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Abstract. Following the contract between IPA and SV signed on 18.10.2001, this report presents

security evaluation on DSA:
— the scheme and primitive of DSA
— the random generator given in FIPS 186-2 Appendix 3

In order to define the notations, we first summarize the DSA as presented in ANSI X9.30
Part 1 [1] and FIPS 186 [3].

Public parameters: integers p,q, g
p is a prime of L bits (L is at least 512, at most 1024, and a multiple of 64)
q is a prime of 160 bits and a factor of p — 1
g isin [1,p — 1] and of order ¢ modulo p

Secret key: integer z in [1,q — 1]

Public key: y = ¢ mod p

Signature generation for M: generate k € [1,¢q — 1] and compute

r = (¢* mod p) mod ¢
SHA-1(M) + xr
s = .

mod ¢

the signature is (r, s)
Signature (1, s') verification for M: check that ' and s’ are in [1,¢ — 1] and that
SHA-1(Mm) ,/

!

r"=(¢g~ ¢ vy mod p) modgq

SHA-1 is not specified FIPS 186 [3]. It is standardized in FIPS 180-1 [2] and the Part 2
of ANSI X9.30. The Appendices of ANSI X9.30 [1] and FIPS 186 [3] however specify how
public parameters, secret keys and & values shall be generated. This will be discussed in the
following sections.

1 Background

DSA comes from a long history of digital signature schemes. First, ElGamal has been study-
ing applications of the discrete logarithm for cryptography in his PhD in 1984 [14-16]. The
ElGamal signature scheme launched a dynasty of signature schemes based on the discrete
logarithm problem. The original ElGamal problem suffers from several problems.

— efficiency: the signature is quite long (e.g. 2048 bits)
— security: some reasonable (but unfortunate) choices of public parameters lead to an attack
due to Bleichenbacher [5].

The security was however proven in an ideal model for random choices of the public param-
eters by Pointcheval and Stern [19,20]. Schnorr improved the algorithm by proposing a new
signature scheme in 1989 [29,30]. This was later adapted by NIST by submitting DSA in
1994.



2 Necessary Security Assumptions

Obviously, ability to compute discrete logarithms in the subgroup of Z; spanned by g
is a potential attack against DSA since we can recover x. A simple attack which uses Shanks
baby step giant step algorithm works within a complexity of /g which is about 2%.

Inverting SHA-1 is another potential attack. If we can do so, one can first pick u; and
ug, compute r = (g“'y"* mod p) mod ¢, take s = r/uy mod ¢, compute h = u;s mod ¢ and
invert SHA-1 on h in order to get M. (r, s) is then a valid signature for M. Brute force attack
for inverting SHA-1 has a complexity of 2!°°. This can be decreased down to 2% by
precomputation: instead of inverting on one single h, we precompute 25 many (h,r, s)
triplets, and we hash random messages until we find one of the precomputed h values.

Finding collisions on SHA-1 is another threat. If we know different AM; and M, such
that the corresponding message digests are the same, we can ask the legitimate signer for a
signature on M, and we get a signature for Ms. The legitimate signer can also repudiate his
signature for M; and claim that he signed Ms... The birthday paradox provides us with an
attack of complexity 2%°.

Predicting the £ issued by a pseudorandom generator is another attack. If one can
guess k for an (r, s) signature, then it is fairly easy to recover z. In DSA the pseudorandom
generator uses a seed of size b bits with 160 < b < 512. So guessing the seed by brute force
attack has a complexity of 2°.

Therefore, we take as necessary assumptions that

— one cannot compute discrete logarithms within less than 2%° computations,
— one cannot invert SHA-1 within less than 2'°° computations,

— one cannot forge a collision without doing more than 2% computations,

— one cannot predict the output from the pseudorandom generator.

We can still wonder if these conditions are sufficient for the security and if they are satisfied.

3 SHA-1

SHA-1 is the last algorithm of series of hash functions: MD4, MD5, SHA, SHA-1. They are
all based on the Merkle-Damgard paradigm [11, 18]: there is a compression function, and the
message digest is computed by processing sequentially all blocks through the compression
function. The Damgard result claims that if the compression function is collision resistant,
then the overall construction is collision resistant as well. The compression function is made
following the Davies-Meyer [12, 17| construction: each block is used as a key for an encryption
function and there is a feed forward of the plaintext to the ciphertext in order to make it
one-way.

