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1 Introduction

This document is an evaluation of the RSA-OAEP encryption scheme, standardized in
PKCS # 1v.2.0 (see [15]). Our work is based on the analysis of documents [15, 24, 25],
which provide the specification of the scheme, as well as on various research papers
related to each scheme, where security arguments can be found. Among the reseach
papers related to the encryption scheme are the seminal work [5] of Bellare and Rogaway
on OAEP, and the more recent work by Shoup [27] on one hand, and Fujisaki, Okamoto,
Pointcheval and Stern [11] on the other hand.

The present report is organized as follows: firstly, we briefly review the RSA prim-
itive, mainly for notational purposes, and we discuss its relation to the factoring prob-
lem. We also recall the strong security notions that are now mandatory for cryptosys-
tems: semantic security and security against adaptive chosen-ciphertext attacks, in
the case of encryption. This allows us to discuss the security of initial instantiations
of the RSA cryptosystems. Next, we turn to OAEP and provide a complete proof of
the security of RSA-OAEP against adaptive chosen-ciphertext attacks, in the random
oracle model. We also discuss the practical implications of this proof in terms of key
sizes and implementations conformant to PKCS #1 [15, 24]. This is as requested by
IPA.

2 The RSA primitive and its security

In this section, we review the original RSA primitive, describe the strong security
notions that are currently required, and explain why “plain” RSA cannot meet these
requirements.

2.1 The RSA cryptosystem

In modern terms, a public-key encryption scheme on a message space M consists of
three algorithms (K, £, D):



e the key generation algorithm KC(1¥) outputs a random pair of private/public keys
(sk, pk), relatively to a security parameter k&

e the encryption algorithm & (m;r) outputs a ciphertext ¢ corresponding to the
plaintext m € M, using random coins r

e the decryption algorithm Dg(c) outputs the plaintext m associated to the cipher-
text c.

We will occasionnally omit the random coins and write Ex(m) in place of Ep(m;T).
Note that the decryption algorithm is deterministic.

The famous RSA cryptosystem has been proposed by Rivest, Shamir and Adle-
man [22]. The key generation algorithm of RSA chooses two large primes p, ¢ of equal
size and issues the so-called modulus n = pq. The sizes of p, ¢ are set in such a way that
the binary length |n| of n equals the security parameter k. Additionally, en exponent
e, relatively prime to ¢(n) = (p—1)(¢ — 1) is chosen, so that the public key is the pair
(n,e). The private key d is the inverse of e modulo ¢(n). Variants allow the use of
more than two prime factors.

Encryption and decryption are defined as follows:

Ene(m) =m® mod n D,,.4(c) = ¢ mod n.

Note that both operations are deterministic and are mutually inverse to each other.
Thus, the RSA encryption function is a permutation. It is termed a trapdoor permu-
tation since decryption can only be applied given the private key.

The basic security assumption on which the RSA cryptosystem relies is its one-
wayness (OW): using only public data, an attacker cannot recover the plaintext cor-
responding to a given ciphertext. In the general formal setting provided above, an
encryption scheme is one-way if the success probability of any adversary A attempt-
ing to invert £ (without the help of the private key), is negligible, i.e. asymptotically
smaller than the inverse of any polynomial function of the security parameter. Prob-
abilities are taken over the message space M and the randoin coins 2. These include
both the random coins r used for the encryption scheme, and the internal random coins
of the adversary. In symbols:

Succ®™ (A) = Pr[(pk, sk) + K(1¥),m €x M : A(pk, Eg(m)) = m).

Clearly, the factorization of n allows to invert the RSA encryption function, since d
can be computed from p and ¢. It is unknown whether the converse is true, i.e. whether
factoring and inverting RSA are computationnally equivalent. There are indications
that it might not be true (see [7]). Thus, the assumption that RSA is one-way might
be a stronger assumption than the hardness of factoring. Still, it is a widely believed
assumption and the only method to assess the strength of RSA is to check whether
the size of the modulus n outreaches the current performances of the various factoring
algorithms.



2.2 Advanced security notions
2.2.1 Semantic security

Semantic security, also called polynomial security/indistinguishability of encryptions,
has been introduced by Goldwasser and Micali [12] : an encryption scheme is semanti-
cally secure if no polynomial-time attacker can learn any bit of information about the
plaintext from the ciphertext, except its length. More formally, an encryption scheme
is semantically secure if, for any two-stage adversary A = (A;, Ay) running in polyno-
mial time, the advantage Adv™™(A) is negligible, where Advi"(A) is formally defined

as
(pk, sk) « K(1¥), (mg, mq, s) < A1 (pk),

b GR {07 1}a c= 5pk(mb) : AQ(m07 my, s, C) =b
where the probability space includes the internal random coins of the adversary, and
mg, my are two equal length plaintexts chosen by A; in the message-space M.

2 x Pr —1,

2.2.2 Non-malleability

Another security notion has been defined in the literature [9], called non-malleability (NM).
Informally is states that it is impossible to derive, from a given ciphertext, a new ci-
phertext such that the plaintexts are meaningfully related. We won’t dicuss this notion
extensively since it has been proven equivalent to semantic security in an extended at-
tack model (see below).

2.2.3 Chosen-ciphertext security

The above definition of semantic security covers passive adversaries. It is a chosen—
plaintext or CPA attack since the attacker can only encrypt plaintext. In extended
models, the adversary is given restricted or non restricted access to various oracles. A
plaintext-checking oracle receives as its input a pair (m,c) and answers whether ¢ en-
crypts message m. This gives rise to plaintext-checking attacks [20]. A validity-checking
oracle answers whether its input c is a valid ciphertext or not. The corresponding sce-
nario has been termed reaction attack [13]. Its has been spectacularly applied for
breaking the famous PKCS #1 v1.5 encryption [6]. Finally, a decryption oracle re-
turns the decryption of any ciphertext ¢, with the only restriction that it should be
different from the challenge ciphertext. When access to the decryption oracle is only
granted to Ay, i.e. during the first stage of the attack, before the challenge ciphertext
is received, the corresponding scenario is named indifferent chosen-ciphertext attack
(CCA1) [17]. When the attacker also receives access to the decryption oracle in the
second stage, the attack is termed the adaptive chosen-ciphertext attack (CCA2) [21].
The security notions defined above and their logical relationships have been discussed
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Figure 1: Relations between security notions

at length in [3]. The main results are summarized in the well-known diagram shown
on figure 1.

Thus, under CCA2, semantic security and non-malleability are equivalent. This is
the strongest security notion currently considered. We restate the definition in a more
formal manner: any adversary .4 with unrestricted access to the decryption oracle Dy,
has negligible advantage, where the advantage is:

(pk, sk) < K(1*), (mq, my, s) < AT*(pk),

Advi"d(AP*) =2 x P B
VAT = 2P| e (0,1 ¢ = Eyumy) : AT (g, i, 5,) = b

1

Y

2.3 The security of “plain” RSA

By itself, RSA cannot provide a secure encryption scheme for any of the security
notions considered in the previous section: semantic security fails because encryption
is deterministic and non-malleability cannot hold due to the homomorphic property:

Ene(my) - Epe(M2) = &, (mimy mod n) mod n.

Therefore, any RSA-based cryptosystems has to use a padding or encoding method
before applying the RSA primitive.

