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Abstract. This report evaluates the security of RSA signature schemes PKCS#1 v1.5,
ANSI X9.31, ISO 9796-1 and ISO 9796-2. We investigate the hash format used in those
signature schemes. This is as required by Cryptrec.

1 Introduction

RSA was invented in 1977 by Rivest, Shamir and Adleman [24], and is now the most
widely used public-key cryptosytem.

A very common practice for signing with RSA is to first hash the message, add
some padding, and then raise the result to the power of the decryption exponent. This
paradigm is the basis of numerous standards such as PKCS+#1 v1.5, ANSI X9.31, ISO
9796-1 and ISO 9796-2.

A signature scheme is said to be secure if it is infeasible to produce a valid signature
of a message without knowing the private key. This task should remain infeasible even
if the attacker can obtain the signature of any message of his choice. This security
notion was formalized by Goldwasser, Micali and Rivest in [12] and called existential
unforgeability under an adaptive chosen message attack. It is the strongest security
notion for a signature scheme and it is now considered as standard. Formally, this
notion captures the property that an attacker cannot produce a valid signature, even
after obtaining the signature of (polynomially many) messages of his choice.

In this report, we investigate the security of RSA signature schemes PKCS#1 v1.5,
ANSI X9.31, ISO 9796-1 and ISO 9796-2. We investigate the possibility of forging
signatures when using those standards. Moreover, in some cases, the user is free to
choose some parameters. We determine which choice of parameters gives a secure
signature scheme.

A significant line of research in cryptography consists in proving the security of
cryptosystems. A proof of security is usually a computational reduction from solving
a well established problem to breaking the cryptosystem. In our case, breaking the
cryptosystem means forging signatures. Well established problems of cryptographic
relevance include factoring large integers, computing discrete logarithms in prime order
groups, or extracting roots modulo a composite integer. In our case, the underlying
problem consists in factoring integers, or inverting the RSA function.

A security proof provides a strong guarantee for the security of a RSA-based
signature scheme: the signature scheme is secure, unless inverting RSA is easy (or
factoring is easy), which seems unlikely. Since [12], many signature schemes have been
proven secure, such as PSS [2].



In this report, we also investigate the security of RSA signature schemes PKCS#1
v1.5, ANSI X9.31, ISO 9796-1 and ISO 9796-2 from the point of view of security proofs.
We investigate the possibility of obtaining a security proof for those standards.

2 Attacks against RSA signature schemes

In this section, we review the most significant attacks against RSA signature schemes.
The application of those attacks to the standards PKCS#1 v1.5, ANSI X9.31, ISO
9796-1 and ISO 9796-2 will be studied in section 3. We denote by p(m) the encoding
function of the message m. The signature of m is then:

s=p(m)? mod N

where N is the RSA modulus and d the private exponent.

First, we review the attacks against RSA signature with fixed-pattern padding,
without using a hash function. Since the standards PKCS#1 v1.5, ANSI X9.31, ISO
9796-1 and ISO 9796-2 use a hash function, those attacks are not directly applicable.
The possibility of applying these attacks to those standards will be investigated in
section 3.

In this model, to sign a message m, the signer concatenates a fixed padding P to
the message, and the signature is obtained by computing:

s = (Plm)? mod N

where d is the private exponent and N the modulus.

More generally, we consider RSA signatures in which a simple affine redundancy
is used. To sign a message m, the signer first computes:

w is the multiplicative redundancy
a is the additive redundancy

R(m) =w-m+a where { (1)
The signature of m is then:

s=R(m)® mod N

A left-padded redundancy scheme P|m is obtained by taking w = 1 and a = P - 2¢,
whereas a right-padding redundancy scheme m|P is obtained by taking w = 2¢ and
a=P.

2.1 De Jonge and Chaum attack against RSA signature with linear
redundancy

At Crypto 85, De Jonge and Chaum [9] exhibited a multiplicative attack against RSA
signatures with affine redundancy, based on the extended Fuclidean algorithm. Their
attack applies when the multiplicative redundancy w is equal to one and the size of
the message is at least two-thirds of the size of the RSA modulus N.

2
|message| > §|N|

For example, a signature can be forged if one uses the affine redundancy of figure 1.
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Fig. 1. Example of an RSA padding forgeable by De Jonge and Chaum’s method where w =1 and
a=FF...FF 00...004¢
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Fig. 2. Example of an RSA padding forgeable by Girault and Misarsky’s method where w = 1 and
a=FF...FF 00...001¢

2.2 Girault and Misarsky’s attack

De Jonge and Chaum’s attack was extended by Girault and Misarsky [10] at Eurocrypt
'97, using Okamoto-Shiraishi’s algorithm [22], which is an extension of the extended
Euclidean algorithm. They increased the field of application of multiplicative attacks
on RSA signatures with affine redundancy as their attack applies to any value of w
and a, when the size of the message is at least half the size of the modulus (refer to
figure 2 for an illustration):

1
|message| = §|N|

Girault and Misarsky also extended the multiplicative attacks to RSA signatures
with modular redundancy:

w1, wsy is the multiplicative redundancy
R(m)=w;-m+wy-(m modb)+a where ¢ a is the additive redundancy
b is the modular redundancy

(2)
In this case, the size of the message must be at least half the size of the modulus plus
the size of the modular redundancy.

2.3 Misarsky’s attack

Girault and Misarsky’s attack was extended by Misarsky [20] at Crypto ’97 to a
redundancy function in which the message m and the modular redundancy m mod b
can be split into different parts, using the LLL algorithm [18]. The attack applies
when the size of the message is at least half the size of the modulus plus the size of
the modular redundancy.

2.4 Brier, Clavier, Coron, Naccache’s attack

This is an extension of Girault and Misarsky’s attack against RSA signatures with
affine redundancy to messages of size as small as one third of the size of the modulus,
as illustrated in figure 3.

1
|message| > §|N|
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Fig. 3. Example of an RSA padding forgeable where the w is equal to one and @ = FF...FF 00...001¢g

As Girault and Misarsky’s attack, the attack applies for any w and a and runs in
polynomial time. However, the attack is existential only, as one cannot choose the
message the signature of which is forged, whereas Girault and Misarsky’s attack is
selective: it is possible to choose the message which signature is forged.

We briefly review the attack. We give a slightly different exposition, which, in our
opinion, is simpler than [3]. The attack looks for four distinct messages z, y, z and ¢,
each as small as one third of the size of the modulus, such that:

(P+z)-(P+y)=(P+2)-(P+t) mod N (3)

which gives:
P (z+y—z—t)+z-y—2z-t=0 mod N

First, one obtains two integers v and v such that

0<u<N%

P-u4+v=0 mod N with 2
O0<wv<2-N3

As noted in [11], this is equivalent to finding a good approximation of the fraction
P/N, and can be done efficiently by developing it in continued fractions, i.e. applying
the extended Euclidean algorithm to P and N. Now we try to solve the system:

{w+y—z—t:u 4)

Ty — 2zt ="

Solving for « and z, this gives:

v —tu
= t 5
T y—t+ (5)
_v—yu
z = - +vy (6)

We denote A = y — t. For a solution to exist, the integer v — tu must be divisible by
y—t, which gives v —tu =0 mod A, which also implies v—yu = 0 mod A. Therefore,
we select a random prime A less than N'/3; then we let ¢t = v - (u™!) mod A and let
y= A+t Welet z and z as in (5) and (6). We obtain four integers z, y, z, and ¢,
each of size one third of the size of the modulus, such that:

(P+z)(P+y)=(P+2)(P+t) mod N
which enables to forge the signature of message x as:
(P+z)l=(P+2)4P+t)/(P+y)? mod N

An example of forgery with a 1024-bit modulus is given in [3]. The attack complexity
is polynomial in the size of N.



