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1 Executive Summary

The report is an evaluation of three RSA-based cryptographic schemes:

1. The RSA-OAEP public-key encryption scheme as specified in PKCS#1 v2.1 [46].

2. The RSA-PKCS1-v1.5 signature scheme as specified in PKCS# v2.1 [45].

3. The RSA-PSS signature scheme as specified in PKCS#1 v2.1 [46].

2 Introduction

The RSA cryptosystem was invented by R. Rivest, A. Shamir and L. Adleman in 1977 [42], and
is the most widely used public-key cryptographic system. It supports both confidentiality and
digital signatures, and its security is based on the difficulty of factoring integers.

Even though the RSA system has been widely studied for 25 years, it is only now that cryptog-
raphers are beginning to understand how to securely implement RSA encryption and signature
schemes. Numerous schemes for RSA encryption and signatures are being proposed in the
cryptographic literature, and numerous proposals are being submitted to standards bodies. RSA
encryption and signatures have already been standardized by some standards organizations, in-
cluding the following.

1. American National Standards Institute (ANSI X9.31 [1], ANSI X9.44 [2]).

2. Institute of Electrical and Electronics Engineers (IEEE 1363-2000 [26]).

3. International Standards Organization (ISO 9796-1 [27], ISO 9796-2 [28]).

4. Public-Key Cryptography Standards (PKCS#1 v2.1 [46]).

5. U.S. government’s National Institute of Standards and Technology (FIPS 186-2 [38]).

This report provides an evaluation of the RSA-OAEP encryption scheme, the RSA-PKCS1-
v1.5 signature scheme, and the RSA-PSS signature scheme as specified in PKCS#1 v2.1 [46].
In particular, we comment on what has been proven about the security of these schemes.

The remainder of this report is organized as follows. In Section 3, we review the basic RSA
encryption and signature schemes and summarize the results known about the security of these
basic schemes. In Section 4, we analyze the RSA-OAEP encryption scheme. The RSA-PKCS1-
v1.5 and RSA-PSS signature schemes are analyzed in Section 5 and Section 6. Our conclusions
are stated in Section 7.

REMARK. A large portion of the analysis presented in this report also applies to the Rabin-
Williams encryption and signature schemes [40, 53] where an even encryption exponent is used.
However, this report will not make any future reference to the Rabin-Williams schemes.
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3 General Remarks on the Security of RSA

3.1 RSA Key Generation

The RSA key generation procedure is common to all RSA-based cryptographic schemes. To
generate an RSA key pair, each entity A does the following:

1. Randomly select two large distinct primes p and q of the same bit length.

2. Compute n � pq and φ
�
n � � �

p � 1 � � q � 1 � .
3. Select an arbitrary integer e, 1 � e � φ

�
n � , such that gcd

�
e � φ �

n ��� � 1.

4. Compute d, 1 � d � φ
�
n � , such that ed � 1

�
mod φ

�
n ��� .

5. A’s public key is
�
n � e � ; A’s private key is d.

NOTES.

1. n is called the RSA modulus.

2. e is called the encryption exponent.

3. d is called the decryption exponent.

4. If n is a k-bit integer, then the RSA scheme is referred to as k-bit RSA.

5. RSA public-key operations (encryption and signature verification) involve modular expo-
nentiations by the number e—computations of the form Me mod n. To speed up public-
key operations, a widely-employed strategy is to select a small encryption exponent e,
such as e � 3 or e � 216 	 1. With such a choice, RSA public-key operations are much
faster than RSA private-key operations (decryption and signature generation). There are,
however, some security concerns with selecting small encryption exponents (see 
 3.4.3).
Note also that RSA private-key operations cannot be sped up by selecting a small decryp-
tion exponent d without incurring a significant security risk (see 
 3.4.4).

It is known that the problem of finding the private key d from a public key
�
n � e � is polynomial

time equivalent to the problem of factoring n. Thus, assuming that factoring n is intractable, the
private key d cannot be computed from the public key

�
n � e � .

3.2 Basic RSA Encryption Scheme

This subsection describes the basic RSA public-key encryption scheme and explains why the
basic scheme is not considered to be secure.
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3.2.1 Description

Let
�
n � e � be A’s RSA public key, and let d be A’s corresponding private key.

Basic RSA Encryption Scheme. (B sends a message m to A)

1. Encryption. B does the following:

1.1. Obtain an authentic copy of A’s public key
�
n � e � .

1.2. Represent the message as an integer m in the interval
�
0 � n � 1 � ; if the message is too

long, break it into blocks of the appropriate size.
1.3. Compute c � me mod n.
1.4. Send c to A.

2. Decryption. A does the following:

2.1. Use the private key d to recover m � cd mod n.

3.2.2 Security

Ideally, a public-key encryption scheme should be semantically secure against adaptive chosen-
ciphertext attacks [23, 41]. Informally, this means that an adversary can learn nothing about the
plaintext corresponding to a given ciphertext c, even when the adversary is allowed to obtain
the plaintexts corresponding to ciphertexts (not equal to c) of its choice. We will henceforth de-
note this security notion as IND-CCA (“indistinguishability against adaptive chosen-ciphertext
attacks”).

ATTACKS ON BASIC RSA ENCRYPTION. Basic RSA encryption, as described above, is not
used in practice because of various security weaknesses. For example, if an adversary knows
that the plaintext m belongs to a small or predictable message space, then the adversary can
decrypt ciphertext c by simply encrypting all possible plaintext messages until c is obtained.
Other potential weaknesses arise from the so-called homomorphic property of basic RSA: if
c1 and c2 are the RSA encryptions of plaintext messages m1 and m2, respectively (so c1

�
me

1 mod n and c2
� me

2 mod n), then c1c2 � �
m1m2 � e

�
mod n � , from which it follows that c �

c1c2 mod n is the encryption of m � m1m2 mod n. (See also [12] for further discussion on the
weakness of basic RSA encryption.)

