ECDHS (Elliptic Curve Diffie-Hellman
Scheme) in SEC 1

()

1.

2.

ECDHS

ECDHS
2.1 ECDLP
2.1.1 Generic
2.1.1.1 Pollard-p , Pollard-A
2.1.1.2 Pohlig-Hellman
2.1.2 Non-generic
2121 MOV |FR
2.1.2.2 SSSA
2.1.2.3 Weil descent Gaudry-Hess-Smart attack
2.2 ECDLP ECDHS
221 ECDHP ECDDH
222
2.2.3 Man-in-the-middle
224 key derivation function
2.25

1. ECDHS

10

11
13
14
15
16

17

18

1 ECDHS

DHS(Diffie Hellman Scheme) , Whitfield Diffie Martin E. Hellman

1976 :
, , Neal Koblitz Victor Miller
DHS ECDHS (Elliptic Curve Diffie Hellman Scheme)
, , (EC)DHS (EC)DLP (Discrete
Logarithm Problem) , (EC)DHS , , ()
ECDHS ,SEC 1 , o
Diffie-Hellman
SEC1 , web , ECDHS
, (EC)DHS
: , (EC)DLP
DLP , ;
ECDLP , Pollard-p , Pollard-A
, Pohlig-Hellman generic
DLP , Miller
: , ECDLP : MOV
FR , SSSA ,
Weil Descent
ECDLP ECDHS DLP DHP
, Maurer, Wolf ECDLP
ECDHP , Boneh Lipton DDH

, ECDLP, ECDHS
DDH

, , Man-in-the-middle ,

key derivation function

2. ECDHS

2.1 ECDLP

2.1.1 Generic

2.1.1.1 Pollard-p , Pollard-A

SEC 1 ,
, ECDLP ,
, Pollard-p , Pollard-A Pollard-p
N2 , Pollard-\ 2/n
Gallant-Lambert-Vanstone Wiener-Zuccherato Pollard-p \/E
, , Pollard-p
Janl4
» B F ,
, Pollard-p Vod
Koblitz TP XY= X+ X+ L Fas #E(Fs)=2n, n 162
Pollard-p , E(F») ECDLP
ECDLP 281 , 277
, ECDLP Pollard-p
ECDLP MIPS
, Odlyzko , 2004 0.1 1
108 MIPS , , 2014 1010 101 MIPS
, ANSI X9.62

n () [7nl 4 MIPS
160 280 8.5 x 101
186 293 7.0 x 1015
234 2117 1.2 x 102
354 2177 1.3 x 104
426 2213 9.2 x 105
ECDLP , van Oorschot Wiener 1994

van Oorschot Wiener , ECDLP

325,000

n 2160

Pollard-p , Pollard-A

p , Pollard-A

n 2120 E , ECDLP
1000

35

, Pollard-

2.1.1.2 Pohlig-Hellman

SEC1 ,
n
Pohlig-Hellman , n ,
, , Pollard-p , Pollard-A ,
, generic
SEC 1 , 3.1.1.1 Actions 2, 3.1.1.2.1 Actions 5, 3.1.2.1 Actions 3,
3.1.2.2.1 Actions 6 , 1

2.1.2 Non-generic

2121 MOV ,FR

SEC 1 ,
Fq : B ,n g8-1 , Menezes
Okamoto Vanstone Frey Ruck
ECDLP Fq DLP

g¢=1 (modn) 1 B<20

, B=20,log2qg 160 gf= 1 (mod) , ,
Bx logz2 g 3200 DLP ,gF=1
(modn) 1 B<20

SEC1 , 3.1.1.1 Actions 2, 3.1.1.2.1 Actions 8, 3.1.2.1 Actions 3,
3.1.2.2.1 Actions 9 , 1

2.1.2.2 SSSA

Fq ,H#HEFg=q , Semaev, Smart,
Fq
n
h nht g

2121 MOV , FR ,

, 2.1.2.1 , ,

L] L] » SEC l
SEC1 , 3.1.1.1 Actions 2, 3.1.1.2.1 Actions 8, 3.1.2.1 Actions 3,
3.1.2.2.1 Actions 9 , 1

