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Executive summary.
This document summarizes our security evaluation of ECIES. On the plus side

we conclude that no seriously damaging attack has been found in the current
state-of-the-art, although we strongly recommend to avoid the use of the XOR
as a symmetric encryption primitive, except in very specific scenarios. On the
minus side, it appears that the formal proofs of the security of DHIES – from
which ECIES is derived – are not easily instantiable to ECIES, as is for example
witnessed by an attack, due to Shoup, which contradicts one of the security
proofs. Following this attack, a modification of ECIES has been recently proposed
by Shoup, but there is no clear consensus yet in the scientific community as to
whether this modified scheme should replace ECIES or not. Our advice would
therefore be to let some time elapse before adopting ECIES or an updated version
of it. This would be especially useful to avoid the risk of coexistence of several
similar, but nonetheless incompatible “standards”.
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1 Preliminary concepts

1.1 Elliptic curve cryptography

The points of an elliptic curve E over a finite field K form an abelian group.
The addition operation of this abelian group involves a pretty small number of
arithmetic operations in the underlying field K, and is easy to implement, both in
hardware and in software. Moreover, the discrete logarithm problem in this group
is believed to be very difficult, in particular, harder than the discrete logarithm
problem in finite fields of the same size as K. It was for this reason that elliptic
curves were suggested for implementing public key cryptosystems [30].

We refer to [30, 9] for more information on elliptic curve cryptography.

1.2 Diffie-Hellman key agreement protocol

A key component of all ECIES-like schemes is the Diffie-Hellman key agreement
primitive. This section will briefly describe this primitive.

Consider a finite cyclic group G, and an element g ∈ G of prime order. We
will use the additive notation for the group operation. To agree on a secret,
shared value (denoted as the key), Alice chooses an integer v and computes
V = v.g (i.e., g added v times to itself), that she sends to Bob. Bob does the
same, choosing an integer u and sending U = u.g to Alice. Alice (resp. Bob)
then obtains the shared value by computing W = v.U (resp. W = u.V ). It is
believed1 that recovering W based on the sole knowledge of U and V is a hard
problem, which means that a third party having only access to the exchanged
values cannot recover the shared secret.

This key agreement protocol can easily be turned into a public-key encryption
scheme, known as the ElGamal scheme. In this scheme, Alice first computes V =
v.g and publishes V as her public key. When someone wants to send a message
M to Alice, he chooses a random value u and transmits C = (u.g, M + u.V ).
Knowing v, Alice can compute v.u.g = u.V and recover M by subtracting it from
M + v.U . Including u.g in the ciphertext provides an “implicit” Diffie-Hellman
key exchange.

1This assumption will be discussed in more details in section 3.5.
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2 System description

ECIES is better viewed as a member of a family of schemes, all of which are based
on the same construction. We will start by describing this general construction,
and will then describe the primitives that ECIES uses as building blocks.

2.1 General construction

ECIES-like schemes involve a group G, an element g ∈ G of prime order, a
Diffie-Hellman-like key agreement protocol KA, a key derivation function KDF, a
message authentication MAC, and a symmetric encryption primitive ENC. We will
come back to these components below.

Figure 1: Global view of the encryption operation. The shaded rectangles
comprise the ciphertext.

A global view of the scheme is depicted on figure 1. In the setup phase, Alice
computes an ElGamal key pair (v, V ) and publishes the public key V . To send her
an encrypted message, Bob chooses a random u and computes an “ephemeral
public key”, u.g. Note that Alice and Bob (and presumably no one else) will
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both be able to compute the “secret value” u.v.g. This value is passed to the
key derivation function KDF and the result is parsed into two pieces: a MAC key,
MacKey, and an encryption key, EncKey. The message to be sent is then symmet-
rically encrypted with the encryption key, and a MAC of the resulting ciphertext
is computed using the MAC key. The ciphertext consists of the ephemeral public
key, the symmetrically encrypted plaintext, and the authentication tag generated
by the MAC.

2.2 ECIES

ECIES follows the above construction, with the following choices.

Remark: as this report does not have the ambition to serve as a replacement
for [15], and in order not to overload this description with cumbersome details
(octet to integer conversion, . . . ), we will focus here on a high-level description,
and refer to [15] for technical details.

2.2.1 Group

The group in which the key exchange takes place is the group generated by a
point g of prime order n on an elliptic curve over Fp or F2m . The exact form of
the elliptic curve can be found in [15].

2.2.2 Key agreement protocol

The key agreement protocol is the elliptic curve Diffie-Hellman primitive, which
is nothing more than Diffie-Hellman as described in section 1.2, with < g > as
underlying group. The shared value is the x-coordinate of the resulting point.

A variant of the Diffie-Hellman primitive, known as the cofactor Diffie-Hellman
primitive, is also proposed; this variant, as well as the rationale for it, will be de-
scribed in section 4.1.