For the sake of completeness, we review the first encoding rule, originally proposed
in the PKCS #1 v1.5 standard [23]. Given a modulus n, let k£ be its size in bytes,
28k=1) < < 2% This is a slight twist to our original definition of the security
parameter. The standard allows to encrypt an ¢ byte-long message m, for £ < k — 11.
To perform the encryption, one randomly chooses a k — 3 — ¢ byte-long random string
r, whose bytes are all non-zero and defines M = 02||r||0||m, a £ — 1 byte string (see
figure 2). String M is turned into an integer < n by standard conversion routines and
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more than 8 bytes
non-zero bytes

Figure 2: PKCS #1 v1.5 Format

thereafter encrypted by means of the RSA function, C = M* mod n. When decrypting
a ciphertext C, one first applies RSA inversion, M = C% mod n, and checks whether the
result M matches with the expected format 02| * ||0|| * . In the positive situation,
one outputs the trailing part as the plaintext. Otherwise, the ciphertext is rejected.

The encoding rule seemed to address known weaknesses of plain RSA. However,
in 1998, Bleichenbacher [6] described a reaction attack breaking the one-wayness of
the underlying RSA scheme. Furthermore, this attack was (almost) realistic against
practical implementations of the SSL protocol v3.0. Based on the answer that an SSL
server outputs upon receiving an invalid ciphertext, an adversary can select a ciphertext
C, such that

2. 28¢=2 < 04 mod n < 3282,

Furthermore, based on the homomorphic properties of the RSA function, this cipher-
text can be related to a target plaintext. Bleichenbacher showed how to tighten the
bound by iteration, which leads to recovering the plaintext after a number of queries
(a few millions with a 1024-bit modulus).

We will not review Bleichenbacher’s attack but, in order to get its flavour, we will
assume that the adversary has access to an oracle, which, upon receiving a ciphertext C,

returns the answer to the test C? mod n ; B, for some fixed bound B. Understanding
how the attack works in this simplified setting will be useful at a later point in this
report. We assume that n/B is > 2 but still small. Given the target ciphertext, the
attacker submits ciphertexts of the form C(a) = a*C mod n. If z is obtained from C
by inverting the RSA function, x = C¢ mod n, then inverting C(a) yields ax, by the
homomorphic properties of the RSA function. The simplified attacks successfully finds

e an integer « such that B/2 < ax < B
e an integer ag such that n < apx <n+ B
e a sequence of integers o; such that 2'n < qux < 2'n + B

Observe that « can easily be found by trials and errors. From «, one can find g by
testing C'(ja), 7 > 2 by means of the oracle, until the test becomes positive. Finally,

to get a;41 from oy, one tests C'(2a; — ja) until a positive answer is returned. When i

n

is large enough, the exact value of x can be found as the integer closest to ;.



2.4 The random oracle model

After the attack just described appeared, it became clear that one should provide an
encoding rule, such that the resulting encryption scheme has provable security. Ideally,
one would like to establish the security of the scheme based on the sole assumption
that the RSA function is one-way. Unfortunately, no encoding is currently known that
allows such a proof.

Thus, the best one can hope for is a proof carried in a non-standard computational
model, as proposed by Bellare and Rogaway [4], following an earlier suggestion by
Fiat and Shamir [10]. In this model, called the random oracle model, concrete objects
such that hash functions are treated as random objects. This allows to carry through
the usual reduction arguments to the context of relativized computations, where the
hash function is treated as an oracle returning a random answer for each new query.
A reduction still uses an adversary as a subroutine of a program that contradicts a
mathematical assumption, such as the assumption that RSA is one-way. However,
probabilities are taken not only over coin tosses but also over the random oracle.

Of course, the significance of proofs carried in the random oracle is debatable.
Firstly, hash functions are deterministic and therefore do not return random answers.
Along those lines, Canetti et al. [8] gave an example of a signature scheme which is
secure in the random oracle model, but insecure under any instantiation of the random
oracle. Secondly, proofs in the random oracle model cannot easily receive a quantitative
interpretation. One would like to derive concrete estimates - in terms of key sizes -
from the proof: if a reduction is efficient, the security “loss” is small and the existence
of an efficient adversary leads to an algorithm for solving the underlying mathematical
problem, which is almost as efficient. Thus, key sizes that outreach the performances
of the known algorithms to break the underlying problem can be used for the scheme
as well.

Despite these restrictions, the random oracle model has proved extremely useful
to analyze many encryption and signature schemes. It clearly provides an overall
guarantee that a scheme is not flawed, based on the intuition that an attacker would
be forced to use the hash function in a non generic way.

2.5 Plaintext-awareness

A further notion that has been defined in the literature and has been the source of
potential misconceptions is plaintext-awareness. It was introduced by Bellare and Ro-
gaway [5] to formally state the impossibility of creating a valid ciphertext without
“knowing” the corresponding plaintext. This goes through the definition of a plaintext-
extractor PE. Such a definition only makes sense in the random oracle model: in this
model, one can store the query/answer list H that an adversary A obtains while in-
teracting with the oracle H. Basically, the plaintext-extractor P& is able to correctly



simulate the decryption algorithm, without the private key, when it receives a candi-
date ciphertext y produced by any adversary A, together with the list H produced
during the execution of A. In other words, given y and H, the plaintext-extractor P&
outputs the plaintext (or the “Reject” answer), with overwhelming success probability,
where probabilities are taken over the random coins of A and PE. In symbols:

Succ"®(PE) = Pr [(pk, sk) + K (1), (y, H) + Exec(pk) : PE(y, H) = Du(y)] -

The wpa superscript in the above relates to the name weak plaintext-awareness (WPA or
PA94), that the notion has later received. Actually, it is not an appropriate definition
for practical applications, since, in many scenarios, the adversary may have access to
additional valid ciphertexts that it has not manufactured - say by eavesdropping.

Accordingly, the definition was modified in [3], to give the adversary A access to an
encryption oracle outputting valid ciphertexts. We denote by C the list of ciphertexts
obtained by the adversary from the encryption oracle. Since the adversary is given
access to additional resources, the new notion is stronger: the adversary outputs a fresh
ciphertext y (not in C'), this ciphertext is given to the plaintext-extractor, together with
the lists 4 and C. Based on these data, PE outputs the plaintext (or the “Reject”
answer) with overwhelming success probability Succ®(PE), where:

Succ® (PE) = Pr | (pk, sk) + K(1%), (y, C, H) « Exec ™ (pk) : PE(y, O, H) = Du(y)] .

It is of course important to note that y ¢ C'. In other words, y has been duly manu-
factured by the attacker and not obtained from the encryption oracle.

The new definition of plaintext-awareness (PA or PA98) allows to reach the strongest
security level, IND-CCA2. Indeed, it is easily seen that the combination of IND-CPA and
PA yields IND-CCA2, whereas the combination of IND-CPA and WPA only yields IND-
CCA1l. As we will see later, this does not even imply NM-CPA.

3 Optimal Asymmetric Encryption Padding

We now turn to OAEP (Optimal Asymmetric Encryption Padding). We first review,
in a non technical manner, the various research contributions that this scheme has
fostered since it was first published in [5]. Next, we give a mathematical description of
OAEP and provide a complete proof of its security. This proof is different in spirit from
what is published in [11] and is therefore of independent interest. Next, we discuss the
version of OAEP that appears in PKCS#1 v2.0 [15] and discuss the meaning of the
security proof in this setting. Finally, we discuss potential implementation errors and
how they have been addressed by RSA Security Inc.



