CRYPTREC April 2001 – March 2002

Report on FY2001 Evaluation of Public-Key Cryptographic Techniques

April 16, 2002

Tsutomu Matsumoto

Chair of

Public-Key Cryptography Sub-Committee

CRYPTREC Evaluation Committee

Tasks2

Specific Evaluation

- Signature Schemes Listed for Japanese Electronic Signature Law
 SSL/TLS Research

 How RSA schemes are used in the Protocol
 Survey of Vulnerability of the Protocol

 General Evaluation --- for Use in Electronic Government
 Follow-up
 - Deep Evaluation
 - Newly Submitted Schemes
 - 1. Screening in FY 2001
 - 2. Deep Evaluation in FY 2002 for Selected Targets

Evaluated Public-Key Schemes

Security Basis Function	Integer Factoring	(Elliptic Curve)LatticeDiscrete Logarithm
Signature Target of Specific Evaluation with respect to Electronic Signature Law	ESIGN RSA-PKCS#1 v1.5 RSA-PSS	DSA ECDSA(ANSI X9.62) ECDSA in SEC1 OK-ECDSA
Confidentiality	EPOC-2 HIME(R) RSA-OAEP	ECIES in SEC1 Targets in Follow-up Phase
Key Agreement or Distribution	Target of Screening	DH ECDH in SEC1 OK-ECDH PSEC-KEM

Requirement to a Public-Key Cryptographic Scheme for the Use in Electronic Government

- Complete Specification of the scheme including Parameter Selecting Method is available.
 - Consensus based on Sufficient Evidence is available that the scheme is Currently Secure enough and will be Kept Secure in 10 years.
 - Widely Used Schemes
 - must have Empirical Evidence on Security
 - preferably have Provable Security
 - Young Schemes
 - must have Provable Security under reasonable assumption

Method of Evaluation

Screening

Based on the submitted documents

- Examination of Completeness of Submission
- Implementability by third parties
- Security or Performance is superior to those in the FY2000 list

Specific OR Deep OR Follow-up Evaluation

- Whole Scheme
- ◆ Special
 - Decompose the targets into several sub-targets
 - Synthesize the evaluation results for the sub-targets
 - Security Basis: Factoring, Discrete Log, ...

Human Resources

CRYPTREC Evaluation Committee Public-Key Cryptography Sub-Committee Members •A Number of Anonymous External Experts An Expert means a team consisting of one or more World Class Cryptographers

Public-Key Cryptography Sub-Committee

- Seigo ARITA (NEC Corporation)
- Jun KOGURE (Fujitsu Laboratories Ltd.)
- Tsutomu MATSUMOTO (Chair, Yokohama National University)
- Natsume MATSUZAKI (Matsushita Electric Industrial Co., Ltd.)
- **Kazuo OHTA (The University of Electro-Communications)**
- Yasuyuki SAKAI (Mitsubishi Electric Corporation)
- Atsushi SHIMBO (Toshiba Corporation)
- Hiroki SHIZUYA (Tohoku University)
- Seiichi SUSAKI (Hitachi, Ltd.)
- Hajime WATANABE (National Institute of Advanced

Industrial Science and Technology)

Number of External Experts for Screening

Target	Overseas	Domestic	Total
OK-ECDSA	-	3	3
HIME (R)	-	3	3
NTRU	-	3	3
OK-ECDH	-	3	3
PSEC-KEM	1	2	3

Number of External Experts for Deep Evaluation of Computational Intractability

Target	Overseas	Domestic	Total
Integer Factoring			
- Experimental Study	-	1	1
Integer Factoring			
- Survey	-	1	1
Integer Factoring			
- Special Type Factors	3	1	4
Discrete Logarithm			
	2	1	3
Elliptic Curve Discrete			
Logarithm	2	-	2

Number of External Experts for Deep Evaluation of Schemes

Target	Overseas	Domestic	Total
DSA	3	2	5
ECDSA	3	1	4
ESIGN ESIGN(Electronic Signature Law), TSH-ESIGN	3	1	4
RSA RSA-PKCS#1 v1.5, RSA-PSS, RSA-OAEP	2	2	4
EPOC-2	2	2	4

Number of External Experts for Research of SSL/TLS

Target	Overseas	Domestic	Total
How RSA schemes are used	_	1	1
Vulnerability of the Protocol	-	2	2

Evaluated Public-Key Schemes

Security Basis Function	Integer Factoring	(Elliptic Curve)LatticDiscrete Logarithm
Signature	ESIGN RSA-PKCS#1 v1.5	DSA ECDSA(ANSI X9.62)
Specific Evaluation with respect to Electronic Signature Law	RSA-PSS	ECDSA in SEC1 OK-ECDSA
Confidentiality	EPOC-2 HIME(R) RSA-OAEP	ECIES in SEC1 Targets in Follow-up Phase
Key Agreement or Distribution	Target of Screening	DH ECDH in SEC1
		OK-ECDH PSEC-KEM

Result on Integer Factoring

In 2001, Factoring Problem of n = pq is "secure" if |p| = |q| and |n| is 1024 or more.
In 2001, Factoring Problem of n = ppq is "secure" if |p| = |q| and |n| is 1024 or more.
The condition |n| = 1024 gives different margins for n = pq and n =ppq.