2.1.2.3 Weil descent (Gaudry-Hess-Smart attack)

SEC1

= . m

Galbraith Smart

409, 571

Weil descent
disguise an elliptic curve”
Smart

, Menezes Qu

Gaudry-Hess-Smart

, 1998

]

, Weil descent

, Gaudry Hess Smart

m 113, 131, 163, 193, 233, 239, 283,

ECC98 Gerhard Frey
Galbraith Smart

,m 160 m 600

, m 160 m 600

SEC1 , 3.1.2.1 Actions 1, 3.1.2.2.1 Actions 1

10

* How to

, Gaudry Hess

, Weil descent

2.2 ECDLP ECDHS

2.2.1 ECDHP ECDDH

SEC1 ,

Diffie-Hellman

YUV , 174

Diffie-Hellman (ECDHP) ECDHP
E Fq , G E(Fq) n ECDHP ,
EG G Qi=aiG, Q=G , habG ,
ECDHP ECDLP , , ECDLP :
ECDHP Boneh Lipton ,

: , ECDLP ,

, ECDLP ECDHP
Diffie-Hellman , ,
, ECDHP

, D.Boneh" The decision Diffie-Hellman problem” , D.Boneh, R.Vankatesan
* Hardness of computing the most significant bits of secret keys in Diffie-Hellman and

related schemes”

ECDLP ECDHP Elliptic Curve Diffie-Hellman Problem , ECDHP
ECDDH Elliptic Curve Decision Diffie-Hellman ,
: ECDHS
SEC1 :
, ECDLP ECDHP ECDHS
, , DLP, DHP , den Boer

11

Maurer : p 1 prl
, , Boneh
Lipton , ;
, Maurer Wolf ,

, Crypto’94 | Maurer

P , o1 p+l G ;
G :
G :
, ECDHP ECDDH ECDHS
ECDDH Elliptic
Curve Decision Diffie-Hellman (EC)DHP
(EC)DDH : :

, Boneh ANTS

12

222

SEC1

Diffie-Hellman

ECDHP

Diffie-Hellman

n

Diffie-Hellman

, Diffie-Hellman

Diffie-Hellman

Diffie-Hellman

Diffie-Hellman

13

, IEEE P1363

2.2.3 Man-in-the-middle

SEC1 ,

, Diffie-Hellman ,

key authentication , known key security

, Qu,Qv

, ECDHS
SEC1 ,

i)) SEC 1

14

, Qu

, Qu, Qv

Qv

, implicit

2.2.4 key derivation function

SEC1 ,

Diffie-Hellman

,SEC 1 , SHA-1
, SHA-2
20

, ANSI-X9.63-KDF

SEC1

15

ANSI,NIST SHA-2
SHA-1 261

Sharedinfo

2.25

SEC1 ,
, Diffie-Hellman (key deployment
procedure) , Vv
: , FIPS-PUB 186-2“ DSS”

, SHA-1 , DES

ECDHS , ;
‘ DSS” (Linear congruential generators) ,

, Crypto’97 Bellare

FIPS-PUB , : , :

16

ECDHS ,
, ECDHS

17

1. ECDHS

ECDHS ,SEC1 , SEC1

e Elliptic Curve Primitives (3.1,3.2,3.3)
e Key Derivation Primitives (3.5,3.6)
e Elliptic Curve Diffie-Hellman Scheme (6.1)

