · k) returns r. In addition
the algorithm returns a base point G ∈ E(Fp) of order r. An algorithm to find such a point
G is described in Section 3.2.3.

In cryptoCurve one may choose a prime p in advance, too. It is shown in [Bai02a] that the bit-
complexity of cryptoCurve(r0, k0, h0) is at most O(log4 r0k0(log r0k0 + h2

0 log h0 log log h0) +
h6

0 log h0), if p is not given. As explained in Section 1.2 the term ’at most’ means that we do
not assume to work with optimized algorithms.

3.2.3 Finding a Point of Large Prime Order

We explain how to find a base point G. Let a prime p and an elliptic curve E over Fp be
given. As usual we write |E(Fp)| = k · r with a prime r. We then choose a random element
x0 ∈ Fp, that is we uniformly take a non-negative integer x0, x0 < p. If x3

0 + ax0 + b is a
square in Fp, we denote by y0 a square root of x3

0 + ax0 + b in Fp. Otherwise we choose new
random values x0 until we succeed.

We may assume 1 ≤ y0 ≤ p − 1. y0 may be computed using Shank’s RESSOL algorithm
([Coh95]) or the algorithm in Annex D.1.4 of [X9.62]. One may flip a coin to choose a root
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1 ≤ y0 ≤ p−1
2 or p+1

2 ≤ y0 ≤ p− 1. Then (x0, y0) is a point in E(Fp) \ {O}. If k · (x0, y0) 6= O,
then G := k · (x0, y0) is a point of order r due to a theorem of Lagrange. However, in order to
recover a false input, we propose to compute r ·G. If r ·G 6= O, an error message is output.

The computation of G is dominated by drawing a square root in Fp. The bit-complexity
of this procedure is O(log4 p) ([Coh95]). In addition, the verification of the order of G is of
bit-complexity O(log4 p), too. Thus the whole computation of G and verifying its order is of
bit-complexity O(log4 p).

3.2.4 Comparison of Both Generation Methods

In this section we compare the random approach to the CM-method to find a cryptographically
strong elliptic curve group over Fp. We compare the security and performance implications
of both generation methods.

Let us first turn to security. The main advantage of the random approach is that every
cryptographically strong elliptic curve group over Fp is computed with approximately the
same probability. Thus the generated curves are not special in any sense. Contrary the CM-
method is only applicable if discriminants of reasonable small class numbers are in use, say
discriminants of class number at most 1000 (see [Bai02a]). Then the generated curves are
special in the sense that their endomorphism ring has a class number at most 1000. Thus
not every cryptographically strong elliptic curve group may be output by the CM-method.
However, as no attack makes use of this property, we do not consider a small class number to
imply cryptographic weakness.

Next we discuss the practical performance. We present practical data for the case k0 = 1,
that is we search for an elliptic curve group of prime order. We write b for the bitlength of r0.
We stated in Section 3.2.1 that the bit-complexity of the random approach only depends on b.
However, as explained in Section 3.2.2 the bit-complexity of the CM-method depends on the
class number of the imaginary quadratic discriminant in use, too. In [Bai02b] we investigate
in detail for which class number both approaches have the same run time in practice for some
given, fixed b. We call this class number the crossover class number and denote it by hc(b).

In order to determine hc(b) we first measured the run time of randomApproachP(r0, k0). We
point out that we implemented the early-abort-strategy and the use of a twisted curve as
explained in Section 3.2.1. We then invoked cryptoCurve(r0, k0, h0) for various class number
bounds h0 to get the crossover class number hc(b) (for details we refer to [Bai02b]). All tests
are performed on an ordinary PC (Athlon XP1600+ running Linux 2.4.10 at 1.4 GHz and
having 1GByte main memory) using freely available software. The result is given in Table
3.1.

b 160 170 180 190 200 210
Run time in minutes 3.63 4.87 7.97 10.3 13.1 16.7

hc(b) 750 820 960 1040 1090 1200

Table 3.1: Average run time of the random approach to find a cryptographically strong
elliptic curve group E(Fp) of prime order. b denotes the bitlength of p. For each b we performed
100 tests. In addition, crossover class numbers hc(b) are given.
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The CM-method is supposed to be faster in practice if h(∆) < hc(b) for the discriminant
∆ used in the CM-method. We conclude from Table 3.1 that the crossover class number is
rather large. Thus even if one respects the additional requirement of the GISA that the class
number of the fundamental discriminant corresponding to ∆ is at least 200, the CM-method
is superior to the random approach for bitlengths of cryptographic interest. Finally, we expect
the crossover class number to increase if polynomials proposed by Enge and Morain ([EM02])
are used in the CM-method.

3.3 Finding Suitable Elliptic Curve Groups over F2n

In this section we present three methods to find a cryptographically strong elliptic curve group
over a finite field of characteristic 2. First, in Section 3.3.1 we describe the random approach.
Then in Section 3.3.2 we present the CM-method. Finally, in Section 3.3.3 we turn to the
Koblitz approach.