2.2.3 Key derivation function

The key derivation function takes as input a shared (presumably secret) value,
and transforms (expands) it into key material of the appropriate size. Its goal is
to hide any observable regularity in the representation of group elements.

The only key derivation function supported so far is ANSI-X9.63-KDF. This
function basically consists in repeatedly hashing the shared value concatenated
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with a counter2, with the key material consisting in the successive outputs. The
only hash function allowed so far is SHA-1, but [15] states that support for SHA’s
successors will be added in the future, as they get standardized.

2.2.4 MAC scheme

A MAC scheme allows two users, supposedly sharing some secret value MacKey,
to check that a message was transmitted correctly. Before sending the message,
the sender uses the secret value to compute a tag of the message. When receiving
the tag and message, the recipient, knowing the secret, is able to check that the
tag corresponds to the message, and therefore that the message has not been
tampered with.

Two MAC schemes are currently supported: HMAC-SHA-1-160 and HMAC-
1-80, both of which are based on the hash function SHA-1. These schemes are
specified in IETF RFC 2104 [28] and ANSI X9.71 [6].

2.2.5 Symmetric encryption primitive

Two symmetric encryption schemes are currently supported: 3-key TDES in CBC
mode and XOR encryption scheme.

3-key TDES is specified in ANSI X9.52 [5]; here the IV is fixed to the value
000000000000000016. The XOR encryption scheme is the simple encryption
scheme in which encryption consists of XORing the key and the message, and
decryption consists of XORing the key and the ciphertext to recover the mes-
sage. The key material has to be of the same length as the message to be
encrypted. Note that we strongly recommend to avoid the use of the XOR
encryption scheme, except in very specific contexts. See section 4.3 for more
details.

In the future, it is planned that the Advanced Encryption Standard (AES)
will be added to this list.

2An additional input, SharedInfo, consisting in some information shared between the
two parties, is also allowed. According to [15], “Selection of appropriate information to
include in SharedInfo will likely depend on the particular application, but common things
to include are, for example, the identities of U and V, the public keys QU and QV , counter
values, and an indication of the symmetric scheme for which the agreed keying data will
be used.”. We will not extend further on SharedInfo parameters.
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2.2.6 Parameters choice

The type (elliptic curve definition, underlying field F2m or Fq,. . . ) and size of
parameters seem appropriate in view of the current state-of-the-art.

Regarding parameters type, it is interesting to note that SEC1’s conservative
policy has proven useful. As a matter of fact, in a review of a preliminary
version of SEC1 (namely, version 0.4), Boneh [10] considered that “the standard
is conservative in its choice of fields F2m . The list of nine fields all use a prime
value for m. Currently, we do not know of a reason why F2m with m composite
should be avoided. However, it is quite possible that the ECC discrete log on
F2m with a composite m is only as hard as the ECC discrete log problem on the
largest subfield of F2m . [...] This is a sound design principle”. Since this paper
was published, new attacks have been discovered [19, 20, 17, 38] that actually
exploit the composite character of m to obtain a subexponential solution of the
elliptic curve discrete log problem (note that these attacks are mentioned in the
current version of SEC1).

SEC1 proposes various sizes for the underlying field, depending on the required
security level and available computing power. Boneh [10] estimates that “the
smallest allowable [...] field size provides a level of security comparable to a 56-bit
symmetric key, while the largest field size provides a level of security comparable
to a 256-bit symmetric key. The lowest level of security is adequate when export
restrictions are in place. The highest level of security is appropriate for use with
the upcoming AES encryption standard”.

3 Security proofs

Important remark: the security proofs discussed in this section were in fact
presented in the context of the DHIES scheme rather than ECIES itself. Although
they were presented by ECIES’s authors as a quality witness of ECIES as well
(they were for example joined to the submission to Nessie), instantiating them
to ECIES is far from trivial, as will for example be illustrated by Shoup’s attack.

3.1 What is a security proof?

The security of cryptographic schemes is often witnessed by the absence of at-
tacks: a scheme is considered to be secure if it has been around for a long
period, has received widespread attention, and could nonetheless not be signif-

Report about the security evaluation of ECIES 8



3 SECURITY PROOFS July 2002

icantly weakened by any attack. Famous examples of this “negative” security
argument are the Data Encryption Standard (DES) and RSA.

As opposed to this, provable security is often considered as a decisive ad-
vantage for a cryptographic scheme. In this context, it is proved (in a precise
mathematical sense) that the scheme is secure, provided some assumptions are
satisfied. These “basic” assumptions are typically the security of the primitives
the scheme is based on (e.g. the Diffie-Hellman key agreement), or the difficulty
of some well-known problem (e.g. factorization, discrete log computation, . . . ).

Typically, security is proved by exhibiting a reduction, that turns a breaking
of the scheme into a solution of the underlying problem. By contraposition, this
proves that, if the underlying problem is actually hard, then the scheme is secure.