3.1 The history of OAEP

When Bleichenbacher published his attack on RSA-PKCS #1 v1.5 [6], it became clear
that a scheme secure against chosen-ciphertext attacks was needed to securely practice
RSA. At that time, the only choice was to use the Optimal Asymmetric Encryption
Padding, proposed by Bellare and Rogaway [5]. In their paper, Bellare and Rogaway
proved that, by applying any trapdoor one-way permutation to the output of OAEP
encoding, one could obtain a encryption scheme which was both semantically secure
and plaintext-aware. Of course, they were using the weak version of plaintext aware-
ness, where the plaintext-extractor is not given additional valid ciphertexts received by
the adversary. This precisely excludes the adaptive chosen-ciphertext attack scenario,
where the adversary has access to the decryption oracle, even after receiving the chal-
lenge ciphertext. This challenge is a valid ciphertext, that should be handled to the
plaintext extractor to perform the decryption simulation. In other words, what follows
from the combination of semantic security and weak plaintert-awareness in [5], is only
semantic security against indifferent chosen-ciphertext attacks (IND-CCA1).

After Bellare et al. [3] later published the modified definition of plaintext-awareness
(PA), no research paper claimed that one could design a plaintext-extractor for OAEP,
according to the new definition. Still, the original paper was commonly viewed as
providing a strong security level. This view was definitely superficial: it had never
been proven that OAEP was turning a trapdoor one-way permutation into an IND-
CCA2 encryption scheme. In fact, Victor Shoup [27] very ingeniously demonstrated that
it was very unlikely that such a proof could exist at all. Shortly after the announcement
of Shoup’s results, Fujisaki, Okamoto, Pointcheval and Stern [11], proved that RSA—
OAEP was indeed IND-CCA2 secure. Quite logically, since the general result does not
hold, they had to use specific properties of the RSA primitive: details will be given
below.

3.2 Description of OAEP

Let f be a k-bit to k-bit trapdoor permutation, whose inverse is denoted by ¢. Let kg,
k1 be two parameters such that ky + k1 < k. We define n = k — ky — k1 and fix two
hash functions, G and H, such that:

G :{0,1}% — {0,1}f%0 and H : {0, 1} % — {0, 1}k,
Given the above, we can define an OAEP-encryption scheme (K, £, D) as follows:

e K(1%): specifies an instance of the function f, and of its inverse g. The public
key pk is f and the private key sk is g.

o Ex(m;r): given a message m € {0,1}", and a random value r €5 {0,1}%, the
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Figure 3: Optimal Asymmetric Encryption Padding

encryption algorithm &y computes
s = (m||0*)® G(r) and t = r @ H(s),
and outputs the ciphertext ¢ = f(s]|t).
e Dy (c): using the private key sk = g = f~!, the decryption algorithm Dy, extracts
(s|lt) = g(c), and next r =t @ H(s) and M = s ® G(r).
If [M];, = 0%, the algorithm returns [M|", otherwise it returns “Reject”.

In the above, [M];, denotes the k; trailing bits of M, while [M]" denotes the n leading
bits of M. The scheme is depicted on figure 3 .

As repeatedly stated, paper [5] includes a proof that, provided f is a one-way trap-
door permutation, the resulting OAEP encryption scheme is both semantically secure
and weakly plaintext-aware. This implies the semantic security against indifferent
chosen-ciphertext attacks (IND-CCA1), also called security against lunchtime attacks.
We will not review the proofs from [5], since a full proof of the security of RSA-OAEP
appears further in this report. We briefly comment on the intuition behind (weak)
plaintext-awareness. When, the plaintext-extractor receives a ciphertext c, then:

e cither s has been queried to H and r has been queried to G, in which case the
extractor finds the cleartext by inspecting the two query lists G and H,

e or else the decryption of (s,?) remains highly random and there is little chance to
meet the redundancy 0%!: the plaintext extractor can safely declare the ciphertext
invalid.

The argument collapses when the plaintext-extractor receives additional valid cipher-
texts y, since this puts additional implicit constraints on G and H. These constraints
cannot be seen by inspecting the query lists.

9



oA ® H(s) & H(s

Figure 4: Shoup’s Attack

3.3 Shoup’s counter-example

In his paper [27], Victor Shoup showed that it was quite unlikely to extend the results
of [5] so as to obtain adaptive chosen-ciphertext security, under the sole one-wayness
of the permutation. His counter-example made use of the ad hoc notion of a XOR-
malleable trapdoor one-way permutation: for such permutation fy, one can compute
fo(z ®a) from fy(z) and @, with non-negligible probability.

Let fo be such a XOR-malleable permutation. Defines f by f(s||t) = s||fo(t)-
Clearly, f is also a trapdoor one-way permutation. However it leads to a malleable
encryption scheme as we now show. Start with a challenge ciphertext y = g(s||t) = s||u,
where sl|t is the output of the OAEP transformation on the redundant message m||0*:
and the random string r (see figure 4)

s=G(r)® (m||0F),t = H(s) ®r and u = fy(t).

Since f is the identity on its leftmost part, we know s, and can define A = §||0*1, for any
random string d, and s’ = s®A. We thenset t' = H(s')®r =t® (H(s)® H(s')). The
XOR-malleability of fy allows to obtain v’ = fo(¢') from u = fo(t) and H(s) ® H(s'),
with significant probability. Finally, y' = §'||u’ is a valid ciphertext of m' = m & 9,
built from 7' = r, since:

t'=flu)=to(H(s)®H()=H(sY®randr' = H(s) ot =r.
and
SOGI)=A®sdG(r) =A (m|0*) = (mad)|0.

Note that the above definitely contradicts adaptive chosen-ciphertext security: ask-
ing the decryption of y' after having received the ciphertext y, an adversary obtains
m' and easily recovers the actual cleartext m from m' and 0. Also note that Shoup’s
counter-example exactly stems from where the intuition developped at the end of the
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previous section failed: a valid ciphertext 3’ was created without quering the oracle at
the corresponding random seed 7/, using in place the implicit constraint on G' coming
from the received valid ciphertext y.

Using methods from relativized complexity theory, Shoup [27] built a non-standard
model of computation, where there exists a XOR-malleable trapdoor one-way permu-
tation. As a consequence, it is very unlikely that one can prove the IND-CCA2 security
of the OAEP construction, under the sole one-wayness of the underlying permuta-
tion. Indeed, all methods of proof currently known still apply in relativized models of
computation.

3.4 The security of RSA-OAEP: outline
3.4.1 The intuition

Referring to our description of the intuition behind the original OAEP proof of security,
given in section 3.2, we can carry a more subtle analysis by distinguishing the case
where s has not been queried from oracle H from the case where r has not been
queried from G. If s is not queried, then H(s) is random and uniformly distributed
and 7 is necessarily defined as t @ H(s). This holds even if s matches with the string
s* coming from the valid ciphertext y*. There is a minute probability that ¢ & H(s)
is queried from G or equals 7*. Thus, G(r) is random: there is little chance that the
redundancy 0*' is met and the extractor can safely reject.