We first describe an algorithm to check the conditions (E1), (E2), and (E3) of Section 2.2.
The algorithm is called isStrong2(r0, k0, n,N), which is very similar to algorithm isStrongP.
It requires positive integers r0 and k0 as input with r0 ≥ 2160 and k0 ≤ 4, respectively. In
addition the algorithm gets a prime n and a positive integer N . As in the case of odd
characteristic we substitute 2160 by r0 and 4 by k0 in (E1). isStrong2(r0, k0, n,N) returns
a prime r if N = k · r is the order of a cryptographically strong elliptic curve group over F2n

with r ≥ r0 and k ≤ k0. Otherwise it returns 0. We point out that |E(F2n)| is even for a
cryptographically strong elliptic curve group E(F2n).

Algorithm 3.3: isStrong2(r0, k0, n,N)
Input: Positive integers r0 and k0 with r0 ≥ 2160 and 2 ≤ k0 ≤ 4.

A prime n and the order N of a group of rational points of an elliptic curve over F2n .
Output: A prime r if N = k · r is the order of a cryptographically strong elliptic curve group over

F2n with r ≥ r0 and k ≤ k0, and 0 otherwise.

1: //check if N is in the Hasse interval
2: if |N − (2n + 1)| > 2

√
2n then

3: return (0);
4: r ← 0; k ← 0; //initialize both r and k with 0
5: //check by trialdivision if cofactor is at most k0; if not, return 0
6: for i← 2; i ≤ k0; i← i+ 1 do
7: if i | N AND isPrime(N/i, 50) = true AND N/i ≥ r0 then
8: r ← N/i; k ← i; break;
9: if r = 0 then

10: return (0);
11: //check condition (E2)
12: qr ← 1 mod r;
13: for i← 1; i ≤ 19; i← i+ 1 do
14: qr ← 2n · qr mod r;
15: if qr = 1 then
16: return (0);
17: return (r);
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Once we know that the bit-complexity of isStrongP(r0, k0, p,N) is O(log3 p), it is obvious
that the bit-complexity of isStrong2(r0, k0, n,N) is O(n3).

3.3.1 Random Approach

In this section we describe an algorithm to randomly generate a cryptographically strong
elliptic curve group E(F2n). We denote this algorithm by randomApproach2(r0, k0, n). Its
input are positive integers r0 and k0 with r0 ≥ 2160 and 2 ≤ k0 ≤ 4, and a prime n,
n = dlog2 k0 · r0e. The algorithm outputs positive integers r and k, and an elliptic curve E
over F2n such that |E(F2n)| = k · r and such that isStrong2(r0, k0, n, k · r) returns r.

Similar as in the case q = p the proceeding is as follows: Choose parameters a and b in F2n

with b 6= 0, determine the order of the group of rational points of the curve (a, b) over F2n ,
and finally check if this group is cryptographically strong.

Again we recommend to choose a and b verifiably at random. The algorithm is very similar to
the case q = p. A detailed explanation may be found for example in [X9.62], Annex A.3.3.1.
We write getParameters2(n,SEED) for any algorithm which returns an elliptic curve E
defined over F2n verifiably at random.

If the curve E = (a, b) is chosen we have to determine the group order of E(F2n). Currently,
the best known algorithm for this task is a variant of an algorithm due to Satoh ([Sat99]).
This variant is proposed by Fouquet, Gaudry, and Harley ([FGH00], [FGH01]). It uses a
combination of the early-abort-strategy in the SEA-algorithm and the Satoh-algorithm. We
denote their method by SFGH(n,E). It requires a prime n and an elliptic curve E as input.
It returns |E(F2n)|, if the early-abort-strategy does not show cryptographic weakness, and 0
otherwise. We denote the result of SFGH(n,E) by N . If N 6= 0 and isStrong2(r0, k0, n,N) 6=
0 we are done. Otherwise we have to invoke getParameters2(n,SEED), SFGH(n,E), and
isStrong2(r0, k0, n,N) until we succeed.

Algorithm 3.4: randomApproach2(r0, k0, n)
Input: Positive integers r0 and k0 with r0 ≥ 2160 and 2 ≤ k0 ≤ 4.

A prime n with n = dlog2 k0 · r0e.
Output: A prime r and a positive integer k.

An elliptic curve E over F2n with |E(F2n)| = k · r and such that isStrong2(r0, k0, n, k · r) = r.

1: while true do
2: E ← getParameters2(n,SEED);
3: N ← SFGH(n,E);
4: if N 6= 0 then
5: r ← isStrong2(r0, k0, n,N);
6: if r 6= 0 then
7: return (E, r,N/r);

We remark that one may again use a twisted elliptic curve of E over F2n to speed up
randomApproach2. The bit-complexity of Satoh’s algorithm may be shown to be O(n3+ε)
for some ε > 0 ([Sat99]). Although SFGH uses a mixed strategy, we assume that SFGH has



3.3 Finding Suitable Elliptic Curve Groups over F2n 15

the same bit-complexity. Thus the bit-complexity of algorithm randomApproach2(r0, k0, n) is
O(n4+ε).

3.3.2 Complex Multiplication Approach

In this section we discuss the CM-method to find an elliptic curve group over F2n . In order
to implement this approach efficiently, we assume that a database of discriminants of class
numbers m · n is to our disposal, where m ∈ N. For instance, such a database was computed
in the framework of [Bai02a].