3.2 Random oracle model and standard model

Since security proofs are pretty difficult to write, and the underlying schemes are
often inefficient, an alternate proof model, called the random oracle model has
been proposed ([8]). In this model, some functions are assumed to be perfectly
random: they are modelled, in the security proof, by an oracle which answers
every new request by a random value, chosen independently of previous answers.
Therefore, the only way to know the value the function will take on some given
input is to query the oracle, and no attack may exploit a “structure” in the
function’s behaviour.

Unfortunately, when moving to a practical scheme, these presumably perfect
functions have to be replaced by actual functions, with the hope that these
functions will not present any more structure than their ideal corresponding. Of
course the theoretical proofs become mathematically unsound in these practical
applications, but security proofs in the random oracle model are nonetheless
usually considered as a good witness of security.

However, the assumptions underlying the random oracle model constitute a
serious restriction on the generality of the proofs, and, when possible, proofs that
get rid of this model are therefore highly desirable (see for example [14] for a
more comprehensive discussion on the concerns raised about the random oracle
model).

The security proofs concerning DHIES hold in the standard model, i.e. do not
rely on random oracles.

Report about the security evaluation of ECIES 9
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3.3 Resistance level

An important point to settle in a security proof is a precise definition of which
operations the adversary is allowed to perform, and which information he has
access to. Of course, the more power we give to the adversary, the better the
quality of the resisting scheme. In the same way, it is also necessary to precisely
define what we will consider as a successful attack.

The most commonly used classification of adversaries and adversary’s goals
is summarized to [7]. As far as adversary’s goals are concerned, the authors con-
sider two different goals, indistinguishability (IND) and non-malleability (NM).
“Indistinguishability formalizes an adversary’s inability to learn any information
about the plaintext x underlying a challenge ciphertext y, capturing a strong
notion of privacy. Non-malleability formalizes an adversary’s inability, given a
challenge ciphertext y, to output a different ciphertext y′ such that the plaintexts
x, x′ underlying these two ciphertexts are “meaningfully related”. (For example,
x′ = x + 1.) It captures a sense in which ciphertexts can be tamper-proof.”

Regarding the adversary’s power, three different attacks are considered: “In
order of increasing strength these are chosen-plaintext attack (CPA), non-adaptive
chosen-ciphertext attack (CCA1), and adaptive chosen-ciphertext attack (CCA2).
Under CPA the adversary can obtain ciphertexts of plaintexts of her choice. In
the public-key setting, giving the adversary the public key suffices to capture
these attacks. Under CCA1, [...] the adversary gets, in addition to the public
key, access to an oracle for the decryption function. The adversary may use this
decryption function only for the period of time preceding her being given the
challenge ciphertext y. (The term non-adaptive refers to the fact that queries to
the decryption oracle cannot depend on the challenge y. Colloquially this attack
has also been called a “lunchtime”, “lunch-break”, or “midnight” attack.) Under
CCA2, [...] the adversary again gets (in addition to the public key) access to
an oracle for the decryption function, but this time she may use this decryption
function even on ciphertexts chosen after obtaining the challenge ciphertext y,
the only restriction being that the adversary may not ask for the decryption of
y itself. (The attack is called adaptive because queries to the decryption oracle
can depend on the challenge y.)”

One can “mix-and-match” the goals {IND, NM} and attacks {CPA, CCA1,
CCA2} in any combination, giving rise to six notions of security:

IND-CPA, IND-CCA1, IND-CCA2, NM-CPA, NM-CCA1, NM-CCA2.

The implications between these six notions have been proved in [7], and are
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Figure 2: Implications and non-implications between security notions. Note
that implications may of course be combined.

summarized on figure 2. The notions we will be interested in in this document
are mainly IND-CPA and IND-CCA2. As can be seen from the figure, IND-
CCA2 is equivalent to NM-CCA2, and can be considered as the strongest of the
above security notions, whereas IND-CPA is a much weaker notion. Basically,
DHIES’s security proofs state that DHIES is secure in the strong sense, provided
the underlying primitives are secure in a much weaker (and therefore easier to
achieve) sense.
Remark: indistinguishability is often presented as a “find-guess” game. In this
game, the adversary is first allowed (with or without access to the decryption
oracle, depending on the criterion we are considering) to build two messages
x1, x2. One of these messages is then encrypted into y and sent back to the
adversary, who must discover which message it corresponds to. In the CCA2
scenario, the adversary has also access to the oracle in this phase, but with the
restriction that he cannot submit his challenge y.

3.4 Tightness of the reduction

Another non-negligible question in security proofs is the tightness of the reduc-
tion. Intuitively, we would like to know how much easier it is to break the scheme
than to solve the underlying hard problem. One possible characterization is the
following.

