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Chapter 1

Introduction

Research and development of compact high-speed cryptographic technology have been conducted
in response to the constant need for secure high-performance cryptography in restricted implemen-
tation environments. These days, with the evolution of the Internet of Things (IoT), devices with
limited resources, such as sensors and actuators, are connected to the Internet, raising security and
privacy concerns. This is why a wider variety of implementations are required of cryptographic
technology. Lightweight cryptography, which can be implemented at lower costs and with lower
power consumption compared to the conventional cryptography, is expected to have many applica-
tions including on-vehicle devices and medical equipment. It is often not easy for engineers without
expertise to exploit this technology by choosing a proper lightweight cryptographic algorithm and
applying it with appropriate caution. CRYPTREC mainly reviews the cryptographic technology
used for e-government. It also studies the cryptographic technology that has potential applications
in various fields, and publishes the result of the study for be benefit of the society. In partic-
ular, Lightweight Cryptography Working Group (WG) was established under the CRYPTREC
Cryptographic Technology Evaluation Committee in 2013. It aims to supporting the users of the
products and services that require lightweight cryptographic technology to select appropriate al-
gorithms with ease. This guideline has been compiled by the Lightweight Cryptography WG with
the purpose of contributing to technical decisions on the selection and application of lightweight
cryptographic algorithms and promoting the dissemination of this technology. The target readers
are engineers exploiting cryptographic technology for designing, developing, and implementing se-
curity functions for information systems. However, the guideline is also useful for readers in general
who are interested in the lightweight cryptographic technology.

Chapter 1 provides an overview of this guideline. Chapter 2 describes lightweight cryptogra-
phy, starting with the description of the types of lightweight cryptography and their applications,
followed by an implementation guide explaining the features of lightweight cryptography, typical
use cases and methods, parameter selection, and notes on use. Chapter 3 shows the performance
of typical lightweight cryptographic algorithms. In the fields of “block cipher” and “authenticated
encryption,” where many cryptographic algorithms have been proposed, some representative al-
gorithms were selected and their performances compared. Comparisons were made in the same
environment for both hardware and software implementation. In the case of hardware implementa-
tion, circuit size, power consumption, and latency are compared, while software comparisons deal
with the required amount of memory. In Chapter 4, the basic information on typical lightweight
cryptographic algorithms is represented by technical field: block cipher, stream cipher, hush func-
tions, message authentication codes, and authenticated encryption.

This guideline was written and edited by the members of the Lightweight Cryptography WG
and the Cryptography Research and Evaluation Committee (CRYPTREC) Secretariat listed be-
low. The organization to which each member belongs is as of October 2016. Moreover, Mitsuru
Matsui, Takeshi Sugawara, Yumiko Murakami, and Shoei Nashimoto, Mitsubishi Electric Corpora-
tion made a great contribution to the implementations and performance comparison of lightweight
cryptography for this guideline.
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Chapter 2

Lightweight Cryptography and Its
Applications

2.1 What is Lightweight Cryptography?

The research and development of lightweight cryptography for implementation on devices with
limited resources has been on the rise in recent years, and many systems have been proposed in
academic meetings. In Europe, this technology was chosen as the theme of the European Commis-
sion’s 6th and 7th Framework Programmes, ECRYPT I and ECRYPT II, as early as 2004. Japan
has made great advances in this field with cryptographic technology suitable for compact imple-
mentation. Standardization activities are ongoing and include ISO/IEC 29192, which defines the
lightweight algorithms for each technical field, and ISO/IEC 29167, which describes cryptographic
technology for radio-frequency identification (RFID) devices. The National Institute of Standards
and Technology in the U.S. has also started a review of the standardization of lightweight cryp-
tography in 2015.

Low-cost, low power-consumption, lightweight cryptographic technology will be used in devices
including on-vehicle equipment and medical equipment. It is expected to become one of the
security technologies useful for establishing next-generation network services such as the IoT and
the cyber-physical system.

Various methods have been proposed for lightweight cryptographic technology. Some seek light
weight in terms of hardware implementation size and power consumption, while others seek it in
terms of the required memory size of embedded software. Each method is optimized according
to a different performance metric. There is no generally agreed upon definition of “lightweight
cryptography.” In addition, there is a trade-off between performance and security. Actual perfor-
mance is multifaceted. In consideration of these circumstances, this guideline covers cryptographic
technology designed to have a weight advantage over conventional cryptographic technology in
certain performance metrics, with the trade-off between implementation performance and security
taken into account; it primarily targets those methods that insist their superiority in the typical
performance metrics for which applications are assumed. Since there are almost no widely accepted
lightweight cryptosystems in public-key cryptography at this time, this guideline deals only with
lightweight cryptosystems in symmetric-key cryptography.