We claim that r cannot match with 7*, unless s* is queried from H. This is because
r* = t* @ H(s*) equals r = t ® H(s) with minute probability. Thus, if r is not queried,
then G(r) is random and we similarly infer that the extractor can safely reject. The
argument only fails only if s* is queried.

Thus rejecting when it cannot combine elements of the lists G and H so as to build
a preimage of y, the plaintext extractor is only wrong with minute probability, unless
s* has been queried by the adversary. This seems to show that OAEP leads to an IND-
CCA2 encryption scheme if it is difficult to “partially” invert f, which means: given
y = f(s]|t), find s.

3.4.2 The strategy

Based on the intuition just described, Fujisaki, Okamoto, Pointcheval and Stern [11]
formally proved that applying OAEP encoding to a trapdoor permutation which is
difficult to partially invert, leads to an IND-CCA2 encryption scheme. They used the
term partial-domain one-wayness to express the fact that the above partial inversion
problem was difficult. Precise definitions will be given in the next section. As the
original proof from [5], their proof has two steps: it is first shown that the OAEP
scheme is IND-CPA relative to another notion termed set partial-domain one-wayness.
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Next, chosen-ciphertext security is addressed, by turning the intuition explained above,
into a formal argument, involving a restricted variant of plaintext awareness. The
authors of [11] also proved that the partial-domain one-wayness of the RSA function is
equivalent to its one-wayness. Altogether, the expected security result for RSA-OAEP
is finally proved.

3.5 The security of RSA-OAEP: the formal proof

3.5.1 Partial-domain one-wayness

Let f be, as above, a permutation f : {0,1}*¥ — {0, 1}*, which can also be written as
f {0, 1} x {0, 1} R0 — {0, 1} x {0, 1}*,

with £ = n + kg + k1. In the following, we consider, besides one-wayness, two related
properties, namely partial-domain one-wayness and set partial-domain one-wayness.
We provide “exact” definitions but the reader can easily supply the asymptotic coun-
terparts.

e Permutation f is (7, £)-one-way if any adversary A, whose running time is bounded
by 7, has success probability Succ® (A) upper-bounded by ¢, where

Succ®™(A) = ljtr[A(f(S,t)) = (s,1)];

e Permutation f is (7, €)-partial-domain one-way if any adversary A, whose running
time is bounded by 7, has success probability Succ”®~°"(A) upper-bounded by &,
where

Succ?® =" (A) = PrlA(f(s,1)) = s];
S,
e Permutation f is (¢, 7,¢)-set partial-domain one-way if any adversary A, out-
putting a set of £ elements within time bound 7, has success probability Succ® P~%(A)
upper-bounded by &, where

Succ® PIY(A) = 1:{[5 e A(f(s,1))].

We denote by Succ®™ (7), (resp. Succ” ™ (7) and Succ® P*~*(¢, 7)) the maximum suc-
cess probability Succ®(A) (resp. SuccP®™*¥(A) and Succ® P*"*"(A)). The maximum
ranges over all adversaries whose running time is bounded by 7. In the third case,
there is an obvious additional restriction on this range stemming from the fact that A
outputs sets with £ elements.

12



3.5.2 Semantic security

In the following, we prove that OAEP is IND-CCA2 in the random oracle model [4],
relative to the set partial-domain one-wayness of f.

Our method of proof is inspired by Shoup [27] and differs from [11]: we define a
sequence Game;, Gamey, etc of modified attack games starting from the actual game
Gamey. Each of the games operates on the same underlying probability space: the
public and private key of the cryptosystem, the coin tosses of the adversary A, the
random oracles G and H and the hidden bit b for the challenge. Only the rules defining
how the view is computed differ from game to game. To go from one game to another,
we repeatedly use the following lemma from [27]:

Lemma 1 Let Eq, E; and F be events defined on a probability space
Pr[E; A =F] = Pr[E; A =F] = |Pr[E;| — Pr[Es]| < Pr[F].
Proof. The proof follows from easy computations:

IPr[E;] — Pr[Es]| = [Pr[E; A —F] +Pr[E; A F] — Pr[Es A —F] — Pr[E; A F]|
IPr[E; A F] — Pr[Es A F]| = [Pr[E; | F] - Px[F] — Pr[E, | F] - Pr[F]|
< |Pr[E; |F] — Pr[E; [ F]| - Pr[F] < Pr[F]

O

Lemma 2 Let A be a CPA-adversary against the semantic security of the OAEP en-
cryption scheme (IC,E,D). Assume that A has advantage € and running time T and
makes qq and qy queries respectively to the hash functions G and H. Then,

19 QqG
2 92k’

Succs_pd_°‘”(

CIH:T) Z

Proof. As explained, we start with the game coming from the actual attack, and modify
it step by step in order to finally obtain a game where the adversary has no advantage.

Gamey: A pair of keys (pk, sk) is generated using K(1%). Adversary A; is fed with pk,
the description of f, and outputs a pair of messages (mqg, m;). Next a challenge
ciphertext is produced by flipping a coin b and producing a ciphertext y* of
my. This implicitly defines a random r* € {0,1}* and a string 2* such that
y* = f(z*). We set 2* = s*||t*, where s* = (m,]|0¥!) ® G(r*) and t* = r* @ H(s*).
On input y*, A, outputs bit b'. We denote by Sy the event b’ = b and use a similar
notation S; in any Game; below. By definition, we have Pr[Sy| = 1/2 +¢/2.

13



Game;: We modify the above game, by immediately stopping the game if s* is queried
from H, and returning b, thus enforcing ' = b. We denote by AskH; the event
that s* is queried from H. We will use an identical notation AskH; for any Game;
below. We have

|Pr[So] — Pr[S1]| < Pr[AskH;].

Game,: This game is modified again, by making the value of the random seed r* explicit
and moving its generation upfront. In other words, one randomly chooses ahead
of time, r* € {0,1}* and gt € {0,1}¥ %0 and uses r* instead of 7*, as well
as g instead of G(r*). The game uses the following two rules:

Rule 1 r* =77 and s* = (m||0¥)®g™, from which it follows that t* = r* @& H(s*),
* = s*||t* and y* = f(x*);

Rule 2 whenever the random oracle G is queried at r*, we answer with g7.

Since we replace a pair of elements, (r*, G(r*)), by another, (r*, g7), with exactly
the same distribution (by definition of the random oracle G):

Pr[S;] = Pr[Ss] and Pr[AskH;| = Pr[AskH,)].

Gamey: In this game, we drop the second rule above and restore (potentially incon-
sistent) calls to G. Therefore, g* is just used in z* but does not appear in the
computation. The input to A, follows a distribution that does not depend on b
since my, is masked with g*. Accordingly,

1

PI‘[S3] = 9

However, one may note that Game, and Games may differ if r* is queried from
G, while Game; is played. Returning to Game;, we see that this happens if r* is
queried from G before s* is queried from H. Let RbS denote the event that, in
the original game, r* is asked to G before s* is asked to H:

|Pr[Sa] — Pr[S;]| < Pr[RbS] and |Pr[AskHs] — Pr[AskH3]| < Pr[RbS].