BLEICHENBACHER’S ATTACK ON PKCS#1 V1.5 RSA ENCRYPTION. The above attacks, and
other related attacks, can be circumvented in practice by imposing some structural constraints
on plaintext messages. This is typically done by padding the message in some specified way
prior to encryption. However, the following attack by Bleichenbacher [8] on PKCS#1 v1.5 RSA
encryption [44] shows that the padding technique employed must be carefully chosen.

PKCS#1 v1.5 [44] is a widely-deployed standard for RSA encryption. It defines an encoding
method for RSA encryption, where a data value D (which is often a symmetric key) is converted
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to an integer prior to encryption with an RSA public key. If k is the length in bytes of the
recipient’s RSA modulus n, the encoding method produces a k-byte string from D of the form
EB=00

���
02

���
PS

���
00

���
D, where 00 and 02 are bytes with value 0 and 2, and PS is a padding

string consisting of k � �
D

� � 3 pseudorandomly generated nonzero bytes. The byte string EB is
then converted to an integer m which is encrypted with basic RSA by the usual exponentiation:
c � me mod n. The recipient decrypts the ciphertext c to obtain the integer m, converts m to
EB, checks that the result has the expected form, and if so, recovers the data value D. In
1998, Bleichenbacher [8] devised a chosen-ciphertext attack on the PKCS#1 encoding method
which succeeds in the case where the recipient is willing to reveal whether or not a decryption
operation has succeeded (i.e., the result EB has the expected form) or failed. For a 1024-bit
modulus, the total number of chosen ciphertexts required is about 220.

Bleichenbacher’s attack is especially significant against interactive key establishment protocols
such as SSL (Secure Sockets Layer), where a server is willing to process many messages and
may reveal the success or failure of an operation. The attack necessitated a patch to numerous
SSL implementations, and caused RSA Laboratories to change PKCS#1 to support Optimal
Asymmetric Encryption Padding (OAEP). RSA-OAEP will be presented and analyzed in Sec-
tion 4.

3.3 Basic RSA Signature Scheme

This subsection describes the basic RSA signature scheme and explains why the basic scheme
is not considered to be secure.

3.3.1 Description

Let
�
n � e � be A’s RSA public key, and let d be A’s corresponding private key.

Basic RSA Signature Scheme. (A signs a message m for B)

1. Signature Generation. A does the following:

1.1. Compute M � H
�
m � where H is a cryptographic hash function such as SHA-1.

1.2. Use the private key d to compute s � Md mod n.
1.3. Send the signature s and the message m to B.

2. Signature Verification. B does the following:

2.1. Obtain an authentic copy of A’s public key
�
n � e � .

2.2. Compute M � H
�
m � .

2.3. Compute M � � se mod n.

2.4. Accept A’s signature provided that M � M � .
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3.3.2 Security

Ideally, a signature scheme should be existentially unforgeable against chosen-message attacks
[24]. Informally, this means that an adversary who is able to obtain entity A’s signatures for any
messages of its choice is unable to successfully forge A’s signature on another message.

ATTACKS ON BASIC RSA SIGNATURES. Even if the hash function H is a cryptographically
secure hash function (e.g., H is one-way and collision resistant, or if H is a random function),
the basic RSA signature scheme may still be insecure. For example, if the hash values H

�
m � are

160-bit strings, then if an active adversary could somehow obtain the signatures of messages
whose hash values are smooth integers (i.e., have only small prime factors), then the adversary
could use these signatures to forge the signature of a new message. This vulnerability was first
observed by Desmedt and Odlyzko [20]; see also [37] for further discussion on the weakness of
basic RSA signatures.

Such attacks can be circumvented in practice by either using a hash function whose range is the
entire set of integers

�
0 � n � 1 � (this variant of RSA is called Full Domain Hash (FDH) and is

analyzed in [7]), or formatting the hash value prior to applying the RSA function. Two ways
of formatting the hash values are RSA-PKCS1-v1.5 and RSA-PSS which will be presented and
analyzed in Sections 5 and 6.

3.4 Other Attacks on Basic RSA

As mentioned in Section 3.1, any RSA-based cryptographic scheme can be totally broken if
the private key d can be efficiently recovered from the public key

�
n � e � . Every method for this

task is known to be equivalent in difficulty to the problem of factoring n. However, it must be
noted there are other mathematical ways in which an RSA-based cryptographic scheme can be
attacked. The various approaches can be categorized as follows:

1. Factoring the modulus n (Section 3.4.1).

2. Finding eth roots modulo n (Section 3.4.2).

3. Attacks when small encryption exponents are used (Section 3.4.3).

4. Attacks when small decryption exponents are used (Section 3.4.4).

3.4.1 Integer Factorization

This section provides a brief summary of the state-of-the-art in algorithms for the integer fac-
torization problem by which the RSA private key can be recovered from a corresponding RSA
public key, thus totally breaking any RSA-based scheme.

PROBLEM DEFINITION. The integer factorization problem (IFP) is the following: given an
integer n which is known to be the product of two distinct primes p and q, determine p and q.
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KNOWN ATTACKS. While the integer factorization problem has received attention over the
centuries from well-known mathematicians such as Fermat and Gauss, extensive practical study
commenced only in the late 1970’s following the invention of the RSA cryptosystem.