MD4 [22-24] and MD5 [25] were designed by Rivest in 1990 and 1992 respectively. In
1991, Den Boer and Bosselaers [6] have found an attack against the last two round of MD4
(out of three). In 1995, Vaudenay [31] has found an attack against the first two rounds and
a collision on all but a few bits. The year after, Dobbertin [13] came up with a complete
collision on MDA4.

MD5 has an additional round, but also a strange modification of the internal structure.
This enabled Den Boer and Bosselaers [7] to forge a collision on the compression function of



MD5. Although this leads to no collision on MD5 itself, it invalidates the use of the Damgard
theorem.

The internal structure of SHA is closer to MD4 than to MD5, but it hashes onto 160 bits
instead of 128. It also has a kind of key schedule in order to transform the processed block
from one round to the other. The key schedule is however linear and parallel: the 512 bits
of each block are processed as 32 parallel sequences of 16 bits. This enabled Chabaud and
Joux [10] to publish an attack against SHA in 1998. The attack would enable the forgery of a
collision on SHA, but requires a complexity of 26' computations (which was not implemented
so far).

SHA-1 is an update of SHA which was proposed before the attack of Chabaud and Joux
was released without any rationale. It is believed that the NSA has found the very same
attack and asked to update the standard accordingly.

Since then no attack was found against SHA-1 and it is believed to be a secure
collision resistant one-way hash function.

4 Generation of Public Parameters

Although it suggested an optional algorithm for generating p, ¢, and g, the first versions of
FIPS 186 [3] did not clearly specify how alternatives could be adopted.

As was shown by Vaudenay [32], authentication of these parameters must be manda-
tory. Actually, a better necessary condition for the security of DSA is that SHA-1 modg is
collision-resistant. But, one can choose ¢ so that it is not, even if SHA-1 is collision-resistant.
This way, one can forge parameters for which DSA is insecure.

Similarly, no guaranty is given on g yet.

FIPS 186 [3] now explicitly says that p, ¢ and ¢ must be given to the verifier in
an authenticated manner. Appendices propose a deterministic pseudorandom generator
for making the p and ¢ parameters, the proposed algorithm for g generation is optional. The
seed is used in order to certify that they have been properly generated. In particular, they
are not suspected to hide a trapdoor.

Note that the lack of certification for g can still induce a potential threat since the signer
or verifier are not requested to check if the order of g is ¢ and if this is “the right ¢”. We can
imagine a few possible attacks.

1. The verifier is given g = 0. This way we can easily forge signatures which will be accepted
as valid by him. (Just take r = 0.)

2. The signer is given g = 0. This way released signatures lead to k and we can try to attack
the pseudorandom generator.

3. The verifier is given g = y® mod p with a known «. This way an attacker can forge a
signature with public key y for any message digest h: he takes a random k, compute
r = (¢* mod p) mod ¢, and s = (h + ra~')/k mod q.

We thus recommend to generate g from the seed as well.

Finally, we notice that the restriction on authenticated communication of the parameters
implies that p, ¢, and g must be securely stored in memory, namely tamper proof against
viruses, worms, ...



5 Bleichenbacher’s Attack

FIPS 186 [3] specifies a way to generate the one-time key k in a pseudorandom way. Namely,
it constructs a pseudorandom generator who generates a 160-bit number rand and takes
k = rand mod ¢. The output rand (which is based on SHA-1 or DES) is assumed to be
uniformly distributed in [0, 2'%° — 1].

Quite recently (in February 2001), Bleichenbacher announced an impressive attack against
DSA based on the fact that rand mod ¢ is not uniformly distributed in [1,¢ — 1]. More pre-
cisely any k in [2!°0 — ¢ + 1,¢ — 1] has a probability of 271 and any k in [0, 2'° — ¢| has
a probability of 2.271%°, The main idea of this attack is to guess estimates # of  and make
a statistical analysis of (SHA-1(M) + rZ)s™' mod q. When the estimate is correct, a bias is
observe. The estimate is more and more precise until it yields the secret key z. Bleichen-
bacher estimates that the attack would be practical for a non negligible fraction of ¢s with
a time complexity 2%3, a space complexity 2*°, and a collection of 222 signatures. We believe
that the attack can still be made more efficient.

