Report on Present State of CIPHERUNICORN-A Cipher Evaluation (full evaluation)

January 28, 2002 Masayuki Kanda, Member Symmetric-Key Cryptography Subcommittee

CIPHERUNICORN-A

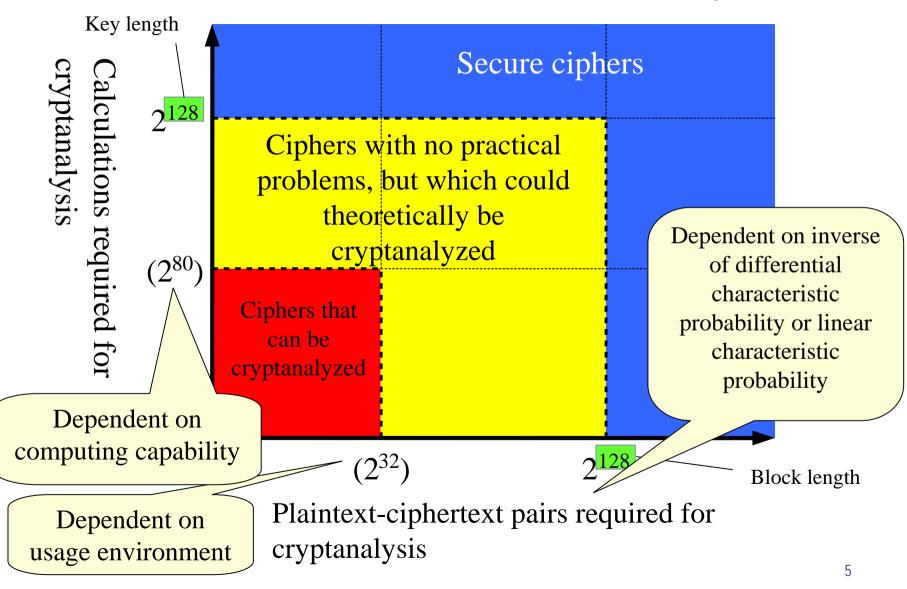
- CIPHERUNICORN-A was presented by NEC Corporation in 2000.
- Symmetric-key block cipher
- Block length: 128 bits; key length: 128/192/256 bits
- Follow-up evaluation cipher from CRYPTREC2000
- Features
 - ◆ Feistel structure (16 rounds) + whitening
 - Round function with dual structure consisting of a *main stream* and a *temporary key generation mechanism*.
 - Round function designed by cipher-robustness evaluation support system (NEC proprietary development).

CRYPTREC2000 evaluation results

• So far, no security-related problems have been discovered.

- In general terms, given that the specification defines the number of rounds as 16, it would seem impossible to cryptanalyze the cipher using current theoretical cryptanalysis techniques.
- Because this cipher has a complex round function, accurate evaluation is difficult, so follow-up evaluation is considered necessary.
 - It is difficult to accurately evaluate and analyze security against theoretical cryptanalysis techniques such as differential cryptanalysis and linear cryptanalysis.
 - It is necessary to conduct a more-detailed evaluation, replacing the (simplified) mF function with the actual round function.
- In terms of processing speed, CIPHERUNICORN-A is among the slower.
 - Among the 128-bit block ciphers which are in CRYPTREC2000 continual evaluation, this cipher belongs to the slowest group. (Speed is on par with Triple DES.)

Evaluation procedure


• Full evaluation:

We requested four specialists (teams) in cipher research in Japan and abroad to conduct an evaluation based on the following perspectives:

- Appropriateness of conducting evaluation using mF function
- Security against differential cryptanalysis, from the perspective of differential characteristic probability
- Security against linear cryptanalysis, from the perspective of linear characteristic probability
- Other noted security-related issues

Overview of security evaluation

Block length and key length are both 128 bits

- Supporting evidence is provided indicating the cipher is secure against differential cryptanalysis and linear cryptanalysis
 - ♦ Security against differential cryptanalysis
 - Upper bound of characteristic probability with round function: $\leq 2^{-21}$
 - Upper bound of characteristic probability with 13 rounds: $\leq 2^{-126}$
 - ♦ Security against linear cryptanalysis
 - The cipher seems more secure against linear cryptanalysis than against differential cryptanalysis
 - Assuming the security in the self-evaluation is correct, the following upper bound values are calculated.
 - Upper bound of characteristic probability with round function $\leq 2^{-13.9}$
 - Upper bound of characteristic probability with 13 rounds: $\leq 2^{-83.4}$
 - The obtained results contradict the security in the self-evaluation.
 - The possibility of a higher upper bound of linear characteristic probability with the round function exists.
 - There is almost no consideration for the effects of the A3 function, constant multiplication unit, and temporary key generating mechanism.