There are two general types of factoring algorithms: special-purpose and general-purpose.
Special-purpose factoring algorithms attempt to exploit special features of the number n being
factored. In contrast, the running times of general-purpose factoring algorithms depend only on
the size of n.

SPECIAL-PURPOSE FACTORING ALGORITHMS. Special-purpose factoring algorithms include
Pollard’s p � 1 algorithm which is only efficient if either p � 1 or q � 1 is smooth, and Pollard’s
p 	 1 algorithm which is only efficient if either p 	 1 or q 	 1 is smooth.

One of the most powerful special-purpose factoring algorithms is the elliptic curve factoring
method (ECM) which was invented by H. Lenstra in 1985 [35]. Its running time depends on the
size of the prime factors of n, so the algorithm tends to find small factors first. The largest prime
factor found thus far by ECM is a 55-decimal digit (187-bit) prime factor of a 112-decimal digit
(371-bit) number reported by Izumi Miyamoto in October 2001. If both the prime factors of
an RSA modulus n are at least 256 bits in length, as is the case with 512-bit RSA, then it is
extremely unlikely that the ECM will be able to factor n. Thus, the ECM does not have a
significant impact on the security of RSA.

Another powerful special-purpose factoring algorithm is the Special Number Field Sieve (SNFS).
The SNFS requires a polynomial of a special form that currently can only be efficiently found
for integers having certain properties, e.g., integers of the form 2a �

b where a and b are small.
For this reason, the SNFS is currently only applicable to factoring integers of a special form,
and is not applicable to factoring RSA moduli. When SNFS is applicable, however, it is by
far the most efficient factoring method currently known. In April 1999, the SNFS was used to
factor the 210-decimal (698-bit) number

�
10211 � 1 ��� 9. The expected running time of the SNFS

for factoring an integer n is

O
�
exp

���
1 � 526 	 o

�
1 ��� � logn � 1 � 3 � loglogn � 2 � 3 �����

Here o
�
1 � is an (undetermined) expression that becomes negligible as n becomes larger.

GENERAL-PURPOSE FACTORING ALGORITHMS. Since the invention of RSA, there have been
two significant developments in algorithms for factoring numbers of the type used in RSA: the
discovery of the quadratic sieve (QS) factoring algorithm in 1982 and the discovery of the
number field sieve (NFS) factoring algorithm in 1990. While the number field sieve was known
to be faster than the quadratic sieve in theory, it was only in 1996 that it was accepted as being
the superior method in practice and superseded the quadratic sieve method as the champion of
factoring algorithms.

The NFS has two main parts: the sieving stage and the matrix stage. The sieving stage, where
most of the work is done, can be efficiently parallelized on a network of workstations. In
contrast, existing techniques to solve the matrix stage seem to work well only when done on a



3 General Remarks on the Security of RSA Page 9

single large parallel computer. The expected running time of the NFS for factoring an integer n
is

O
�
exp

���
1 � 923 	 o

�
1 ��� � logn � 1 � 3 � loglogn � 2 � 3 �����

Note that the running time of the SNFS differs from ths running time of the NFS in that the
constant 1.526 replaces the constant 1.923. For this reason, the SNFS is much faster than the
NFS. Like the SNFS, the NFS also requires one to find a suitable polynomial with appropriate
properties.

EXPERIMENTAL RESULTS. Table 1 summarizes the progress in integer factorization in the
1990’s as measured by the size of numbers factored from the RSA Challenge list [43]. The
results provide conclusive evidence for the superiority of the NFS algorithm over the QS algo-
rithm. It is also important to note that the dramatic advances in the sizes of numbers factored
with the NFS in 1999 were due not to general increases in computer speed, but rather to some
significant algorithmic improvements in the NFS by Peter Montgomery and Brian Murphy.

Number Factored Size in Bits Date Factored Algorithm Used
1071 � 1 236 1984 QS
RSA-100 330 April 1991 QS
RSA-110 364 April 1992 QS
RSA-120 397 June 1993 QS
RSA-129 425 April 1994 QS
RSA-130 430 April 1996 NFS
RSA-140 463 February 1999 NFS
RSA-155 512 August 1999 NFS

Table 1: Recent progress in factoring.

THE FACTORIZATION OF RSA-155. On August 22 1999, a team of scientists from six different
countries led by Herman te Riele of CWI (Amsterdam) found the factors of RSA-155, a 155-
decimal (512-bit) from the RSA Factoring Challenge [15].

RSA-155 was factored using the NFS. The sieving was done on about 300 SGI, SUN, Pentium
II, and Digital workstations running at 175-500 MHz. The sieving stage was completed in 3.5
months. The matrix stage took about 40 days of which 9 days were spent on a Cray C916
supercomputer.

The total amount of computer time spent was estimated to be the equivalent of 8000 MY. (1 MY
is the computational power obtained by running for 1 year a machine that performs 1 million
instructions per second.) While this was a substantial computational task, it was still only
slightly more than the 5000 MY that were expended in the factorization of RSA-129 in 1994
using the QS algorithm. Since the RSA-129 number is in fact 87 bits smaller than the RSA-155
number, this provides compelling evidence for the superiority of the NFS over the QS.
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THE FUTURE OF FACTORING. Because of the sophisticated nature of the mathematics em-
ployed in the NFS and the complicated nature of the algorithm itself, it will be a few years
before experts fully understand the capabilities of the NFS for factoring large integers. Indeed,
one can reasonably expect that current implementations of NFS can be used to factor numbers
of bitsize 600 (or more) within a few months. And this does not take into account improvements
in the algorithm itself that are likely to be made in the next year or two.

The general conclusion is that 512-bit RSA is already very insecure, and that it will be pos-
sible for covert efforts (involving only a few people at a single institution, and thus not easily
monitored) to crack 768-bit RSA moduli in a few years.

