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1 Introduction

This documentation gives a description of MUGI pseudorandom number

generator. MUGI has two independent parameters. One is 128-bit secret

key, and another is 128-bit initial vector. The initial vector can be public.

The document is organized as follows: In Section 2 we show the de-

sign rationale of MUGI. Next we give some notations and some fundamental

knowledges in Section 3. In Section 4 we describe the specification of MUGI

in detail. At last we give some usage notes in Section 5.

2 Design Rationale

MUGI is a pseudorandom number generator (PRNG) designed for using as

a stream cipher. The design is aimed to be suitable for both of software and

hardware.

Nowadays the design of a block cipher is well sophisticated so that it can

be suitable for any platforms and achieve good performances. On the other

hand almost all of stream ciphers are dedicated to a special implementation.

In addition some algorithm suitable for software is not well evaluated. We

are obliged to conclude that the design of stream ciphers suitable for software

is not so sophisticated as one of block ciphers at present.

In this situation we pay attention to Panama [DC98]. Panama was

designed by J. Daemen and C. Clapp in 1998, and is a cryptographic module

that can be used both as a hash function and a stream cipher.

The designers of Panama did not fasten upon the design using linear

feedback shift registers (LFSR), which were main stream in the design of

stream ciphers, but the principle design of block ciphers. This implies the

evaluation techniques are applicable to Panama. Furthermore its design

strategy is simple and has generality. So we can design a PRNG similar to

Panama easily. On the other hand the design of Panama is unprecedented

so that the security of Panama is not evaluated enough at present.

The design of our PRNG MUGI is similar to Panama. Additionally we

aim to evaluate its security as well as possible. See [Eval] in reference to the

security evaluation of MUGI.

As a result, MUGI achieves high performance as well as AES [FIPS-197].
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Especially the hardware implementation is excellent. On the other hand we

believe that the security is evaluated enough in [Eval].

In the following of this section, first, we roughly describe the structure of

Panama and MUGI in 2.1. Then we mention the component of MUGI in

2.2

2.1 Panama-like keystream generator

Generally the principal part of a PRNG is a set (S,F , f) which consists of

an internal state S, its update function F , and the output filter f which

abstracts the output sequence from the internal state S. Especially we call

the set (S,F) as an internal-state machine. In addition we call a step

that the update function is applied as a round. S(t) refers to the internal

state at round t.

In the case of Panama, the internal state is divided into two parts, the

state a and the buffer b. The update function of Panama is divided in pro-

portion to the internal state (see Figure 1). Note that each update function

uses another part of the internal state as a parameter. We denote the update

function of the state a and the buffer b as ρ and λ function respectively.

It is distinct in the update function of Panama that the function ρ has a

SPN structure. It is similar to a block cipher’s round function. On the other

hand the function λ is a simple linear transformation. The output filter f

abstracts about half bits of the state a for each round.

Buffer State

Internal State

ρλ

Update Function

Output Filter Out[t]

Figure 1: The scheme of Panama-like keystream generator
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We call a PRNG which satisfies above characteristics as Panama-like

keystream generator (PKSG). We shape into the definition of PKSG as below:

Definition 1 Consider that an internal-state machine consists of the inter-

nal state (the state a and the buffer b) and their update functions (ρ and

λ). The keystream generator which consists of (a, b), (ρ, λ), and output fil-

ter f is called Panama-like keystream generator if it satisfies following

conditions:

(1) ρ includes an SPN transformation and uses parts of the buffer b as a

parameter.

a(t+1) = ρ(a(t), b(t)).

(2) λ is a linear transformation and uses a part of the state a as a param-

eter.

b(t+1) = λ(b(t), a(t)).

(3) f outputs a part of the state a (usually no more than 1/2).

2.2 Selection of components

We make a point of reusing existing good articles on design of MUGI. As a

result we use some component of AES [FIPS-197], which is well evaluated.

