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Executive summary.
This report is a security evaluation of the standard signature algorithm DSA. The
main conclusion is that the implementers need to be very careful and trusted.
The length of the main parameter (1024 bits) needs to be evaluated correctly:
it means that very soon the value of about 1500 bits will be a useful addition
and the relevant 160 bit parameters must be ajusted to 256 bits for taking into
account a level of security valid for the next 20 years.
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1 General description

1.1 DSA parameters

The signature algorithm DSA makes use of the following parameters:

p: a prime number;

q: a prime number, divisor of p− 1;

g: an element of order q mod p;

x: a randomly chosen integer with 0 < x < q, associated to a given signer;

k: a randomly chosen integer with 0 < k < q, only valid for one signature.

The integers p, q and g are the system parameters and can be public and
used by many signers. The private signing parameter of a given signer is x and
the corresponding public verification parameter of the same signer is the value
y = gx mod p.

1.2 Signature generation

The signature σ of the message m is the pair of numbers r and s computed
according to the following formulas, where SHA is the Standard Hash Algorithm
(described in the FIPS 180 from NIST):

r = (gk mod p) mod q,

s = (k−1 · (SHA(m) + x · r)) mod q.

1.3 Signature verification

The inputs consist of:

— y: the public verification parameter of the signer;

— p, q, g: the system parameters;

— SHA(m): the hashing of m;

— r, s: the signature σ.
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The verifier first checks to see that 0 < r < q and 0 < s < q; if either
condition is violated the signature shall be rejected. He then computes

((gSHA(m)·s−1 mod q) · yr·s−1 mod q) mod p) mod q

and compares to r. If the equality occurs the verifier accepts the message and
the signature: otherwise the verifier rejects the message and the signature.

1.4 Parameters size

The standard specifies 2159 < q < 2160 and 2L−1 < p < 2L for 512 ≤ L ≤ 1024
and L a multiple of 64 (however, FIPS 186-2 rev. 1 forces L = 1024: see section
2). Additionally, this report will show that k must be a 160-bit random number
(see section 4.1.2).

1.5 Parameters generation

The standard also specifies algorithms for parameters generation, in particular
for random numbers generation. The use of these techniques is not mandatory,
provided another FIPS-approved method is used instead.

As will be showed in following sections, this aspect of the standard must
not be neglected, as several attacks are based on the assumption that other
generation techniques are used.

For the sake of conciseness, we will not repeat this generation procedure
here. We refer the reader to the standard (FIPS 186-2, appendices 2, 3 and 4 +
change notice 1) for full details.

2 Evolution of the standard

FIPS 186, the first version of the Digital Signature Standard (DSS) was issued
in May 1994. In May 1997, the National Institute of Standards and Technology
announced a revision to allow the use of RSA or elliptic curves DSA as alternatives
to the DSA . A first revision (FIPS 186-1) issued in December 1998, added RSA

as specified in ANSI X9.31. In January 2000, a second revision (FIPS 186-2),
addressed the ECDSA question (as specified in ANSI X9.62).

The current version of the standard is FIPS 186-2, but, in August 2001, a
change notice was issued by the NIST. This change notice, which took effect in
October 2001, forces the modulus size (formerly between 512 and 1024 bits) to
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1024 bits and corrects a flaw of the random generator (this point is described in
more details below).

3 Security arguments

The security of the DSA relies on two distinct but related discrete logarithm
problems. One is the logarithm problem in Z∗p where the powerful index-calculus
methods apply; the other is the logarithm problem in the cyclic subgroup of order
q, where the best current methods run in “square-root” time (we refer the reader
to [19] for more details on discrete logarithm calculation methods).

3.1 Security proof

A slight variation of DSA , in which SHA(m) is replaced by SHA(m, r), has been
proved by Brickell et al. [3] to be secure in the random oracle model.

More precisely, it has been proved that, if DSA can be broken by an existential
forgery using an adaptatively chosen-message attack, then either:

• the discrete logarithm problem can be solved, or

• SHA can be distinguished from an ideal hash function, or

• multi-collisions for the function “x 7→ (gx mod p) mod q” can be found.

The first case corresponds to a well-known problem, which is widely believed
by the scientific community to be hard to solve; the second would imply a serious
failure of SHA , requiring its withdrawal as a hash function; the third would high-
light a serious unwanted weakness resulting from the “projection” from gx mod p
to (gx mod p) mod q.

We refer the reader to [3] for a more formal definition of the security proof.