, 6.1 , ECDHS

Elliptic Curve Primitives

e Elliptic Curve Domain Parameters (3.1)
Elliptic Curve Domain Parameters over Fp(3.1.1)
Generation Primitives (3.1.1.1) Validation (3.1.1.2)
Elliptic Curve Domain Parameters over Fp(3.1.2)
Generation Primitives (3.1.2.1) Validation (3.1.2.2)
e Elliptic Curve Key Pairs (3.2)
Elliptic Curve Key Pair Generation Primitive (3.2.1)
Validation of Elliptic Curve Public Keys (3.2.2)
Partial Validation of Elliptic Curve Public Keys (3.2.3)
e Elliptic Curve Diffie-Hellman primitives (3.3)
Elliptic Curve Diffie-Hellman Primitive (3.3.1)
Elliptic Curve Cofactor Diffie-Hellman Primitive (3.3.1)

Key Derivation Primitives , SHA-1 ANSI-X9.63-KDF

Elliptic Curve Diffie-Hellman Scheme
e Scheme Setup (6.1.1)
e Key Deployment (6.1.2)

e Key Agreement Operation (6.1.3)

ECDHS ,SEC 1 , , SEC1

18

Elliptic Curve Primitives

3.1 Elliptic Curve Domain Parameters
3.1.1 Elliptic Curve Domain Parameters over Fp

Elliptic curve domain parameters over F, are a sextuple:
T=(p a b G n, h

consisting of an integer p specifying the finite field Fp, two elements a, b Fp
specifying an elliptic curve E(Fp)defined by the equation:

E:)y=x+ax+b (modp),
a base point G = (xg, y6) on E(Fp), a prime nwhich is the order of G, and an integer A
which is the cofactor A= #E(Fp)/n.
Elliptic curve domain parameters over Fp precisely specify an elliptic curve and base
point. This is necessary to precisely define public-key cryptographic schemes based on
ECC.
Section 3.1.1.1 describes how to generate elliptic curve domain parameters over Fp,

and Section 3.1.1.2 describes how to validate elliptic curve domain parameters over Fp.
3.1.1.1 Elliptic Curve Domain Parameters over F, Generation Primitive

Input: The approximate security level in bits required from the elliptic curve domain
parameters — this must be an integer ¢ {56, 64, 80, 96, 112, 128, 192, 256}.
Output: Elliptic curve domain parameters over Fp:
T=(p a b G, n,h
such that taking logarithms on the associated elliptic curve is believed to require
approximately 2¢ operations.
Actions: Generate elliptic curve domain parameters over F, as follows:
1. Select a prime psuch that[logzp] = 2¢ if tz 256 and such that [log2p] = 521
if £= 256 to determine the finite field Fp.
2. Select elements a, b Fpto determine the elliptic curve E£(F,) defined by the
equation:
E:)y=x+ax+b (modp),
a base point G = (xg, ys) on E(Fp),a prime nwhich is the order of G, and an
integer A2which is the cofactor /= #E(Fp)/n, subject to the following constraints:
o 4.8+27.2%¢ 0 (mod p).

19

o #HEFp)Z p.

o« pB £ 1 (mod n) forany 1 B< 20.

e h A4

3. Output 7=(p, a b, G, n, h).

This primitive allows any of the known curve selection methods to be used — for
example the methods based on complex multiplication and the methods based on
general point counting algorithms. However to foster interoperability it is strongly
recommended that implementers use one of the elliptic curve domain parameters over
F pspecified in SEC 2 . See Appendix B for further discussion.

3.1.1.2 Validation of Elliptic Curve Domain Parameters over Fp

There are four acceptable methods for an entity U to receive an assurance that elliptic
curve domain parameters over Fp are valid. Only one of the methods must be supplied,
although in many cases greater security may be obtained by carrying out more than
one of the methods.

The four acceptable methods are:

1. Uperforms validation of the elliptic curve domain parameters over F itself using
the validation primitive described in Section 3.1.1.2.1.

2. Ugenerates the elliptic curve domain parameters over F itself using a trusted
system using the primitive specified in Section 3.1.1.1.

3. Ureceives assurance in an authentic manner that a party trusted with respect to
Us use of the elliptic curve domain parameters over Fp has performed validation
of the parameters using the validation primitive described in Section 3.1.1.2.1.

