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Abstract

The security of ESIGN is based on the difficulty of computing approximate ¢-th roots modulo
a composite number n of the form n = p?q with distinct primes p, ¢ of the same size. We first
recall the general framework of this approximation problem, and we describe the ESIGN scheme.
The security of this scheme is based on the difficulty of finding elements of some set that we call
Bg]. Then, we ask important questions in four main directions:

) What can be said about the distribution of By] inside 7 (n)?

) Can we describe in a geometrical and efficient way the elements of this set?

) Can we apply lattice methods to find elements of this set (always in a efficient way)?
)

4) Can we use the signatures of this scheme to find some information about the set Bg] ?
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Approximating (-th roots mod n : three notions of approximation. The problem of
finding exact (-th roots mod n, (namely, when yq is given, finding x¢ such that zh = yo mod n)
is surely difficult when the modulus n is composite, with unknown factorisation. In this case, one
usually considers "easier" problems where some approximations can be made on variables z, y.

Let Z(n) denote the ring of integers mod n. Given a pair (zg,y0) € Z(n)?, one searches for some
another pair (z,y) that is close to (2o,%0) and satisfies * = y mod n. There are three different
approximation problems, according as approximations are allowed on variable x, on variable y, or
on both variables z,y. In all the cases, the allowed approximations on variable z (resp. on variable
y) are of the form n® (resp. n®).

(I) [x-approximation]. Find x near zg such that 2 = yo mod n

(I) [y-approximation]. Find = such that z‘ mod n is near yq

(II) [(z,y)—approximation]. Find = near zo and y near yo such that 2* = y mod n
The main result on Problem (III) is due to Vallée, Girault, Toffin [4], [12]:

Let (a,b) satisty

a%i_l)—l—b:l—e with b > la.

The pairs (v,y) that satisfy |z — zo| < n% |y — yo| < nb, and 2* = y mod n can be found in
polynomial time.

The best solution to Problem (I) is due to Coppersmith [2]. Previous solutions to Problem (I) were
given by Hastad [5] and Vallée, Girault, Toffin [4], [12] around 1986-1988. These authors proved



that Problem (I) can be solved in polynomial time provided that
2
C(0+1)
Later, in 1996, Coppersmith improved this bound since he showed that Problem (I) can be solved
in polynomial time in (¢, 1/¢,logn) provided that

a<

a< - —e¢.

l

Problem (II) was less studied, and, so far, the solutions are obtained in fact by reducing Problem
(II) to Problem (III). However, Problem (II) is the basis to the ESIGN scheme that is now described.

The ESIGN scheme: a particular case of Problem (II) when n = p*q and b = 2/3. The
ESIGN scheme deals with Problem (II) in the particular case when the modulus n is composite,
of the form n = p*¢ with p, ¢ distinct primes. The approximation fraction is & = 2/3, and more
precisely, the scheme uses an approximation interval of length pg.

Let Z,(n) be formed with elements of Z(n) coprime with p. Each element z of Z,(n) can be written
as ¢ = r + tpqg with 0 < r < pq, ged(r,p) = 1 and 0 < ¢t < p. The ESIGN scheme described in [7]

or [8] deals with the set By],
B = {2 € Z(n) for which 2° mod n satisfies ¢ < 2* mod n < ¢+ pq}.

The point z belongs to By] if and only if

0< (ré + ttr g — ¢) mod n < pq.