SELECTING PARAMETERS FOR LONG-TERM SECURITY. Lenstra and Verheul [34] performed
an extensive and careful study of the key sizes for symmetric-key encryption schemes, RSA,
discrete logarithm systems, and elliptic curve systems. Their study incorporates both software
and hardware attacks, and takes into account the continual improvements in hardware, and
hardware costs. Assuming that the NFS remains the best algorithm for integer factorization,
they estimate that 1024-bit RSA will provide the same level of security in the year 2002 as
the Data Encryption Standard (DES) provided in the year 1982. (DES was considered very
secure in 1982 for banking applications.) Similarly, 2048-bit RSA will provide the same level
of security in the year 2023 as DES provided in the year 1982, and 3072-bit RSA will provide
the same level of security in the year 2038 as DES provided in the year 1982.

In a recent study, Lenstra [33] provides estimates of RSA key lengths required to provide equiv-
alent levels of security as the common symmetric-key encryption schemes DES, 2K3DES (two
key Triple-DES), 3K3DES (three key Triple-DES), AES-128 (128-bit Advanced Encryption
Standard), AES-192 and AES-256 [39]. Lenstra’s estimates are reproduced in Table 2. The
entries of the table are to be interpreted as follows. The entry of 3296 for AES-128 in the year
2020 means that one should used a 3296-bit RSA modulus to protect a 128-bit symmetric key
if in the year 2020 one desires the same amount of resistance to the NFS algorithm for factoring
RSA moduli as exhaustive key search on AES-128.

Year DES 2K3DES 3K3DES AES-128 AES-192 AES-256

2001 416 1333 1941 2644 6897 13840
2010 518 1532 2189 2942 7426 14645
2020 647 1773 2487 3296 8042 15574
2030 793 2035 2807 3675 8689 16538

Table 2: Matching RSA modulus sizes.
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3.4.2 Finding eth Roots Modulo n

All RSA encryption and signatures schemes can also be totally broken if it is easy to find eth

roots modulo n. This is sometimes known as the RSA problem: given n, e, and an integer c, find
an integer m such that me � c

�
mod n � .

Clearly, if n can be factored, then an adversary can compute the private key d and thus efficiently
solve the RSA problem. Hence, the RSA problem is no harder than the integer factorization
problem. What is more desirable with respect to the security of RSA is that the RSA problem
itself be difficult, preferably as difficult as the integer factorization problem. However, no proof
of this is known.

In fact, Boneh and Venkatesan [13] provided evidence that if a small encryption exponent (for
example, e � 3) is used, then the RSA problem cannot be equivalent to the integer factorization
problem, i.e., the RSA problem is easier. Boneh and Venkatesan proved that any polynomial
time reduction of the integer factorization problem to the RSA problem with e � 3 that uses only
algebraic operations can be efficiently converted to a polynomial time algorithm for integer fac-
torization. Thus, if one believes that integer factorization cannot be solved in polynomial time,
then one can conclude that there is no polynomial time reduction of the integer factorization
problem to the RSA problem with e � 3.

We emphasize that the results of Boneh and Venkatesan do not expose any specific weaknesses
in RSA (with or without a small encryption exponent); however the results suggest that the RSA
problem may be easier than the integer factorization problem, especially for small encryption
exponents.

We therefore recommend that RSA encryption and signature schemes should not use e � 3.
Encryption exponents e � 216 	 1 can be used, but even larger exponents are to be preferred.

3.4.3 Small Encryption Exponents

An attractive option for speeding up RSA public key operations (encryption and signature ver-
ification) is to select a small encryption exponent e. A variety of attacks have been discovered
in recent years against the use of RSA with small encryption exponents. These attacks are
summarized in this subsection.

BROADCAST ATTACKS. An old attack of Håstad [25] works as follows. Suppose that entity
A wishes to send the same message m to three parties B1, B2 and B3, whose RSA public keys
are

�
n1 � e1

� 3 � , �
n2 � e2

� 3 � and
�
n3 � e3

� 3 � , respectively. We assume that m � n1, m � n2 and
m � n3. A computes c1

� m3 mod n1, c2
� m3 mod n2, c3

� m3 mod n3, and transmits these
ciphertexts. Since the moduli n1, n2, n3 are most likely pairwise relatively prime, there exists
a unique integer x, 0

�
x � n1n2n3, such that x � c1

�
mod n1 � , x � c2

�
mod n2 � , and x � c3�

mod n3 � ; an adversary can efficiently find x. Since 0
�

m3 � n1n2n3, it is the case that x � m3.
Thus, the adversary can efficiently recover m by computing the integer cube root of x.
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The attack has also been extended to situations (see Håstad [25] and Boneh [9]) where certain
forms of padding are applied to the message prior to encryption, for example by appending i to
the message before broadcasting to party i.

Such broadcast attacks can be circumvented by selecting an encryption exponent e which is
larger than the maximum number of parties to which a message might be broadcast, or by using
appropriate random padding. More generally, such broadcast attacks can be circumvented by
using an RSA variant, such as RSA-OAEP, that is semantically secure against adaptive chosen-
ciphertext attacks. It then follows from the work of Bellare, Boldyreva and Micali [3] that the
encryption scheme is secure in a distributed environment and thus resists all Håstad-like attacks.

RELATED-MESSAGE ATTACKS. Suppose that two or more plaintext messages which have a
(known) polynomial relationship (e.g. m1 and m2 might be linearly related: m1

� am2
	 b)

are encrypted with the same small encryption exponent (e.g., e � 3 or e � 216 	 1) and the
same modulus n. Coppersmith et al. [17] presented a new class of attacks on RSA which
enable a passive adversary to recover such plaintext from the corresponding ciphertext. This
attack is of practical significance because various cryptographic protocols have been proposed
which require the encryption of polynomially related messages. Note that these attacks are
different from the broadcast attacks considered above where the same plaintext is encrypted
under different public keys.