We informally define Adv as the advantage the adversary has in achieving his
goal, compared to an adversary that would produce his guess randomly3.

3The formal definition of the advantage depends on the underlying problem. For ex-
ample, in the case of the decisional Diffie-Hellman problem, the advantage is defined as
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We also have to quantify the resources the adversary has access to. Typical
resources are running time and number of queries to a given oracle. We will
adopt the notation

AdvY
X(r1, . . . , rn)

to denote the maximum advantage of an adversary trying to break scheme X
in the Y sense (e.g. IND-CCA2), and allowed ri accesses to resource i (e.g.
running time less than r1).

By comparing the success probability and amount of resources needed by a
breaking of the scheme and that needed by a breaking of the underlying primitive,
we can obtain a measurement of the tightness of the reduction.

3.5 Assumptions on underlying schemes

As was said before, a security proof reduces the security of the scheme to the
difficulty of solving some well-known problem, or to the security of some under-
lying primitive. This section will review the basic problems that span DHIES’s
security4.

3.5.1 Computational Diffie-Hellman assumption (CDH)

We refer to the “standard” Diffie-Hellman assumption as the computational
Diffie-Hellman assumption, CDH. It states that given u.g and v.g, where u, v
were drawn at random from {1, . . . , |G|} it is hard to compute u.v.g. Under
the computational Diffie-Hellman assumption it might well be possible for the
adversary to compute something interesting about u.v.g given u.g and v.g; for
example, the adversary might be able to compute the most significant bit, or
even half of the bits. This makes the assumption too weak to directly use in
typical applications.

the difference between the probability to conclude that (U, V, W ) is a Diffie-Hellman triple
when it actually is, and the probability to conclude that (U, V,W ) is a Diffie-Hellman
triple when W was in fact chosen at random. We refer to [4] for an exhaustive list of the
formal advantages.

4A more complete discussion of these assumptions, as well as additional variants of
them, can be found in [4], of which this section is largely inspired; we will here stick to
problems of direct interest to the security proof.
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3.5.2 Decisional Diffie-Hellman assumption (DDH)

A stronger assumption that has been gaining popularity is the decisional Diffie-
Hellman assumption, DDH. It states, roughly, that the distributions (u.g, v.g, u.v.g)
and (u.g, v.g, w.g) are computationally indistinguishable when (u, v, w) are drawn
at random from {1, . . . , |G|}. This assumption can only hold in a group G whose
order does not contain small prime factors.

3.5.3 Hash Diffie-Hellman assumption (HDH)

The assumption that will be used to prove security for DHIES under chosen-
plaintext attack is weaker than DDH but stronger than CDH.

Basically, we need to be able to get some number of “hard-core” bits from
the Diffie-Hellman key, namely key derived bits that cannot be distinguished
from random bits. Our assumption is that applying a suitable key derivation
function KDF to u.v.g will yield such bits. More precisely, it states that the
distributions (u.g, v.g, KDF(u.v.g)) and (u.g, v.g, W ) are computationally indis-
tinguishable when (u, v) are drawn at random from {1, . . . , |G|}, and W is a
random string of the same length as the output of KDF.

3.5.4 Oracle Diffie-Hellman assumption (ODH)

Suppose we provide an adversary A with v.g and an oracle Hv, which computes
the function Hv(X) = v.X. Think of v ∈ {1, . . . , |G|} as having been chosen at
random. Now if we give the adversary u.g (where u ∈ {1, . . . , |G|} is chosen at
random) then the oracle will certainly enable the adversary to compute u.v.g: the
adversary need only ask the query u.g and he gets back Hv(u.g) = u.v.g. Even
if we forbid the adversary from asking u.g, still he can exploit the self-reducibility
of the discrete log to find the value of u.v.g. For example, the adversary could
compute Hv(u.g + g) = u.v.g + v.g and subtract Hv(g) = v.g from the result.
But what if instead we give the adversary an oracleHv which computesHv(X) =
KDF(v.X), for an appropriate key derivation function (basically, a hash function)?
Suppose the adversary’s goal is to compute KDF(u.v.g), where u.g and v.g are
provided to the adversary. Now, as long as the oracle Hv can not be queried
at u.g, the oracle would seem to be useless. This is the idea of the oracle
Diffie-Hellman assumption.

More formally, it states that the distributions (u.g, v.g, KDF(u.v.g)) and
(u.g, v.g, W ) are computationally indistinguishable when (u, v) are drawn at ran-
dom from {1, . . . , |G|}, and W is a random string of the same length as the
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output of KDF, even if A is given access to the oracle Hv with the sole restriction
that it cannot be queried at u.g.