For example the substitution table S-box and the linear transformation is

same as AES. Though the design of PKSG is still alternative, this selection

should make MUGI more secure.

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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3 Preliminaries

In this section we give some notations and preliminary knowledge.

3.1 Notations

⊕ bitwise XOR
∧ bitwise AND
|| concatenation of two strings

>>> n rotation of n bits to right (in 64-bit register)
<<< n rotation of n bits to left (in 64-bit register)

0x prefix meaning hexadecimal integer

3.2 Data Structure

The elemental-data size of MUGI is 64 bit, called a unit. Embedding byte

data into a 64-bit word, we adopt big-endian. For example 8-byte input data

x0, . . . , x7 is stored into one unit as follows:

a = [MSB] x0||x1|| . . . ||x7 [LSB],

where [MSB] and [LSB] represent the positions of the most significant byte

and the least significant byte, respectively.

On the other hand the output key stream is given as a unit data.

The j-th byte (from the most significant side) of unit a is denoted by aj .

When we use plural subscript, the first subscript specifies unit position and

the second subscript specifies the byte position. For instance in the sequence

consists of unit data B = (bi)i, bi,j means the j-th byte in the i-th unit.

The higher and lower 32-bit data of a unit is denoted by the subscripts

”H” and ”L”, e.g. (aH ||aL) = a.

3.3 Finite Field GF(28)

3.3.1 Data Expression

MUGI uses some operations in finite field GF(28). A finite field has many

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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different representations. We fixed a characteristic polynomial and represent

the element of GF(28) by a polynomial.

First of all we define the finite field GF(28) as GF(28) = GF(2)[x]/(ϕ(x)),

there the polynomial ϕ(x) is given as follows:

ϕ(x) = x8 + x4 + x3 + x+ 1 ↔ 0x11b.

Any element in GF(28) is represented by 1-variable polynomial whose

coefficients are in GF(2) (i.e., the coefficients are in {0, 1}) and the degree is

no more than 7. The binary representation (for implementation) is given by

8-bit data. The 8-bit string b7||b6||b5||b4||b3||b2||b1||b0 is associated to

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0.

For example a byte data 0x57 is associated to the bit string 0101 0111,

x6 + x4 + x2 + x+ 1.

3.3.2 Addition

The sum of two polynomials over GF(28) is the polynomial whose coefficients

are given by the sum of corresponding coefficients modulo 2. In other words

the addition is caluculated by bitwise XOR. For example, the sum of 0x57

and 0xa3 is calculated as follows:

0x57+ 0xa3 = (x6 + x4 + x2 + x+ 1) + (x7 + x5 + x+ 1)

= x7 + x6 + x5 + x4 + x2

↔ 0xf4.

3.3.3 Multiplication

The multiplication in GF(28) can be divided into two steps.

Firstly we give the multiplication of any element f(x) =
∑
aix

i and x as

follows:

x · f(x) = ∑
bix

i+1 mod ϕ(x).

For example, the multiplication of 0x02 and 0x87 is calculated as follows:

0x02 · 0x87 = x · (x7 + x2 + x+ 1)

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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= x8 + x3 + x2 + x

= (x4 + x3 + x+ 1) + x3 + x2 + x

= x4 + x2 + 1

↔ 0x15

xi·f(x) for any i can be calculated by iterative application of above definition.
The multiplication f · g of any two element f(x) =

∑
aix

i, g(x) =
∑
bix

i

in GF(28) is defined as follows:

f · g(x) =
14∑
i=0

i∑
j=0

(aj ∧ bi−j)x
i mod ϕ(x)

3.3.4 Inverse

For f, g ∈ GF(28), we call g an inverse of f and denote g = f−1 if there are

a, b ∈ GF(28) satisfing the following equation:

f · a + g · b = 1 mod ϕ(x).

It is well known that any element in any finite field except 0 has its inverse.

In the case of GF(28) the inverse of a is given by a−1 = a254.