2.5 Lenstra and Shparlinski’s attack

The attack, described in [19], is an extension of the previous attack to selective forg-
eries. The extension was announced in [3], but the attack was not described in details.
The new attack is selective in that the message to be forged can be fixed in advance.
However, the attack complexity is no longer polynomial.

The technique is the following. Assume that ¢ is fixed in advance. Using the same
notations as previously, we must find y such that v —¢-u = 0 mod [y — ¢]. This is
done by computing the factorization of v — ¢ - u. If v — ¢ - u factors into the product of
two integers @ and (3 of roughly the same size, we can take y = « + ¢ and we obtain
v—t-u=0 mod [y — t], which gives a forgery as previously.

However, the attack succeeds only if v — ¢ - u is the product of two integers of
roughly the same size, which happens with small probability. Moreover, a factorization
algorithm must be used, which explains why the attack is no longer polynomial. The
technique described in [19] consists in generating various couples (ug,vy) such that
P-ug+vp =0 mod N and trying to factor vg —t-uy into the product of two integers of
roughly the same size. It is shown in [19] that this can be done in heuristic asymptotic
runtime:

exp ((1-+ o(1))(10g N) 105 105 )7/

In [19] is given an example of selective forgery for a 1024-bit RSA modulus.

In the previous sections, we have considered RSA signature schemes with linear
redundancy. We have seen that the most efficient attacks were Brier, Clavier, Coron
and Naccache’s attack which enables to make an existential forgery in polynomial
time, and Lenstra and Shparlinski’s attack which enables to make a selective forgery
in sub-exponential time.

However, those attacks do not apply to hash-based signature schemes such as
PKCS+#1 v1.5, ANSI X9.31, ISO 9796-1 and ISO 9796-2. In the following, we consider
attacks against RSA signature schemes using a hash function.

2.6 Desmedt and Odlyzko’s attack

This attack is described in [21] and applies to RSA signature schemes in which a hash
function is used. Let m be the message to be signed. The goal is to obtain p(m)?
mod N without knowing d.

1. Factor u(m) into the product of small primes p; only.

2. Obtain the values p¢ mod N by combining the signatures of messages m; for
which p(m;) is the product of small primes only.

3. Obtain the signature of m by multiplying the values pf mod N where p; is a
small prime factor of u(m).

The attack complexity depends on the size of p(m). The attack only applies for
small sizes of 1(m) (otherwise, the probability that p(m) is the product of small primes
only is too small).



2.7 Coron, Naccache, Stern’s attack

The attack, describes in [5], is an extension of Desmedt and Odlyzko’s attack. It applies
to the ISO 9796-1 and ISO 9796-2 standards. The attack applies to the case in which
it is possible to find constants a¢ and b such that

t=a-p(m)+b-N
is small, or when it is possible to find a constant ¢ such that p(m) can be written as:

p(m) =c-t

1

where ¢ is a small integer. By taking ¢ = ¢ mod N, one can always consider the

case:
pu(m)=c-t mod N

where % is a small integer.

The attack consists in obtaining many messages m; such that the integer ¢; in

p(m;) =c-t; mod N (7)

is y-smooth, where y is a parameter. An integer is said to be y-smooth if all his
prime factors are less than y. We denote by (p1,...,p) the list of all prime factors
smaller than y. We can write:

k
pu(m;) =c- Hp;i’j mod N for1<:<r7
j=1

To each p(m;) we associate a k + 1-dimensional vector V;:
p(m;) — V;={1,v;; mode,...,v;; mod e}

One tries to express one vector V' ; as a linear combination of the others, by Gaussian
elimination:

T—1
V.=> BVi mode (8)
i=1
From (8) one can write:
T7—1
Vrj :Zﬂi-vi,j—'yj-e forall 1<j5<k
=1

and denoting:
k
10"
j=1

we obtain:
T7—1

p(my) = 6% [ w(m)% mod N

=1



7

Thus, the attacker will ask for the signature of the 7 — 1 first messages m; and forge
the signature of m, with:

plme)t =5 TT (utm)?)” mod N

The attack complexity depends on the probability that the integers ¢; are y-smooth.
Defining 9(z,y) = #{v < z, such that v is y-smooth}, it is known [8] that, for large
z, the ratio ¥(z, /z)/z is equivalent to Dickman’s function defined by :

1 if 0<t<1

p(t) = t _
p(n)—/ wdv if n<t<n+1

p(t) is thus an approximation of the probability that a u-bit number is 2%/t-smooth.
In particular, denoting:

y = L,[B] = exp (8- /log zloglog z)

the probability that an integer between one and z is Ly[5]-smooth is:

¢($$, Y _p [_% + 0(1)]

If we assume that the integers ¢; in (7) are uniformly distributed between one and z,
we have to generate on average Lg[1/(203) + o(1)] integers ;.

Using the ECM factorization algorithm [17], a prime factor p of an integer n is
extracted in time:

Ly[V2 +o(1)]

A y-smooth integer can thus be factorized in time:
Ly[V2 +o(1)] = Ls[o(1)]

The complexity to find an integer ¢; which is y-smooth using ECM is thus:

1
Moreover, the number 7 of integers which are necessary to find a vector which is a
linear combination of the others is O(y-loge) (see [5] for more details). Therefore, one
must solve a system with r = Lg[8 + o(1)] equations in r = Lz[# + o(1)] unknown.
Using Lanzos iterative algorithm [16], the time required to solve this system is O(r?)

and the space required is roughly O(r). To summarize, the time required to obtain
the Lz[B + o(1)] necessary equations is

Ly [ﬁ + % + 0(1)]

This system is solved in time
Lg[28 + o(1)]



and space
Ly[B +o(1)]

The complexity is minimal by taking 3 = 1/1/2. We obtain a time complexity
Lg[V2 +o(1)]

and space complexity:

V2

The complexity is sub-exponential in the size of the integers ;. Therefore, the attack
will be practical only if we can obtain small ¢;.

In the following table, we give the values of the functions L,[v2] et L;[v/2/2]
corresponding to the time complexity and space complexity of the attack, as a function
of the size |z| of the integer ¢;. This table should be handled with care: this is just an
approximation of the attack practical complexity, and the attack may take more time
in practice. The table suggests that the attack can be practical when the size of ¢; is
smaller than 128 bits, but the attack becomes unpractical for larger sizes.

|z| | log, time| log, space
64 26 13
96 34 17
128 41 20
192 52 26
256 62 31
368 77 38

Table 1. Attack complexity

3 Application to existing standards

In this section, we discuss the application of the previous attacks to the existing
standards.

3.1 ISO 9796-1

The signature scheme 1S0/1EC-9796-1 [14] has been published in 1991. The standard
enables message recovery. For a modulus N of size 2y + 1 bits and a message m of
size y bits, assuming that «y is divisible by 8, the encoding of m is defined as follows:

We denote by w; the i-th nibble of m. We let £ = /4. We denote by s(z) the
substitution:
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Letting 5(z) force the most significant bit in s(z) to 1 and 5(z) complement the
least significant bit of s(z), the standard 150 9796-1 specifies :

p(m)

5(wp—1) 8(wp—2) we—1 we—2
s(we—3) s(wp—4) we—3 we—4

s(w2)
s(wo)

5.(;)3)
s(w1)

w3
wo

w2
616

In [5] is described an attack against a variant of 1SO0 9796-1, in which 5(z) is
replaced by s(z). This variant differs from the real 150 9796-1 by one single bit. The
attack is an application of Coron, Naccache and Stern’s attack of the previous section.