Coppersmith [16] presented an efficient algorithm for finding a root of a polynomial of degree k
over the integers modulo n, where n is an RSA-like modulus, provided that there is a root smaller
than n1 � k. The algorithm yielded the following two attacks on RSA with small encryption
exponents. If e � 3 and if an adversary knows a ciphertext c and more than 2 � 3 of the plaintext
m corresponding to c, then the adversary can efficiently recover the rest of m. Suppose now that
messages are padded with random bitstrings and encrypted with exponent e � 3. If an adversary
knows two ciphertexts c1 and c2 which correspond to two encryptions (under the same public
key) of the same message m (with different padding), then the adversary can efficiently recovery
m, provided that the padding is less than 1 � 9 of the length of n. The latter attack suggests that
caution must be exercised when using random padding in conjunction with a small encryption
exponent.

3.4.4 Small Decryption Exponents

An attractive option for speeding up RSA private key operations (decryption and signature
generation) is to select a relatively small decryption exponent d.

Suppose that the RSA modulus n is a k-bit integer. Wiener [52] showed that if the private key
d of bitlength less than 0 � 25k is selected, then an adversary can efficiently recover d using only
his knowledge of the public key

�
n � e � . In 1998, Boneh and Durfee [11] improved Wiener’s

result to show that d can also be efficiently recovered if its bitlength is less than 0 � 292k. It is
believed [11] that these results can be extended to the situation where the bitlength of d is less
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than 0 � 5k, but this has not yet been accomplished.

It is strongly recommended that the decryption exponent d not be chosen to have any special
properties, e.g., small bitsize.

4 Security of the RSA-OAEP Encryption Scheme

The Optimal Asymmetric Encryption Padding (OAEP) scheme for RSA was proposed by Bel-
lare and Rogaway in 1994 [6]. RSA-OAEP is intended to be both efficient and provably secure.
RSA-OAEP is designed to encrypt only short messages—typically secret keys for symmetric
encryption or MAC algorithms.

4.1 Description

The following notation is used in the description of the encryption scheme:

� A’s RSA public key is
�
n � e � , and d is A’s corresponding private key. The integer n is k

octets in length. (For example, if n is a 1024-bit modulus, then k � 128.)
� H is a hash function which has outputs that are l octets in length. (For example, H may

be SHA-1, in which case l � 20.)
� G is the following mask generating function: if the inputs to G are an octet string s and

a positive integer t � 232l, then the output of G is an octet string of length t obtained by
concatenating successive hash values H

�
s
�
i � , 0

�
i

���
t � l � � 1, and deleting any extra

rightmost octets if necessary (i is a 32-bit counter).
� P consists of some (optional) encoding parameters.
� A padding string consists of a string of 00 octets (possible empty) followed by the octet

01.

RSA-OAEP Encryption Scheme. (B sends message m of length at most k � 2 � 2l octets to A)

1. Encryption. B does the following:

1.1. Obtain an authentic copy of A’s public key
�
n � e � .

1.2. Select a random seed s of length l octets.

1.3. Apply the OAEP encoding operation (depicted in Figure 1) with inputs s, P and m
to obtain an octet string M of length k octets.

1.4. Compute c � Me mod n.

1.5. Send c to A.
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M=

P

H(P) padding m

00 masked DB

masked DB

G

G

DB

H

s

masked seed

Figure 1: OAEP encoding function.
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2. Decryption. A does the following:

2.1. Check that c � �
0 � n � 1 � ; if not then output “error” and stop.

2.2. Use the private key d to compute M � cd mod n.
2.3. Apply the OAEP decoding operation (depicted in Figure 2) with input M to obtain

octet strings X , Q, T , M; here X has octet length 1, Q consists of the first l octets
of DB, T is the first non-zero octet following Q, and m consists of the octets to the
right of T .

2.4. Compute Q � � H
�
P � .

2.5. If Q ���� Q, or if X �� 00, or if T �� 01, then output “error” and stop.
2.6. Output M.

M= masked seedX masked DB

G

s

G

DB

Q T m000000

Figure 2: OAEP decoding function.

REMARKS.

1. Step 1.1 of the OAEP decoding operation (Section 3.2) of [47] is incomplete and should
include the checks that T � 01 and X � 00.

2. The decoding operation in [47] should output “decoding error” if all the octets to the right
of Q are zero (in which case T is not defined).

4.2 Security Proofs

BELLARE-ROGAWAY SECURITY PROOF. In their 1994 paper, Bellare and Rogaway [6] proved
that RSA-OAEP is plaintext aware in the random oracle model under the assumption that the
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RSA function m �� me mod n is a one-way function. (Roughly speaking, an encryption scheme
is plaintext aware if it is infeasible for an adversary to construct a ciphertext c whose plaintext is
valid—that is, was correctly formatted using the OAEP encoding function—without knowing
m. The random oracle model, popularized by Bellare and Rogaway [5], is a computational
model in which all entities, including the adversary, have access to a public random function.
In the proof of security, the hash function H is modeled as a random function.) The assumption
that the RSA function is one-way is called the RSA assumption. Bellare and Rogaway claimed
that plaintext awareness in the random oracle model implied semantic security against adaptive
chosen-ciphertext attacks. Thus, it was believed that RSA-OAEP provided the strongest notion
of security for public-key encryption schemes.