4 Specification

In this section we give a description of MUGI. As we mention in Section 2

any PRNG is described as the combination of an internal-state machine and

an output filter.

We describe the internal state of MUGI in 4.3 and the update function in

4.4 at first. We show the detail description of the components of the transition

in 4.7. Then we mentioned the initialization in 4.5 and the random number

generation in 4.6.

4.1 Outline

MUGI is a PRNG with an 128-bit secret key K (secret parameter) and an

128-bit initial vector I (public parameter). It generates 64-bit length random

bit string for each round. The outline of the algorithm is as follows:

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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Input: Secret key K, Initial vector I, Output size n (units)

Output: Random number sequence Out[i] (1 ≤ i ≤ n)
Algorithm

Initialization

Step 1. First set the secret key K into the state a. Then initialize the

buffer b by means of ρ.

Step 2. Add the initial vector I into the state a and the initialize state

a by means of ρ.

Step 3. Mix whole internal state by means of the update function.

Random number generation

Step 4. Run n rounds update function and output a part of the internal

state (64 bit) for each round.

Now we explain each of above in detail.

4.2 Input

MUGI has two inputs. One is an 128-bit secret key K and the other is an

128-bit initial vector I. I is a public parameter. The higher and lower units

of K are denoted by K0 and K1 respectively. In the same manner I0 and I1
are used in this document.

4.3 Internal State

4.3.1 State

The state a consists of 3 units. Each of them is denoted by a0, a1, a2 in

rotation, i.e.

a = [Higher] a0||a1||a2 [Lower].

4.3.2 Buffer

The buffer n consists of 16 units. Each of them is denoted by b0, . . . , b15 in

rotation in the same manner as the state a.

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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4.4 Update Function

In general the update function of PKSG is described as a combination of

ρ and λ, (the update functions of the state a and the buffer b), each of

which uses another internal state as a parameter. In other words the update

function Update of whole internal state is described as follows:

(a(t+1), b(t+1)) = Update(a(t), b(t)) = (ρ(a(t), b(t)), λ(b(t), a(t))).

In the followings we explain ρ and λ of MUGI.

4.4.1 Rho

ρ is the update function of the state a. It is a kind of target heavy Feistel

structure with two F-functions (Figure 2) and uses the buffer b as a param-

eter. The function ρ is described as follows:

a
(t+1)
0 = a

(t)
1 ,

a
(t+1)
1 = a

(t)
2 ⊕ F(a

(t)
1 , b

(t)
4 )⊕ C1,

a
(t+1)
2 = a

(t)
0 ⊕ F(a

(t)
1 , b

(t)
10 <<< 17)⊕ C2,

C1, C2 in the equations above are constants. The F-function of MUGI reuses

a0
(t) a1

(t) a2
(t)

a0
(t+1) a1

(t+1) a2
(t+1)

C1 C2

17<<< F
F

b4
(t)

b10
(t)

64 64 6464

64

6464

Figure 2: ρ-function

the components of AES (S-box, MDS). We show the detail description in

4.7.3.
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4.4.2 Lambda

The function λ is the update function of the buffer b and used a part of the

state a as a parameter. λ is linear transformation of b and is described as

follows:

b
(t+1)
j = b

(t)
j−1 (j = 0, 4, 10),

b
(t+1)
0 = b

(t)
15 ⊕ a(t)

0 ,

b
(t+1)
4 = b

(t)
3 ⊕ b(t)7 ,

b
(t+1)
10 = b

(t)
9 ⊕ (b

(t)
13 <<< 32).

4.5 Initialization

The initialization of MUGI is divided into three steps. Firstly initialize the

buffer b with a secret key K, secondly initialize the state a with an initial

vector I, and mix whole internal state at last.

In the first step we set the secret key K into the state a as follows:

a0 = K0,
a1 = K1,
a2 = (K0 <<< 7)⊕ (K1 >>> 7)⊕ C0.