The attack was impressive enough for NIST to release a special publication in order
to recommend a new pseudorandom generator [4]: instead of taking £ = rand mod ¢,
they recommend to generate two numbers rand and rand’ and to take (rand|[rand") mod gq.
Let n = 2°%°. Here any k in [(n mod ¢) +1,¢ — 1] has a probability of [2|n"! and any & in

0,7 mod ¢] has a probability of ([ 2] +1)n~". Both probabilities are between ¢~ —n~" and

gt +nt.
Bleichenbacher’s attack uses a bias of k£ defined by
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When k£ = rand mod ¢ with rand uniformly distributed in [0,n — 1], we have
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Obviously, when n is close to ¢, say ¢ = n — ¢, we have bias(k) ~ —%e”nT_l which is small.
For primes ¢ arbitrarily chosen of size 160 and n = 299 the sinus can be quite large and the
norm of the bias can be within the order of magnitude of % When n is within the order of

magnitude of ¢* (as in the fix recommended by NIST), the norm is less than ¢~'.



Our comment is that both Bleichenbacher’s attack and NIST’s recommendation are still
underground research: none have been published in the academic world yet, and the impact
and limitations of the cryptanalytic branch opened by Bleichenbacher are not yet quite clear.
Although the NIST fix looks quite reasonable, wisdom recommends to let the pseudoran-
dom generator open in the standard for later release in case of new research results.

6 Pseudorandom Generator for Secret Keys and k Values

FIPS 186 [3] suggests that random numbers must be generated according to a deterministic
pseudorandom generator. These values include the secret keys x and the one-time keys k.
FIPS 186 [3] and the fix to Bleichenbacher attack [4] can be described as follows.

1. We construct a primitive G who takes two inputs: a 160-bit parameter ¢ (the type) which is
a constant specific to the number we want to generate (x or k), and a b-bit (160 < b < 512)
key which is also specific to the number we want to generate. The primitive outputs a
160-bit number. Two constructions for G are proposed.

The first one is based on the compression function of SHA-1. This means that we do not
consider message padding, iteration, and initialization as in the Merkle-Damgard [11, 18|
construction. The registers of the compression function are initialized with the type value.
The message block consists of the key padded with zero bits up to 512 bits. The output
of the compression function (obtained after the feed forward due to the Davies-Meyer
scheme [12,17]) is the output of G.

The second one is based on DES. It consists of the following steps.

t = t1to||ta][ta|[ts
¢ = cif|eal|es||eal|es
T, =1; D¢
Yial[y1,2 = DES¢, jjeiss (@il (Tig1 © Tiga))
2i = Yi,1 D Yir2,2 D Yits,1
G(t, c) = z1]|22|2s]|24]| 25

with 7 = 1,2, 3,4, 5 where subscripts are considered modulo 5.

2. We construct from G a pseudorandom generator which generates 160-bit numbers which
is specific to a given type t and we denote rand,. The generator can use a user defined
input which is called seed, and uses a seed which is surprisingly called key,. It works as
follows.

(a) rand, < G(t, key, + seed mod 2°)
(b) key, + 1 + key, + rand; mod 2°

3. We construct a specific pseudorandom generator. For FIPS 186 [3], it simply consists in
taking rand; mod ¢. For [4], it consists in calling the pseudorandom twice in order to get
rand; and rand; and taking (rand;||rand}) mod g.

Note that the system is vulnerable against many kinds of replay attacks. If the
signer is a tamper proof device, assuming that we can clone it, then we can ask the two clones
to sign different messages. We will then get two s signatures with the same unknown £ and



x and for different messages. It is then easy to recover x. If the signer’s seed is in a hard disk
(encrypted or not), it may be feasible to restore the hard disk in one of its previous state
(either by the attack or by a restore from backup due to computer crash). We can also get
two signatures which use the same £ values this way. Implementation therefore needs
extra care.

Considering the pseudorandom generator as a random function with an internal state of
b bits, we know that the expected loop length is within the order of magnitude of V2. For
b = 160, we start having security problems after about 2% signatures.

For the specific pseudorandom generators proposed in FIPS 186 [3], we observed that
the DES-based one has strange properties. For instance, if all ¢; are equal, as well as
all ¢;, then the generated G(t,c) has the same property. More interestingly, the cyclic shift
by 32 bits R has the property that G(R(t), R(c)) = R(G(t,c)). In particular, since the ¢
value of the generator for k is obtained by R on the ¢ value for the generator for x, if both
seeds are related by R, the two generators generate x and k such that k& = R(z)... Although
this does not seem to be dangerous for DSA it is obviously the kind of remarkable property
that a pseudorandom generator should not have. Therefore we think that the DES-based
pseudorandom generator is not mature enough in the academic sense.