4. U'receives assurance in an authentic manner that a party trusted with respect to
Us use of the elliptic curve domain parameters over F, generated the parameters
using a trusted system using the primitive specified in Section 3.1.1.1.

Usually when U accepts another party’s assurance that elliptic curve domain

parameters are valid, the other party is a CA.
3.1.1.2.1 Elliptic Curve Domain Parameters over F, Validation Primitive
Input: Elliptic curve domain parameters over Fp .

T=(p & b, G, n, h),

along with an integer t {56, 64, 80, 96, 112, 128, 192, 256} which is the approximate

security level in bits required from the elliptic curve domain parameters.

20

Output: An indication of whether the elliptic curve domain parameters are valid or not
— either ‘valid’ or ‘invalid..
Actions: Validate the elliptic curve domain parameters over F, as follows:
1. Check that pis an odd prime such that [logzp 1 = 2¢ if £z 256 or such that

[logz2p] =521 if = 256.

Check that &, b, xc and ys are integers in the interval [0, p-1].

Check that 4.a88 +27./2 Z 0 (mod p).

Check that y2=x + ax+ b (mod p).

Check that r7is prime.

Check that # 4, and that A=L(V p+1)2/n] .

Check that nG = O.

Check that p& Z 1 (mod n) forany 1 B< 20, and that nf# p.

9. If any of the checks fail, output ‘invalid’, otherwise output ‘valid'.

© N o 00k~ Wb

Step 8 above excludes the known weak classes of curves which are susceptible to either
the Menezes-Okamoto-Vanstone attack, or the Frey-Ruck attack, or the
Semaev-Smart-Satoh-Araki attack. See Appendix B for further discussion.

If the elliptic curve domain parameters have been generated verifiably at random using
SHA-1 as de-scribed in ANSI X9.62, it may also be checked that a and 6 have been

correctly derived from the random seed.

3.1.2 Elliptic Curve Domain Parameters over >~

Elliptic curve domain parameters over F,» are a septuple:
7=(m, f(X), a b, G, n, h

consisting of an integer m specifying the finite field R, an irreducible binary
polynomial f£(x) of degree m specifying the representation of F»-, two elements &, b
F» specifying the elliptic curve E{(F~) defined by the equation:

Y+xy=x8+ax+b in Fmr,
a base point G = (xg, Vs) on E(F~),a prime nnwhich is the order of G, and an integer A
which is the cofactor /= #ZE(For)/n.
Elliptic curve domain parameters over .~ precisely specify an elliptic curve and base
point. This is necessary to precisely define public-key cryptographic schemes based on
ECC.
Section 3.1.2.1 describes how to generate elliptic curve domain parameters over R,
and Section 3.1.2.2 describes how to validate elliptic curve domain parameters over
For .

21

3.1.2.1 Elliptic Curve Domain Parameters over F,~ Generation Primitive

Input: The approximate security level in bits required from the elliptic curve domain
parameters — this must be an integer ¢ {56, 64, 80, 96, 112, 128, 192, 256} .
Output: Elliptic curve domain parameters over Fo:
7=(m, f(X), a b, G, n, h
such that taking logarithms on the associated elliptic curve is believed to require
approximately 2 operations.
Actions: Generate elliptic curve domain parameters over F~as follows:
1. Let ¢’ denote the smallest integer greater than zin the set {64, 80, 96, 112, 128,
192,256,512} . Select m {113, 131, 163, 193, 233, 239, 283, 409, 571 } such
that 27 <m < 2t’ to determine the finite field F-.
2. Select a binary irreducible polynomial 7(x) of degree m from Table 1 in Section
2.1.2 to determine the representation of .
3. Select elements a, b F>» to determine the elliptic curve E(F,~) defined by the
equation:
E: 2+ xy=x8+ax+b in Fr,
a base point G = (xs, y6) on E(F-),a prime nnwhich is the order of G, and an
integer A2 which is the cofactor /7= #E(>~)/n, subject to the following constraints:
e b#% 0in F».

o HE(Fm)Z 2m
o 2mB¥ 1 (mod n) for any 1 B < 20.
e h 4.