The attack of [5] was extended by Coppersmith, Halevi and Jutla [4] to the real
IS0 9796-1 standard. In the following, we give a practical forgery against 1SO 9796-
lusing this technique (no practical forgery was given in [4]). The forgery is given for
a 1025-bit modulus with e = 3. Let denote the 97-bit constant I" = 1001001, where
each digit represents a 16-bit word.

Step 1 :. Let z; be the following integers, with 1 <14 < 273:

where message[i] = ;1 u; 2 Ui 3 Ui U5 Ui 6 Ui7 Ui g is given by the following table:

113C2789

2103E5FE

213488FE

215041FE

21A1F6FE | 23979965 |23A9DF65 | 26013565 [26182D65 | 261B3865

26235B65

26729D65

26EB1465

30157C81

3038C281 [304D5B81 |30CF6581 [ 34045BF1 |340AC4F1 |34596BF1

34B660F1

34E1BOF1

34FF49F1

3814BA6A

38585D6A | 3873976A |38A9396A | 3BE2F86A | 38EEE56A | 385192BD

3854A9BD

3882F7BD

389E88BD

38BB52BD

3A16E425 [3A3C6125 34797525 | 3A9B4E25 (3AB30125 | 3ABFBC25

3AD30A25

3D12D3F9

3D6C4AF9

3D8AF3F9

3D91E4F9 | 3D9E3BF9 (3DD521F9 | 3DE363F9 |3DEDAFF9 | 3FO9D025

3F198D25

3F3DFC25

3FCE9B25

410AB2F9

4122BDF9 |412F08F9 (413EDBF9 |41C584F9 (41EE50F9 |41F296F9

4345DC55

43486155

43720655

43793F55

4385E655 |43EE7B55 (4617F255 |4627D755 [463CF255 |4665D455

468AA555

46DB9055

484B4E1A

488ED71A

48E4B91A |48EE6D1A [4A55A165 |4A6F6565 (4A77DA65 |4A905D65

4AC74265

4AEE8465

4D069469

4D147369

4D31ABE9 [4D420C69 |4D499369 [4D532169 |4D56A869 [4D758769

4D84EE69

4DD22969

4F2BF565

4F2C2665

4F758F65 |4FA5A565 |4FD7BD65 |51C43089 (51DA7A89 | 51E7E789

590CC262

59733762

59F54062

5BO7E9FA

BBOEFDFA | 5BBC4BFA (5BDC93FA | 5BFCCEFA [6EQ62FFA | BE157DFA

BE4550FA

SE7CB6FA

5E963AFA

SED3F8FA

6015AF51 (60326151 |60372751 [604F6B51 |60708951 607FOB51

60931F51

60D7FF51

6297391A

6486D321

6496D721 |64FOD121 (6758901A |675ED11A (67F7F31A |6C3FBBF7

6C9916F7

6CAALTFT7

6CD886F7

806BD551

806F2D51 |80A83051 |831D3465 | 833A6E65 |837B2565 | 837F0865

83B16265

83DA9C65

840FAF21

84149621

84704721 |84802A21 |84A25A21 |84F1E221 (84FDA321 |858D66B8

85EBOBB8

86144765

8634B865

866AB865

868D6165 [86AC2F65 |891EFI62 (89220762 |892C2662 | 893ABD62

8950EA62

89CFD062

89DA4562

8A049B55

8A27EF55 | 8A32DF55 |8A489755 | 84523055 [8A7F9955 | 8AB3CA55

8AD3AD55

8AF88555

8DA35BBE

8DCEBOBE

8DDAC3BE |8F1F7855 |8F5F5F55 | 8FC42755 [8FEC2655 | 913BD36E

9158BF6E

9199DF6E

91B4856E

91D1546E

91E5696E | AOB92266 (AOBA2B66 | A4401E16 [AADFFF16 | A4ED5A16

A4F64416

A8668A5D

ADOC6EFE

AD8124FE

ADB3D7FE | ADC5A6FE | ADDAF5FE |DO0806F1 | DO7D68F1 | DOD26DF1

DODDC2F1

D20C395A

D25CE85A

D278785A

D2B6C25A [D2BFOD5A (D2E44D5A |[D400B761 [D41E1961 |D4732D61

D494FC61

D4A85061

D79B1B5A

D79FAASA

D801D7FD |D815D2FD | D868D1FD | D8F292FD |EA43E961 |EA485761

EA4E1261

EB355C8A

EB37F78A

EB73DA8A

EED7308A |EEDBF58A |EEE9118A |EF784561 |EF7CB861 |EF8FDE61

F10FO04FE

F146DAFE

F18COCFE

F196ACFE

F1B831FE |F1CFASFE |[F1D371FE |F269861A [F26A251A |F28A8D1A

F32E2E21

F3369421

F3EB6821

F52052B8

F55C47B8 [F5CCO8B8 [F6202521 |F64ABA21 [F6683921 | F684CE21

FEDE0521

FEF67621

F7BDBD1A

F7DOF01A

F7D2411A |F7F60F1A |[FB6E9AFA | FBA2B8FA [FBF809FA | FC8BA450

FCBC2050

FCD65150

FCEFE550

FD705E6E

FDBACEGE | FDE3756E [FE0395FA | FEOF38FA [FEOFABFA | FE2ECFFA

FEB6C3FA

FE9C2EFA

FEEFA7FA

We obtain M; = I' - x;, which is a valid encoding for a message m;, such that
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Step 2 : Obtain the 272 signatures s; = pis0(m;)? mod N for 1 < i < 272,
Step 3 : The signature of mg73 is given by:

LU I
p(mors)t = =139 l_Ipi_g : Hs?m mod N
=1 =1

where p; is the i-th prime and b[:] is given by the following table:

2|2(1)2|1(2]2|2|2|1|2|2|2|1]|1|1]|2]|1|2]|1|1|2|2|1|1]|1
2|2(2(1|2(1]1|2|2|1|2[1]|1|2]|1|2]|2]|2[1]|2|2|2]|2[1|2]|2
1{2]1(1{1]2{2]|1|1]|2]|1|2]|2]|2]2]|1|2[1]|2[2]|2(2]|2|1|1]1
1{1]1{1f2|1|1]|2(1]|2|2|2|1]|2|1|1|1|2]|1|1]|2(1]|2|2(2]|1
1{1]2(1f1]|2(1]|1|2|2|1|1|2]|1|1]|1|2[1]|2[2]|2(2|2|1|2]2
1{2]2(2[1]1|2]|2|1]2]|1|1]|1]|1[2]|2[2[2]|1[1]|2(2]1|2|1]2
2|2(2(|1|1(2|1|2|2|2|1|1]|1|1]|1|2]|2|1|1]|1|2]|1]|2[2|2]|2
1(2]1(2(1]2(1]|2|1|2]|1|2|1]|2|1]|2|1|2]|2|1]|2(1|2|1|2]2
2|1(2(1]|2(2|2|1|2|1[1|2]|1[1]|2(2]|2]|1|2]|2|2|2]|2[1|2]|2
2|1(2]2]|2[1]1|2[2]|2[1|1]|1|2]|2(1]|2]|2|1]|2|1|2]|1[1|1]|2
2|1(1]1|1(1]|1|1]2]|1|2]2

and g[] is given by the following table:

8B|89[4F[3D|20(25|1D|14{14[13|11|0F|10{0B|0D[0B[0A|0B|07[08
09 |07[0B[ 08 [0B|07]|05 |04[08(08|05|04|08|01|07[04[07]|04]|02|04
0A[05/07[07[{06]05|05[04[03]05[03[04|05[04]|03]|04|05[05]|03[04
02(03(03]|02(02]|02(02{02]|03|02(02{02({02{01|01[02]|04]|05|02]|02
06 [04[02[01[01[04]|01[02[{02[01]|04[03]|02]|02[01[02[01]02][03][02
00(02(02]02(03]|02|01|01]|02|03(04|{03({02|{02|02|02|02|01|01]|02
02[05(00[00[01(01]03|01[{02(02|00|01]|01|02]|01|{00|{02]|03]|02|01
02(02(01]01[{02]02[01[{02]|01|03[{01{00{01{01[02[{01]|01]|02|{00|02
02(00(02]00(02]01|02|01]|03|01({01{01({01|{03|02|00|01|01|02|02
00(01{02]01(00|01|01|{01]|01]|01({01{01{02|{01|01|{01|02|01|03|02
02(01{01|01{03]|03(01{00|00{01{01{02{01{01|01|{01|02]|02|02|01
02[01[{00[01[01[00]|01[02[01[02]00{01]|01]|02][00[04[{02]01][01]01
00(02(00]| 01 [{00]|00|01|{00]|01|00(01{01{00|{00|01|[00|03|00|01|00
02[03{02[01[01(01]01]01{00({02]01]|02]|00|00|02|02|00|01]|00|01
02(02(02]01[{00]|01[01{02]|00|02{01{02[{00{01[00|{00|02]|01|01]|01
01(01{00|01({00|01(01|02]|00|01{02{00{01{03|02|00|00|02|00|01
01 |(00(02]00(00]|00|01|{00]|01]|01(00{01({00|{01|01[00|02]|01|01|00
02 (00{00|00(01]01(01{02]|01|01{00{00{00{00|01|{01|01|00|01]|01
02 (02(01]01[{01]01[01{00]|00|01[{00{00({00{01|01[01]|01]|00|01|00
00(01{00]|00(00|02|02|{00|01|00(00{00({01|{01|00|[00|00]|02|02|00
00{00[{00[01[00(00]|01[00[{00({00|01]{01]|01{00|01[02[00]|01]|00{00
01(01{01|01{00|01(01{01|00{00{01{01{00{00|01|{00|01|00|{01]|01
01 [00(01]00(01]00(02{00]|01|00(01{00{02{01|00[00]|01]|00|00|00
00(00(02]01 [00]|00|00|{01]|00|00(00{00[{00|00|03|[00|00]|01|00|00
00(01{00]|00(01]02[00{00|01|00({02{00({00|{00|00|02]|00]|01{00|00
00 [00({00]|00[01]01[01{00]|00|01{02{00[{00{00|00[01]|00]|00|01|00
00(00({00|00(01]01|00|{01]|00|00(00{01{00|{01|00|[00|00]|01|00|00
01{01{00[00 |00 (00|00 |01{00({01|01{00]|00|01|00[01[00]|00]|00|{00
01(01{02]|00(00]|00(00{01|00|00(00{01{00{01|01[00|00|00|{01|00

At Eurocrypt 2002, Grieu presented [13] a much more efficient attack against 150
9796-1. The attack consists in finding all message m, m' such that:

pm) _a
p(m’) b
for small integers a, b. One obtains 2 pairs of messages m1, m} and mg, m!, solution of
the previous equation, which gives four messages such that:

p(ma) - p(my) = p(mi) - p(ms)
and enables to express the signature of m; as a function of the signatures of the other
3 messages.

From the two previous attacks we can conclude that 1SO 9796-1 is broken and
should not be used.
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3.2 ISO 9796-2

1SO 9796-2 is a generic padding standard allowing total or partial message recovery.
Let denote by L the output size of the hash function. Hash-functions of different sizes
are acceptable and parameter L (in the standard k) is consequently a variable. Section
5, note 4 of [15] recommends 64 < L < 80 for total recovery and 128 < L < 160 for
partial recovery.

We start with the partial message recovery variant. For simplicity, we assume that
N, L and the size of m are all multiples of eight and that the hash function is known
to both parties. The message m = m/[1]||m[2] is separated into two parts where m[1]
consists of the N — L — 16 most significant bits of m and m[2] of all the remaining
bits of m. The padding function is :

j1(m) = 6Ass]|mlL]| HASH (m) |BC1g

The attack against ISO 9796-2 described in [5] is an application of Coron, Naccache
and Stern’s attack of the previous section.

One divides (6416 + 1) - 2Vl by N and obtains:
(6A16+1)-2V =i N4+ r with 0<r < N <2Vl
On defines N’ such that:
N'=i-N =6his- 2" + (2N —r) = 6416 N'[1]| N'[0]

where the size of N’ is |[N|+ 7 bits and the size of N'[1] is |[N| — L — 16 bits. One takes
m[1] = N'[1] one obtains:

t=1i-N — pu(m)- 2% = N'[0] — HASH(m)||BCOO1¢

and the size of t is less than L + 16 bits.

The attacker modifies m[2] until he finds sufficiently many integers ¢ which are
the product of small primes. In other words, one applies Coron, Naccache and Stern’s
attack to the integers ¢. The attack complexity is independent of the size of N; it only
depends on the hash size L. From table 1, we obtain the following attack complexity,
as a function of the hash size. As for table 1, this is only an estimate, and the practical
complexity may be much higher. The table suggests that the attack may be practical
for L = 128, but will be more demanding for L = 160. Note that the following
complexities are smaller than the complexities obtained in [5]. This is due to the fact
that we have obtained a smaller complexity in section 2.7.

L | log,time | log, space
128 44 22
160 49 25

Table 2. Attack complexity with partial message recovery
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In the full message recovery variant, we assume that the message size is |V |—L—16.
The encoding of m is then given by:

pu(m) = 4A16|/m|[HASH(m)|[BC16

Using the same technique as for the partial message recovery, we obtain the following
complexities. This suggests that an attack against 1SO 9796-2 with full message
recovery may be practical for L = 64 and L = 80, but is likely to be unpractical for
L > 128.

L | log,time | log, space
64 35 18
80 39 20
128 52 26

Table 3. Attack complexity with full message recovery

3.3 PKCS#1 v1.5
The signature scheme PKCS#1 v1.5 [23] is defined as follows:

u(m) = 000116||FFFF16 e FFFF16||0015||CSHA||H(m)
where cgy, is a constant and H(m) = SHA(m), or
,u(m) = 000116||FFFF16 - FFFF16||0016||CMD5||H(’I7L)

where ¢yps is a constant and H(m) = MD5(m).

In [5] is described an attack against PKCS#1 v1.5 in a particular case: the modulus
N is of the form N = 2* + ¢, where the size of ¢ is at least half the size of N.
However, the attack is not practical, since its complexity is still higher than factoring
the modulus.

In the following, we provide an extension of the attack of [5] to PKCS#1 v1.5 for
any modulus N, with roughly the same complexity. Therefore, the attack is still not
practical and does not endanger the use of PCKS#1 v1.5.