3.5.5 MAC’s security assumption

Our security assumption about MAC is that it resists chosen-messages attacks: we
consider an adversary who is allowed to submit messages to an oracle, obtaining
valid tags for these messages. His goal is to produce a pair (M, τ) such that τ
is a valid tag for M and (M, τ) was not previously obtained via a query to the
oracle.
Remark: This definition is stronger than the usual one. Usually, one asks that
the adversary not be able to produce MACs of new messages. Here we require
additionally that the adversary not be able to generate new MACs of old mes-
sages. However, if the MAC generation function is deterministic and verification
is done by simply re-computing the MAC (this is typically true) then there is no
difference.

3.6 DHIES security proofs

This section will discuss the two security proofs provided in [4].
The first result shows that DHIES is resistant against chosen-plaintext attacks.

Theorem 3.1 Let G be a represented group, let SYM be a symmetric encryption
scheme, let MAC be a message authentication scheme, and let KDF be a func-
tion. Let DHIES be the asymmetric key encryption scheme associated to these
primitives. Then, for any numbers t and c,

Adv
ind-cpa-fg
DHIES (t, c) ≤ 2Advhdh

G,KDF(t) + Adv
ind-cpa-fg
SYM (t, 0, 0).

Here t denotes the running time, and c stands for the maximum length of
the challenge ciphertext.

Intuitively, the theorem states that, if no adversary with maximum running
time t has a significant chance to solve the hash Diffie-Hellman problem, and
no adversary with maximum running time t has a significant chance to win a
chosen-plaintext find-guess game against SYM, then no adversary with maximum
running time t can have a significant chance to win a chosen-plaintext find-guess
game against DHIES. Note that this reduction is very tight.
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Remark: The notation Adv
ind-cpa-fg
SYM

(t, 0, 0) deserves some additional comment.
The last two zeroes correspond to the maximum number of queries to the de-
cryption oracle, and to the maximum total length of these queries (clearly, as
the first is equal to 0, so is the second). Zero allowed queries means that this
adversary must be able to break SYM without any access to the oracle (in this
sense, the term “chosen-plaintext attack” is a bit misleading in this case). The
requirements for a symmetric primitive to be eligible as a component of this
scheme are therefore pretty weak.

The above proof’s main shortcoming is that it only considers chosen-plaintext
adversaries. A security proof against more powerful adversaries would be useful.
This is the purpose of the following theorem:

Theorem 3.2 Let G be a represented group, let SYM be a symmetric encryption
scheme, let MAC be a message authentication scheme, and let KDF be a function.
Let DHIES be the asymmetric encryption scheme associated to these primitives.
Then for any numbers t, q, µ, and c,

Adv
ind-cca-fg
DHIES (t, q, µ, c) ≤ Adv

ind-cpa-fg
SYM (t, 0, 0) + 2.Advodh

G,KDF(t, q)

+2.Advsuf-cma
MAC (t, 1, c, q, µ).

Intuitively, this theorem means that:

• if SYM is resistant, in the IND sense, to adversaries with maximum running
time t and allowed no use of the encryption oracle;

• if KDF is resistant, in the ODH sense, to adversaries with maximum running
time t and allowed q queries to the ODH oracle;

• if MAC is resistant to adversaries with maximum running time t, allowed
one query to the tag-generation oracle (with maximum length c), and q
queries to the tag-verification oracle (with maximum length µ);

• then DHIES is resistant, in the IND sense, to adaptative adversaries with
maximum running time t, allowed q queries to the decryption oracle (with
maximum length µ) and with a challenge ciphertext of length at most c.

Note that this is a pretty strong security reduction, in the sense that, on one
hand, it is very tight, and, on the other hand, it proves that DHIES is IND-CCA2,
while SYM, for example, is only required to be IND-CPA.
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3.7 Limitations of security proofs

Although security proofs constitute an invaluable improvement compared to the
heuristic character of the “absence of attacks” criterion, one must guard himself
against the risk of considering them as an absolute, definitive guarantee of full-
proof security.

In particular, it is fundamental to understand that these mathematical proofs
fit in a very specific context, requiring an unambiguous definition of which opera-
tions the adversary may perform, what will be considered as a successful attack,
etc. This specification of the model involves a large amount of assumptions,
many of which are implicit, and the security proof will only make sense pro-
vided the reality does correspond to these assumptions. The literature provides
a pretty large amount of provably secure systems getting attacked based on an
insufficiently comprehensive model or incorrect implicit assumptions. In a very
recent paper, to appear at Crypto 2002, Stern et al. [39] present examples of
such attacks against the well-known ESIGN and ECDSA (the latter of which is
part of SEC1), and point out that “the fact that proofs also need to be validated
through public discussion was somehow overlooked. [...] By flaws, we do not
mean plain mathematical errors but rather ambiguities or misconceptions in the
security model.”