If we let r‘ — ¢ = wopg — wy with 0 < wy < pq, we remark that we have also (r’ — ¢) mod n =
(wo mod p)pg — w1, and we obtain
(z' = ¢) mod n = —wy + [(£tr*™F — wo)]pg mod n

so that the point & belongs to By] if and only if

(c —r") mod n
[—pq 1.
We denote by ¢ the function ¢ : Z,(pq) — Z(p) which associates to r the number ¢t mod p. So, the
function ¢ is defined by

(r' —wy=0mod p with wp mod p=

c—rt 1 modp:{(c—ré)modn 1

o(r) == [WWW v —‘Erg_l

mod p. (1)

Then, for each value of r € Z,(pq), there exists exactly one value of t € Z(p) [namely t = ¢(r)]

for which r + ¢(r)pg belongs to By](n). Finally, the set By](n) has cardinality ¢(p — 1) and has a
precise description given by

BU(n)={z=r+6(r)pg, € Zy(pg)}

Then the ESIGN scheme is based on the following fact: The set of valid ESIGN signatures coincides
with the set By](n). In another words, all the elements By] provide valid ESIGN signatures for a
message ¢ and there are exactly q(p — 1) valid ESIGN signatures for such a message c.



Distribution of the set BY). What can be said about the distribution of B!1? In [7] and [8],
the authors state —without any proof—that the distribution of By] is uniform inside Z(n). However,
for the author of this report, it is not clear if the statement is true; anyway, the proof of this fact

seems to be difficult to obtain.

The study of the distribution of By] inside Z(n) is closely linked to the properties of function

¢ Zy(pq) — Z(p) defined by (1). The distribution of BY inside Z(n) is "nearly" uniform if,

for each ¢ € Z(p), the subset ¢~1({t}) has about the same cardinality (i.e., a cardinality near to

q(p—1)/p ~ ¢). In this case, each subset of Z,(n) of the form [tpg, (t + 1)pg[ N Z,(n) contains
(41

a number of elements of B:" close to ¢, and then the distribution of By] is nearly uniform inside
Zp(n).

On the other side, it is proven that, for any exponent £ > 2, and any ¢ € Z(n), there exist exactly
q(p—1) elements s coprime with p for which the powers s* mod n belong to some interval [c, ¢ + pq.
In [6], Mahassni and Shparlinski has proven the more precise result:

Let n be a composite number of the form n = p?q with p,q two distinct primes that satisfy
ged(p, g — 1) = 1. For any § > 0 and for any “random" exponent (, the powers s* mod n are
uniformly distributed in any interval [c, ¢+ h] of length h > n'/?*3.

Geometrical description of By] for ¢ = 2. When ¢ = 2, Vallée [10] has precisely studied

the distribution of B = B([)z]; she proved that it is not quite uniform, but "quasi-uniform" inside
Z(n), for any modulus n, prime or composite. These results show that the distribution of B is
essentially independent of the arithmetical properties of modulus n. She first observed in numerical
experiments two important facts.
First, the gaps between successive elements of B may have large variations near the rationals
pn/(2q), of small denominator ¢, but their distribution appears to follow a definite pattern inside a
sufficiently small interval around pn/(2q). There appear sequences of gaps all equal to ¢, separated
by much larger gaps. This pattern seems to vanish when going away from pn/(2¢). On the other
side, there is a balance between these gaps so that the total number of B’s elements inside a
sufficiently large interval around pn/(2q) is almost the same as if the distribution of B in the whole
Z(n) was actually uniform.
It appears that the length of a convenient interval is inversely proportional to ¢: She lets h =
An*l3 k=n/h = (1/4)n1/3. She builds a particular covering of Z(n), the Farey covering of order k,
which is made with intervals I(p, ¢) of center pn/(2¢) and radius n/(2kq) = h/(2q), with |p| < ¢ < k
and (p,q) = 1.
Inside each interval, she makes a local use of lattices of Z2. If z is near a rational number pn/(2¢)
of small denominator, the elements of B near zg lead to points of a lattice L(zg) between two
parabolas. More precisely, the lattice L(zg) is generated by the two vectors (1,2z¢) and (0,n); if
* = zg + u is an element of Z(n), one has: 22 mod n = x% + 2zou 4+ u? + tn and, if if one lets
w = 2xgu + tn, one has the equivalence

