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Abstract

ESIGN signature scheme uses a particular modulus with a square fac-
tor. Each factor has the same number of bits. The goal of this study
is to evaluate the security of this kind of modulus. Its security against
known algorithms and other attacks which exploit its characteristics or
not is studied.

1 Introduction

In this report, we study all potential weaknesses of the ESIGN modulus. The
particularity of ESIGN modulus n = p?q is to have a square factor and to be
made of prime factors of same length. In the beginning of this study, we consider
the factoring algorithms (more precisely, the two algorithms who are the most
efficient against ESIGN modulus). In a second part, we consider close problems
induced by the special form of ESIGN modulus. Afterwards, we briefly comment
the efficiency of attack based on lattice theory. Before the conclusion and a last
remark, we give formulas for the extrapolation of factorization records which
can be used to specify the size of ESIGN modulus now and in the future.

2 Factoring Algorithms

The difficulty of factoring number n = p?q where p and ¢ are prime integers is
an element of the security of the ESIGN signature scheme. In the recent years,
the limits of the best factorization algorithms have been extended greatly. Now,
you can easily factorize 100-decimal digit numbers and it is feasible to factor
numbers of 155 decimal digits (512 bits). But, there is no known deterministic or
randomized polynomial-time! algorithm for finding a factor of a given composite
integer n.

There are two classes of algorithms for finding a nontrivial factor f of a
composite integer n. The algorithms in which the run time depends mainly of
the size of n: Lehman’s [Leh74], Continued Fraction [MB75], Multiple Polyno-
mial Quadratic Sieve [Pom84][Sil87], Number Field Sieve [LLMP90][LLMP90]....

IThe expected running time should be a polynomial in the length of the input, i.e.
O((log n)€) for some constant c.



And the algorithms in which the run time depends mainly on the size of f: Trial
Division, Pollard “rho” [Pol75], Elliptic Curve Method [Len87],...

In this section, we study the best efficient algorithm in each category, i.e.
the Number Field Sieve algorithm and the Elliptic Curve Method, and their
application to the ESIGN modulus. Let

Lols, ] = eleto(D)log"(n)loglog! =" (n) (1)

2.1 Number Field Sieve

The number field sieve algorithm [Len94] is the fastest algorithm known. Its
efficiency depends on the size of the integer n to factorize. Its expected running
time is L, [1/3, (64/9)/3]. The NFS algorithm does not run faster if a factor of
n is small and could not exploit the special form of the ESIGN modulus as far
as we know.

At present, the largest number factorized with NFS is the RSA-155 num-
ber which is a 155-digit or 512-bit number. This factorization was completed
on August 22, 1999, and the amount of computing was about 8400 MIPS
years?[CDL*00]. The size of the modulus in ESIGN is more than 960-bit.
Consequently, it is out of the range of NFS algorithm.

2.2 Elliptic Curve Method

The Elliptic Curve Method uses groups defined by pseudo-random elliptic curves
over GF(p), where p > 3 is the prime factor you hope to find. Since p is
not known in advance, computation is performed in the ring Z/nZ of integers
modulo n rather than in GF(p). The Elliptic Curve Method could be considered
as a generalization of Pollard’s p—1 algorithm where the group Zj is replaced by
a random elliptic curve group over Z,. If the order of group chosen has no large
prime factors, i.e. is smooth with respect to some pre-selected bound, the ECM
will find a non-trivial factor of n with a high probability. Else the ECM will fail
with this particular elliptic curve but another one can be chosen and the process
be repeated. As the algorithm tends to find small factors first, the efficiency
of the Elliptic Curve Method [Len87] depends on the size of the shortest prime
factor of n. If p < ¢ then the expected running time is L,[1/2, 2/2].

The ECM could be speeded by the addition of a second phase when the first
phase described above fails with a particular elliptic curve. This second phase
could find a non-trivial factor of n if the cyclic group generated by the group
element given when the first phase terminates is reasonably small. There are
several implementations of the second phase and some of them could exploit the
special form of the ESIGN modulus.

Peralta and Okamoto [PO96] proposed a factoring algorithm based on the
elliptic curve method against the number of the form p?q which is a little bit
faster than the original elliptic curve method. Pollard and later Bleichenbacher

20ne MIPS year is the equivalent of a computation during one full year at a sustained
speed of one Million Instruction Per Second.



suggested improvements leading to the algorithm in [Per01]. This algorithm is
just several times faster than the traditional ECM. More precisely, the speedup
given in [Per01] is slightly larger than O(log Q) with n = p?q. It is not enough to
threaten security of ESIGN with the size of parameters currently recommended.