3.2 Importance of k’s secrecy

It is very important for the random number k to be kept secret by the signer. As
a matter of fact, if k was known, it would suffice for the attacker to compute

(s · k − SHA(m)) · r−1 mod q
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to immediately obtain the signer’s secret key. Similarly, a different k (nonce)
must be selected for each message signed; otherwise, the private key can be
determined with high probability as follows. Suppose

s1 = k−1(SHA(m1) + x · r) mod q

s2 = k−1(SHA(m2) + x · r) mod q.

Then1

k = (s1 − s2)
−1(SHA(m1)− SHA(m2)) mod q.

Once k is known, the above attack can be applied.
Several attacks (that will be described in next sections) against DSA are based

on (partial) knowledge of the nonce k.

4 Overview of currently known attacks

4.1 General-purpose attacks

4.1.1 Random generation of k

It is a well-known fact that linear congruential generators (LCGs) are not cryp-
tographically secure: by observing a part of the output, it is possible to predict
all generator’s future output [8, 9, 11, 16]. Due to their ease of implementation
and good performances, one may however feel tempted to use LCGs to produce
not-so-sensitive data, such as the nonces k required for each individual signa-
ture. This may be encouraged by the fact that, as the output of the generator is
never revealed to the adversary, the aforementioned attacks do not apply. This,
however, is simply not true.

In [2], Bellare, Goldwasser and Micciancio show, using using lattice reduction-
based techniques ([17, 1]), how the secret key can be quickly recovered after
seeing a few DSA signatures.

Countermeasures The countermeasure against this attack is very simple: do
not use linear congruential generators or truncated linear congruential generators
to generate RSA parameters, even for nonces. In particular, we point out that
this attack does not apply against a strict application of the standard, since this
requires the use of FIPS-approved random generators.

1This supposes that (s1 − s2) 6= 0 mod q, which is satisfied with high probability.
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4.1.2 Partial knowledge of k

In [21, 22] (which improve a similar result in [10]), Nguyen and Shparlinski
present a polynomial-time algorithm that recovers the DSA secret key when a
few consecutive bits of the nonces k for a number of signatures at most linear in
log(q).

The attack, based on lattice reduction techniques, is too complex to be
described in this report (we refer the interested reader to [21]). Its efficiency is
however impressive: according to the authors, practical experiments based on the
observation of 70 DSA signatures (with a 512-bit prime p) allowed to recover the
secret key in 100% of the trials if the 5 least significant bits of each nonce are
known, and in 90% of the trials if 4 bits are known. Practical experiments were
unsuccessful with fewer bits revealed, but the authors insist on the fact that this
does not mean the attack does not apply in this case (they conjecture that 2 bits
should be feasible in practice, and even 1 single bit could perhaps be reached).
The attack also applies, with same efficiency, if the most significant bits of the
nonces are known. A similar attack, but requiring twice as many bits, applies to
an arbitrary portion of consecutive bits of the nonces.

It is worth noting that if, for efficiency reasons, one chooses nonces k with
fewer bits than q, then this attack obviously applies.

Countermeasures This result is yet another witness of the fact that the
secrecy of k is fundamental for the security of the scheme. k must be a 160-bit
value generated by a cryptographically secure random generator. Note that this
does in no way mean that the first bit of this 160-bit value has to be forced to
1 (on the contrary, this would be an open door to the above attack).

4.1.3 Subliminal channel

Simmons [28, 27] showed the existence of a subliminal channel in the DSA ,
which allows messages to be secretly embedded into signatures in such a way
that only the intended receiver of the message will be able to notice its presence
and recover it. Other users will simply see a signature that they can verify.

A non negligible consequence of this subliminal channel is that it would allow
an unscrupulous implementer to leak a part of the user’s private key with each
produced signature. The lesson of this is that one should never use a DSA

implementation if he does not trust the implementer.
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4.1.4 Hidden collisions

Vaudenay [29] showed that it is possible for a dishonest authority to forge DSA

public parameters in such a way that two – previously chosen – messages will
always produce the same signatures (what they call a collision), independently
of the secret key used.

A possible exploit of this weakness is the following. The attacker chooses two
messages, one anodine and one of great interest for him (a bank transfer order,
for example), and generates the public parameters that will produce a collision
for these messages. He then convinces the user to sign the first message, and
hands the result as a signature of the second.

Description of the attack As Vaudenay points out, the actual hash function
involved in DSA is not the SHA(·) function, but rather SHA(·) mod q. The collision
problem for DSA is therefore to find a pair of messages (m,m′) such that

SHA(m) ≡ SHA(m′) (mod q).

Since q is 160-bit long, this problem is still infeasible. However, we have one
more degree of freedom, in the form of the parameter q.