Observe that, before s* is queried from H, the value of H(s*) is uniformly dis-
tributed, and so is r*. Therefore, the probability of querying r* from G is less
than gg/2%, which writes:

(e}
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Gamey: In order to evaluate AskHjs, we again modify the previous game. When man-
ufacturing the challenge ciphertext, we randomly chooses y* €g {0,1}* and
simply set y* = y*, ignoring the encryption algorithm altogether. Once again,
the distribution of y* remains the same: due to the fact that f is a permuta-
tion, the previous method defining y* = f(s*||t*), with s* = (m,||0*') ® g+ and
t* = H(s*) ® r* was already generating a uniform distribution over the k-bit
elements. Thus, we have:

Pr[AskH,4] = Pr[AskHj;].
Simply outputting the list of queries to H during this game, one gets
Pr[AskHy] < Succs_Pd_°W(QH, t).
Finally,
= = IPx[So] = Pr[Ss]| < Pr[AskHi] + Pr[RbS]

2
< Pr{AskH,] + 2 PrIRbS] < Succ ™ gy, 1) + 20

3.5.3 Simulating the decryption oracle

In order to prove the security against adaptive chosen-ciphertext attacks, it is necessary
to simulate calls to a decryption oracle. As usual, this goes through the design of a
plaintext-extractor. This has the flavour of (strong) plaintext-awareness (PA). However,
to keep things simple, we will not formally address plaintext-awareness. In any case, as
will be seen in the sequel, the situation is more intricate than in the original paper [5]: in
particular, the success probability of the extractor cannot be estimated unconditionally
but only relatively to some computational assumption.

Definition of the plaintext-extractor P£: The plaintext-extractor receives as
part of its input two lists of query-answer pairs corresponding to calls to the random
oracles G and H, which we respectively denote by G-List and H-List. It also receives
a valid ciphertext y*. Given these inputs, the extractor should decrypt a candidate
ciphertext y # y*.

On query y = f(s||t), P& inspects each query/answer pair (v,G,) € G-List and
(0, Hs) € H-List. For each combination of elements, one from each list, it defines

0:5,0:7®H5,MZG7®5:
and checks whether
y = f(0l|0) and [py, = 0™
If both equalities hold, PE outputs [x]™ and stops. If no such pair is found, the extractor
returns a “Reject” message.
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Notations. In the following, y* is the challenge ciphertext, obtained from the en-

cryption oracle. Since we have in mind “plugging” the extractor into an adversary A
trying to contradict semantic security, we assume that y* is a ciphertext of m,; and
denote by r* its random seed. We have:

r* = H(s*) @ t* and G(r*) = s* @ (my||0*").

The call to H at s* is not necessarily reported in H-List. We will explicitly assume that
s* does not appear H-List. Then, H(s*) follows a uniformly distribution and 7* can be
seen as a random variable.

In the sequel, all unstarred variables refer to the decryption query y to be decrypted
by the plaintext-extractor.

Lemma 3 Assume s* does not appear in H-List. Then, the plaintext-extractor PE
correctly produces the decryption output on query y # y*, within time bound t' and with
probability greater than &', where

1 ge +1
21— (gt L <aotan (1 OQ),

and Ty denotes the time complezity for evaluating f.

Proof. We recall that the plaintext-extractor, PE(y,y*, G-List, H-List), is given the
ciphertext y to be decrypted, the challenge ciphertext y* obtained from an encryp-
tion oracle, and the G-List and H-List resulting from the execution of an adversary A
interacting with the random oracles G and H.

We first check that the output of P& is uniquely defined, regardless of the ordering
of the lists. To see this, observe that since f is a permutation, the value of o = s is
uniquely defined and so is 6. Keep in mind that the G-List and H-List correspond to
input-output pairs for the functions G and H, and at most one output is related to
a given input. This makes H; uniquely defined as well. Similarly, # = ¢ is uniquely
defined, and thus v and G,: at most one ;1 may be selected, which is output depending
on whether [u]z, = 0 or not.

Playing games as before, we denote by Game; the actual game, with the above
plaintext-extractor P&, restricted to executions where s* has not been queried from H.
As already observed, this has the consequence that H (s*) follows a uniform distribution.
We denote by Faily the event that the extractor’s output is not correct. We use a similar
notation Fail; in the successive games.

Game}: In this game, we focus on the case RBad, defined by r = r*. Since f is a

permutation, it follows that s # s*. Otherwise, we have ¢t = t* and thus y = y*,
which is prohibited. Equality r = r* writes H(s) @t = H(s*) & t*. Since H(s*)
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is uniformly distributed, H(s*) = H(s) @t @ t* happens with probability at most
2 ko If the RBad case happens, one extends the G-List setting

G-List' = G-List U {(r*, G(r*))},

else one keeps G-List' = G-List. Next, one runs P& (y, y*, G-List’, H-List). It follows
from the above that:

1
[Pr[Fail,] — Pr[Faily]| < Pr[RBad] < g

Game,: We now focus on the event SBad, defined by s = s*. If the SBad case happens,
one extends the H-List, setting

H-List’ = H-List U {(s*, H(s*))},

else one keeps H-List' = H-List. Then, one runs PE&(y, y*, G-List’, H-List’). Ob-
serve that, in the SBad case, G-List' is still the original G-List, because RBad and
SBad cannot hold together (otherwise y = y*). Therefore, in the SBad case, the
extended H-List’ involves a change only if r is in G-List' = G-List, in which case
Game,, might output a result not found by Game]. We are thus led to analyze
the event AskR that » = H(s) @t = H(s*) @&t has been queried from G. Since
H (s*) follows a uniform distribution, the probability of AskR is at most g¢ - 2 *0.

|Pr[Faily] — Pr[Fail,]| < Pr[AskR] < ;ITGO

Gamej: In this game, we run the decryption algorithm, when r is in the G-List’, but
s is not in the H-List’. This involves calls to the oracles. Observe however that
H(s) is uniformly distributed, so that the probability for » =t @& H(s) to be in
G-List' is less than (gg + 1) - 2.

g +1
oko

|Pr[Fail;] — Pr[Faily]| <

Game): Finally, we allow running the decryption algorithm instead of the plaintext-
extractor, if 7 is not in G-List’. Since G(r) is uniformly distributed, the probability
that [s ® G(r)]g, = 0% is less than 27%1.

[Pr(Fail,] — Pr(Faily]| < .
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If both r and s are in G-List’ and H-List’ respectively, the plaintext-extractor never
fails. In the other cases, in Game), we use the actual decryption algorithm, thus

Pr[Faily] = 0.
We finally obtain the requested bound:

gc+1  qa 1 I ge+1
ok T ok Tk S ok T gkt

. . ) 1
Pr[Faily] = |Pr[Fails] — Pr[Faily]| < T 4

It remains to estimate the running time of the plaintext-extractor. It amounts to
the computation of f(o,#) for all possible pairs obtained from both lists and is therefore
bounded by g¢ - qu - (Tr + O(1)). O

3.5.4 Semantic security against adaptive chosen-ciphertext attacks

We now complete the proof by inserting games Game; into games Game;:

GAMEg: This game is played as Game, but the adversary is given additional access to
a decryption oracle Dg during both steps of the attack. The only requirement is
that the challenge ciphertext cannot be queried from the decryption oracle. By
definition, we have Pr[Sy] = 1/2 + ¢/2.

GAME;: In this game, one aborts whenever s* is queried from H, and returns b thus
enforcing o' = b.
|Pr[So] — Pr[S1]| < Pr[AskH,].