The technique is the following. We write u(m) as
() = ¢+ H(m)

where c is a constant and H is the hash function of size £ bits. We denote by n the
size of the modulus N in bits. We find two integers a and b such that

a-c=b mod N

where the size of a is (n — £)/2 and the size of b is (n + £)/2. As noted in [11], this
is equivalent to finding a good approximation of the fraction ¢/N, and can be done
efficiently by developing it in continued fractions, i.e. applying the extended Euclidean
algorithm to c and N.
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Then we have:
a-p(m)=b+a-H(m)=t

where ¢ is a (n + £)/2 bit modulus. Therefore, we can apply the attack of section
2.7 directly. Using table 1, we obtain the following attack complexity (table 4) for a
1024-bit modulus, which shows that the attack is not practical.

£ | log,time | log,space
128 100 50
160 102 51

Table 4. Attack complexity against PCKS#1 v1.5

3.4 ANSI x9.31
The analysis for ANSI x9.31, where:
p(m) = 6B1g||BBBB1g . . . BBBB1g||BA1g||SHA(m)||33CC16

is the same as for PKCS#1 v1.5. The attacks described in [5] and its extension de-
scribed in the previous section have the same complexity as for PKCS#1 v1.5 and are
not practical.

3.5 Attacks against RSA schemes with linear redundancy

In section 2, we have described the existing attacks against RSA signature schemes
with linear redundancy. These attacks do not seem to extend to RSA signature schemes
using a hash function. For example, given a constant P, a message mi and a modulus
N, Lenstra and Shparlinski’s attack provides three messages mgy, m3 and my4 such that

(Pl[my) - (P|lm2) = (P[|ms) - (P|lms) mod N
For a hash-based signature scheme such as PKCS#1 v1.5, where:
u(M) = P|H(M)

one could take m; = H(M;) for a given M7, but then we would have to find three
other messages My, Ms, My such that m; = H(M;), for i = 1,2,3. This is infeasible
unless the hash function is ”weak*, i.e. it is not one-way.

Therefore, it seems reasonable to say that the attacks against RSA schemes with
linear redundancy do not extend to RSA signature standards PKCS#1 v1.5, ANSI
X9.31 and ISO 9796-2.
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3.6 Security proof for partial-domain hash signature scheme

In this section, we show that it is possible to derive a security proof for the RSA
signature schemes ISO 9796-2, ANSI x9.31 and PKCS#1 v1.5. The security proof
only applies for e = 2 and for a hash size larger than 2/3 the size of the modulus. This
result will be published [6] at the conference Crypto 2002. We provide in appendix
the proceeding version of [6].

More generally, this result applies to any partial-domain hash signature scheme.
We say that a hash-and-sign signature scheme is a partial-domain hash signature
scheme if the encoding function p(m) can be written as:

p(m) =~ - H(m) + f(m) (9)
where 7y is a constant, H a hash function and f some function of m.

We now state the main theorem. It shows that partial-domain hash signature
schemes are provably secure in the random oracle model, for ¢ = 2, assuming that
factoring is hard, if the size of the hash function is larger than 2/3 of the modulus
size. The case e = 2 corresponds to the Rabin-William signature scheme, which we
recall in appendix. In particular, the Rabin-William signature scheme uses a padding
function p(m) such that for all m, u(m) = 6 mod 16. Moreover, we restrict ourselves
to small constants 7y in (9), e.g. v = 16 or v = 256. This is the case for all the signature
standards that we have considered.

Theorem 1. Let S be the Rabin- Williams partial-domain hash signature scheme with
constant v and hash size kg bits. Assume that there is no algorithm which factors a
RSA modulus with probability greater than € within time t. Then the success probability
of a forger against S making at most gnasn hash queries and qs4 signature queries
within time t' is upper bounded by €', where:

e =8 qsig €+ 32 (qhash + qsig + 1) - k1 -y - 2 fh (10)
and ki = ko — 2k.

4 Application to Signature Standards

4.1 PKCS#1 v1.5

The standard PKCS#1 v1.5 was not designed to work with Rabin (e = 2). However,
one can replace the last nibble of H(m) by 6 and obtain a padding scheme which is
compatible with the Rabin-Williams signature scheme. The standard is then provably
secure if the size of the hash-function is larger than 2/3 of the size of the modulus.
This is much larger than the 128 or 160 bits which are recommended in the standard.

4.2 ISO 9796-2 and ANSI x9.31

An application of ISO 9796-2 with the Rabin-Williams signature scheme is described
in [15]. Note that since p(m) = 12 mod 16 instead of u(m) = 6 mod 16, there is a
slight change in the verification process. However, the same security bound applies:
the scheme is provably secure if the size of the hash-function is larger than 2/3 of the
size of the modulus. The same analysis applies for the ANSI x9.31 padding scheme

[1].
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5 Conclusion

We have investigated the security of RSA signature schemes PKCS#1 v1.5, ANSI
x9.31, ISO 9796-1 and ISO 9796-2. We have shown that the standard ISO 9796-1
is insecure and should not be used. We have recalled Coron, Naccache and Stern’s
attack [5] against ISO 9796-2 which shows that if the hash size L is too small, the
standard is insecure. For ISO 9796-2 with partial-message recovery, we recommend
to take L > 160. For ISO 9796-2 with full-message recovery, we recommend to take
L > 128. This makes the attack of [5] unpractical. For PKCS#1 v1.5 and ANSI x9.31,
we have seen that the attack of [5] does not apply. To our knowledge, no attack better
than factoring the modulus or finding a collision in the hash function, is known for
PKCS+#1 v1.5 and ANSI x9.31.

Moreover, we have shown that it is possible to obtain a security proof for PKCS+#1
v1.5, ANSI x9.31 and ISO 9796-2 in a particular case: e = 2 and the hash size is larger
than 2/3 the size of the modulus. In this case, the signature standard reaches the
highest level of provable security: it is infeasible to forge signature under an adaptive
chosen message attack, assuming that factoring is hard.
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Abstract. We study the security of partial-domain hash signature schemes, in which
the output size of the hash function is only a fraction of the modulus size. We show
that for e = 2 (Rabin), partial-domain hash signature schemes are provably secure in
the random oracle model, if the output size of the hash function is larger than 2/3 of
the modulus size. This provides a security proof for a variant of the signature standards
ISO 9796-2 and PKCS#1 v1.5, in which a larger digest size is used.

Key-words: Signature Schemes, Provable Security, Random Oracle Model.

1 Introduction

A common practice for signing with RSA or Rabin consists in first hashing the message
m, then padding the hash value with some predetermined or message-dependent block,
and eventually raising the result u(m) to the private exponent d. This is commonly
referred to as the “hash-and-sign” paradigm:

s =pu(m)® mod N

For digital signature schemes, the strongest security notion was defined by Gold-
wasser, Micali and Rivest in [8], as existential unforgeability under an adaptive chosen
message attack. This notion captures the property that an attacker cannot produce a
valid signature, even after obtaining the signature of (polynomially many) messages
of his choice.

The random oracle model, introduced by Bellare and Rogaway in [2], is a theo-
retical framework allowing to prove the security of hash-and-sign signature schemes.
In this model, the hash function is seen as an oracle which outputs a random value
for each new query. Bellare and Rogaway defined in [3] the Full Domain Hash (FDH)
signature scheme, in which the output size of the hash function is the same as the
modulus size. FDH is provably secure in the random oracle model assuming that in-
verting RSA is hard. Actually, a security proof in the random oracle model does not
necessarily imply that the scheme is secure in the real world (see [4]). Nevertheless, it
seems to be a good engineering principle to design a scheme so that it is provably se-
cure in the random oracle model. Many encryption and signature schemes were proven
to be secure in the random oracle model

Other hash-and-sign signature schemes include the widely used signature standards
PKCS#1 v1.5 and ISO 9796-2. In these standards, the digest size is only a fraction of



18

the modulus size. As opposed to FDH, no security proof is known for those standards.
Moreover, it was shown in [5] that ISO 9796-2 was insecure if the size of the hash
function was too small, and the standard was subsequently revised.