FLAWS IN THE BELLARE-ROGAWAY SECURITY PROOF AND ITS CORRECTION. It came as
a big surprise when Victor Shoup [50] announced in 2000 that the Bellare-Rogaway security
proof was in fact incorrect. In [4], it is proven that plaintext awareness in the random oracle
model implies IND-CCA. However, the Bellare-Rogaway security proof used a different notion
of plaintext awareness which is not known (and not believed) to imply IND-CCA. In fact, Shoup
provides a strong argument that OAEP when used with a general trapdoor permutation f cannot
in general be proven secure in the random oracle model under the assumption that f is one-way.
(However, Shoup did prove that RSA-OAEP is IND-CCA for the case e � 3.)

Shoup’s work cast a serious doubt about the security of RSA-OAEP.

A short time after Shoup’s paper was circulated, Fujisaki, Okamoto, Pointcheval and Stern
(FOPS) [21] were able to provide a proof that RSA-OAEP is IND-CCA in the random oracle
model under the RSA assumption. They did this by first proving security under the assumption
that the RSA function is partial-domain one-way—given c � me mod n, it is infeasible to find
the l most significant bits of m for some fixed l—and then noting that the partial-domain one-
way RSA assumption is equivalent to the standard RSA assumption. The proof is elegant and
correct. Thus, we now have a proof that RSA-OAEP is IND-CCA in the random oracle model
under the RSA assumption.

However, the proof has two shortcomings which are discussed next.

RANDOM ORACLE MODEL. The first objection to the security proof of RSA-OAEP is that
it takes place in the random oracle model, and therefore does not imply security in the real
world where the hash function H is no longer a random function. This objection was given
some credence by Canetti, Goldreich and Halevi [14] who provided examples of signature and
encryption schemes which they proved secure in the random oracle model, but which are in-
secure with any reasonable instantiation of the random function. However, the encryption and
signature schemes in [14] are rather contrived, and a security proof in the random oracle model
is now widely accepted as providing valuable heuristic evidence for security. Additionally, the
security proof of RSA-OAEP implies that any attack on RSA-OAEP must either invert the RSA
function, or exploit some properties of the hash function H .

We conclude that the objection that the RSA-OAEP security proof is in the random oracle model
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is not a very serious one.

TIGHTNESS OF THE REDUCTION. The second objection which has do to with the tightness of
the reduction in the FOPS proof [21] is a more serious one.

Security proofs typically work by providing a reduction from the solution of a problem P to the
breaking of a cryptographic scheme S. That is, one shows how P can be solved if one is given
an oracle for breaking S. In the case of the RSA-OAEP proof, S is RSA-OAEP, while P is the
RSA problem. The success of the reduction is measured by the tightness of the reduction. More
precisely, a reduction is tight if when an adversary can break S in time t with probability ε, then
the reduction algorithm that solves P runs in time t � with success probability ε � , where t � � t and
ε � � ε. A tight reduction is important because one then has the assurance that the security level
of S is very closely related to the security level of P. Thus one can select security parameters in
S to be of the same size as the parameters that make P intractable against all known attacks. For
example, if the reduction in a security proof of RSA-OAEP is tight, then one can use 1024-bit
moduli n and be assured that breaking RSA-OAEP will require roughly the same amount of
work as it takes to solve the RSA problem for 1024-bit moduli.

The original security proof of Bellare and Rogaway did provide a tight reduction. However, as
noted above, this proof is incorrect.

Unfortunately, the reduction in the FOPS security proof is not tight. The success probability
ε � is related to ε by ε � � ε � � 2 � Q1 � , while the time t � is repeated to t by t � � t 	 Q1 � Q2 (see
Theorem 1 of [21] for a more precise statement). Here Q1 denotes the number of queries made
to the mask generating function G (modeled as a random oracle in the proof) which masks the
string “masked DB” (see Figure 1) by a hypothetical adversary that breaks RSA-OAEP in time
t with success probability ε. Similarly, Q2 denotes the number of queries made to the mask
generating function G which masks the seed s. Since Q1 and Q2 can in principle be large, e.g.,
Q1

� 240, the reduction is not tight.

Therefore, in order to be assured from the FOPS proof that RSA-OAEP provides a certain
acceptable level of security, one has to use an RSA modulus that is far bigger than one would
actually use in practice. Thus, it is not at all clear what assurances, if any, are provided by the
security proof for RSA-OAEP.

Shoup [50] proposed a small change to RSA-OAEP which he called RSA-OAEP+. The change
is that the padding string in the OAEP encoding function is replaced by the string H �

�
m
�
s � ,

where H � is a hash function (see Figure 1). Shoup provides a security proof for RSA-OAEP+
where the reduction is tighter than the FOPS reduction. However, Shoup notes [50, page 24]:

....the reductions for OAEP+ are not tight enough to actually imply that an algo-
rithm that breaks, say, 1024-bit RSA-OAEP+ in a “reasonable” amount of time im-
plies an algorithm that solves the RSA problem in time faster than the best known
factoring algorithms.

The self-evaluation report submitted to the CRYPTREC project [48] states (page 6):
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The main conclusion is that earlier claims about the security need to be revised;
the security reduction is not as tight as was earlier claimed. In particular, the re-
duction does not apply to typical parameters such as 1024-bit key size. Still, the
reduction does provide a heuristic argument that the OAEP construction is sound
when combined with RSA and that a successful attack against RSA-OAEP in the
random oracle model relates to the problem of inverting the RSA primitive, if not
as efficiently as was earlier believed. Shoup’s variant RSA-OAEP+ has a stronger
proof, but the proof is still not applicable in practice, which means that we would
need to rely on heuristic arguments anyway.