(1) @ = 2o + u belongs to B,

(77) there exists w so that the point m(z) = (u,w) belongs to L(z¢) and lies between the two
parabolas with respective equations: w + u? + x% = h and w+ u® + x% = —h.
If now zg is the integer nearest to the rational pn/(2¢) with a small denominator ¢, the domain
P(p,q), formed with the points m(z) of L(xg) arising from the points =z of B N I(p,q), for two
integers p and ¢ satisfying |p| < ¢ <k, and (p, ¢) = 1, can be easily described with the basis formed



with the vectors

7= q(1,2z0) — p(0,n), §=q'(1,220) — p'(0,n)
that comes from the pair (p',¢’) relative to the adjacent interval I(p',¢’) in the Farey covering.
Finally, she obtains the following result:

The points of the lattice L(zq) lie on quasi-horizontal lines which cut on the vertical axis segments
of length equal to n/q; moreover, on each line, the points of L(xg) have horizontal gaps equal to q.
From one line to the next, the points of L(xq) are shifted with an horizontal spacing equal to ¢' in
absolute value.

Vallée uses these results to exhibit two polynomial-time algorithms: the first one draws elements
from B in a quasi-uniform way. The second one finds the nearest neighbors (in B) of a point 2 of

Z(n).

A geometrical description of By] for £ > 27  One can try to generalize these geometrical
arguments. The points z of By] are exactly the z-coordinates of points (z,y) of Z? that are between
the two curves yn = 2' — ¢ and yn = 2* — ¢ — n?/3, Elkies describes in [3] an algorithm that finds

integer points "near" an algebraic curve.

Now, we try to adapt Elkies’ ideas to the ESIGN framework. We consider the domain

A::{($7y)7 0§$<n, ngé—C—ynSnz/S}‘

‘ ‘ 2/3

The two "parallel" curves yn = 2 — ¢ and yn = 2* — ¢ — n?/° are at distance n~'/°, and, since «
belong to Z(n), the measure of the total area of the domain A is about n%/3. The idea of Elkies is
to partition the total domain in O(n?) small domains of measure O(n®) (with a + b near 2/3) so
that, one can hope to find easily some point of Z? in each small domain. So, we consider here a

partition of Z(n) with O(n®) intervals I,,, of length O(n®) that gives rise to a partition A of A,

1/3

Al — {(z,y), 2 €y, 0<a' —c—yn < n*3}.

The area of each ALZ] is about O(nb_(1/3)). Then, we try to approximate each subset Aq[%] by a
paralelepiped P,, that we obtain by a local linear approximation of the two curves.
Then, we have to find a compromise on the length O(n®) of each interval I,,,:

(7) It must be sufficiently large so that the area of Ayé], equal to O(nb_(l/S)), is itself sufficiently
large, so that we can expect that it contains at least a point of Z?. We have thus to choose

1
b> -
3

(¢¢) It must be sufficiently small, so that the parallelepiped P,, gives a good approximation of

the domain A,,. Inside each domain AE%], the maximum distance between the line that gives the
best approximation of the curve yn = 2 —¢ and the curve C itself is of order O(nb(é_l)_l). However,

¢ _ cand yn = 2' — ¢ — n?/3 are at distance n=1/3. Then, the condition

2
30— 1)

the two curves yn =z

-1
b(f— 1) - 1< ?7 i.e., b <

is necessary to insure that the parallepiped P,, and domain A,, have a non negligeable intersection.

So, this compromise seems to be impossible to obtain, as soon as the exponent £ satisfies £ > 3.



The VGT method. The method can be described as follows: Given an integer £ > 2 and a pair
(%0, yo) of two elements of Z(n), VGT consider the equation

(zo + u)é = yo+v mod n,
and, through a binomial expansion,

-1

zh + C’}wé—lu—l— ...... + Céxé_iui + oo+ Claou + u'—v =y mod n.