Let ∆ be an imaginary quadratic discriminant of class number h(∆), n | h(∆). We first have
to investigate the following two norm equations:

t′2 −∆y′2 = 8 , (3.5)
t2 −∆y2 = 2n+2 . (3.6)

In order to find an elliptic curve having the desired properties, we have to ensure that Equa-
tion (3.5) has no integer solution (t′, y′), while Equation (3.6) has a solution (t, y) ∈ Z2.
If this is true, using complex multiplication, elliptic curves E1,2n and E2,2n over F2n with
endomorphism ring O∆ and

|E1,2n(F2n)| = 2n + 1− t, |E2,2n(F2n)| = 2n + 1 + t (3.7)

can be constructed as explained below (see [LZ94], [X9.62]). We set N1 = |E1,2n(F2n)| and
N2 = |E2,2n(F2n)| in what follows.

As in Section 3.2.2 let H ∈ Z[X] denote the minimal polynomial of j(∆+
√

∆
2 ). Modulo 2 the

polynomial H splits into pairwise different polynomials of degree n, all of which are irreducible
in F2[X]. Let j2n be a zero of H in F2n . We have j2n 6= 0. If N1 ≡ 0 mod 4 we set

E1,2n = (0, j−1
2n ), E2,2n = (1, j−1

2n ) . (3.8)

If N1 ≡ 2 mod 4 we define

E1,2n = (1, j−1
2n ), E2,2n = (0, j−1

2n ) . (3.9)

As n is odd, it is well known that this definition is correct (e.g. [LZ94]). The elliptic curves
E1,2n and E2,2n in Equations (3.8) and (3.9) are called twisted elliptic curves over F2n .

As in the case q = p we can check if one of the numbers N1 or N2 is the order of a crypto-
graphically strong elliptic curve group before we actually construct the corresponding curves.
Furthermore, again we can use alternative polynomials whose coefficients are very small com-
pared to H. The bit-complexity of the CM-method for fields of even characteristic is the same
as in the case of a finite prime field.

3.3.3 Koblitz Approach

In this section we explain the Koblitz approach. The Koblitz approach bases on a theorem
of Weil. In the scope of this report, it works as follows.
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In all, there are two elliptic curves defined over F2 as introduced in Section 2.2. By K1

we denote the elliptic curve (0, 1), by K2 the curve (1, 1). It is easy to see that K1(F2) =
{(0, 1), (1, 0), (1, 1), O} and K2(F2) = {(0, 1), O}. Thus we have |K1(F2)| = 4 and |K2(F2)| =
2. For both groups we write the group order as 2 + 1− ti, where i ∈ {1, 2}. We then associate
to each curve a polynomial Fi := 2X2− tiX + 1. Let 1

αi
be a (complex) root of Fi, and let m

be a positive integer. Then a theorem of Weil states that |Ki(F2m)| = 2m + 1− (αmi + αi
m),

where αi is the complex conjugate of αi.

It is easy to see that α1 = −1+
√
−7

2 and α2 = 1+
√
−7

2 . For instance, we have

|K1(F2163)| = 22 · 653 · 6521 · 34101072914026637 · 20129541232727197849723433 ,
|K2(F2163)| = 2 · 5846006549323611672814741753598448348329118574063 ,

where we write both integers with respect to their prime factorization. The group K2(F2163)
obviously respects the requirements (E1) and (E3). In addition, condition (E2) is satisfied,
too. Hence according to our definition K2(F2163) is a cryptographically strong elliptic curve
group. In general, once we know n we can easily determine whether one of the groups Ki(F2n)
is cryptographically strong. The elliptic curves Ki are called Koblitz curves.

For all primes n, 163 ≤ n ≤ 500, we determined if the groups K1(F2n) and K2(F2n) are cryp-
tographically strong, respectively. We implemented a C++ program and used the computer
algebra system LiDIA ([LiDIA]). The result is given in Table 3.2. It is in conformance with
the results of Solinas ([Sol97]). We see that there are only 6 exponents n for which the group
K1(F2n) is secure. The same is true for K2(F2n).

K1(F2n): n 233 239 277 283 349 409
K2(F2n): n 163 283 311 331 347 359

Table 3.2: Exponents n, 163 ≤ n ≤ 500, yielding a cryptographically strong elliptic curve
group Ki(F2n).

We remark that the endomorphism ring of both K1 and K2 is O−7. Thus its class number
is equal to 1. Finally, we point to a security issue of elliptic curve groups generated by the
Koblitz approach. Let K(F2n) be the group in use. Then a method due to Gallant, Lambert,
and Vanstone ([GLV00]) is faster by a factor

√
2n than the standard square root attacks.

3.3.4 Finding a Point of Large Prime Order

We explain how to find a base point G for elliptic curve groups E(F2n). The proceeding is
similar to the case q = p as described in Section 3.2.3. The following algorithm may be found
in [X9.62].