Observe that calls to the decryption oracle can be perfectly simulated by Game,
since s* is not queried to H.

GAME]: One replaces the decryption oracle by the plaintext-extractor. This is equiva-
lent to replacing each instance of Game] by the corresponding instance of Gamey,
and thus

1 qG -+ 1
Pr[St] - Pr[S1]| < ap % (2— + o ) ,

where ¢p is the number of queries to Dsy.

We pursue our modified games exactly as was done in section 3.5.2. We obtain:

1 +1
% = |Pr[Ss] — Pr[Sp]| < Pr[RbS] + 0 + ¢p x <— 4 e

o T ok ) + Pr[AskH,],

while
Pr[AskH,] < Succ™™~*(¢, 1) + Pr[RbS] and Pr[RbS] < I¢.
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Therefore,

€ s—pd—ow 2qa 1 ge +1
5 < Succ (qm,t) + ko T D X (% + S

This leads to the following theorem.

Theorem 1 Let A be a CCA2—-adversary against the semantic security of the OAEP
encryption scheme (IC,E,D). Assume that A has advantage € and running time T and
makes qp, Qg and qg queries to the decryption oracle, and the hash functions G and
H respectively. Then,

' € gp9c +4p +49c b
R

with ™ < 7+4qc-qu - (Tf + O(1)),

s—pd—ow (

v

Succ

where Ty denotes the time complexity for evaluating f.

Proof. The proof is a straightforward consequence of the above computations and
the probability estimates are clear. We comment on the running time. Although the
plaintext-extractor is called gp times, there is no ¢p multiplicative factor in the bound
for 7/. This comes from a simple bookkeeping argument. Instead of only storing the lists
G-List and H-List, one stores an additional structure consisting of tuples (v, G, 0, Hs, y).
A tuple is included only for (v, G.,) € G-List and (4, H;) € H-List. For such a pair, one
defines
0=0,0=7@® Hs,u=G, DY,

and computes y = f(0,0). If [u], = 0%, one stores the tuple (v, G,,d, Hs,y). The
cumulative cost of maintaining the additional structure is g¢ - ¢ - (Ty + O(1)) but,
handling it to the plaintext-extractor allows to output the expected decryption of vy,
by table lookup, in constant time. O

3.6 The security of RSA-OAEP: partial-domain one-wayness
of RSA

In this section, we prove that RSA is set partial-domain one-way, granted that it is one-
way. The proof follows [11] and uses two-dimensional lattices. We make the assumption
that the seed-length kg is not too large kg < k/2. It is possible to weaken this hypothesis
by using higher dimensional lattices. Throughout this section we change the notation
for the RSA modulus to [V, since variable n is used for another purpose. We still denote
by k the bitlength of N. We first prove a lemma on the uniqueness of small solutions
to a linear equation modulo N.

Lemma 4 Let (E) be a linear equation t + cu = ¢ mod N, with unknowns t and s.
Assume that (E) has a solution with t and u smaller than 2¥. For all values of « < N,
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except a fraction 22%%6 /N of them, (t,u) is unique and can be computed within time
bound O((log N)?).

Proof. Consider the lattice
L(a) = {(z,y) € Z’ |z — ay = 0 mod N}.

We say that L(«) is an £-good lattice and that « is an ¢-good value, if L(«) does not
have a non-zero vector of euclidean length at most £. Otherwise, we use the wording
¢-bad lattices and /-bad values respectively. It is clear that there are approximately
less than 7¢? such ¢-bad lattices, which we bound by 4¢2. Indeed, each bad value for
a corresponds to a point with integer coordinates in the disk of radius £. Thus, the
proportion of bad values for « is less than 4¢?/N.

Given an f-good lattice, one applies the Gaussian reduction algorithm. One gets
within time O((log N)?3) a basis of L(«) consisting of two non-zero vectors U and V
such that

IUI < IV and [(U, V)] < [U]I*/2.

where (U, V') denotes the usual inner product.
Let T = (t,u), where (¢,u) is a solution of (E), such that ¢ and u are less than 2%°.
Write:
T = AU + uV, for some real A, p.

We get:

1717 = WU+ VI + 20U, V) > (3 + ® = w) x U]
(A= f2)? + 322/4) x IUJ? = 324 x U] = 322/,

v

Since furthermore we have ||T||? < 2 x 22%0_ we obtain:

|‘<2\/§-2’€0 2/2 - 2ko
SRV V3¢

Assuming that we have set from the beginning ¢ = 2k0+2 > 2ko+2, /9 /3 then

, and |[A| < by symmetry.

1 1
—3 <\p< 5
Choose any integer solution Ty = (to, ug) of equation (E) by simply picking a random
integer uy and setting ty = ¢ — auy mod N. Write T in basis (U,V): Ty = pU + oV
where real numbers p and o are easily computed. Now T — T} is a solution to the
homogeneous equation, and thus an element of the lattice L(a): T — Ty = aU + bV,
with unknown integers a and b. But,

T=Ty+aU+bV =(a+p)U+ (b+0)V =XU+puV,
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with —1/2 < A\, < 1/2. As a conclusion, a and b are the closest integers to —p and
—o respectively. With a, b, p and o, one can easily recover A and p and thus ¢ and wu,
which are necessarily unique. O

Lemma 5 Let A be an algorithm which outputs, with probability ¢, a g-set containing
the k — ko most significant bits of the e-th root modulo N of its input. Assume that
A operates within time bound t. There exists an algorithm B which inverts the RSA
function defined by (N, e) with success probability €', within time bound t', where

81

t’

£ X (6 _ 22ko—k+6)

2t + ¢* x O(k?).

Y

>
<

Proof. We show how to compute the e-th root of X. We use the homomorphic property
of RSA and define, for a randomly chosen a:

X = (z-2% +7)*mod N,
Y = Xa®=(y-2" +5)°mod N,

with 7 and s smaller than 2. If we can obtain = and y, we have:

(y-2"+s) = ax(r-2%+7r)mod N
ar—s = (y—za)x 2 mod N

which is a linear modular equation with small solutions. Using lemma 4, we can obtain
these solutions.

Algorithm B runs A twice, on inputs X and Xaf, and next runs the Gaussian
reduction algorithm on the lattice L(«). Then, applying the method of lemma 4, it
solves the ¢? linear equations coming from pairs of elements (z,y) respectively taken
from the two output sets. A solution (r,s) can be tested by raising z - 2% + r to the
power e modulo N. When both partial pre-images z and y are in the output sets, the
correct value of x and r will be found, unless the random « is bad. The bounds for &’
and 7' are straightforward. O

3.7 The security of RSA-OAEP: final result

Putting together the results of the previous sections, we obtain the following result.

