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1 Introduction

This report describes the state of knowledge about the computational complex-
ity of the integer factorization problem for integers of special form. The form
is P kQ (k ≥ 1) where P and Q are primes chosen uniformly at random from
spaces ΩP ,ΩQ, respectively. It is assumed that ΩP = ΩQ = ω-bit integers for a
security parameter ω. Of special interest are

• the case k = 1, which we shall call “RSA numbers”;

• the case k = 2, which we shall call “Okamoto” numbers since they are
proposed for several applications in papers by T. Okamoto and various
co-authors.

Per IPA’s contract specifications, this report includes discussion of three
specific questions:

1. The effectiveness of the elliptic curve (EC) and number field sieve (NFS)
methods in factoring Okamoto numbers.

2. The effectiveness of the lattice-based method in factoring Okamoto num-
bers.

3. Given

• the state of knowledge in computational number theory;

• the computational resources currently available;

• the expectations regarding the increase in computational resources
in future years

estimate the bit-length of N sufficient to ensure that factoring RSA num-
bers (Okamoto numbers, respectively) is infeasible.

∗The author is with the Department of Computer Science, Yale University.
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2 What is feasible and what is not

We will express the number of operations an algorithm performs in terms of
powers of 2. This is so that we may more easily correlate these values with
machine speeds. A supercomputer’s speed is currently measured in Terahertz
(≈ 240 cycles per second). It takes many cycles to perform each of the arithmetic
operations involved in factoring algorithms. However, it is currently possible
for a large organization to build a special-purpose machine which could perform
arithmetic operations over the ring ZN at speeds in the Terahertz range. There
are under 230 seconds in 20 years. Thus, such a machine would be able to
perform no more than 270 operations in twenty years. Allowing for a safety
factor of about 215 to take into account possible increase in computer power
during two decades yields a target security parameter of 285. That is, we will
consider a problem infeasible if it takes on the order of 285 arithmetic operations.

The above can be considered a very strong security requirement in the short
range. In the medium range, say 5 to 10 years, we have very high confidence that
285 arithmetic operations will remain infeasible. The statement becomes more
speculative when one considers a horizon of twenty years. Thus, one should
reconsider the above statements every five years or so. Furthermore, we have
assumed that no dramatically different (as opposed to just faster) machines
will be built in the next few decades. This may not be a safe assumption.
In particular, close attention should be payed to developments in the area of
quantum computation. A large enough quantum computer, if ever built, would
be able to factor both RSA and Okamoto numbers in polynomial time. Most
experts currently think that we are many decades away from being able to
build such a machine. Many other experts believe such a machine will never be
built. My own opinion on this matter is that it is more likely that progress in
algorithms force us to revise the above security parameters sometime in the next
two decades. In particular, combinatorial approaches to integer factorization (as
opposed to algebraic ones) have not been adequately studied.

3 Relative effectiveness of EC and NFS algo-
rithms on Okamoto numbers

Let |N | = n be number of bits of N . Both EC and NFS methods run in a
number of steps which is exponential in n. For Okamoto numbers only, the
approximate asymptotic running time EC is given by

20.981∗
√

n ln(0.231n).

For either Okamoto or RSA numbers, the approximate asymptotic running time
of NFS is given by

22.428n1/3 ln(0.693n)2/3
.

For Okamoto numbers, NFS is asymptotically faster than EC. However, a
plot of these curves shows that EC is faster than NFS for n smaller than 2800.
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At n = 2800 the number of steps of both algorithms is about 2132. This is well
beyond our security goal parameter of 285. The conclusion is that, for Okamoto
numbers in the range of practical interest to cryptographic applications, we may
restrict our attention to the EC method of factorization.

4 Lattice-based methods

Methods based on applications of LLL (the lattice reduction algorithm due to
Lenstra, Lenstra and Lovasz) can be used to factor numbers of the form P kQ
in polynomial time when k is of order log(P ). These methods do not pose a
direct threat to Okamoto numbers. The fastest known lattice-based method for
factoring Okamoto numbers performs about N1/9 lattice reduction steps. This
is slower than most factoring algorithms. However, if about one-third of the
bits of P are somehow leaked, then an Okamoto number can be easily factored
by a lattice based method. This is not to be considered a significant weakness
of Okamoto numbers: any cryptographic application based on the difficulty of
factoring should be careful not to leak bits of the prime factors of the modulus.
This holds both for Okamoto numbers and for RSA numbers.

As the exponent k in P kQ grows, lattice-based methods quickly become rele-
vant. Therefore careful evaluation should precede any cryptographic application
of numbers of this form with k greater than 2.

5 Secure lengths for RSA and for Okamoto mod-
uli

The problem here is to estimate the relative sizes of RSA and Okamoto moduli
which would provide similar levels of security. The fastest known algorithm for
factoring RSA numbers is NFS. In the case of an Okamoto number P 2Q, it turns
out that computing Jacobi symbols

(
x
Q

)
is feasible. Being able to do the same for

RSA numbers would violate the well-known Quadratic Residuosity Assumption,
and therefore would be an unlikely development. This small advantage can
be exploited to speed up the elliptic curve algorithm in the case of Okamoto
numbers. With the speed-up, the EC algorithm has running time approximately

20.981∗
√

n ln(0.231n)−1.44 ln(n).

A joint plot of the exponent of this expression with the exponent

2.428n1/3 ln(0.693n)2/3

of the expression for the running time of NFS on RSA numbers shows that
to achieve comparable levels of security, Okamoto numbers must be between
500 and 600 bits longer than RSA numbers. This holds throughout the range of
sizes of interest to cryptographic applications.1 In particular, our stated security

1See attached plot.
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goal of 285 operations is achieved with either 1000-bit RSA numbers or 1600-bit
Okamoto numbers.

It is widely believed, although it has never been proven, that the RSA cryp-
tosystem and it’s various applications are secure if factoring RSA numbers is
hard. The equivalent statement regarding the digital signature system ESIGN
is that it is secure if factoring Okamoto numbers is hard. We see no reason
to doubt either of these commonly held beliefs. It is highly unlikely that RSA
will be broken without factoring RSA integers or that ESIGN will be broken
without factoring Okamoto numbers.

4