Let a prime n and an elliptic curve E = (a, b) over F2n be given. As usual we write |E(F2n)| =
k ·r with a prime r. We then choose a random element x0 ∈ F2n . If x0 = 0, the corresponding
point (0, b2

n−1
) is of order 2 in E(F2n). Hence this point is not a suitable choice. We therefore

assume x0 6= 0. We set α = x3
0+ax2

0+b. If α = 0, we set P = (x0, 0). For fields of characteristic
2 it is common to solve quadratic equations of the form z2 + z = β (an algorithm is given
in Annex D.1.6 of [X9.62]). Thus we set β = α · x−2

0 , z = y · x−1
0 , and test if the equation
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z2 + z = β has a solution z0 ∈ F2n . If not, we choose a new random value x0. Otherwise we
set P = (x0, z0 ·x0). Then P is a point in E(F2n) \ {O}. If k ·P 6= O, then G := k · (x0, y0) is
a point of order r due to a theorem of Lagrange. As in the case q = p we propose to compute
r ·G. If r ·G 6= O, an error message is output. If k · P = O a new element x0 is chosen.

The computation of G involves solving a quadratic equation in F2n and computing scalar
multiplies of a point. The bit-complexity depends on the representation of the finite field
F2n . For instance, if we choose a normal basis, solving a quadratic equation is for free (only
XOR and squaring).

3.3.5 Comparison of the Three Generation Methods

We compare the three generation methods described in the previous sections.

First, we discuss the random approach. We cite timings from [FGH01] in Table 3.3. The
authors of [FGH01] do not clearly state what they mean by a secure elliptic curve. However,
they use the term almost prime in the context of the corresponding group order. We therefore
assume that the timings in Table 3.3 give a reasonable estimation for run times to find a
cryptographically strong elliptic curve group in the sense of this report.

n 163 193 197 233 239
Run time in seconds 5 10 10 21 22

Table 3.3: Average run time of the random approach to find an elliptic curve group E(F2n)
of almost prime order. The timings come from [FGH01] and are measured on an Alpha EV6
running at 750 MHz.

We point out that the timings are measured on a quite different platform compared to the
PC used in Section 3.2.4. Nevertheless the run times give evidence that the SFGH with
early-abort-strategy is very fast in practice. Again we point to the advantage of the random
approach that every cryptographically strong elliptic curve group is chosen with approxi-
mately the same probability. Thus again the selected groups are not special in any sense.

Second, we do not have current run times of the CM-method. However, we do not expect
the CM-method to be significantly faster than the random approach as we have to choose the
class number of the discriminant to be a multiple the field degree n. As n ≥ 160 the class
number is at least 160, too. We therefore recommend not to use the CM-method in the case
q = 2n.

Third, we remark that the current record of counting the number of rational points of a
general group E(F2n) is hold by a group of INRIA ([Har02]). They succeeded to determine
the group order of a randomly chosen curve for n = 32003. The run time on the DEC Alpha
EV6 was about 27 hours. This shows that the random approach is very fast in case of fields
of characteristic 2, even for large fields.

Finally, we turn to the Koblitz approach. As stated in Section 3.3.3, if we assume 160 ≤
n ≤ 500 there are only 12 elliptic curve groups suitable for use in cryptography. This is
a very restricted choice. In addition, as mentioned at the end of Section 3.3.3, computing
discrete logarithms in such groups is faster by a factor

√
2n than the standard general discrete

logarithm algorithms. Nevertheless all Koblitz groups respect the requirements (E1), (E2),
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and (E3). They may thus be regarded as cryptographically secure from a current point of
view.



Chapter 4

Implementation Issues

The most important operation in the framework of elliptic curve cryptography is the scalar
multiplication. The scalar multiplication is the problem of computing the point s · P , if an
integer s and a rational point P ∈ E(Fq) are given for some elliptic curve E defined over Fq.

Before actually discussing algorithms to perform a scalar multiplication, Section 4.1 deals
with the problem of how to implement the arithmetic in a finite field. First, in Section 4.1.1
we describe methods to efficiently implement the arithmetic in Fp. In addition, we present a
class of primes p for this purpose. The problem of how to efficiently implement arithmetic in
finite fields of characteristic 2 is addressed in Section 4.1.2.

There are a lot of publications dealing with proposals of speeding up the scalar multiplication
on a certain class of elliptic curves. It is out of the scope of the evaluation report at hand to
discuss all investigations in detail. Instead we give an overview of the currently methods in
use. A survey of fast algorithms for implementing the scalar multiplication in a general group
is given in [Gor98]. We discuss in detail methods for a scalar multiplication in Section 4.2.

Then Section 4.3 discusses the problem if a special choice of curve parameters can significantly
decrease the number of bits to represent elliptic curve points. We close this chapter with a
discussion of special parameters for smart card implementations in Section 4.4.

4.1 Arithmetic in Finite Fields

In this section we review how to efficiently implement the arithmetic in a finite field Fq. First,
in Section 4.1.1 we show how to efficiently implement the arithmetic in Fp. In addition, we
present primes of a special form as proposed in [NIST]. Next, in Section 4.1.2 we discuss the
two common ways to represent a finite field of characteristic 2.