Theorem 2 Let A be a CCA2-adversary against the semantic security of the RSA-
OAEP encryption scheme (K, E,D). Assume that A has advantage ¢ and running time
T and makes qp, qg and qy queries to the decryption oracle, and the hash functions
G and H respectively. Assume further that the parameters for OAEP are such that
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ko < k/2, where k is the bitlength of the RSA modulus. Then, the problem of RSA-
inversion can be solved with probability €' greater than

2
€ dp9c +9p +4¢ | qp 32
Z — & - (2 X 2k0 —+ % + 72k72k0

within time bound t' < 2t + qg - (qu + 2q6) x O(K?).
Proof. Theorem 1 states that

SUCCS_pd_OW(qH,t,) > g —9x dp4a ‘;I:{)D + q¢ _ %,
with ¢ < t+qg-qu- (Tf + O(1)), and T; = O(k?). We easily conclude, using lemma 5.
O
Remark: There is a slight inconsistency in piecing together the results from section 3.5.4
and 3.6, coming from the fact that RSA is not a permutation over k-bit strings. Re-
search papers usually ignore the problem. Of course, standards have to cope with it,
and we will later discuss how PKCS #1 addresses the matter. Observe that one may
decide to only encode message of n — 1 bits, where n is & — kg — k1 as before. The
additional redundancy leading bit can be treated the same way as the 0*' redundancy,
especially with respect to decryption. However, this is not enough since G(r) might
still carry the string (s||t) outside the domain of the RSA encryption function. An easy
way out is to start with another random seed if this happens. On average, two trials
will be enough. We do not pursue here since formatting will be the central topic in the
next section.

4 The PKCS#1 v2.0 version of RSA-OAEP

RSA-OAEP appears in many standards such as SET, TLS, PKCS #1 v2.0 [15], the
IEEE standard [14] and an ANSI draft standard [1]. In this report, we only discuss
the version from PKCS #1 v2.0. It turns out that the proof described in the previous
section cannot be invoked in a direct manner to claim the security of this version. On
one hand, the standard has its own specific way to cope with the fact that RSA is not
a permutation over k-bit strings, a difficulty that was pointed out above in section 3.7.
On the other hand, in the original RSA-OAEP [5] and in further research papers such
as [11], the random seed is located at the least significant bits and the message and
redundancy at the most significant bits, whereas in PKCS #1 v2.0 [15], the opposite
option is taken.

4.1 Description of the encoding method EME-OAEP

In the PKCS #1 standard [15, 24], description of RSAES—-OAEP, one uses the OAEP
padding scheme with £ = 8(nLen — 1), where nLen is the byte length of the modulus
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nLen = ’VM—‘ .
8

This is a simple way to only work with strings which are binary representations of
numbers not exceeding the modulus. It should be noted that the various documents
where RSA-OAEP is described slightly differ from a notational point of view and also at
implementation level, although they all propose the same mathematical transformation.
In this section, we follow the standard [15, 24]. We will later discuss the changes brought
in the CRYPTRECH submission [25].

The encoding function takes the message M as an argument, together with a byte
string P, which encodes some parameters (the default is the empty string), and the
byte length emLen of the encoding: k¥ = 8 x emLen. We denote by mLen the byte length
of the message M: n =8 X mlLen.

The scheme specifies a hash function which outputs digests of hLen bytes. Presently,
only SHAT1 is allowed. From the hash function a mask generation function MGF is
defined, that takes as input an octet string of variable length together with a desired
output lentgh, and outputs an octet string of the desired length. Two instantiations
of the mask generation function are used in place of G and H, MGF(.,emLen — hLen)
and MGF(., hLen).

To perform the encoding, one chooses a hLen-byte random seed and then builds a
Data Block (DB):

DB = pHash || PS || M

which is the concatenation of pHash = h(P), a Padding String consisting of a possibly
empty sequence of zero bytes ending with byte 01, and the message M. To link these
notations with the original OAEP description, and thus with the notations of the
previous sections, we provide the following dictionary:

OAEP +— EME-OAEP
m «— PS|| M
n <— 8 x mlLen
0%t <— pHash
ko <—— 8 X hlLen
k1 <— 8 x hLen
G(.) +— MGF(.,emLen — hLen)
H(.) «— MGF(.,hLen)
r +— seed
k +—— 8 x emlLen
s «— MaskedDB
t «<— MaskedSeed
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MaskedSeed MaskedDB

Figure 5: EME-OAEP-Encode

Note that the byte length of PS is emLen — mLen — 2hLen, and at least one (the
byte 01), hence the restriction:

mlLen < emlLen — 2hlLen — 1 = nlLen — 2hLen — 2.

Once the seed has been chosen and the data block DB has been computed, encoding
is performed as follows, where we use notations G and H for clarity (see figure 5):

MaskedDB = DB & G(seed) and MaskedSeed = seed & H(MaskedDB),

The output is MaskedSeed || Masked DB. Remark that, as already observed, the
output corresponds to t|s, using the original OAEP notation, rather than s||t.

4.2 Security of RSAES-OAEP

In documents [15, 24|, the standard scheme RSAES-OAEP encrypts data by ap-
plying the RSA primitive to an EME-OAEP encoding of the message M. Recall
from the previous section that the output of the encoding is an emLen-byte string,
MaskedSeed || MaskedDB, while the modulus is a nlLen-byte number, with nLen =
emLen + 1. In other words the integer handled to the RSA function, after the proper
conversion routine has been called is < 28mLe"  For this reason, the security proof has
to be double-checked.

Going through the proof, we see that the difference only matters in the proof of
lemma 2. More accurately, the claim that games Games and Game, were identical is no
longer true: picking y* at random may result into a value of z* exceeding 2%8mten. We
are thus led to consider the event XBad that z* = « || MaskedSeed || MaskedDB, where
« is a non-zero byte. we have:

Pr[AskH, | =XBad] = Pr[AskH;] and Pr[-XBad] > 2 %.
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Accordingly, a multiplicative factor 2% appears in the bound for Pr[AskH;]

Pr[AskH;] = Pr[AskH,|—XBad] = Pr[AskHs A —XBad]/ Pr[-XBad]
< Pr[AskH,]/ Pr[-XBad] < 2% x Succ® P (g, t).

The rest of the proof of theorem 1 goes through, mutatis mutandis, carrying this extra
multiplicative factor 28 throughout the estimates.

Another difference that we have to deal with, is the swapping of s and ¢. Here, it is
easily seen that lemma 5 still holds if one replaces the £ — ky most significant bits by
the k£ — kg least significant bits. The proof of the variant only requires minor notational
changes. At this point, we can check that the assumption ky < k/2 that we made
in section 3.6 is duly satisfied, since documents [15, 24] require emLen > 2hLen + 1.
Note that this requirement has no consequence in practical terms: PKCS #1 V.2.0 [15]
mandates the use SHA-1 [18] and suggests moduli of at least 1024 bits. The draft of
PKCS #1 V.2.1 [24] allows hash functions with a larger value of hLen such as SHA-256,
SHA-384 or SHA-512 [19]. The latter entails the use of larger moduli.

Summing up our remarks, we can state the following security result:

Theorem 3 Let A be a CCA2-adversary against the semantic security of the RSAES—
OAEP encryption scheme. Assume that A has advantage € and running time T and
makes qp, qg and qg queries to the decryption oracle, and the hash functions G and
H respectively. Then

€ 2qpgc + 3qp + 2q¢
@ - 9hLen+8 ’

s—pd—ow (

Succ qu,T)

with ™ < t+qc-qu - O(nLen®).

Furthermore, the problem of RSA-inversion can be solved with probability " and within
time bound ™", where

o 1 (62 <2qu@ +3¢p + 2q¢ 21 >>

> (- —
- 216 4 2hLen 2nLen—2hLen

™ < 274 (29¢ + qu) - qu - O(nLen®).