4. Output 7=(m, f(X), a b, G, n, h).
This primitive also allows any of the known curve selection methods to be used.
However to foster interoperability it is strongly recommended that implementers use
one of the recommended elliptic curve domain parameters over F» specified in SEC 2 .

See Appendix B for further discussion.

3.1.2.2 Validation of Elliptic Curve Domain Parameters over F,~

There are four acceptable methods for an entity U to receive an assurance that elliptic
curve domain parameters over [~ are valid. Only one of the methods must be

supplied, although in many cases greater security may be obtained by carrying out

more than one of the methods.

22

The four acceptable methods are:

1.

U performs validation of the elliptic curve domain parameters over - itself
using the validation primitive described in Section 3.1.2.2.1.

U generates the elliptic curve domain parameters over F,» itself using a trusted
system using the primitive specified in Section 3.1.2.1.

U receives assurance in an authentic manner that a party trusted with respect to
U'’s use of the elliptic curve domain parameters over F» has performed
validation of the parameters using the validation primitive described in Section
3.1.1.2.1.

U receives assurance in an authentic manner that a party trusted with respect to
U'’s use of the elliptic curve domain parameters over F»» generated the
parameters using a trusted system using the primitive specified in Section
3.1.2.1.

3.1.2.2.1 Elliptic Curve Domain Parameters over F,» Validation Primitive

Input: Elliptic curve domain parameters over F-:

T=(m, f(X), a b, G, n, h)

along with an integer ¢t {56, 64, 80, 96, 112, 128, 192, 256} which is the approximate

security level in bits required from the elliptic curve domain parameters.

Output: An indication of whether the elliptic curve domain parameters are valid or not

— either ‘valid’ or ‘invalid'.

Actions: Validate the elliptic curve domain parameters over F,» as follows:

1.

© © N o 0 b~ w

Let 7’ denote the smallest integer greater than £in the set { 64, 80, 96, 112, 128,
192, 256, 512 } .Check that mis an integer in the set { 113, 131, 163, 193, 233,
239, 283, 409, 571 } such that 2t<m < 2t’

Check that f(x) is a binary irreducible polynomial of degree m which is listed in
Table 1 in Section 2.1.2.

Check that &g, b, xcand ys are binary polynomials of degree m- 1 or less.
Checkthat b # 0in For.

Check that y&2+ xc.ye=Xxa®+ axc+ b in For.

Check that r7is prime.

Check that # 4, and that A= L(2™ +1)2/n.

Check that nG = O.

Check that 2m8 # 1 (mod n) forany 1 B<20,andthat nh # 2m.

10. If any of the checks fail, output ‘invalid’, otherwise output ‘valid'.

23

Steps 1 and 9 above excludes the known weak classes of curves which are susceptible
to either the Menezes-Okamoto-Vanstone attack, or the Frey-Ruck attack, or the
Semaev-Smart-Satoh-Araki attack, or to attacks based on the Weil descent. See
Appendix B for further discussion.

If the elliptic curve domain parameters have been generated verifiably at random using
SHA-1 as described in ANSI X9.62, it may also be checked that aand 6 have been

correctly derived from the random seed.

3.2 Elliptic Curve Key Pairs
3.2.1 Elliptic Curve Key Pair Generation Primitive

Input: Valid elliptic curve domain parameters 7= (p, a b, G, n, h) or (m, f(X), a, b, G, n,
h).
Output: An elliptic curve key pair (d, Q) associated with 7.
Actions: Generate an elliptic curve key pair as follows:
1. Randomly or pseudorandomly select an integer d'in the interval [1, n- 1].
2. Calculate Q= dG.
3. Output (d, Q) .

3.2.2 Validation of Elliptic Curve Public Keys

There are four acceptable methods for an entity U to receive an assurance that an
elliptic curve public key is valid. Only one of the methods must be supplied, although in
many cases greater security may be obtained by carrying out more than one of the
methods.