So, it appears that the real-world security assurances provided by the RSA-OAEP proof of
security are not well understood.

4.3 Resistance to Manger’s Attack

At the Crypto 2001 conference, Manger [36] described an ingenious attack that would be suc-
cessful on some implementations1 of RSA-OAEP.

Manger’s attack is similar in spirit to Bleichenbacher’s Attack on PKCS#1 v1.5 RSA encryption
that was outlined in Section 3.2.2. Given a target ciphertext c, an adversary modifies c to obtain
ciphertext c � and provides c � to a decrytion oracle. Now, c � may not be a valid ciphertext, i.e.,
the corresponding plaintext M � may not be a valid output of the OAEP encoding function. For
example, the first octet X of M � may not be 00, or the first non-zero octet T of the padding string
may not be 01 (see Figure 2). Manger showed that if the decryption oracle returns different error
messages for each of these two possible errors, then the adversary can recover the plaintext
corresponding to c.

In response to this attack, the description of RSA-OAEP in [47] was modified so that the checks
X � 00 and T � 01 are done in the same step as the check Q � � H

�
P � (see step 2.5 of the RSA-

OAEP decryption algorithm in Section 4.1). Moreover, the decryption algorithm returns the
same error message if any of the checks fail. Note that these modifications do not change
the mathematical description of RSA-OAEP—the modifications are only recommendations for
implementors that operations be performed in a certain order. The modifications also help
prevent timing attacks which may yield information on which check failed during a decryption
operation.

With these modifications, it appears that RSA-OAEP is resistant to Manger’s attack.
1There are many implementation attacks that can be launched on cryptographic schemes. Examples include

timing attacks (Kocher [31]), differential fault analysis attacks (Boneh, DeMillo and Lipton [10]), differential
power analysis (Kocher, Jaffe and Jun [32]), and attacks which exploit weak random or pseudorandom number
generators (Kelsey et al. [30]). These kinds of attacks are not considered in this report.
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5 Security of the RSA-PKCS#1 v1.5 Signature Scheme

This section presents the RSA-PKCS1-v1.5 signature scheme as described in [45]. This scheme
is a refinement of the basic RSA signature scheme (Section 3.3). It specifies a method for
padding the hashed message in order to defeat known attacks on basic RSA such as the ones
listed in Section 3.3.

5.1 Description

Let
�
n � e � be A’s RSA public key, and let d be A’s corresponding private key. The integer n is k

octets in length. (For example, if n is a 1024-bit modulus, then k � 128.) H is a hash function
such as SHA-1 that is identified by some octet string HID.

RSA-PKCS1-v1.5 Signature Scheme. (A signs a message m for B)

1. Signature Generation. A does the following:

1.1. Compute h � H
�
m � .

1.2. Form the following octet string M of length k octets:

00
�
01
�
PS
�
HID
�
h �

where PS denotes a string of FF octets.

1.3. Use the private key d to compute s � Md mod n.

1.4. Send the signature s and the message m to B.

2. Signature Verification. B does the following:

2.1. Obtain an authentic copy of A’s public key
�
n � e � .

2.2. Compute M � � se mod n, and convert M � to an octet string of length k octets.

2.3. Compute h � H
�
m � .

2.4. Form the following octet string M of length k octets:

00
�
01
�
PS
�
HID
�
h �

where PS denotes a string of FF octets.

2.5. Compare M and M � . If M � M � then accept the signature; otherwise reject the
signature.
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5.2 Security Proofs

There are no attacks known on the RSA-PKCS1-v1.5 signature scheme. In particular, the attack
of Coron, Naccache and Stern [18] is ineffective on RSA-PKCS1-v1.5. However, there is also
no known proof that RSA-PKCS1-v1.5 is existentially unforgeable against adaptive chosen-
message attacks.

Since the RSA-PSS signature scheme is as efficient as RSA-PKCS1-v1.5, and has a tight se-
curity proof (see Section 6), there is no reason to use RSA-PKCS1-v1.5 instead of RSA-PSS.
Thus, it is recommended that all standards for RSA signatures adopt RSA-PSS instead of RSA-
PKCS1-v1.5.

6 Security of the RSA-PSS Signature Scheme

The Probabilistic Signature Scheme (PSS) variant of RSA was proposed by Bellare and Rog-
away in 1996 [7]. RSA-PSS is intended to be both efficient and provably secure. The RSA-PSS
scheme described here from [46] is significantly different from the original scheme proposed
by Bellare and Rogaway.

6.1 Description

The following notation is used in the description of RSA-PSS:

� A’s RSA public key is
�
n � e � , and d is A’s corresponding private key. The integer n is k

octets in length, and y bits in length (For example, if n is a 1028-bit modulus, then k � 129
and y � 1028.)

� x � � � y � 1 � � 8 � .
� z � 8x � �

y � 1 � .
� H is a hash function which has outputs that are l octets in length. (For example, H may

be SHA-1, in which case l � 20.)

� G is the following mask generating function: if the inputs to G are an octet string s and
a positive integer t � 232l, then the output of G is an octet string of length t obtained by
concatenating successive hash values H

�
s
�
i � , 0

�
i

���
t � l � � 1, and deleting any extra

rightmost octets if necessary (i is a 32-bit counter).

� TF (trailer field) either consists of a single octet BC, or the concatenation of two octets
HID and CC, where HID is the single octet identifier of the hash function H as specified
in the ISO/IEC 10118 standard.
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� salt is a randomly generated octet string.

RSA-PSS Signature Scheme. (A signs a message for B.)