Transition of security of Integer Factoring is estimated.

Result on Discrete Logarithm

In 2001, Discrete Logarithm Problem in subgroup of order q of a multiplicative group of finite field Fp (p: prime) is "secure" if p is 1024 bit or more and q is 160 bit or more.
Transition of security of Discrete Logarithm is estimated.

Result on Elliptic Curve Discrete Logarithm

 In 2001, except for particular classes of elliptic curves, Elliptic Curve Discrete Logarithm Problem is "secure" if the order of the base point has a prime factor of 160 bit or more.
 Transition of security of Elliptic Curve Discrete

Logarithm is estimated.

Result on Schemes (1)

No problems in the use of Electronic Government are currently observed for these schemes with appropriate parameters and auxiliary functions.

Security Basis	Integer Factoring	(Elliptic Curve)	Lattice
Function	Use of MD5 is	Discrete Logarithm	
Signature	not recommended.	DSA	
	RSA-PKCS#1 v1.5	ECDSA (ANSI X9.62)	
	RSA-PSS	ECDSA in SEC1	
Confidentiality	for Ele	RSA-PSS to the List ctronic Signature Law	
	RSA-OAEP	be examined.	
Key Agreement		DH	
or Distribution		ECDH in SEC1	

Result on Schemes (2)

ESIGN is currently not recommended for the use in Electronic Government.

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature		ctronic Signature Law)	
Confidentiality	verification procedure permitting signature	ification of signature e and contains parameters forgery. n = 2048 with SHA-1	
Key Agreement or Distribution	Change of the List for with respect to ESIG	r Electronic Signature La N should be examined.	V

Result on Schemes (3)

ECIES in SEC1 is currently not recommended for the use in Electronic

Government.

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature	Some security pr has emerged.	roblem	
Confidentiality		ECIES in SEC1	
Key Agreement or Distribution			

Result on Schemes (4)

EPOC-2 is not recommended for the use in Electronic Government.

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature	-	oof of EPOC-2's curity was found to	
Confidentiality	EPOC-2		
Key Agreement or Distribution			

Result on Schemes (5)

Decision on the use of HIME(R) in Electronic Government cannot be made without deep evaluation.

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature			
	• •	oof of HIME(R)'s curity is not confirmed.	
Confidentiality	HIME(R)		
Key Agreement or Distribution			

Result on Schemes (6)

Decision on the use of PSEC-KEM in Electronic Government needs further examination since the technique Key Encapsulation Mechanism is relatively young.

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature			
Confidentiality		oof of PSEC-KEM's pro a KEM seems correct.	vable
Key Agreement or Distribution		PSEC-KEM	

Result on Schemes (7)

NTRU, OK-ECDSA, and OK-ECDH are not recommended for the use in *Electronic Government*.

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature		g but No proof of able Security is given. OK-ECDSA	
Confidentiality	Young but the status on Provable Security is the same as ECDSA	Resistance agai Channel Attack sufficiently con	s is not
Key Agreement or Distribution	Young but the status on Provable Security is the same as ECDH	the contents of t evaluation report	he self

Result on Other Schemes

COCK System, CVCRT, and MKS are not recommended for the use in *Electronic Government.*

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature			
Confidentiality			
Key Agreement or Distribution	Screening of was terminate	these schemes ed earlier	

Survey of RSA in SSL/TLS

•*Key distribution and signature protocols of SSL/TLS using RSA schemes are basic and simple enough to avoid almost protocol failures.*

RSA schemes in SSL/TLS have no problems if appropriate parameters and auxiliary functions are adopted.

FY2001 Conclusion I Schemes in the Follow-up Phase

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature	RSA-PKCS#1 v1.5 RSA-PSS	DSA ECDSA(ANSI X9.62) ECDSA in SEC1	
Confidentiality	RSA-OAEP		
Key Agreement or Distribution		DH ECDH in SEC1	

FY2001 Conclusion II

Candidate Targets of FY2002 Evaluation

Security Basis Function	Integer Factoring	(Elliptic Curve) Discrete Logarithm	Lattice
Signature	ESIGN		
Confidentiality	HIME(R)	ECIES in SEC1	
Key Agreement or Distribution			
		PSEC-KEM	26

FY2002 Plan of Public-Key Cryptography Sub-Committee

Mission 1 Drafting The List of Recommended Public-Key **Cryptographic Schemes for Electronic Government.** Mission 2 Following-up The Electronic Signature Schemes Listed for Electronic Signature Law. ♦ Mission 3 Others

Thanks to All who Supported and Gave Pressures

including

- Applicants to CRYPTREC Call for Submission,
- Anonymous External Experts,
- Observers from Kasumigaseki and Ichigaya,
- Members and Staffs of Public-Key Cryptography Sub-Committee, Symmetric-Key Cryptography Sub-Committee, CRYPTREC Evaluation Committee, and CRYPTREC Advisory Committee.