This guideline is based on the following representative performance metrics for lightweight
cryptography:

• Hardware implementation

– Circuit size

– Energy

– Latency

• Embedded software implementation

– Memory size (ROM/RAM)
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Circuit Size The size of the circuit in hardware implementation is directly connected to the cost.
It is also known to serve as a metric for power consumption. Circuit downsizing is an important
factor in applications such as RFID with severe circuit-mounting requirements. It is also crucial for
devices such as non-contact IC cards that operate on the power supplied through electromagnetic
induction instead of batteries or via electrical connections to external power sources.

Energy Saving energy is required by all battery-powered devices, including medical devices im-
planted in human bodies and those worn in close contact with the body.

Latency In this guideline, latency is the time required for a single process of encryption (or
decryption). Low latency is required for applications including memory encryption and encryption
in on-vehicle devices that demand real-time operation.

Memory Size In embedded software implementation, the cryptographic function is often im-
plemented as part of various applications realized on the CPU. The CPU used for an embedded
system has limited sizes of ROM and RAM, and the smaller the implementation size of the cryp-
tography, the wider the selection of available CPUs and the lower the cost. Embedded CPUs are
used in a variety of devices including electrical home appliances, sensors, and on-vehicle equipment
where a small memory requirement (ROM/RAM) is important.

Performance Metrics Applications

Circuit size (power consumption and cost) RFID and low-cost sensors
Energy Medical devices and battery-powered devices
Latency (real-time performance) Memory encryption, on-vehicle device,

industrial I/O device control
Memory size (ROM/RAM) Electrical home appliances, sensors, and

on-vehicle devices

This guideline shows lightweight cryptographic algorithms and schemes in the classification of
block ciphers, stream ciphers, hash functions, message authentication codes, and authenticated
encryption. The functions enabled by lightweight cryptography such as confidentiality or integrity
are basically the same as those enabled by existing cryptographic techniques.

The lightweight cryptographic algorithms and schemes shown in this guideline are selected as of
early 2016 according to some criteria such that 1) it is presented at a major academic workshop or
conference, 2)severe weakness has not been found, 3) it has implementation efficiency or usefulness
in resource-constrained environments. The basic information of the lightweight cryptographic
algorithms and schemes shown below is provided in Chapter 4.

Block Ciphers CLEFIA, LED, Midori, PiccoloPRESENT, PRINCE,
SIMON, SPECK, TWINE

Stream Ciphers ChaCha20, Enocoro, Grain v1, MICKEY 2.0, Trivium
Hash Functions Keccak, PHOTON, QUARK, SPONGENT
Message Authentication Codes SipHash
Authenticated Encryption ACORN, Ascon, AES-JAMBU, AES-OTR, CLOC and

SILC, Deoxys, Joltik, Ketje, Minalpher, OCB,
PRIMATEs

Section 2.2 shows some examples of the target applications where lightweight cryptography is
useful, and Section 2.3 shows how to select lightweight cryptographic algorithms and their param-
eters. Chapter 3 shows performance comparisons of many lightweight block ciphers and authen-
ticated encryption schemes on the same platform, which would be useful in selecting appropriate
lightweight cryptographic algorithms for real applications.

2.2 Target Applications of Lightweight Cryptography

A ubiquitous network that allows people to “connect with anyone or anything at anytime from
anywhere” is represented by the IoT. Under the concept of IoT, not only conventional types of
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Information and Communication Technology (ICT) terminals including PCs, smartphones, and
tablet PCs, but also automobiles, electrical home appliances, robots, and even facilities themselves
will be connected to the Internet [4]. However, presently, it is not possible to clearly state which
devices will be connected to the Internet, and it is also uncertain which processes will be performed
on those devices. In the age of IoT, we must be prepared for unexpected situations.

IoT terminals are spreading throughout our living spaces and contributing to building the
ubiquitous network described above. Under these circumstances, there is a definite need for security
functions to protect personal information and privacy and guarantee the integrity of information
exchanged on the network. However, since providing such functions is not the main purpose of
IoT services, the functions should not hinder the operations for the users.

Moreover, it is unlikely that all IoT devices utilize high-performance CPUs. It should be
assumed that some devices have poor computing resources with throughput and memory capacity
inferior to conventional ICT terminals and battery-power restrictions on operating time. As an
example, automobile IoT devices requirements are shown in Figure 2.1.

Figure 2.1: Requirements of IoT Terminals on Automobiles

Lightweight cryptography is a promising candidate for applications requiring less load on the
CPU, less memory, and lower latency. It is suitable for IoT devices with relatively poor computing
resources and is expected to serve various applications that exploit its features.