A good example of these limitations is given by Shoup’s attack. As will be
shown in section 4.2, there exists a malleability attack against ECIES. If the above
proofs applied to ECIES, this would be in contradiction with the IND-CCA2 proof.
It is interesting to look at this apparent contradiction in more detail, as it may
help provide a better understanding of the implicit assumptions made in security
proofs. In DHIES’s security proof, it is implicitly assumed that no two elements
of the group have the same representation. This is important, because the KDF

function is not a group operation, as it acts on the representation (bit strings)
rather than on the elements. Unfortunately, what was true in DHIES is not true
anymore for ECIES: due to the encoding chosen (x-coordinate, as discussed in
section 2.2.2), several group elements may have the same representation. As a
consequence, the oracle Diffie-Hellman assumption does not hold anymore.

3.8 A proof in the generic group model

Besides the random oracle model, another model aimed at simplifying security
proofs has been proposed. This model, known as the generic group model,
models the group G as ideal, in the sense that there is no observable correlation
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between the representations of the different group elements; for example, one
cannot deduce the representation of the element a + b from the representations
of a and b: this representation must be obtained through a request to an oracle.
For more information on the generic group model, see e.g. [21, 12, 13].

The restrictions mentioned about the random oracle model’s limitations (namely
that proofs vanish when we return to the standard model) apply to the generic
group model as well. On the other hand, this model allowed Smart [37] to get
rid of the “unnatural” ODH assumption. According to Smart, “Although the
proof of security of ECIES is in the standard model of computation, it relies
on a non-standard intractability assumption. Namely, an interactive hash-based
version of the Decision Diffie-Hellman problem. This has led some authors to
criticize the security proof ”.

Besides the fact that is does not rely on ODH, Smart’s result is very similar
to the previous one: he proved that,

Theorem 3.3 In the generic group model,

Adv
ind-cca-fg
DHIES (t, v, w, µ, m) ≤ Adv

ind-cpa-fg
SYM (t1, 0,m, m′)

+2.v.Advsuf-cma
MAC (t3, v − 1) + 2(v+w)2

q
.

Here t denotes the running time, v the number of queries to the decryption
oracle, w the number of queries to the generic group oracle, and µ,m, m′ the
size of corresponding requests. We refer to [37] for the exact expression of the
relationship between t, t1 and t3.

Although this proof may appear more general than the one given by theorem
3.2, one must not forget the idealized character introduced by the generic group
model. In fact, it is very well possible that the generic group model and the
interactive hash-Diffie-Hellman assumption are in fact two similar artifacts hiding
the same difficulty. As a matter of fact, they both get stuck on the same problem:
the key derivation function.

On one hand, Smart notes that, although KDF can, in the generic group
model, be simply defined as the bit representation of the underlying group ele-
ment, this is certainly not the case when this group is replaced by an actual one,
in which case KDF should be instantiated using a strong hash function.

On the other hand, Shoup’s attack shows a difficulty directly related to
ECIES’s encoding function, which is intrinsic part of KDF’s definition. As was
shown in section 3.7, the disagreement between the security proof and the attack
is due to the fact that the ODH assumption does not hold with this instantiation

Report about the security evaluation of ECIES 17



4 OVERVIEW OF CURRENTLY KNOWN ATTACKS July 2002

of KDF. One may therefore consider that the ODH assumption has also hidden
the problem.

In our opinion, there is therefore no clear advantage in Smart’s proof com-
pared to the one relying on ODH.

3.9 Do the building blocks fit their requirements?

It is not useless to repeat that the aforementioned security proofs reduce the
security of DHIES to that of its building blocks. In the current state-of-the-
art, it is believed that the Diffie-Hellman problem is intractable, that TDES
resists chosen-plaintext attacks, that ANSI-X9.63-KDF is hardcore for the Diffie-
Hellman problem, . . . One must however always keep in mind that none of these
facts has been proved, and that there is still the possibility for a solution to one
of these problems to appear in the future. If this were the case, the security of
the full scheme would of course have to be reconsidered.

3.10 Comparison with other schemes

ECIES was one of the candidates submitted to the Nessie project. The other
candidates in the asymmetric encryption category were ACE Encrypt, EPOC-2,
PSEC-2, RSA-OAEP, EPOC-1, EPOC-3, PSEC-1 and PSEC-3. The last four
candidates were not selected for the second round of Nessie.

The Nessie team compared the security of the candidates, and concluded
that ([31] “ECIES and PSEC-3 are the schemes with the most efficient security
reduction submitted in this category. Whilst the asymmetric component of ECIES
is at least as secure as PSEC-3, it has stronger requirements for its symmetric
components”.

4 Overview of currently known attacks

4.1 Small subgroup attack

A potential attack against the Diffie-Hellman primitive is known as the small
subgroup attack [22, 29], in which an adversary substitutes Bob’s public key with
a point of small order in an attempt to coerce Alice to calculate a predictable field
element. The consequences of these attacks can be severe - in a key agreement
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scheme, for example, the result can be compromise of a session key, or even
compromise of Alices static secret key.