Concretely, from a random pair (m,m′), we check whether or not q =
|SHA(m) − SHA(m′)| is a 160-bit prime. From the Prime Number Theorem,
we deduce that, with an average of 222 trials, we obtain a collision which defines
a valid prime q. It is then not difficult to derive valid p and g from this q.

Countermeasures As we have seen, the attack requires the generation of
a special-form parameter q. The attack can therefore not be carried out if the
parameter generation procedure recommended by the standard is followed. Re-
member that this procedure makes it possible – and even mandatory – to prove
that the procedure has been correctly followed, by providing the user with the ini-
tial SEED value (certificate of good forgery). It is therefore fundamental that the
user checks this certificate of good forgery before accepting public parameters.

Vaudenay proposed a variant of his attack working even if this generation
procedure is followed, but its complexity 274, although better than the birth-
day attack, makes it unrealistic. He also proposed a change in the generation
algorithm that would counter his attack (we mean, the variant aimed at FIPS
generation procedure), but this change has not been applied in subsequent ver-
sions of the standard.
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4.1.5 FIPS 186 RNG flaw

As was said before, FIPS 186 specifies random generation methods for parameters
x (appendix 3.1) and k (appendix 3.2).

On November 15, 2000, at a meeting of the IEEE P1363 working group,
Daniel Bleichenbacher presented an attack exploiting a weakness in DSA ’s ran-
dom number generator. According to the meeting minutes [7]: “The results
presented were preliminary and Bleichenbacher requested that the group not
publicly disclose the contents of the presentation until after February 15th. [...]
A reference to this attack will be included [in P1363’s resulting security note]
when there is a paper available to reference.”

As a consequence of this attack, the NIST released a revision proposal of the
standard (FIPS 186-2: revision 1), fixing this weakness.

Bleichenbacher’s attack has not been published since then, but, in view of
the (imprecise) information available from press releases, and, above all, of the
changes proposed for the subsequent version of the standard, we conclude that
the exploited weakness was the following.

In the two generation algorithms (more precisely, at step 3.c of algorithm
3.1, and at step 3.a of algorithm 3.2), a temporary value is processed through a
one-way function G(t, c), and the result is reduced modulo q. Several methods
are proposed to construct this one-way function, but the point of interest is that
its output is 160-bit long. The output range of this function is thus of size 2160.

On the other hand, since q is a 160-bit number, the output range of the
reduction modq is smaller than 2160. As a consequence, collisions will occur
during this reduction.

More precisely, values in the interval [0, 2160−1−q] will be twice more probable
(probability 2−159) than values in the interval [2160− q, q−1] (probability 2−160),
whereas one would expect uniform distribution (probability 1/q).

NIST’s proposed random number generator is thus biased. It is this bias that
Bleichenbacher exploits.

Very little information is available regarding the attack itself, but, according to
FIPS’s change notice, the attack has a workfactor of 264 and requires 222 known
signatures. This workfactor is still out of reach for today’s computing power.
Consequently, although we strongly recommend to implement the recommended
change in the RNG and to limit current systems to no more than 2 millions
signatures with a specific key pair, we do not believe that this attack – at least,
in its current version – represents a significant threat for current systems.

The fix proposed in the standard’s revision solves this problem by concate-

Report about the security evaluation of signature DSA 9



4 OVERVIEW OF CURRENTLY KNOWN ATTACKS February 2002

nating two consecutive outputs of the G function into a 320-bit number before
reducing it modulo q. Although this does not completely remove the bias, it
nevertheless reduces it to something negligible.

4.2 Implementation attacks

4.2.1 OpenPGP weakness

In 1998, the format of OpenPGP messages was published as a RFC [4]. The
goal of this document was to publish all necessary information so that various
interoperable applications could be created on that basis.

In 2001, Klima and Rosa [12] published an attack exploiting insufficient in-
tegrity protection in OpenPGP format. This attack, that could possibly affect all
OpenPGP-compatible applications2 is capable of recovering DSA secret parame-
ters by tampering with the public parameters and obtaining one single signature
based on the corrupted values. A similar attack can be applied against RSA .

Description of the attack The attack basically goes as follows. The initial
weakness which is exploited is the fact that, in the “Secret Key Packet” data
structure of OpenPGP, only the secret parameter x is stored in an encrypted
way (and protected by a checksum); public parameters p, q, g and y are simply
stored in clear, and can therefore be tampered with if the attacker has access to
the secret key file. As the fact that “sensitive” data are encrypted may give the
user a feeling of confidence, gaining access to this file may not be unrealistic for
an attacker, for example during a transfer on a floppy disk.