The four acceptable methods are:

1. Uperforms validation of the elliptic curve public key itself using the public key
validation primitive described in Section 3.2.2.1.

2. Ugenerates the elliptic curve public key itself using a trusted system.

3. Ureceives assurance in an authentic manner that a party trusted with respect to
U'’s use of the elliptic curve public key has performed validation of the public key
using the public key validation primitive described in Section 3.2.2.1.

4. U receives assurance in an authentic manner that a party trusted with respect to
U'’s use of the elliptic curve public key generated the public key using a trusted

system.

24

Usually when U accepts another party’s assurance that an elliptic curve public key is
valid, the other party is a CA who validated the public key during the certification
process. Occasionally U may also receive assurance from another party other than a
CA. For example, in the Station-to-Station protocol described in ANSI X9.63 , U
receives an ephemeral public key from V. Vs trusted with respect to U'’s use of the
public key because Uis attempting to establish a key with Vand U only combines the
public key with its own ephemeral key pair. It is therefore acceptable in this
circumstance for U to accept assurance from Vthat the public key is valid because the

public key is received in a signed message.

3.2.2.1 Elliptic Curve Public Key Validation Primitive

Input: Valid elliptic curve domain parameters 7= (p, a b, G, n, h) or (m, f(X), a, b, G, n,
h), and an elliptic curve public key Q= (xo, yo) associated with 7.
Output: An indication of whether the elliptic curve public key is valid or not —either
‘valid’ or ‘invalid'.
Actions: Validate the elliptic curve public key as follows:
1. Checkthat 9 # O.
2. If Trepresents elliptic curve domain parameters over Fp, check that xpand yo
are integers in the range [1, p - 1], and that:
Y2 =xg3+axo+ b (modp).
3. If Trepresents elliptic curve domain parameters over F», check that xoand yo
are binary polynomials of degree at most /7 - 1, and that:
Y@+ XoYo=X* + axg+ bin Fr,
4. Check that nQ= O.
5. If any of the checks fail, output ‘invalid’, otherwise output ‘valid'.

3.2.3 Partial Validation of Elliptic Curve Public Keys

There are four acceptable methods for an entity U to receive an assurance that an
elliptic curve public key is partially valid. Only one of the methods must be supplied,
although in many cases greater security may be obtained by carrying out more than
one of the methods.
The four acceptable methods are:

1. Uperforms partial validation of the elliptic curve public key itself using the

public key partial validation primitive described in Section 3.2.3.1.

25

2. Ugenerates the elliptic curve public key itself using a trusted system.

3. Ureceives assurance in an authentic manner that a party trusted with respect to
U'’s use of the elliptic curve public key has performed partial validation of the
public key using the public key partial validation primitive described in Section
3.2.3.1.

4. U'receives assurance in an authentic manner that a party trusted with respect to
U'’s use of the elliptic curve public key generated the public key using a trusted

system.
3.2.3.1 Elliptic Curve Public Key Partial Validation Primitive

Input: Valid elliptic curve domain parameters 7= (p, a b, G, n, h) or (m, f(X), a, b, G, n,
h), and an elliptic curve public key Q= (xo, yo) associated with 7.
Output: An indication of whether the elliptic curve public key is partially valid or not
— either ‘valid’ or ‘invalid..
Actions: Partially validate the elliptic curve public key as follows:
1. Checkthat @ # O.
2. If Trepresents elliptic curve domain parameters over Fp, check that xpand yo
are integers in the range [1, p - 1], and that:
Y2 =xg2+axo+ b (modp).
3. If Trepresents elliptic curve domain parameters over F», check that xoand yo
are binary polynomials of degree at most /7 - 1, and that:
YR+ X0 Vo= XP + ax?+bin .
4. If any of the checks fail, output ‘invalid’, otherwise output ‘valid'.