- I found no grounds for suspecting any problems related to security against differential cryptanalysis and linear cryptanalysis
 - ♦ Security against differential cryptanalysis
 - Upper bound of characteristic probability of the round function without A3 function and multiplication: $\leq 2^{-14.4}$
 - There cannot be any cases where the characteristic probability with the round function greatly exceeds 2⁻¹². In addition, the A3 function and constant multiplication can be expected to contribute to improved security.

♦ Security against linear cryptanalysis

- The characteristic probability upper bound in the security self-evaluation is incorrect.
- Upper bound of characteristic probability with mF function: $\leq 2^{-21.68}$
- The A3 function and constant multiplication can be expected to contribute to improved security.

• Existence of weak keys

♦ All 32-bit subkeys are identical to the first 32 bits in the secret key_____

{ 0x61db99c8, 0x9f3d618, 0x9f3d618, 0x9f3d618, ... }

This becomes the exact subkey value

- The evidence is not so strong as to provide clear proof of security against differential cryptanalysis
 - Discovered differential characteristics more efficient than those in the security self-evaluation.
 - Upper bound of characteristic probability with mF function: $\leq 2^{-7}$
 - Upper bound of characteristic probability with 15 rounds: $\leq 2^{-70}$ (Upper bound of characteristic probability with 13 rounds: $\leq 2^{-56}$)
 - The above results are from a byte-level search. Therefore, the characteristic probability (upper bound) may fluctuate if the effects of constant multiplication and the A3 function are studied in detail.

The cipher seems secure against linear cryptanalysis

- The characteristic probability upper bound in the security self-evaluation is incorrect.
- Upper bound of characteristic probability with mF function: $\leq 2^{-21.37}$
- Upper bound of characteristic probability with 15 rounds: $\leq 2^{-149.58}$ (Upper bound of characteristic probability with 13 rounds: $\leq 2^{-128.22}$)

- Supporting evidence is provided indicating the cipher is secure against differential cryptanalysis
 - Evaluation using round function (main stream section only) excluding the effects of the temporary key generation mechanism
 - Upper bound of characteristic probability: $\leq 2^{-7}$
 - Upper bound of characteristic probability with 6-round iterative expression: $\leq 2^{-56}$
 - Upper bound of characteristic probability with 13 rounds: $\leq 2^{-119}$
 - Effects of temporary key generation mechanism
 - The temporary key generation mechanism has characteristics opposite those of the A3 function, so it can be expected to contribute to improved security.

Summary of evaluations

Attack method		Evaluator 1	Evaluator 2	Evaluator 3	Evaluator 4
Differential cryptanalysis	Model	Full	mF function	mF function	Main stream section, 6-round iterative
	Characteristic probability upper bound with round function	≤ 2 ⁻²¹	≤ 2 ^{-14.4}	≤ 2 ⁻⁷	≤ 2 ⁻⁷
	Characteristic probability upper bound with 13 rounds	$\leq 2^{-126}$	$\leq 2^{-115}$	$\leq 2^{-56}$	≤ 2 ⁻¹¹⁹
Linear cryptanalysis	Model	mF function	mF function	mF function	
	Characteristic probability upper bound with round function	$\leq 2^{-13.9}$ (see note)	≤ 2 ^{-21.6}	≤ 2 ^{-21.3}	
	Characteristic probability upper bound with 13 rounds	$\leq 2^{-83.5}$ (see note)	≤ 2 ⁻¹³⁰	≤ 2 ⁻¹²⁸	

Note: These results assume the designer's evaluation is correct. ¹⁰

Conclusion

- The cipher's security level is not high enough to completely eliminate all security concerns
 - In terms of security against differential cryptanalysis and linear cryptanalysis, the possibility of problems occurring, at least in practical use, is extremely low.
 - Supporting evidence has been obtained suggesting that attacks based on these cryptanalysis methods would probably not succeed.
 - *The evidence is not so strong as to prove clearly that the cipher is theoretically secure* against these cryptanalysis methods.
 - The existence of weak keys that seem non-trivial was discovered
 - There is at least one secret key in which only the first 32 bits are used for all subkeys
 - The level of impact of this on security is not known at the present time.