In this paper, we study the security of partial-domain hash signature schemes,
in which the hash size is only a fraction of the modulus size. We show that for e =
2, partial-domain hash signature schemes are provably secure in the random oracle
model, assuming that factoring is hard, if the size of the hash function is larger than
2/3 of the modulus size. The proof is based on a modification of Vallée’s generator of
small random squares [16]. This provides a security proof for a variant of PKCS#1
v1.5 and ISO 9796-2 signatures, in which the digest size is larger than 2/3 of the size
of the modulus.

2 Definitions

In this section we briefly present some notations and definitions used throughout the
paper. We start by recalling the definition of a signature scheme.

Definition 1 (Signature Scheme). A signature scheme (Gen,Sign, Verify) is de-
fined as follows:

- The key generation algorithm Gen is a probabilistic algorithm which given 1%,
outputs a pair of matching public and private keys, (pk, sk).

- The signing algorithm Sign takes the message M to be signed, the private key sk,
and returns a signature x = Sign . (M). The signing algorithm may be probabilistic.

- The verification algorithm Verify takes a message M, a candidate signature x'
and pk. It returns a bit Verifypk(M, z'), equal to one if the signature is accepted, and
zero otherwise. We require that if x < Signg (M), then Verify,, (M,z) = 1.

In the previously introduced existential unforgeability under an adaptive chosen
message attack scenario, the forger can dynamically obtain signatures of messages of
his choice and attempt to output a valid forgery. A valid forgery is a message/signature
pair (M,z) such that Verify,, (M,z) = 1 whereas the signature of M was never
requested by the forger. Moreover, in the random oracle model, the attacker cannot
evaluate the hash function by himself; instead, he queries an oracle which outputs a
random value for each new query.

RSA [14] is undoubtedly the most widely used cryptosystem today:

Definition 2 (RSA). The RSA cryptosystem is a family of trapdoor permutations,
specified by:

- The RSA generator RS.A, which on input 1%, randomly selects two distinct k/2-bit
primes p and q and computes the modulus N = p - q. It picks an encryption exponent
e € Z;(N) and computes the corresponding decryption erponent d such thate-d =1
mod ¢(N). The generator returns (N,e,d).

- The encryption function f : Zy — Zy defined by f(z) = z¢ mod N.

- The decryption function f=': Z% — Z% defined by f~*(y) = y¢ mod N.

An inverting algorithm T for RSA gets as input (N,e,y) and tries to find y?
mod N. Tts success probability is the probability to output y¢ mod N when (N, e, d)



19

are obtained by running RS.A(1*) and y is set to 2° mod N for some z chosen at
random in Z},.

The Full-Domain-Hash scheme (FDH) [3] was the first practical and provably
secure signature scheme based on RSA. It is defined as follows: the key generation
algorithm, on input 1¥, runs RSA(1¥) to obtain (N, e, d). It outputs (pk, sk), where
the public key pk is (N, e) and the private key sk is (N, d). The signing and verifying
algorithms use a hash function H : {0,1}* — Z%, which maps bit strings of arbitrary
length to the set of invertible integers modulo N.

SignFDHy ,(M) VerifyFDHy (M, z)
y < H(M) y ¢ z¢ mod N
return y¢ mod N if y = H(M) then return 1 else return 0.

The following theorem [6] proves the security of FDH in the random oracle model,
assuming that inverting RSA is hard. It provides a better security bound than [3].

Theorem 1. Assume that there is no algorithm which inverts RSA with probability
greater than € within time t. Then the success probability of a FDH forger making at
most qnash hash queries and qsig signature queries within running time t' is less than
', where

e=4. Gsig - €
th=t— (Qhash + G@sig + 1) : O(k?’)

We say that a hash-and-sign signature scheme is a partial-domain hash signature
scheme if the encoding function p(m) can be written as:

p(m) =y - H(m) + f(m) (1)

where 7y is a constant, H a hash function and f some function of m. A typical example
of a partial-domain hash signature scheme is the ISO 9796-2 standard with full message
recovery [11]:

pu(m) = 4Ase||m|| H(m)|[BC16

The main result of this paper is to show that for e = 2, partial-domain hash
signature schemes are provably secure, if the hash size is larger than 2/3 of the modulus
size. In the following, we recall the Rabin- Williams signature scheme [12]. It uses a
padding function p(m) such that for all m, u(m) =6 mod 16.

- Key generation: on input 1%, generate two k/2-bit primes p and ¢ such that
p =3 mod 8 and ¢ = 7 mod 8. The public key is N = p - ¢ and the private key is
d=(N—-p—q+5)/8.

- Signature generation: compute the Jacobi symbol

- ()

The signature of m is s = min(o, N — o), where:

> p(m)? mod N if J=1
(u(m)/2)® mod N otherwise
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- Signature verification: compute w = s> mod N and check that:

w fw=6 modS8
( )1 2w ifw=3 mod38
P =Y N —w ifw="7 mod8

2-(N-w) fw=2 mod8

3 Security of Partial-domain Hash Signature Schemes

To prove the security of a signature scheme against chosen message attacks, one must
be able to answer the signature queries of the attacker. In FDH’s security proof, when
answering a hash query, one generates a random r € Zy and answers H(m) = r¢
mod N so that the signature r of m is known. Similarly, for partial-domain hash
signature schemes, we should be able to generate a random r such that:

p(m) =~ - H(m) + f(m) =r° mod N

with H(m) being uniformly distributed in the output space of the hash function. For
example, if we take u(m) = H(m) where 0 < H(m) < N? and 8 < 1, one should be
able to generate a random r such that 7 mod N is uniformly distributed between 0
and N”.

Up to our knowledge, no such algorithm is known for e > 3. For e = 2, Vallée
constructed in [16] a random generator where the size of 72 mod N is less than 2/3 of
the size of the modulus. [16] used this generator to obtain proven complexity bounds
for the quadratic sieve factoring algorithm. Vallée’s generator has a quasi-uniform
distribution; a distribution is said to be quasi-uniform if there is a constant £ such that
for all z, the probability to generate z lies between 1/¢ and ¢ times the probability to
generate z under the uniform distribution. However, quasi-uniformity is not sufficient
here, as we must simulate a random oracle and therefore our simulation should be
indistinguishable from the uniform distribution.

Our contribution is to modify Vallée’s generator in order to generate random
squares in any interval of size N 2/3+¢  with a distribution which is statistically in-
distinguishable from the uniform distribution. From this generator we will derive a
security proof for partial-domain hash signatures, in which the digest size is at least
2/3 of the modulus size.

Remark: for Paillier’s trapdoor permutation [13] with parameter ¢ = 1 + N, it is
easy to show that half-domain hash is provably secure in the random oracle model,
assuming that inverting RSA with e = N is hard.

4 Generating Random Squares in a Given Interval

4.1 Notations

We identify Z y, the ring of integers modulo N with the set of integers between 0 and
N — 1. We denote by Z}, the set of integers between 0 and (N — 1)/2. We denote by
Q) the squaring operation over Zy:

Q(z) =z?> mod N
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Given positive integers a and h such that a + h < N, let B be the set:
B={ze€Z}la<Q(z)<a+h}

Our goal is to generate integers € B with a distribution statistically indistinguishable
from the uniform distribution. The statistical distance between two distributions X
and Y is defined as the function:

6= %Z|Pr[X=a] — Pr[Y = |

We say that two ensembles X = {X, }neny and Y = {Y}, }nen are statistically indistin-
guishable if their statistical distance ¢, is a negligible function of n.