1. Signature Generation. A does the following:

1.1. Apply the PSS encoding function (depicted in Figure 3) to m to obtain the octet
string EM. The string EM has length x octets, and its integer representation has
bitlength at most y � 1. The z leftmost bits of EM are 0.

1.2. Use the private key d to compute s � EMd mod n.

1.3. Send the signature s and the message m to B.

8 00 octets m salt

M’

G

saltDB=

EM=

0100 00 00 00

H

0 masked DB h TF

H

Figure 3: PSS encoding function.

2. Signature Verification. B does the following:

2.1. Obtain an authentic copy of A’s public key
�
n � e � .

2.2. Check that s is an integer in the interval
�
0 � n � 1 � ; if not then output “error” and stop.

2.3. Compute EM � se mod n.
2.4. If the octet length of EM is greater than x, then output “error” and stop.

2.5. If the z most significant bits of EM are not 0, then output “error” and stop.

2.6. Apply the PSS decoding function (depicted in Figure 4). During this decoding pro-
cess, check that octet string TF is either consists of a single octet BC, or is the
concatenation of two octets HID and CC, where HID is the single octet identifier of
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the hash function H as specified in the ISO/IEC 10118 standard. Also, check that
the string DB begins with a string of 00 octets of the appropriate length, followed
by the octet 01.

2.7. If h � � H
�
m � , then accept the signature; otherwise reject.

8 00 octets m

EM= masked DB

saltDB= 0100 00 00 00

H

M’

H

h TF

G

h’

Figure 4: PSS decoding function.

SALT LENGTH. The specification of RSA-PSS [49] does not give any guidance on what the
length of the salt should be. PKCS#1 v2.1 [46] states that typical lengths of salt are 0 and l, and
these values are analyzed in [29]. However, we recommend that explicit and clear guidance on
the salt length be provided in the RSA-PSS specification.

6.2 Security Proofs

Since the RSA-PSS specification differs significantly from Bellare and Rogaway’s original
scheme, it is important to provide a clear and complete proof of security of the modified scheme
in order to be convinced that the security assurances are still present. This has been done in the
accompanying paper by Jonsson [29].
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Jonsson proves that RSA-PSS is existentially unforgeable against adaptive chosen-message at-
tacks in the random oracle model under the assumption that the RSA problem is intractable.

TIGHTNESS OF THE REDUCTION. The reduction in Jonsson’s proof of security is very tight
(see Section 4.2 for background on tightness of a reduction). Thus we are assured that breaking
RSA-PSS will require roughly the same amount of work as it takes to solve the RSA problem.

RANDOM ORACLE MODEL. As with the security proof of RSA-OAEP (Section 4.2), the se-
curity proof of RSA-PSS takes place in the random oracle model. Thus the security proof only
provides heuristic evidence for security in the real world.

REMOVING THE RANDOM ORACLE ASSUMPTION. We remark that there are RSA-based sig-
natures schemes that are provably secure in a standard model—one which does not make the
unrealistic assumption that hash functions employed are random functions. For an example of
such a scheme, see Cramer and Shoup [19] and Gennaro, Halevi and Rabin [22]. However, the
security of these schemes is based on a very strong assumption called the strong RSA assump-
tion (given an RSA modulus n and c � R

�
0 � n � 1 � , it is difficult to find t � 1 and m such that

c � mt �
mod n � ), so it does not appear that the security assurances by such schemes are any

greater than the security assurance provided by RSA-PSS.

HASH FUNCTION IDENTIFIER. Inclusion of the hash function identifier HID in the PSS encod-
ing operation is optional. Including the hash function identifier HID may be useful in preventing
attacks by an adversary who may substitute the utilized hash function by a different hash func-
tion (e.g., a hash function that has recently been shown to be weak). However, since the mask
generation function is defined using the same hash function as that used to hash the message, it
does not seem possible that such an adversary can succeed.

7 Conclusions

We provide a concise overview of our analysis of the RSA-OAEP, RSA-PKCS1-v1.5 and RSA-
PSS schemes.

1. LENGTH OF RSA MODULUS n. The modulus n should be at least 1024 bits in length.
Recommendations should be provided on the moduli lengths for protecting keys of com-
monly used symmetric encryption schemes such as Triple DES (112 bits), AES-128,
AES-192 and AES-256.

2. USE OF SMALL ENCRYPTION EXPONENT e. Using an encryption exponent e � 3 is
risky, as there is some evidence that solving the RSA problem for e � 3 may be easier
than factoring n. We recommend that the encryption exponent e be at least 216 	 1.

3. RSA-OAEP ENCRYPTION SCHEME. RSA-OAEP has been proven to be semantically
secure against adaptive chosen-ciphertext attacks in the random oracle model under the
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RSA assumption. However, the reduction is not tight, and thus it is not clear what security
assurances the proof provides. We recommend that RSA-OAEP be modified to RSA-
OAEP+ which has a tighter security reduction, and furthermore can be easily modified
to allow encryption of arbitrarily-long messages (see [50]). Furthermore, the RSA-KEM
encryption scheme of Shoup [51] which has a tight reduction should be considered as a
replacement for RSA-OAEP.

4. RSA-PKCS1-V1.5 SIGNATURE SCHEME. There is no formal proof of security of RSA-
PKCS1-v1.5. Since RSA-PSS is as efficient as RSA-PKCS1-v1.5 and has a security
proof, there is no reason to use RSA-PKCS1-v1.5.

5. RSA-PSS SIGNATURE SCHEME. RSA-PSS has been proven to be existentially unforge-
able against adaptive chosen-message attacks in the random oracle model under the RSA
assumption. The reduction is tight, and so the assurances provided by the security proof
are strong. More guidance should be given on the desired length of the salt used in the
RSA-PSS encoding operation.
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