4.1.1 Arithmetic in Finite Prime Fields

In this section we show how to speed up the multiplication operation in a finite prime field.
As usual we denote by p the cardinality of the prime field. We remark that the generation
process of the elliptic curve may be performed more efficiently, too, when using the methods
of this section.
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In Section 4.2.4 we will see that the multiplication of elements in Fp is by far the most
important field operation to implement arithmetic in elliptic curve groups. As usual we
assume that elements in Fp are represented as non-negative integers less than p. If we have to
compute a product of elements e1 and e2 in Fp, a naive approach would be to first compute
the integer e1 ·e2 in Z. Thus in this intermediate state we get an integer of order of magnitude
p2. The result of the multiplication is the unique integer in [0, . . . , p− 1] which is congruent
e1 · e2 modulo p. Thus we would have to perform a reduction operation modulo p.

However, there are representations of the field elements of Fp to speed up this elementary
method. The most famous and in general most efficient one is due to Montgomery ([Mon85]).
We refer to his paper or to [BSS99] for details.

In addition, we mention primes of a special form as proposed in [NIST]. The fundamental
idea is to use prime numbers p of a special form, that is their binary expansion is very sparse.
The primes are called generalized Mersenne numbers. The main speed up is due to the fact
that the reduction of e1 · e2 modulo p may be performed by means of integers of order of
magnitude less than p. Furthermore, if we choose the non-vanishing 2-powers in the binary
expansion of p with care, the representation of integers may be adapted to the hardware in
use.

For instance, assume that the processor uses words of 64 bits. The prime p = 2192 − 264 − 1
is very attractive for this platform, as we now see. The product e1 · e2 in Z may be written
in the form

A5 · 2320 +A4 · 2256 +A3 · 2192 +A2 · 2128 +A1 · 264 +A0 , (4.1)

where each Ai is of bitlength 64 and hence fits in a word.

Furthermore, the sparse binary expansion of p shows 2192 ≡ 264 + 1 mod p. This obviously
yields

e1 · e2 ≡ (A5 +A4 +A2) · 2128 + (A5 +A4 +A3 +A1) · 264 +A5 +A3 +A0 . (4.2)

It is possible that (A5 +A4 +A2) ·2128 has to be reduced modulo p. However, the computation
in Equation (4.2) mostly consists of additions of integers which fit in word.

More generalized Mersenne numbers for fields of different bitlengths may be found in [NIST].
In addition, a further discussion of moduli of a special form may be found in [MOV97].

4.1.2 Arithmetic in Finite Fields of Characteristic 2

In this section we shortly review the common representations of fields with 2n elements.
First, we discuss the representation of F2n with respect to a polynomial basis. Then we turn
to the notion of a normal basis. We remark that the implementation of the efficient point
counting algorithm described in Section 3.3 uses a polynomial basis to represent the field F2n .
However, as efficient algorithms to change the basis are known (see for instance Appendix
D.2.3 of [X9.62]), this constitutes no restriction for use of these parameters with respect to a
normal basis.

Polynomial Basis Representation

Let f be an irreducible polynomial with coefficients in F2 of degree n. It is well known that
F2n = F2[X]/(f), where we write (f) for the principal ideal in the ring F2[X] generated by
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the polynomial f . Such a representation of F2n is called a polynomial representation. The
elements 1, X, . . . ,Xn−1 form a basis, which we call a polynomial basis. A polynomial basis
is mostly used to implement the arithmetic in F2n in software.

In order to decrease the computational complexity, f should be as sparse as possible. It is easy
to see that at least 3 coefficients of f are non-zero. If f actually is of the form Xn +Xκ + 1,
1 ≤ κ ≤ n − 1, f is called a trinomial . The polynomial basis with respect to f is said to be
a trinomial polynomial basis, which commonly is abbreviated by TPB. If a TPB exists, the
smallest possible value κ should be used for interoperability reasons, as proposed in [X9.62]
or [P1363]. A table of fields F2n , 160 ≤ n ≤ 2000, for which a TPB exists may be found in
Annex C.2 of [X9.62].

However, if a TPB does not exist for the field F2n , a polynomial f of the form Xn + Xκ3 +
Xκ2 + Xκ1 + 1, 1 ≤ κ1 < κ2 < κ3 ≤ n − 1, may be chosen (it is obvious that a polynomial
Xn + Xκ2 + Xκ1 + 1, 1 ≤ κ1 < κ2 ≤ n − 1 is not irreducible in F2[X]). The polynomial f
is called a pentanomial in this case, and the corresponding basis is said to be a pentanomial
polynomial basis, which commonly is abbreviated by PPB. If n ≥ 4, the existence of a PPB
is known. Again, for interoperability reasons, a PPB should be used where κ1 is as small as
possible, κ2 is as small as possible for this particular κ1, and finally κ3 is as small as possible
for these particular chosen κ1 and κ2. A table of fields F2n , 160 ≤ n ≤ 2000, for which a
PPB, but no TPB exists, may be found in Annex C.3 of [X9.62].

Normal Basis Representation

In this section we discuss normal basis representations. A normal basis is a basis of the
form α, α2, α22

, . . . , α2n−1
, where α ∈ F2n . A normal basis is attractive for implementing

arithmetic in F2n in hardware, as squaring an element in F2n is simply a cyclic shift. However,
multiplying elements of F2n with respect to a normal basis is in general a non-trivial and
cumbersome task. It is therefore common to use a Gaussian normal basis, abbreviated by
GNB. It is well known that if 8 - n, a GNB exists. However, as our requirement (E3) of
Section 2.2 assumes n to be prime, this is no restriction for cryptographic purposes.