4.2 Description of B

In this section, we recall Vallée’s description of the set B. We denote by b the cardi-
nality of B. The following lemma, which proof can be derived from equation (6) in
[16], shows that b is close to h/2.

Lemma 1. Let N be a £-bit RSA modulus. We have for £ > 64:
‘b— g‘ <4.4-242

In the following, we assume that the bit size of N is greater than 64. As in [16], we
introduce Farey sequences [9]:

Definition 3 (Farey sequence). The Farey sequence Fy, of order k is the ascending
sequence of irreducible fractions between 0 and 1 whose denominators do not exceed
k. Thus p/q belongs to Fy, if 0 <p <q <k and ged(p,q) = 1.

The characteristic property of Farey sequences is expressed by the following theorem

[9]:
Theorem 2. If p/q and p'/q’ are two successive terms of Fi, then q-p' —p-¢ =1

Given p/q € Fi, we define the Farey interval I(p,q) as the interval of center
pN/(2q) and radius N/(2kq). Given the terms p’'/q’ and p”/q" of F; which precede
and follow p/q, we let J(p,q) be the interval:

Np+p) NpE+p")

J(p,Q) = 2(q+q/) ’ 2(q+qll)

If p/¢g = 0/1, then p/q has no predecessor and we take p'/q’ = 0/1. Similarly, if
p/q = 1/1, we take p"/q" = 1/1. The set of intervals J(p, q) forms a partition of Z},.
The following lemma [16] shows that intervals I(p, q) and J(p,q) are closely related.

Lemma 2. I(p,q) contains J(p,q) and its length is at most twice the length of J(p,q).



22

DO

D1

- D2

D3

—u0—N/(2kq) —u0+N/(2kq)

Fig. 1. The intersection between the lattice L(zo) and the domain between the two parabolas P; and

P2

Given p/q € Fy with p/q # 0/1, let zy be the integer nearest to the rational
pN/2qg:

N 1
.’Eo—p2—q = Ug with |UO| S 5

Let L(zy) be the lattice spanned by the two vectors (1,2zg) and (0, N). Let P; and
P> be the two parabolas of equations:

Priwtu?+zi=a+h and Py:w+u’+1i=a
Let P be the domain of lattice points comprised between the two parabolas:
P = {(u,w) € L(zo) |a <w +u? + 23 < a-+h}

The following lemma, which proof is straightforward, shows that the elements of B
arise from the intersection of the lattice L(zg) and the domain comprised between the
two parabolas (see figure 1).

Lemma 3. x = xg + u belongs to B iff there exists a unique w such that the point
(u,w) belongs to P.

We let B(p, q) be the set of integers in BN J(p,q). From Lemma 3 the integers in
B(p, q) arise from the domain of lattice points:

P(p,q) = {(v,w) € P|zo +u € J(p,q)}
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From Lemma 2, the set P(p, q) is included inside the set of lattice points:

Q(p,q) = {(v,w) € P | zo +u € I(p,q)}

whose abcissae u are comprised between —ug — N/(2kq) and —ug + N/(2kq). In the
following, we describe the domain Q(p,q), using the following two short vectors of
L(z) (see figure 1):

r= q(1a2$0) - p(O,N) = (Qa 2qu0) (2)
s =q'(1,2z0) —p'(0, N) = (¢',2q'uo + N/q) (3)

where p’/q' is the term of F;, which precedes p/q.

We consider the lines of the lattice parallel to vector r which intersect the domain
Q(p,q). These lines have a slope equal to 2ug. The first extremal position of these
lines is the tangent Dy to the first parabola:

Dg: w— (—u? —z2+a+h)=2up(u+ u)

The second extremal position joins the two points of the second parabola with abscis-
sae —ug — N/(2kq) and —uy+ N/(2kq). This line D3 has also a slope equal to 2uy and
satisfies the equation:

N N
w+(u0+%)2—a+x3=2u0(u+uo+%)

The two lines intersect the vertical axis at the respective points:

N2
2, .2 2,2

=a— h and =a— -
wo=a— x5+ uy+ nd wz =a— x5+ ug 12
All the lines parallel to » that intersect P(p, q) are the ones that intersect the segment
[ws,wp] on the vertical axis. We denote by D(v) a line parallel to » which intersects
the vertical axis at ordinate equal to wg — ¥N/q. The line Dy is the line D(vy = 0),
whereas the line Ds is the line D(v3) such that:

__hq N

N 1R @

V3

Eventually, we denote by D; = D(vy) the line which joins the two points of the first
parabola with abcissae —uy — N/(2kq) and —ug + N/(2kq), and by Dy = D(v7) the
tangent to the second parabola, with a slope equal to 2ug. We have:

he

(5)

121 and 1y =

- 4k2q

A real v is called an index if D(v) is a line of L(zp). The difference between two
consecutive indices is equal to one.
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4.3 Owur New Generator

In this section, we describe our new generator of integers in B. The difference with
Vallée’s generator is that we use different parameters for k£ and h, and we do not
generate all the integers in B; instead we avoid a negligible subset of B.

First, we describe a generator G(p,q) of integers in B(p,q), and we show that
its distribution is statistically indistinguishable from the uniform distribution. We
assume that N <2-k.q- \/l_z, which gives v; < vy. Therefore the line D; is above the
line Do (see figure 1). We restrict ourselves to the integers in B(p,q) such that the
corresponding points (u,w) € P(p,q) lie on D(v) with 1 < v < vy. These points are
the points on D(v) whose abscissae u are such that zq +u € J(p, q).

Generator G(p,q) of integers in B(p,q):

1. Generate a random index v uniformly distributed between v and vs.

2. Generate a point (u,w) € P(p,q) on D(v) such that zo + u € J(p,q), with the
uniform distribution.

3. Output zg + u.

The following lemma shows that under some conditions on k,h and ¢, the cardi-
nality b(p, q) of B(p, q) is close to h-j(p,q)/N, where j(p,q) is the number of integers
in the interval J(p, ). Moreover, under the same conditions, the distribution induced
by G(p,q) is statistically indistinguishable from the uniform distribution in B(p, q).
The proof is given in appendix A.

Lemma 4. Let a > 0 and k = N3~®. Assume that k > 6, N® > 3 gnd N3t13@ <
h < N. Then for all p/q € Fy, such that N1/3=%e < o <k, we have:

b(p, q) _ h - j]grpa Q) < 4h - .j\(]p, Q) N—Sa (6)

Moreover, G(p,q) generates elements in B(p,q) with a distribution whose distance ¢
from the uniform distribution is at most 7- N3,

Now we construct a generator V of p/q € Fj, such that the probability to generate
p/q is close to b(p,q)/b. It only generates p/q € Fj such that ¢ > N/3-%¢ 5o that
from the previous lemma, b(p,q) is nearly proportional to the number of integers in
J(p,q), and the distribution induced by G(p, q) is close to the uniform distribution.

Generator V of p/q € Fi,

1. Generate a random integer z € Z} with the uniform distribution.
2. Determine which interval J(p,q) contains z.

3. If ¢ > N'/3=% then output p/q € Fi, otherwise output L.

Lemma 5. Let denote by D the distribution induced by choosing p/q € Fy, with prob-
ability b(p,q)/b. Under the conditions of lemma 4, the statistical distance 6y between
D and the distribution induced by V is at most 9 - N~3%.