One way to prevent this attack is to check that Bob’s public key has order
n before accepting to enter the key agreement protocol (this check is performed
in the “public key validation” procedure described in [15]).

As an alternative, this attack can also be countered by using a variant of
Diffie-Hellman, known as the cofactor Diffie-Hellman primitive. In this primi-
tive, Alice and Bob compute and transmit the same values as in classical Diffie-
Hellman (i.e. (v, V ) for Alice, (u, U) for Bob), but the shared value is computed
as W = h.v.U = h.u.V , where h is the order of the elliptic curve divided by the
order of G. The candidate shared value is rejected if it is equal to the point at
infinity O. This multiplication by h has the effect that all calculations with a
point in a small subgroup will yield the point at infinity, and hence conduct to
rejection of the key.

Since it counters small subgroup attacks, this procedure allows a faster val-
idation of the public key (denoted as “partial validation of the public key” in
[15]), which can be useful in some contexts.

4.2 Benign malleability attack

As was noted in section 2.2.2, only the x-coordinate of the elliptic curve point
is used as input to the key derivation function. Shoup [36] points out that
this allows a malleability attack against ECIES as follows: consider a ciphertext
C = (u.g, c, MACk(c)). The first element of this triple, the ephemeral key, is an
elliptic curve point. So, if we replace u.g by −u.g and apply the Diffie-Hellman
protocol, we will obtain −u.v.g rather than u.v.g as shared value. But the
addition rule on the elliptic curve (see [15, section 2.2]) is such that the opposite
of the point (x, y) is the point −(x, y) = (x,−y). Since only the x coordinate
enters the key derivation function, the final shared key will be unchanged.

This shows that, given a valid ciphertext C = (u.g, c, MACk(c)), one can easily
forge another valid ciphertext C ′ = (−u.g, c, MACk(c)).

A similar attack is possible when the cofactor Diffie-Hellman is used. In this
case, one could add to u.g a point whose order divides h. This point will “vanish”
in the multiplication by h and we obtain once again a different valid ciphertext.

Of course, this does not represent a very damaging attack (Shoup [36] de-
fines this as benign malleability). Nonetheless, it is in contradiction with the
definition of non-malleability. To counter the attack, Shoup suggests to make
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mandatory the addition of u.g to the input to KDF (which is made possible, but
not mandatory, by SEC1).

4.3 Weakness of the XOR encryption

In [36], Shoup also points out a significantly more damaging attack, showing that
the scheme is malleable (in a stronger sense than the one mentioned in previous
section) when XOR is used as the SYM primitive and messages are of variable
length.

Suppose the input to the encryption algorithm is a message M of length
l, and a label L.5 After the key agreement and key derivation functions have
been applied, we obtain a string k||k′, where k has length l and k′ has length
MAC.KeyLen (i.e., the key length required by MAC). The ciphertext is

C = (u.g, c, MACk′(c||L)),

where c = M ⊕ k. Now, consider a message M such that

• M = M1||M2, where |M1| = l′ and |M2| = MAC.KeyLen, for some l′ > 0,

• c = c1||c2, where |c1| = l′ and |c2| = MAC.KeyLen

• M2 is known to the attacker.

Then for any byte string ∆ of length l′, and any label L̃, the ciphertext

C̃ = (u.g, c̃, MACk̃(c̃||L̃),

where
c̃ = c1 ⊕∆ and k̃ = c2 ⊕M2,

is a valid encryption of M1 ⊕∆ with label L̃.
Thus, the scheme is trivially malleable, in a very strong way: we can transform

the encryption of M1||M2 with label L into an encryption of M1 ⊕∆ with label
L̃, for any ∆ and any L̃.

This attack relies heavily on the fact that the two messages are not of the
same length, and could therefore not be applied if messages were forced to some
fixed length. In any other scenario, the use of XOR as a symmetric encryption
primitive should be prohibited. Making this restriction explicit in the norm would
probably be desirable.

5We mention the label L only for the sake of completeness; it can basically be ignored
in this discussion. The reader interested in the exact role of this label may for example
find a nice description in section 2.1.4 of [36].
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4.4 Additional modifications suggestions

Without exhibiting specific attacks, Shoup also issues some additional criticisms
regarding various details of ECIES’s specification. For example, he strongly rec-
ommends that all system parameters, including the choice of KDF, ENC and MAC,
be fixed at key generation time, whereas IEEE P1363a6 allows – although rec-
ommends to avoid – these to vary dynamically over the lifetime of the public
key. Shoup even states that, in his opinion, “allowing such flexibility is entirely
unacceptable: all hope of a meaningful security analysis vanishes if one allows for
this, and there may indeed be real harm that could come from “unintended in-
teractions”. This proposal recommends with the strongest possible urgency that
the ISO standard should require all such options to be fixed at key generation
time”.

This recommendation, as well as some others, is however subject to polemic
and there is no clear consensus yet on whether they should be accepted or not.