The complexity of arithmetic with respect to a GNB is measured in terms of the type of
the GNB in use. The type is a positive integer, and as in [X9.62] we denote the type by T .
Roughly speaking, the smaller the type T is, the more efficiently the arithmetic in F2n may
be implemented. A necessary condition for a positive integer T ′ to be the type of a GNB is
that T ′n+ 1 is prime. Thus in this report a GNB of type 1 is not possible.

Recommended Fields of Characteristic 2

In this section we list finite fields of characteristic 2, which we propose for use in cryptography.
The results may be found in Table 4.1. The table bases on Annex C of [X9.62]. In addition,
for each chosen n we show if a TPB exists or not. In Table 4.1 we plot a star in the column
of n if a TPB for the field F2n exists. Otherwise, we set a star in the corresponding row of
PPB. Finally, we give the type T of the GNB. We remark that in Table C-1.a of [X9.62], no
value T is given for n = 179, although a GNB of type 2 exists for this field. We therefore
checked the relevant data of Annex C.1 in [X9.62] using the computer algebra system LiDIA
([LiDIA]). Besides n = 179 we got the same results as presented in [X9.62]. Furthermore, our
table is in conformance with the data of Annex A.8 in [P1363].



22 Implementation Issues

n 163 167 173 179 181 191 193 197 199 211 223 227 229 233
TPB * * * * * *
PPB * * * * * * * *
T 4 14 2 2 6 2 4 18 4 10 12 24 12 2
n 239 241 251 257 263 269 271 277 281 283 293 307 311 313

TPB * * * * * * *
PPB * * * * * * *
T 2 6 2 6 6 8 6 4 2 6 2 4 6 6
n 317 331 337 347 349 353 359 367 373 379 383 389 397 401

TPB * * * * * *
PPB * * * * * * * *
T 26 6 10 6 10 14 2 6 4 12 12 24 6 8
n 409 419 421 431 433 439 443 449 457 461 463 467 479 487

TPB * * * * * * * * *
PPB * * * * *
T 4 2 10 2 4 10 2 8 30 6 12 6 8 4
n 491 499

TPB
PPB * *
T 2 4

Table 4.1: Recommended finite fields F2n , 160 ≤ n ≤ 500, for use in elliptic curve crypto-
graphy. The star in the corresponding row of TPB and PPB indicates, which polynomial
representation should be used. In addition, we list the type T of the GNB to choose.

4.2 Scalar Multiplication

In this section we review methods for efficiently performing a scalar multiplication. An
important issue in this context is the addition of two rational points. We address this subject
in Section 4.2.1 and Section 4.2.2 for finite prime fields and finite fields of characteristic 2,
respectively.

We then present in Section 4.2.3 a method, which is only applicable for Koblitz curves. Finally,
in Section 4.2.4 we turn to general methods for efficiently performing the scalar multiplication.

4.2.1 Point Addition for Elliptic Curves over Fp

We describe a method for efficiently adding two rational points in a group E(Fp). We follow
the discussion in [P1363] and [BSS99]. We remark that this method is independent of the
prime field Fp.

As of today it is common to implement arithmetic in a group E(Fp) with respect to weighted
projective coordinates as proposed in [CC87] or [CMO98]. The curve equation is then of the
form Y 2 = X3 + aXZ4 + bZ6, and if (X,Y, Z) is a point on the curve, its affine coordinates
are (X/Z2, Y/Z3), provided that Z 6= 0. A point with Z = 0 corresponds to the point at
infinity O.

The main advantage when using weighted projective coordinates is that we do not have to
do a field inversion in Fp when adding points. However, the number of multiplications in Fp
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increases. Often the use of projective coordinates is then superior to an implementation with
respect to affine coordinates.

More precisely, let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be points in E(Fp). We skip the
trivial cases P1 = O, P2 = O, and P1 = ±P2. Then according to [P1363] and [BSS99] a
general addition of P1 and P2 requires 16 multiplications in Fp. If in addition one point is
given in affine coordinates, that is Z1 = 1 or Z2 = 1 the number of multiplications decreases
to 11. This case is denoted by mixed coordinates. If we add two points represented in
affine coordinates we have to do 1 inversion and 3 multiplications in Fp. Thus in the general
case the use of weighted coordinates is superior to an implementation with respect to affine
coordinates, if an inversion costs more than 13 multiplications. If one of the Z-coordinates is
equal to 1, this number decreases to 8.

If we double the point (X1, Y1, Z1), the number of multiplications is in general 10. If we
have a = −3, this number decreases to 8. The affine doubling requires 1 inversion and
4 multiplications in Fp. Thus weighted projective coordinates are faster in practice, if an
inversion in Fp is slower than 6 or 4 multiplications, respectively. We remark that choosing
elliptic curves verifiably at random with a = −3 is proposed as an extension to the general
algorithm in [P1363] (see Annex A.12.4). Furthermore, the implementation of the CM-method
as described in [Bai02a] yields elliptic curves with a = −3, too.

Table 4.2 summarizes the above discussion.