Proof. See appendix B.

Eventually, our generator G of elements in B combines the two generators ¥V and

G(p,q):
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Generator G of z € B
1. Generate y using V.
2. If y = 1, then output L.
3. Otherwise, y = p/q and generate z € B(p, q) using G(p, q). Output z.
The following theorem, whose proof is given in appendix C, shows that the distri-

bution induced by G is statistically indistinguishable from the uniform distribution in
B.

Theorem 3. For any € > 0, letting h = N3t gnd a = e/13. If N* > 3, then the
distance § between the distribution induced by G and the uniform distribution in B is
at most 16 - N=3¢/13, The running time of G is O(log® N).

5 A Security Proof for Partial-domain Hash Signature Schemes

In this section, using the previous generator G of random squares, we show that partial-
domain hash signature schemes are provably secure in the random oracle model, for
e = 2, assuming that factoring is hard, if the size of the hash function is larger than
2/3 of the modulus size. Moreover, we restrict ourselves to small constants 7 in (1),
e.g. v = 16 or v = 256. This is the case for all the signature standards of the next
section. We denote by kg the hash function’s digest size. The proof is similar to the
proof of theorem 1 and is given in the full version of this paper [7].

Theorem 4. Let S be the Rabin- Williams partial-domain hash signature scheme with
constant v and hash size ko bits. Assume that there is no algorithm which factors a
RSA modulus with probability greater than € within time t. Then the success probability
of a forger against S making at most quesn hash queries and qgq4 signature queries
within time t' is upper bounded by €', where:

€' =8 qsig- €+ 32 (qhash + Gsig + 1) - k1 -y -2 18R (7)
' =t—ki -7 (qhash + Gsig + 1) - O(K?) (8)
and k1 = ko — %k

6 Application to Signature Standards

6.1 PKCS#1 v1.5 and SSL-3.02

The signature scheme PKCS#1 v1.5 [15] is a partial-domain hash signature scheme,
with:
pu(m) = 000116 ||[FFFF1¢ ... FFFF16||0016||csua||H (m)

where cgua is a constant and H(m) = SHA(m), or
,u(m) = 000116||FFFF16 . FFFF16||0016||CMD5||H(’ITL)

where cyp; is a constant and H(m) = MD5(m).

The standard PKCS#1 v1.5 was not designed to work with Rabin (e = 2). How-
ever, one can replace the last nibble of H(m) by 6 and obtain a padding scheme
which is compatible with the Rabin-Williams signature scheme. The standard is then
provably secure if the size of the hash-function is larger than 2/3 of the size of the
modulus. This is much larger than the 128 or 160 bits which are recommended in the
standard. The same analysis applies for the SSL-3.02 padding scheme [10].
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6.2 ISO 9796-2 and ANSI x9.31
The ISO 9796-2 encoding scheme [11] is defined as follows:

p(m) = 6A1e||m(1][|H (m)[[BC16
where m[1] is the leftmost part of the message, or:
p(m) = 4Asg|/m|| H(m)||BC16

[11] describes an application of ISO 9796-2 with the Rabin-Williams signature scheme.
Note that since p(m) = 12 mod 16 instead of u(m) = 6 mod 16, there is a slight
change in the verification process. However, the same security bound applies: the
scheme is provably secure if the size of the hash-function is larger than 2/3 of the size
of the modulus. The same analysis applies for the ANSI x9.31 padding scheme [1].

7 Conclusion

We have shown that for Rabin, partial-domain hash signature schemes are provably
secure in the random oracle, assuming that factoring is hard, if the size of the hash
function is larger than 2/3 of the modulus size. Unfortunately, this is much larger
than the size which is recommended in the standards PKCS#1 v1.5 and ISO 9796-2.
An open problem is to obtain a smaller bound for the digest size, and to extend this
result to RSA signatures.
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A Proof of lemma 4

From the conditions of lemma 4, we obtain:

hq 9a N 6a

which gives N < 2-k - q-vh and then vy < vs.

Recall that j(p, q) denotes the number of integers in interval J(p, ¢). From lemma
2 the length of J(p, q) is at least N/(2kq) and therefore, j(p,q) > N/(2kq) — 1, which
gives using k£ > 6:

- 3o
i, q) > N

q 3

(10)
Let us denote by n(v) the number of points of P(p, q) on a line D(v). The distance
between the abcissae of two consecutive points of P(p, ¢) on a line D(v) is equal to q.

Therefore, for all indices v, we have n(v) < |j(p,q)/q] + 1. Moreover, for v; < v < vy,
n(v) is either |j(p,q)/q] or |j(p,q)/q] + 1. This gives the following bound for b(p, g):

(n - -1 (122 —1) <0(p.0) < a4 1) (122 +1)

which gives using (4), (5), (9), (10) and N* > 3:

h-j(p,q)| _ 4h-j(p,q) -3
b — ’ < NP 11
R 1)
Let n’ be the number of indices v such that 11 < v < vy. We have n’ = |[vn — 11]
or n' = |vp —v1| + 1. The probability that G(p,q) generates an element = € B(p, q)

corresponding to a point of index v is given by:

for 1 < v < vy and P(v) = 0 otherwise. The number of integers z € B(p, g) such that
Pr[z] = 0 is then at most:

(i +vs—vs+2) - (j(zzq) +1) S]\,esa_J(I;,q) (12)
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For all 11 < v < vy, we have using (4), (5), (9), (10), (11) and N® > 3:
1 N
Pv) — ——|<10- ——— - N 3@ 13

Eventually, the statistical distance from the uniform distribution is:

(5G:% Z Pr[z] — ! ‘

b

and we obtain using (11), (12) and (13):

8g <T7-N3@

B Proof of lemma 5

Let us denote g,, = N'/3=%*_ For ¢ > g,,, the probability to generate p/q € Fy, using
Vis j(p,q)/ \Z*M Moreover, using lemma 2, the probability that VV generates L is at
most:
2-50:q) _ o9, -3
Pr[l] = L3 <3- N 14
M= 3 “yip sy s’ (14)
Frlg<qm

Consequently, the statistical distance dy between D and the distribution induced by
V is at most:

1 2-j(pg)  blpg], 1 1 b(p, q)
== - S Pr[L] 4= 1
V=5 2 Wi | Tatilry 2 (15)
Frla>qm Frlg<gm
Let 2 be the size of N in bits. From lemma 1, we obtain for £ > 64:
|b—g|34-4-2‘/2§%-N2/332-N—3a (16)

For ¢ > g, we obtain from Lemma 4 and (16):

b(pa q) 2- j(pa Q) 12 - j(p7 q) —3a
_ < )
‘ b N+1 |- N+1 N (17)
This gives:
b(p, q) b(p,q) 3 2-5(p,q)
1 =1- <1—-(1-6-N"°%). —_—
> Y. <1 DD
Frla<gm Frlg>qm Frla>qm
From (14) and using:
7 N+1
we obtain:
b(pa Q) -3
<9.N7v° 1
Y.~ <9 (18)
Frlg<gm

From equation (15) and inequalities (14), (17) and (18), we obtain:
Sy <9-N73
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C Proof of theorem 3

The generator G combines the generators V and G(p, q). Moreover, V generates p/q €
Fi, such that the statistical distance d¢ of the distribution induced by G(p, ¢) from the
uniform distribution in B(p, q) is at most 7 - N~3%. Therefore the statistical distance
d of G from the uniform distribution in B is at most:

§ < by +6g < 16- N—3€/13