3.3 Elliptic Curve Diffie-Hellman Primitives
3.3.1 Elliptic Curve Diffie-Hellman Primitive

Input: The elliptic curve Diffie-Hellman primitive takes as input:
1. Valid elliptic curve domain parameters 7= (p, a, b, G, n, h) or (m, f(X), a, b, G, n,
h).
2. An elliptic curve private key du associated with 7 owned by U.
3. An elliptic curve public key Qv associated with 7 purportedly owned by V.
The public key Qvshould be valid.
Output: A shared secret field element Z, or ‘invalid'.

26

Actions: Calculate a shared secret value as follows:
1. Compute the elliptic curve point P = (xp, yr) =duQv .
2. Checkthat P # O. If P= O, output ‘invalid’ and stop.

3. Output z= xPas the shared secret field element.

3.3.2 Elliptic Curve Cofactor Diffie-Hellman Primitive

Input: The elliptic curve cofactor Diffie-Hellman primitive takes as input:
1. Valid elliptic curve domain parameters 7= (p, a, b, G, n, h) or (m, f(X), a, b, G, n,
h).
2. An elliptic curve private key du associated with 7 owned by U.
3. An elliptic curve public key Qv associated with 7 purportedly owned by V.
4. The public key @vshould at a minimum be partially valid.
Output: A shared secret field element Z, or ‘invalid'.
Actions: Calculate a shared secret value as follows:
1. Compute the elliptic curve point P = (xp, yr) =duQv
2. Checkthat P # O. If P= O, output ‘invalid’ and stop.

3. Output z= xPas the shared secret field element.

27

Key Derivation Primitives

3.5 Hash Functions

Setup: Select one of the approved hash functions. Let Has/ denote the hash function
chosen, hashlen denote the length in octets of hash values computed using Hash, and
hashmax/en denote the maximum length in octets of messages that can be hashed
using Hash.
Input: The input to the hash function is an octet string M.
Output: The hash value Hwhich is an octet string of length Aashlen octets, or ‘invalid'.
Actions: Calculate the hash value H as follows:
1. Check that M is less than hashmaxl/en octets long — i.e. check that:
I Ml < hashmaxlen.
If I mi hashmaxl/en, output ‘invalid’ and stop.

2. Convert Mto a bit string M using the conversion routine specified in Section

2.3.2.
3. Calculate the hash value ﬁcorresponding to /\7using the selected hash function:
H = Hash(M).
4. Convert Hto an octet string A using the conversion routine specified in Section
2.3.1.
5. Output H.

3.6 Key Derivation Functions

3.6.1 ANSI X9.63 Key Derivation Function

Setup: Select one of the approved hash functions listed in Section 3.5. Let Hash denote
the hash function chosen, hashlen denote the length in octets of hash values computed
using Hash, and hashmax/en denote the maximum length in octets of messages that
can be hashed using Hash.
Input: The input to the key derivation function is:
1. An octet string Zwhich is the shared secret value.
2. Aninteger keydatalen which is the length in octets of the keying data to be
generated.
3. (Optional) An octet string Shared/info which consists of some data shared by the
entities intended to share the shared secret value 2

28

Output: The keying data K'which is an octet string of length keydatalen octets, or
‘invalid'.
Actions: Calculate the keying data K as follows:
1. Check that I A +I Sharedinfol +4 < hashmaxlen. Ifl A1 +I SharedInfdl +4
hashmaxl/en, output ‘invalid’ and stop.
2. Check that keydatalen < hashlenx (232 - 1). If keydatalen hashlenx (232 - 1),
output ‘invalid’ and stop.
Initiate a 4 octet, big-endian octet string Counteras 0000000116 .
4. For i=1to [keydatalen|hashlen , do the following:
4.1. Compute:
Ki= Hash(Al Countenl [Sharedlnfo])
using the selected hash function from the list of approved hash functions in
Section 3.5.
4.2. Increment Counter.
4.3. Increment 1.
5. Set K'to be the leftmost keydatalen octets of:
Kill Kol ... K [keydataten! hashlen -

6. Output K

29

Elliptic Curve Diffie-Hellman Scheme

6.1 Elliptic Curve Diffie-Hellman Scheme

6.1.1 Scheme Setup

1.