They let w; = ui for 1 <i<{—1and wp =v — u’ + (yo — wé) , and they consider the lattice £ of
the vectors w = (wy, wy,., wy) of 7! such that

-1
Z Céxé_Z w; —wpy=0 mod n.
=0

They have to find, in £, a point w which is —in the sense of an unusual norm— "near" to the point
(0,0, ....,y0 — 5). Lattice £ has the following matrix (¢, ()

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
Czlxé_l Cézxé_z C?xé_?’ ... Cf_lxo n

For each component, the prescribed approximation, linked to the choice of the neighbourhoods, is
the following one:

|wi|§nm forall 7: 0<i</f—1 and also |wg—y0—|—x€|§2nb

(For the last condition, they use the hypothesis: b > fa). Generally speaking, these approximations
are not equal, and they "expand-contract" the lattice £ into another lattice in which the approxima-
tions are made equal, so that the norm sup can be used. The problem now can be solved provided
that the product of all the prescribed approximations equals the determinant n of the lattice. This
leads to the condition C'(¢, ¢):

Let a,b be two real numbers of [0,1], ¢ > 0 a real number and ¢ > 2 an integer. The pair (a,b)
satisfy the conditions C'(¢,€) if and only if

o —1)
2

a + b =1-¢ and b > {a.

Note that the ESIGN scheme deals with b = 2/3. So the associate value of a is

2
g = ——— — €.

3000~ 1)

The first result of [12]| describes the relative spreading of ¢-th roots and (-th powers.



For ¢ > 0, for { > 2, for a pair (a,b) satistying C({), there exists an exceptional set S(e) with
|S(€)| < n'~¢ such that, for any zo not in S(e), for any yo, there exists at most one x that satisfies
|z — 20| < n® and |2* mod n — yo| < n.

When applied to the ESIGN framework, this means that the distribution of By](n) is not too
[4

irregular: there is (generally speaking) at most one element of B:"(n) in each interval of length n®.

The second result of [12] is constructive: For € > 0, for { > 2, for a pair (a,b) satisfying C'(¢,€),

there exists a polynomial probabilistic algorithm that finds, for each pair (wg,yo) € Z(n)? with zq

not in S(€), the points x (if they exist) that satisfy |z — xo| < n® and |2* mod n — yo| < n’.

When applied to the ESIGN framework, these results prove that it is possible to decide in polynomial
(41

time if an interval of length n® contains an element of Be”(n). If we suppose that the distribution

of By](n) inside Z(n) is nearly uniform, one has to try n° intervals of length n® with

2
C= — — Qg =

1
3 3 30((—1)
to find an element of By](n). Then, except for £ = 2, this method is not efficient since it has a
complexity of order O(n®).

The method of Coppersmith. This method is only useful for solving Problem (I). One has to
find small roots u of the polynomial P(u) = 0 mod n where P(u) = (¢ + u)* — yo and u satisfies
|u| < A. Coppersmith works with the lattice £ generated by polynomials of the family

Plu)

) W 0<i<60< < h},

{(
for some integer h. For each small root ug, and any polynomial @) of the family, the value Q(ug) is
an integer. The same holds for any polynomial of £, and specially for a short vector V' of the lattice
L. If this short vector is sufficiently short, one has |V (ug)| < 1 and thus wug is a root of polynomial
V over Z, so that ug is easy to find. The lattice £ has a dimension equal to £h. Furthermore, when
the polynomials are expressed in the basis (u/A)?, the determinant of the lattice equals

D — pth(h=1)/2 gth(th=1)/2
and one can hope to find a short vector of norm 0(1) if D'/ = 0(1). This is possible if
A < ¢(t, R)nh=D/Uh=1),

The exponent of n, namely Z}Z;—ll differs from % by some quantity less than ﬁ. This difference can be
made arbitrary small by choosing & larger, at the expense of computational complexity. Then, the
bound A = O(n(l/é)_e) can be achieved with a running time polynomial in (¢, 1/¢,logn). Finally,
Coppersmith has proven the following result:

It is possible to find in polynomial time {-th roots of yo mod n if we know an approximation of
them of order n1/9=¢,



The question is : Can this method be extended for solving Problem (III)? One has to find small roots
(u,v) of P(u,v) =0 mod n where P(u,v) = (204 u)’ —yo — v and (u,v) satisfies |u| < A, |v| < B.
One must work with the lattice £ generated by bivariate polynomials of the family

Plu, v)

, U
n

P = {( Y ut,0< i< ,0<j<h},

for some integer h. For each small root (ug,vp), and any polynomial @ of the family, the value
Q(uo, vo) is an integer. The same holds for any polynomial of £, and specially for a short vector V'
of the lattice £. If this short vector is sufficiently short, one has |V (ug, vo)| < 1 and thus (ug, vo) is
a root of polynomial V over Z2.

However, there are now two major drawbacks:

(a) it is no longer true that such a root is easy to find, since a single equation is not enough
to solve for ug and vg. We have to find another small vector in the lattice, from which we produce
another short polynomial W in the lattice £. If we are fortunate in that V' and W are algebraically
independent, we can solve the problem using resultants techniques.

(b) The family Q contains (h elements linearly independent, so that lattice £ is of rank ¢h. But
the family Q is now expressed in the basis

B={(u/A) (v/B)®, with0<s<h,0<r</lh}.

Since B has cardinality ¢h?, the matrix that expresses Q in B is no longer square. Working with
the determinant of a lattice given by a non-square matrix is often a "major piece of work" as Nick
Howgrave-Graham says. It seems to be the case here, and it is not clear (at least for the author of
this report) how to obtain an expression for the determinant of lattice £. We can perhaps use the
same methods as in [1].

The Coppersmith approach is not easy to adapt to the bivariate case.

The approximate common divisor. The general design of the "approximate common divisor"
algorithm, due to Nick Howgrave-Graham [1], is the following: Given two inputs ag and by, and
bounds X, Y and M, for which one is assured that d divides (ap+ o) and (bg+yo) for some d > M
and zg, yo satisfying |zg| < X, |yo| <Y, the algorithm outputs the common divisor d or all of the
possible ones if more than one exists.

In [1], the following two algorithms are described:

Algorithm 1. Its inputs are two integers ag, by, ag < by and a real number oy € [0,1]. Let us
define M = by°, and X = bgo, with B9 < 2. The algorithm should output all integers d > M such
that there exists an xg with |2¢| < X and d divides both ag + ¢ and by or report that no such d
exists.

Algorithm 2. Itsinputs are two integers ag, by, subject to ag ~ by and a real number ag € [0,2/3].
Let us define M = b3°, and X = b, with

The algorithm should output all integers d > M such that there exist integers x¢, yo with ||, |yo| <
X and d divides both ag + zg and by + yg or report that that is is unlikely that such a such d exists.



The question is: Can this algorithm be useful to recover p or ¢?7 Since n is known, it is sufficient
to obtain from the public data an interval of length O(n1/12) that contains some multiple of p or
¢, or an interval of length O(n1/3) that contains some multiple of pg. Remark that if we are given
a signature of By] with a small component r, (i.e., 0 < r < n1/3), then this algorithm allows to
recover the factorization of n = p*¢. The same situation occurs if one is given two signatures whose
r—components are at distance less than n'/3 and whose t-components are distinct. However, the

probability of such an event is negligible.

Conclusion. The ESIGN scheme was proposed fifteen years ago. Since this date, some attacks
were found, only for small exponents £. We have described here various and elaborate tools that
can be applied a priori to attack this scheme. However, none of these tools is actually useful: even
if these methods are clever, none of them is efficient for £ > 4.

So, we conclude that the ESIGN scheme seems to be secure, even if the exponent ¢ is chosen
relatively small ¢ = 8 for instance.
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