4.5 Importance of careful implementation

A large number of cryptographic attacks target implementation-related issues
(running time, power consumption, random generation,. . . ). Being implemen-
tation specific, these attacks are outside the scope of SEC1 and this evaluation
report. There are however some points that may be mentioned even at this level
of generality.

4.5.1 Protection against side-channel attacks

A very powerful class of implementation-related attacks are the side-channel at-
tacks (timing attack [25], simple and differential power analysis (SPA, DPA) [27,
26], and single and differential electromagnetic analysis (SEMA, DEMA) [18, 34,
35]).

We will not enter into details about these attacks here, but it is worth pointing
out that elliptic curve cryptography allows some countermeasures against them,
based on various representations of points, and on different addition formulas [16,
24, 11]7. This topic is not discussed in SEC1, and the addition formulas they

6The situation is not so clear regarding the SEC1 document: a strict interpretation of
the specifications suggests the parameters must be fixed at key generation time, and the
additional note from the P1363a document is not present here; anyway, a clarification of
this issue would be useful.

7Note that most of these techniques are patented
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present does not resist side-channel attacks. One might however argue that this
is not the scope of SEC1: many other “practical” issues are also left aside by the
document, and the addition formulas they propose are probably too inefficient
to be used in a practical application anyway, so it might be considered that they
are presented only for informational purpose.

However, the issue of whether an SPA-resistant implementation could be
deemed as “compatible” with SEC1 would deserve some clarification.

4.5.2 Random generation

A lot of parameters (key pair, ephemeral key, . . . ) have to be generated ran-
domly. This step must not be underestimated, since generating cryptographically
secure random (or pseudorandom) numbers is one of the most difficult tasks of
a cryptographer; many examples exist of applications whose security has been
defeated by exploiting weaknesses in their random generator. One may regret
the absence of a more detailed description of random generation in SEC1, or at
least some references to other standards addressing this issue.

4.5.3 Verification of parameters’ validity

Many cryptographic attacks are also based on the adversary presenting improp-
erly formed parameters to Alice, in order to recover information about her secret
parameters in her answer. A typical example in ECIES’s context is the afore-
mentioned small subgroup attack, based on the use of an invalid public key. It
is therefore very important to check that the parameters received from a third
party are correctly formed.

SEC1 describes a large numbers of such tests to be performed during the
key generation, encryption, and so on – which is definitely a good point for
a standard. We cannot insist too much on the fact that these tests are not
facultative.

5 Conclusion

In view of the current state-of-the-art, our security analysis did not show any
serious weakness in the ECIES scheme, except that we strongly recommend to
avoid using the XOR encryption as a symmetric encryption primitive.
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However, our analysis of the security proofs shows that they do not apply as
easily as expected to ECIES. In particular, some of the implementation choices
done in [15] do not fulfill the security level they are supposed to have.

Moreover, these weaknesses are demonstrated by some attacks that, although
minor (in the sense that their do not seem practically exploitable by an attacker)
show nonetheless that the security properties claimed by the security proofs are
not fully satisfied.

In view of these attacks, a modification of ECIES, namely ECIES-KEM has
been recently proposed by Shoup. However, this proposal is quite new, and its
acceptance is not clear yet.

One of the criticisms issued against ECIES-KEM is that it is too recent, and still
contains too much unspecified details for the moment. For example, Johnson [23]
argues that “The ECIES-KEM proposal is derivative from ECIES and has just
begun the ISO consensus process; as such, at this time it is unclear what the
final output will be”.

Besides that, Certicom has recently issued a document in reaction to Shoup’s
modification proposals, this document considers every change proposal, and re-
futes many of them, mainly for flexibility or concordance with practical needs
reasons. This document has been sent to Nessie [23]. The Nessie team has an-
nounced [32] that they would consider both the original submission and Shoup’s
ECIES-KEM proposal.

As can be seen, there is no clear consensus yet in the scientific community
as to whether this modified scheme should replace ECIES or not. Our advice
would therefore be to let some time elapse before adopting ECIES or an updated
version of it. This would be especially useful to avoid the risk of coexistence of
several similar, but nonetheless incompatible “standards”.
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’99 (Çetin K. Koç and Christof Paar, eds.), Lectures Notes in Computer
Science (LNCS), vol. 1717, Springer-Verlag, August 1999.

[17] S. Galbraith, F. Hess, and N.P. Smart, Extending the GHS Weil Descent At-
tack, Advances in Cryptography - Proceedings of EUROCRYPT 2002 (L. R.
Knudsen, ed.), Lecture Notes in Computer Science, vol. 2332, Springer,
2002, pp. 29–44.

[18] K. Gandolfi, C. Mourtel, and F. Olivier, Electromagnetic analysis: Concrete
results, Proc. of Cryptographic Hardware and Embedded Systems (CHES
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