C0 in above equation is a constant (see 4.7.4). Then iterate running only ρ

and put a part of each a(t) into the buffer b as follows:

b15−i = (ρi+1(a, 0))0

In above equations ρi means the i-th iteration of ρ and ρ(a, 0) means the

input from b is 0. In other words the data stored into the buffer b is not used

for this step.

In the second step the mixed state a(K) = ρ16(a0, 0) and the initial vector

I are required. I is added to the state a as follows:

a(K, I)0 = a(K)0 ⊕ I0,
a(K, I)1 = a(K)1 ⊕ I1,
a(K, I)2 = a(K)2 ⊕ (I0 <<< 7)⊕ (I1 >>> 7)⊕ C0.

Then the state a is mixed again by 16 rounds iteration of ρ. So the mixed

state a is represented as ρ16(a(K, I), 0).

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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The last step is 16 rounds iteration of whole update function Update, i.e.

a(1) = Update16(ρ16(a(K, I), 0), b(K)),

where the notation b(K) in above equation means the buffer b initialized with

the secret key K.

4.6 Random Number Generation

After the initialization MUGI generates 64-bit random number and trans-

forms the internal state at each round. Denote the output at round t as

Out[t], then the output is given as below:

Out[t] = a
(t)
2

In other words MUGI outputs the lower 64 bits of the state a at the beginning

of the round process.

The processes from the initialization to the random number generation

follow Table 1.

Table 1: Time table of MUGI
Round t Process Input Output

−49 Inputting Key K –
−48, . . . ,−33 Mixing (by ρ) – –

Initialization −32 Inputting IV I –
−31, . . . ,−16 Mixing (by ρ) – –
−15, . . . , 0 Mixing (by Update) – –

Generating 1, . . . Outputting and – Out[t]
bit strings Mixing

4.7 Components

In this subsection we describe some terms which are used in 4.4 and 4.5

without notice. Especially F-function in 4.4.1 is the main transformation in

our PRNG. The F-function adopts 1-round SPN structure and consists of

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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bytewise substitution (denoted S-box) and 4 × 4 matrix based on GF(28).

We explain an S-box in 4.7.1, the matrix in 4.7.2, whole construction of the

F-function in 4.7.3, and the constants used in MUGI in 4.7.4.

4.7.1 S-box

The bytewise substitution S-box in MUGI is same as one in AES. In other

words, the substitution given by S-box is the composition of the inverse

x → x−1 on GF(28) and an affine transformation. In the matrix form, the

affine transformation of the S-box can be expressed as;

b′ = S(x) ⇔
b = x−1,


b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7




=




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1







b0
b1
b2
b3
b4
b5
b6
b7




⊕




1
1
0
0
0
1
1
0




.

See Appendix A in reference to the substitution table of S-box.

4.7.2 Matrix

The linear transformation of the F-function is the combination of a 4 × 4

matrix and bytewise shuffling. MUGI uses MDS matrix which is the compo-

nent of AES. Let M be the matrix and X = x0||x1||x2||x3 be 4 bytes input

to M . Then the transformation defined by M is described as follows:

M(x) =M




x0

x1

x2

x3


 =




0x02 0x03 0x01 0x01

0x01 0x02 0x03 0x01

0x01 0x01 0x02 0x03

0x03 0x01 0x01 0x02







x0

x1

x2

x3




The bytewise operation is defined in 3.3.

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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Note that only 0x01, 0x02, and 0x03 are the elements of the matrix.

The fact that the multiplication 0x01 · x defines identical map and 0x03 =

0x01 ⊕ 0x02 implies that the multiplication 0x02 · x is essentially required

in the implementations. Furthermore these multiplications can be imple-

mented by a table lookup. It allows faster implementation than the actual

multiplication. See Appendix B in reference to the table for multiplication

0x02 · x.