Operation Affine Coord. Mixed Coord. Weighted Proj. Coord.
General Addition 1I + 3M 11M 16M
General Doubling 1I + 4M n/a 10M
Doubling (a = −3) 1I + 4M n/a 8M

Table 4.2: Cost of a point addition in a group E(Fp). A field inversion is abbreviated by I,
a multiplication in Fp by M .

4.2.2 Point Addition for Elliptic Curves over F2n

The method presented in this section is very similar to the ideas of the previous section. We
therefore summarize the results. Again we follow the discussion in [P1363] and [BSS99].

An elliptic curve over F2n in weighted projective coordinates is given by the equation Y 2 +
XY Z = X3 + aX2Z2 + bZ6. Let P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) be points in
E(F2n). As above we leave out the trivial cases P1 = O, P2 = O, and P1 = ±P2. Then
according to [P1363] and [BSS99] a general addition of P1 and P2 requires 15 multiplications
and 5 squarings in F2n . As the complexity of a squaring depends on the representation of the
field F2n , it is common to enumerate it separately. If in addition one point is given in affine
coordinates the number of multiplications and squarings decrease to 11 and 4, respectively.

We remark that it is attractive to use a = 0 from an implementation point of view of the
point addition, as the number of multiplications and squarings is less than above. However,
on the other hand we have k = 4 in this case, yielding an additional bit compared to an
elliptic curve group with the same security level, but k = 2.



24 Implementation Issues

The corresponding complexity assertions for a point doubling and a comparison with an
implementation with respect to affine coordinates may be seen from Table 4.3.

Operation Affine Coord. Mixed Coord. Weighted Proj. Coord.
General Addition 1I + 2M + 1S 11M + 4S 15M + 5S
Addition (a = 0) 1I + 2M + 1S 10M + 3S 14M + 4S
Doubling 1I + 2M + 1S n/a 5M + 5S

Table 4.3: Cost of a point addition in a group E(F2n). A field inversion is abbreviated by
I, a multiplication in F2n by M , and a squaring in F2n by S.

4.2.3 Scalar Multiplication on Koblitz Curves

In this section we describe a method for performing the scalar multiplication in the groups
K1(F2n) and K2(F2n) as introduced in Section 3.3.3. The most significant improvement is
due to Solinas ([Sol97], [Sol00]). Solinas proposes to represent the integer s with respect to
the Frobenius map. According to his paper [Sol97] his method yields a speed up by a factor 2
compared to the previous best known algorithms for scalar multiplications on Koblitz curves.
Thus Koblitz curves are very attractive if fast arithmetic is important (e.g. in smart cards).

We remark that the method of Solinas was extended to a larger class of elliptic curves by
Gallant, Lambert, and Vanstone ([GLV01]). Their method even comprises elliptic curves over
finite prime fields.

4.2.4 Scalar Multiplication on a General Elliptic Curve

This section deals with methods for computing a scalar multiple of an elliptic curve point. We
focus our discussion with respect to the following two requisites. First, we present methods
for efficiently performing the scalar multiplication if the point P is not known in advance.
Nevertheless in cryptographic schemes we may assume that P is in the subgroup generated
by G. Second, we turn to the case that P is a previously known, fixed point. An application
of such a method is, for instance, the scalar multiplication for the cryptographic base point
G. The discussion in this section is valid for both a field Fp and F2n .

We first assume that P is not fixed. A fundamental algorithm to determine the point sP is
to implement fast exponentiation. Its underlying idea is to write s as its binary expansion
and compute sP by the double and add algorithms of the previous sections (see for instance
Algorithm IV.1 in [BSS99]). However, most of the standards (e.g. [P1363], [X9.62]) propose to
implement a variant which uses a signed representation of the scalar s. Often this expansion
is referred to as a NAF, where NAF stands for non-adjacent form of the scalar s. A signed
representation of s works fine, as inversion in the group E(Fq) is for free. We present a variant
of the algorithms in [P1363] or [X9.62] as our algorithm NAF(s, P ). The algorithm requires
an integer s and a point P . It returns the point sP . We make use of the fact that we know
the order of P .

We turn to the second case. We assume that we have to compute a scalar multiplication for
a fixed point G. Then it is often advantageous to initially do some precomputations and then



4.2 Scalar Multiplication 25

Algorithm 4.1: NAF(s, P )
Input: An integer s and a point P of order r.
Output: The point sP .

1: s← s mod r; //s ∈ {0, . . . , r − 1}
2: if s = 0 OR P = O then
3: return( O );
4: if s > r/2 then
5: s← r − s; P ← −P ;
6: 3s =

∑l
i=0 hi2

i; s =
∑l
i=0 si2

i; //find binary expansions of 3s and s with hl = 1
7: R← P ; i← l − 1; //initialize the result point and counting variable
8: while i ≥ 1 do
9: R← 2R;

10: if hi = 1 AND si = 0 then
11: R← R+ P ;
12: if hi = 0 AND si = 1 then
13: R← R− P ;
14: i← i− 1;
15: return( R );

determine the point sG. The initial step has only to be performed once. The precomputed
points have to be stored.