Uand V'should establish which of the key derivation functions supported in
Section 3.6 to use, and select any options involved in the operation of the key
derivation function. Let KDF denote the key derivation function chosen.

Uand V'should establish whether to use the ‘standard’ elliptic curve
Diffie-Hellman primitive specified in Section 3.3.1, or the elliptic curve cofactor
Diffie-Hellman primitive specified in Section 3.3.2.

Uand Vshould establish at the desired security level elliptic curve domain
parameters 7=(p, a, b, G, n, h) or (m, f(X), a b, G, n, h). The elliptic curve
domain parameters 7 should be generated using the primitive specified in
Section 3.1.1.1 or the primitive specified in Section 3.1.2.1. Both Uand V'should
receive an assurance that the elliptic curve domain parameters 7 are valid using

one of the methods specified in Section 3.1.1.2 or Section 3.1.2.2.

6.1.2 Key Deployment

U should establish an elliptic curve key pair (du, Qu) associated with the elliptic
curve domain parameters 7 established during the setup procedure. The key pair
should be generated using the primitive specified in Section 3.2.1.

V'should establish an elliptic curve key pair (dv;, Qv) associated with the elliptic
curve domain parameters 7 established during the setup procedure. The key pair
should be generated using the primitive specified in Section 3.2.1.

Uand V'should exchange their public keys Quand Qv .

If the ‘'standard’ elliptic curve Diffie-Hellman primitive is being used, U should
receive an assurance that Qv is valid using one of the methods specified in
Section 3.2.2, and if the elliptic curve cofactor Diffie-Hellman primitive is being
used, Ushould receive an assurance that Qv is at least partially valid using one
of the methods specified in Section 3.2.2 or Section 3.2.3.5.

If the ‘'standard’ elliptic curve Diffie-Hellman primitive is being used, Vshould
receive an assurance that Qu is valid using one of the methods specified in

Section 3.2.2, and if the elliptic curve cofactor Diffie-Hellman primitive is being

30

used, Vshould receive an assurance that Qu is at least partially valid using one

of the methods specified in Section 3.2.2 or Section 3.2.3.

6.1.3 Key Agreement Operation

Uand V'should perform the key agreement operation described in this section to
establish keying data using the elliptic curve Diffie-Hellman scheme. For clarity U's
use of the operation is described. V’s use of the operation is analogous, but with the
roles of Uand Vreversed. U should establish keying data with VVusing the keys and
parameters established during the setup procedure and the key deployment procedure
as follows:

Input: The input to the key agreement operation is:

1. Aninteger keydatalenn which is the number of octets of keying data required.

2. (Optional) An octet string SharedlInfo which consists of some data shared by U
and V.

Output: An octet string K which is the keying data of length keydatalen octets, or
‘invalid'.
Actions: Establish keying data as follows:

1. Use one of the Diffie-Hellman primitives specified in Section 3.3 to derive a
shared secret field element z F,from U'’s secret key du established during the
key deployment procedure and V'’s public key Qv obtained during the key
deployment procedure. If the Diffie-Hellman primitive outputs ‘invalid’, output
‘invalid’ and stop. Decide whether to use the ‘standard’ elliptic curve
Diffie-Hellman primitive or the elliptic curve cofactor Diffie-Hellman primitive
according to the convention established during the setup procedure.

2. Convert z F4to an octet string Zusing the conversion routine specified in
Section 2.3.5.

3. Use the key derivation function KDF established during the setup procedure to
generate keying data K of length keydatalen octets from Zand [SharedInfo]. If
the key derivation function outputs ‘invalid’, output ‘invalid’ and stop.

4. Output K.

31

	Key Derivation Primitives \(3.5, 3.6 節\)