Assume nLen > 3hlLen. The above shows that, given an CCA2-adversary against the
semantic security of the RSAES-OAEP encryption scheme (K, &, D), with advantage
¢ and running time 7, making ¢p, q¢ and qm queries to the decryption oracle, and
the hash functions G and H respectively, one can invert RSA with success probability
greater than &' and within a time bound 7/, where
' 1 (52 o 29pqc + 3qp + 29 + 215)

4 € 2hLen
with 7' = 27+ (2¢¢ + qu) - gz - O(nLen?).

e = 2T6
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bit-size complexity of NFS
of the modulus in log,
012 63
1024 85
4096 155
6144 182
8192 206

Figure 6: Complexity of factoring

4.3 Implications in terms of key sizes

While RSA-OAEP is indeed chosen-ciphertext secure, the reduction to inverting RSA
is not tight and the estimates that were provided in the previous section cannot be
used to derive key sizes. To see this, observe that we can take &' ~ £2/2!% and 7/ ~
2¢°O(nLen®), where ¢ is an estimate of the number of hash queries that the attacker
makes. This yields an estimate of the average time 7" = 7'/¢’ for inverting RSA of
the form ~ 2 x Z—z. We now allow the adversary an average number of hash queries
4 — 2¢  where ¢ is a security parameter. This allows inverting RSA with complexity
~ 219 x 22¢, Taking logarithms yields ~ 19 + 2.

We now use a table of time estimates for the best known factoring method NFS
(-see figure 6). We derive an estimate of the key size corresponding to a given value
of the security parameter by searching for a modulus for which the righthand side is
19 + 2¢. As a typical case, one should select a 6000-bit modulus to provide a security
level 28°. In the reverse direction, we see that the table indicates that a 1024-bit
modulus provides a quite low security level 233.

We can thus conclude that the security proof only gives assurance that the overall
design of RSA-OAEP is not flawed. It does not appear possible to obtain any mean-
ingful indication on key sizes from the estimates derived from the proof. As noted in
section 2.4, it is anyhow debatable whether or not security proofs in the random oracle
model can bring more that a qualititive level of assurance. This is due to their intrinsic
heuristic nature.

m

4.4 Implementation issues

In a recent paper, Manger [16] showed that the implementation of RSA-OAEP had to
be done with extreme care: slight implementation errors may have devastating conse-
quences. This was no surprise to the research community. However, it is interesting to
review Manger’s findings.

In any implementation of RSA-OAEP, there are many exception errors. Some are
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actually related to the exact format of the EME-OAEP encoding. Given any ciphertext
¢, RSA decryption returns z = ¢ mod N, where d is the private RSA exponent, or
an error if the ciphertext exceeds the modulus. Next, a standard conversion routine
turns x into a byte string, which can be parsed as « || MaskedSeed || MaskedDB where
MaskedDB consists of the emLen — hLen least significant bytes, MaskedSeed the hLen
following ones, and « the most significant byte. From these data, one can recover the
seed = MaskedSeed ® H (MaskedDB), and the data block DB = MaskedDB & G (seed).
The data block itself is parsed into DB = pHash|| 8|y || M, where pHash consists
of the hLen most significant bytes, § the largest sequence consisting of consecutive
zero-bytes following pHash and < a non-zero byte. The trailing part is the candidate
message M. Before outputting M, one should have checked the following:

o o= Oobyte;
¢ Y= Olbyte;
e pHash = h(P).

The PKCS #1 standard very clearly states that the error messages returned in case
any one of the above is unsuccessful should be the same. Version 2.0 [15] writes:

It is important that the error messages output be the same ...
while version 2.1 states
It is important that the errors are indistinguishable ...

Both documents refer to Bleichenbacher’s attack [6] against the earlier version 1.5.
Manger focused on implementation errors that might allow an adversary to obtain the

answer to the first check, « = 0, which we will henceforth call the first-byte test. This
immediately opens a way to the simplified version of Bleichenbacher’s attack that we
described in section 2.3. Suitably optimizing this attack, Manger [16] showed that
approximately 8nLen queries were enough to disclose the plaintext corresponding to a
given ciphertext.

It is therefore important to check whether or not an adversary has access to the
type of information of which Manger builds. In his paper, several potential sources of
leakage are investigated:

e Error messages: misspelling one word in an error message might allow the adver-
sary to spot occurrences of the first-byte test. Error logs documenting the error
reason have a similar effect, if the adversary has access to the logs.

e Timings: the first-byte test might be performed at an earlier stage. Negative
answers would abort further processing and this might be detected by measuring
the delay before rejection happens.
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e Side effects on function calls: this is a more subtle variant of the previous case.
The adversary might try to submit a decryption request with an unsupported
hash function. If the first-byte test is performed earlier, a negative answer might
abort further processing while a positive answer triggers the detection of the
unsupported object, through an error message when the hash function is called.

Some of the above scenarios may seem unlikely: for example, timing measurements are
presumably unable to detect the additional computation of a hash function. However,
it is good practice to help the programmer avoiding mistakes as much as possible. Ac-
cordingly, Manger’s observations should be addressed. Note that, in documents [15, 24],
the first-byte check is definitely performed before the EME-OAEP decoding function
is called. Thus, these documents are not completely satisfactory, in view of Manger’s
results. Also note that it might be tempting to simply drop the first-byte test and only
rely on the other two tests, as was suggested by Manger’s himself. However, this would
be an extremely bad idea in terms of provable security, since the proof included in the
present report would fail. To understand why, refer to section 3.5.3 and consider the
case where the plaintext-extractor receives a candidate ciphertext y # y*, such that
s = s* and r = r*. This cannot be formally excluded since discarding the first-byte
check allows to flip one or more bits in the most significant byte of the integer handled
to the RSA function to obtain y*. Our plaintext extractor, would erroneously reject
such y.

Thus, the appropriate solution seems to perform the three checks in a single step.
This is precisely what is suggested in the CRYPTRECH submission [25]. The ap-
proach taken there slightly change notations and makes the extended message of
length emLen = nlLen, rather than nLen — 1. EME-OAEP encoding outputs a string
00||MaskedSeed || MaskedDB and EME-OAEP decoding performs the three tests in a
single step, which can be found on page 4 of the update to [25]. One should defi-
nitely refer to the update, since the corresponding test in the original document does
not seem correct. In conclusion, it is fair to say that document [25] appropriately
addresses Manger’s observations.

5 Conclusions

Based on our analysis, we believe that the RSA-OAEP cryptosystem is semantically
secure against chosen-ciphertext attacks, based on the hardness of inverting RSA. We
have indeed provided a security proof in Shoup’s style [27], different from the proof
earlier published by Fujisaki, Okamoto, Pointcheval and Stern [11]. Both proofs use the
random oracle model. The estimates that follow from our proof are essentially similar
to those from [11] and they do not provide any conclusive evidence in terms of practical
parameter sizes. Although schemes with tighter reductions might yield slightly more
confidence, we believe anayway that it is debatable whether or not security proofs in
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the random oracle model can bring more than a qualititive level of assurance, due to
their intrinsic heuristic nature. This qualitative assurance level has been reached. We
have also reviewed the potential implementation errors that might degrade the secu-
rity of RSA—OAEP and found that document [25], notably the update, appropriately
addressed these potential errors. We therefore recommend the scheme.
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