The most common method is the sliding window method (see for instance [BSS99], Algorithm
IV.4). Additionally we point to a method of Lim and Lee [LL94]. Their method may be very
fast, if a lot of precomputations are performed. However, as we then have to store quite a lot
of points, this may cause memory problems.

A survey of the cost of the different methods to compute a scalar multiple may be found in
[BSS99], Table IV.3 .

4.2.5 Scalar Multiplication on Special Elliptic Curves

In this section we mention two representations of elliptic curves for speeding up the scalar
multiplication. The first one is called the Hesse form, the second one is called the Montgomery
form.

We first discuss the Hesse form and follow Smart ([Sma01]. He shows how to speed up
the scalar multiplication by parallelizing computational steps if the elliptic curve is given in
Hesse form. Let E denote this curve. We assume that E is given by an equation as defined in
Chapter 2. In his paper, Smart shows that if q ≡ 2 mod 3 and 3 | |E(Fq)|, then the defining
equation of E may be transformed to a representation in Hesse form. This representation
allows efficient implementation of the group law in E(Fq). We refer to Smart’s paper for
details.

The requirement 3 | |E(Fq)| implies in our context, that we can apply Smart’s method if and
only if q = p (if q = 2n, the group order is divisible by 6 in this case). Thus let q = p. We
then search for an elliptic curve group E(Fp) of order 3r. We remark that both generation
methods of Section 3.2 seem to be appropriate in this case. As far as the CM-method is
concerned this is obvious from the fact that we can verify this requirement once we know



26 Implementation Issues

the group orders of Equation (3.2). If the random approach is used, the early-abort-strategy
shows at a very early stage of the SEA-algorithm, if the group order is divisible by 3. Thus
we expect that the assertions of Section 3.2.4 are valid in this case, too.

We now discuss the Montgomery form. Initially it was proposed by Montgomery to accellerate
the elliptic curve factoring method ([Mon87]). Montgomery shows how to reduce the number
of multiplications in Fq to compute the x-coordinate of a scalar multiple of a rational point,
if an elliptic curve in a special representation is used.

However, as in the case of the Hesse form, we have to impose a restriction on the group order
of the elliptic curve group. If as above q = p is the cardinality of the prime field, Izu shows
that if p ≡ 1 mod 4 then the defining equation of E may be transformed to a Montgomery
representation if and only if 4 | |E(Fq)| ([Izu99]). If, however, p ≡ 3 mod 4, then only if
8 | |E(Fq)| we know that a Montgomery representation of E exists. Thus we propose to
use primes p ≡ 1 mod 4 if a Montgomery representation shall be used. Again as above both
generation methods seem to be appropriate to find such elliptic curves.

4.3 Point Compression

In this section we address the problem of point compression. We answer the question if the
generation of special curve parameters decreases significantly the number of bits to represent
a point. We show that the answer actually is ’no’.

In some situations it is desirable to represent a point with as few bits as possible. Such a
situation occurs if storage or bandwidth are at a premium. We refer to such a notation as
point compression.

Most of our discussion is independent of the characteristic of the field. Thus let E be an elliptic
curve defined over some finite field Fq. We denote the bitlength of q by n. In the framework
of elliptic curve cryptography a non-trivial point P is represented in (affine) coordinates by
(x, y), where both x and y are elements of Fq. Thus we need at most 2n bits to represent
such a point. However, the coordinates of P satisfy a quadratic equation in y. Thus it is easy
to see how to recover y, once x and some additional bit related to y are given. Hence the
transmission of n + 1 bits is sufficient to uniquely identify P (the methods to compress the
representation may be found for example in [P1363] or [X9.62]).

The boundary condition in our context is as follows. Let E(Fq) be a cryptographically strong
elliptic curve group, and let P be a point of order r. Then we have

r ≥ |E(Fq)|
4

≥
q + 1− 2

√
q

4
≥ 2n−1 + 1− 2

√
2n

4
> 2n−4 . (4.3)

Thus n − 3 is a lower bound of the bitlength of r. We therefore need at least n − 3 bits to
represent an elliptic curve point in our context. The saving of at most 4 bits seems to us not
to justify the search for a curve with special parameters.

We finally mention a minor improvement. If q = 2n and the order of P is odd, we only need
n bits to represent P (see [Ser98], [BSS99]).
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4.4 Implementation on Smart Cards

In this closing section we discuss elliptic curve parameters for use in a constraint environment
such as a smart card. There is no general answer to this problem. Nevertheless, we point to
some characteristics of a smart card implementation.

As of today most of the smart cards for cryptographic use come with a cryptographic co-
processor. Thus we only discuss this type of smart cards. The first important point from
a performance point of view is the information sharing between the main processor and the
cryptographic coprocessor. In general the bandwidth is at a premium. Thus there should be
as few transmissions as possible. For instance, if an elliptic curve over Fp should be used,
the developer of such a system could skip the transmission of the elliptic curve parameter a
by always setting a = −3. As mentioned in Section 4.2.1 this yields a performance speed up,
too.

In addition, the use of NIST primes as explained in Section 4.1.1 seem to be a good choice.
Again we can decrease the number of bits to be transferred, if only the non-trivial bit posi-
tions of the binary expansion of p are exchanged. Furthermore, the implementation of the
arithmetic in Fp is very fast in this case.
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