4.7.3 F-function

The F-function is composition of a key addition (the data addition from the

buffer), a non-linear transformation using the S-box, a linear transformation

using MDS matrix M and byte shuffling (Figure 3). Let denote the input to

the F-function as X, the output as Y . Then the F-function is described as

follows:

Y = F (X,B) ⇔
O = X ⊕ B,
O0||O1||O2||O3||O4||O5||O6||O7 = O,

Pi = S(Oi) (0 ≤ i < 8),

PH = P0||P1||P2||P3, PL = P4||P5||P6||P7,

QH =M(PH), QL =M(PL),

Q0||Q1||Q2||Q3 = QH , Q4||Q5||Q6||Q7 = QL,

Y = Q4||Q5||Q2||Q3||Q0||Q1||Q6||Q7.

The S-box and the matrix M can be combined in one table lookup on a

32-bit processor [FIPS-197]. It allows the fast implementation.

4.7.4 Constants

There are three constants used in the algorithm of MUGI, C0 in the initial-

ization, and C1, C2 in ρ. These are given as follows:

C0 = 0x6A09E667F3BCC908,
C1 = 0xBB67AE8584CAA73B,
C2 = 0x3C6EF372FE94F82B.

These are hexadecimal values of
√
2,
√
3, and

√
5 multiplied by 264.

Copyright c©2001, 2002 Hitachi, Ltd. All rights reserved.
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S

M

S S S S S S S

8 8 8 8 8 8 8 8

M

F-function

Buffer

Figure 3: F-function

5 An Encryption Scheme and Remarks

5.1 How to Use Keys and Initial Vectors

In general the output sequence generated by any PRNG is decided by the

combination of the secret key K and the initial vector I. So never use an

identical combination twice. Especially you must use different initial vector

when the secret key is fixed.

5.2 Encryption and Decryption

key K initial vector I

plaintext P ciphertext C

MUGI

128 128

64

64 64
encryption decryption

key K initial vector I

plaintext Pciphertext C

MUGI

128 128

64

64 64

Figure 4: Encryption and decryption using MUGI
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MUGI can be used as a stream cipher easily. First, divide the plaintext

data into 64-bit blocks. Then XOR them to the output units generated by

the secret key K and the initial vector I at each round (see Figure 4). The

decryption can be implemented in the same manner.
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A S-box

The S-box used in F-function is a substitution table as below:

S(x) = Sbox[x]

Sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,

0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
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B The multiplication table for 0x02 · x
The multiplication 0x02 · x defined in 3.3 is realized by following table:

0x02 · x = mul2[x]

mul2[256] = {
0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e,

0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e,
0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e,
0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e,
0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e,
0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae,
0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce,
0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee,
0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15,
0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01, 0x07, 0x05,
0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35,
0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25,
0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55,
0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45,
0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75,
0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 0x67, 0x65,
0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95,
0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85,
0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5,
0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 0xa7, 0xa5,
0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5,
0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5,
0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5 };
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C Test Vector

Example 1.
key[16] = {0}
iv[16] = {0}
output =

0xc76e14e70836e6b6, 0xcb0e9c5a0bf03e1e,
0x0acf9af49ebe6d67, 0xd5726e374b1397ac,
0xdac3838528c1e592, 0x8a132730ef2bb752,
0xbd6229599f6d9ac2, 0x7c04760502f1e182,
. . .

Example 2.
key[16] =
{0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}
iv[16] =
{0xf0, 0xe0, 0xd0, 0xc0, 0xb0, 0xa0, 0x90, 0x80,
0x70, 0x60, 0x50, 0x40, 0x30, 0x20, 0x10, 0x00}
output =

0xbc62430614b79b71, 0x71a66681c35542de,
0x7aba5b4fb80e82d7, 0x0b96982890b6e143,
0x4930b5d033157f46, 0xb96ed8499a282645,
0xdbeb1ef16d329b15, 0x34a9192c4ddcf34e,
. . .
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