At this moment, the largest factor found by the elliptic curve factoring
method has 55-digit, i.e. 183-bit. It was found by Izumi Miyamoto on 6 October
2001 [Bre]. In the ESIGN modulus, the shortest factor has more than 320-bit.
Consequently, the ESIGN modulus is out of range of ECM.

Remarks

- As the efficiency depends on the size of the shortest prime factor of n
and n has three factors, the ECM algorithm is much more efficient on the
ESIGN modulus than on a RSA modulus of the same size.

- At present, if we consider the two factorization records, the ESIGN mod-
ulus must be greater than 55 x 3 = 165-digit to avoid ECM factorization
and greater than 155-digit to avoid NFS factorization. But, due to a best
asymptotic running time, only the NF'S efficiency will be to consider in
the future to define the size of the ESIGN modulus if no new factoring
algorithm or new ways to speed up existing ones are discovered (see Sec-
tion 5).

3 Close problems

3.1 Squarefree part

For an input n € N, it is an open problem in number theoretic complexity to
find, in polynomial time, p and ¢ such that n = p?q where ¢ is squarefree. This
computational problem is labeled C7 in [AM94] and the corresponding open
problems are O7a and O7b. In the same paper, Adleman and McCurley note
that if the computational problem C13, called quadratic signature®, could be
solved in polynomial time then n could be partially factored assuming the ex-
tended Riemann hypothesis. This result requires a signature of length O(log?n)
to determine ¢ and uses the fact that for any a with ged(a, n) = 1 we have

(%) = (%) where () denotes the Jacobi symbol. Since the article of Adleman
and McCurley [AM94] in 1994, no new results have been published.

3.2 Largest square factor

In [Len94], Lenstra presents a result due to Chistov [Chi89]: under deterministic
polynomial time reductions, the problem of determining the ring of integers for

3For an input o € {—1, 1}*, output the least prime p such that for all i with 1 <14 < |o],
(%) = €, where |o|, the length of &, is the number of symbols in o, p; is the ith prime, and

€; is the i*" symbol of o.



a gwen algebraic number field is equivalent to the problem of finding the largest
square factor of a given positive integer [Len94, Theorem 4.4].

4 Lattice attacks

4.1 Factoring N = p"q for large r

Boneh, Durfee and Howgrave-Graham presented at Crypto’99 [BDH99] an al-
gorithm based on the LLL algorithm for factoring integers of the form N = p”q.
Their algorithm is efficient when the size of r is greater than log p. Consequently,
this algorithm could not be used to factor the modulus of ESIGN.

4.2 Approximate Integer Common Division

Howgrave-Graham gives a lattice-based solution to the problem of approximate
common divisor in [How01]. He claims that from the public information, i.e.
n = p?q and s¢ = r + tpg (mod n), he can obtain in polynomial time a non-
trivial divisor of n when r < %\/]Tq As r is randomly and uniformly chosen
in (Z/pqZ)\p(Z), the probability of success of his attack is 1/2,/pq (hence is
negligible).

5 Factorization: extrapolation
Let D be the number of decimal digits in the largest number factored at a given

date Y. By considering historical data and assuming Moore’s law*, Brent gives
formulas [Bre00] to extrapolate the factorization records with:

e Elliptic Curve Method with a number D like ESIGN modulus:
/D
Y =93 3 +1932.3 (2)

Y =13.24D5 4 1928.6 (3)

e Number Field Sieve:

An ESIGN modulus of 698-bit, i.e. D = 210 would be factorized in Y = 2010
with the Elliptic Curve Method and in Y = 2007 with the Number Field Sieve.
A number of 1024-bit, i.e D = 309, would be factorized in Y = 2026 with ECM
and in Y = 2018 with NFS. More pessimistic previsions can be found in the
article of Lenstra and Verheul [LV99][LVO01].

4Moore’s law predicts that circuit densities will double every 18 months or so.



6 Miscellaneous

In [MSO01], the authors note that if ged(p, ¢ — 1) # 1 then one can obtain a
non-trivial divisor of n. But this property is never satisfied with ESIGN since
p and g have the same size.

7 Conclusion

The specificity of the ESIGN modulus does not seem to be a particular problem
for the security of the scheme. Even if the Elliptic Curve Method for factoring
could be accelerated by exploiting the special form of the modulus, the best
way of factoring an ESIGN modulus is still to use the Number Field Sieve
algorithm. But, with the size of ESIGN modulus that is now recommended the
NFS is inefficient.

‘We have presented close problems in the number theoretic complexity which
permit to evaluate differently the security of ESIGN modulus. We have also
briefly presented recent results based on the lattice theory and their impacts on
the security of ESIGN modulus. Finally, the extrapolation formulas given in
the last part on the factorization records could be used to extrapolate the size
of the ESIGN modulus in the future.
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