For completeness, we mention that the precomputation of (k, ) pairs with a few compu-
tations is an old problem. It was first considered by Schnorr in his submission of the Schnorr
signature scheme [29, 30]. The two consecutive precomputation algorithm versions proposed
in 1989 and 1991 have successively been broken by de Rooij [26-28].

7 Security of DSA in an Ideal Model

Two different security results in ideal models are available from Pointcheval and Vaude-
nay [21], and Brickell et al. [8]. In both, we consider SHA-1 as a random oracle H. In
the first one, we also consider r = H;(¢g* mod p) with a random oracle H; instead of
r = ¢¥ mod p mod ¢. Hypothesis are

— the random oracles H and H, are uniformly distributed
— the output of H and Hy are subsets of [0,q — 1].

The first step of the security result is as follows.

An adaptive attack which can output an existential signature forgery can be trans-
formed into an adaptive attack which extract the secret key x.

The result is also quantitative.! Note that the result is quite idealistic. In particular, the
hypothesis on H; (the modulo ¢ reduction) as a random oracle is not very convincing.
Furthermore, this step “only” proves that signature forgery is equivalent to secret key aware-
ness. But there in no clue about information leakage from the signature. Namely, it does not
prove that finding the secret key with an adaptive attack is hard. This is actually not the
case without any additional assumption on the randomness of k£ as demonstrated by Ble-
ichenbacher.
Nevertheless, a second step can be performed with the additional assumption

! See [21] or [8] for more information.



— all k values are independently and uniformly generated in Z; (or indistinguishable from
such a generator).

With this we prove that we can simulate the signature oracle, which proves the following
result.

An adaptive attack which can output an exristential signature forgery can be trans-
formed into an algorithm which computes the secret key x.

Here, access to the signing oracle is removed. Therefore, the signature is provably secure
provided that H and H; can be approximated by random oracles, that the generator
for k is secure, and that the discrete logarithm problem is hard.

In the second result, we assume that the modulo ¢ mapping from the subgroup of Z;
spanned by ¢ to [0, ¢— 1] has no ¢-collision (namely ¢ pairwise different inputs which produce
the same output) for £ = O(logq), and that H (M) is replaced by H(r, M) as in the Schnorr
signature [29,30]. (So this is not the standard scheme.) Hypothesis and security results are
similar. Although the hypothesis on the modulo ¢ reduction is reasonable, the signature
scheme has been modified so the result is not applicable for DSA.

Brown [9] also proved the security in another model. (This was done for ECDSA, but it
holds for DSA as well.) In his model, group operations are performed by a random
oracle, but H; and SHA-1 are fixed. He also assumes that H; is invertible (which is the
case, since it is the modulo ¢ reduction). Brown basically proves that signature forgery
is equivalent to inverting SHA-1 for passive attacks (i.e. no-message attacks) and
to finding collisions for active attacks. (Provided that pseudorandom generators are
good!) However, the model is not very realistic for DSA since we know better algorithms
than generic ones in Zj.

8 Conclusion

We have shown that DSA is vulnerable against attacks of complexity 2%°. The pseudorandom
generator for keys and one-time keys has just been changed for security reasons. Since this
has not been addressed by the academic community at the time this report was written, it
would be wise to prepare potential modifications of this part in the future.

We pointed out an unexpected property of the DES-based G generator. Therefore we
think that this part of the standard must be reconsidered. In the meantime we recommend
to use the SHA-based generator.

We also outline that implementations may easily lead to security issues by kinds of replay
attacks due to the deterministic pseudorandom generator. This would deserve informative
security warnings in the standard.

DSA is provably secure in the random oracle model, provided

that the generator for k is secure,

that the SHA-1 hash function can be approximated by a random oracle,

that the discrete logarithm is hard in the corresponding group,

and that we approximate the mapping from the exponential of k£ to r by a random oracle.

==



The last assumption does not make reasonable sense in case of DSA though. The first as-
sumption was wrong as shown by Bleichenbacher. The second and last assumptions are
however quite artificial.

DSA is provably secure in the generic group model, provided

1. that the generator for £ is secure,
2. and that the SHA-1 hash function is collision-resistant.

(We know that the discrete logarithm is hard in this model, so there is no reason to assume
it further.) The generic group assumption is however not valid in the case of DSA.

DSA faces to the problem of parameters validation: parameters need to be authentic
and trapdoor-free. For this a pseudorandom generation algorithm needs to be specified. This
was half done for DSA since g is still missing. Hence we recommend to update the public
parameter selection algorithms: DSA should generate g in a verifiable way as well.
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