Now, the attacker replaces p by p′ such that

1. p′ is 159-bit long and p′ < q;

2. p′ has the form p′ = t ∗ 2s + 1, with s big and t a small prime number.

The authors of the attack suggested the value (in hexadecimal notation) p′ =
0x5380000000000000000000000000000000000001, which corresponds to s =
151 and t = 167.

The attacker also replaces g by g′ such that

2Although correct integrity checking on the parameters before processing them defeats
the attack, so applications must be reviewed on a case-by-case basis to determine whether
they are immune to this attack or not.
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1. 1 < g′ < p′ − 1

2. g′ is a generator of the multiplicative group Z∗p′ .

The next time the user will generate a signature, he will unknowingly produce,
instead of the usual (r, s) pair, a pair (r′, s′) such that

1. r′ = ((g′)k mod p′) mod q, for some secret value k;

2. s′ = ((k−1 mod q)(h(m) + xr′)) mod q.

Since p′ < q, the first relationship is equivalent to

r′ = (g′)k mod p′.

The key issue is that the discrete log problem has been transferred into a group
in which it is easy to solve, due to the special form of p′. It is therefore easy for
the attacker to recover k from this signature. As we have seen before, it is then
obvious to deduce the secret key x from k. The detailed algorithm for computing
the discrete log in Z∗p′ can be found in [12].

Countermeasures Until an adjustment of the OpenPGP format occurs, Klima
and Rosa suggest implementing the following integrity checks before a DSA sig-
nature is performed:

1. p, q, g, x, y > 0

2. p is odd, q is odd

3. 2159 < q < 2160

4. 1 < g < p

5. 1 < y < p

6. x < q

7. q|(p− 1)

8. gq mod p = 1

9. gx mod p = y
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4.2.2 Cryptolib potential weakness

Bleichenbacher noticed (according to a private communication in [22]) that in
AT&T’s Cryptolib version 1.2, the implementation of DSA suffers from the fol-
lowing flaw: the random nonce k is always odd, thus leaking its least significant
bit (probably because the same implementation is used for El Gamal). In current
state of the art, no immediate attack can actually exploit this weakness, but, in
light of the attack explained in section 4.1.2, this could be a serious weakness.

4.2.3 Timing attack

The modular exponentiation r = (gkmodp)modq can most probably be subject
to a timing attack [13]. In particular, timing attacks developed against RSA

[5, 25, 26] should be immediately applicable to the DSA .
Power analysis (SPA, DPA [15, 14]) and electromagnetic analysis (SEMA,

DEMA [23, 24]) should be applicable as well. However, we point out that this
is the case for most cryptographic systems, and therefore does not constitute a
real weakness of DSA . Physical attacks target specific implementations rather
than cryptosystems in general. Therefore, protecting against such attacks is
an implementation issue, that must be handled depending on the destination
platform, and its potentiality to be subject to such an attack.

4.3 Other remarks

4.3.1 Timestamping

The Fact sheet on Digital signature standard3 states that: “In legal systems, it
is often necessary to affix a time stamp to a document in order to indicate the
date and time at which the document was executed or became effective. An
electronic time stamp could be affixed to documents in electronic form and then
signed using the DSA. Applying the DSA to the document would protect and
verify the integrity of the document and its time stamp.”

We however insist on the fact that the DSA does not provide a secure time
stamping capability, since the signer could easily forge any time stamp for his
own documents.

3See http://www.nist.gov/public affairs/releases/digsigst.htm
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4.3.2 Batch verification

In the preprint version of [20], Naccache et al. proposed several methods to
optimize DSA’s performances. Among them are some batch verification methods,
which allow to quickly verify a set of DSA signatures.

One of the proposed methods was proved by Lim and Lee [18] to be com-
pletely insecure. However, it seems this method was finally removed from the
final proceedings version of [20].

5 Summary

Concerning the security of 1024 bits DSA, I really think it is marginal for 10
years. I mean: it will be dangerous for the most secure applications. See the
table http://www.cryptosavvy.com/table.htm where you see that they propose
a length of 1464 bits to be secure till 2012. I don’t agree completely with this
table and I’ll do again their computations analysing their hypothesis. They also
use software with classical computers not the faster and more adequate circuits
FPGA for cryptanalysis (see, for instance, the fuss with the recent proposal by
Dan Berstein about a possible fast implementation of factorization and logarithm
computations). Some progress on cryptanalytic algorithms are also possible.

Finally, several points raised in this report need to be clearly stated to the
management of any team intending to use DSA. These include:

• do not use a DSA implementation if you do not trust the implementer;

• actually implement integrity tests,

• check certificate of good forgery,

• . . .
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