When the CPU and memory must be shared by many applications (hereafter referred to as
“apps”), cryptography with less CPU cost and memory consumption is sometimes demanded. One
example is the cryptography used in smartphones, tablet PCs, and smart TVs (high-performance
television with an Internet connection).

Furthermore, some devices that operate on batteries expect a cryptographic algorithm that
consumes less power. For example, environment-measuring devices are often installed at locations
where no utility power is available. Medical implant devices rely only on battery power and
are required to be as small as possible to lessen their effects on the human body. Lightweight
cryptography is expected to serve these applications.

Some applications demand immediacy and low latency. To keep battery consumption as low
as possible, some devices are turned on just before sending data, operate only during data trans-
mission, and are then turned off. Lightweight cryptography featuring low latency is useful for
this purpose. It may also be suitable for controlling automobiles where slow response times could
compromise security.

The following sections describe the uses of lightweight cryptography by providing examples
in the following applications: smart TV, RFID, environmental measuring devices on farmland,
medical devices, industrial control equipment, and automobiles.
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2.2.1 Electrical Home Appliances and Smart TV

Various types of CPUs, from basic to high-end, are used in smartphones, tablet PCs, and smart
TVs. Powerful CPUs can perform a variety of functions; however, low-end CPUs have restrictions.

In a TV set, the hardware unscrambles and decompresses the broadcasting signal and repro-
duces audio and video content, while other processing is performed by a built-in CPU. The CPU
carries out many tasks almost constantly under full (100%) load. Manufacturers are trying to
evolve these CPUs so they can run applications that connect to the Internet. To lower the cost,
most TV sets use low-end CPUs. On such devices, there is competition for the CPU and memory
resources between the TV functions and applications that must run seamlessly. When adding a
cryptographic feature on top of these functions, a cryptographic method that requires only a small
amount of memory (ROM and RAM) and puts a small load on the CPU is preferable. As men-
tioned previously, the cryptographic function is implemented with software rather than a dedicated
chip. Therefore, a cryptographic algorithm that uses less CPU time and smaller amounts of ROM
has a higher practical value.

In the coming age of the IoT, many electrical home appliances will be coming online. Some
data exchanged on the Internet are sensitive and must be concealed. Suppose air-conditioners
and cooking stoves come online and there is a service that processes their control signals. They
are exposed to the risks of unauthorized access that may tamper with the control signals or issue
illegal commands that would lead to abnormal operations. When a household owns a home robot,
the robot will collect personal data that needs to be concealed to protect one’s privacy; and these
devices can be used for more than ten years. These home devices mainly depend on software, which
is updatable, to process information, and will carry low-priced CPUs with restricted functions, and
it may be difficult to build special hardware into small cheap devices. In some devices, resource
contention could occur similar to that of smart TVs. To protect data in devices with such low-end
CPUs, cryptography software should consume only a small amount of the CPU processing time.

2.2.2 RFID Tag Applications (Logistics Control etc.)

RFID is a system for identifying various objects using radio waves. It is used for various purposes,
including controlling warehouse inventory, managing physical distribution, preventing shoplifting
at CD/DVD shops, managing item history, operating electronic money, and train IC card and
employee ID card systems. Extraordinary examples include an application for tracking wild animals
to study their ecology. Similar technology can be used to locate persons. The IoT technology will
also be used to identity things in the home, for example, a refrigerator will be able to recognize its
contents.

Since RFID uses relatively weak radio waves, it is used only for short distances. Therefore,
third-persons outside a warehouse cannot eavesdrop on the RFID signals and detect items inside.
Therefore, in the management of warehouse inventory, there is not much need for implementing
cryptography to conceal data.

In contrast, when RFID is used to prevent shoplifting, to inhibit the counterfeiting of electronic
money, train IC, and employee ID cards, to protect privacy when tracing people and peoplefs
belongings, and to conceal the information on the tracking of wild animals from poachers, the data
must be encrypted.

An RFID tag is a chip used for an RFID system. Its size varies from several µm per side to
several cm per side. A processor, memory, and other components are squeezed into these spaces.
Fig.2.2 shows the structure of an RFID chip.

The part labeled “transmitter” is an antenna; its size varies depending on the operating fre-
quency (kHz to MHz). The other parts can be miniaturized; however, actual sizes are determined
according to the data storage capacity and the manufacturing process.

In an RFID tag, there is a limit to the circuit area available for the cryptographic function.
In the case of passive RFID tags or tags without batteries, there are rigid constraints because the
power is obtained from radio waves. When protecting data under such restrictions, a cryptographic
algorithm that runs on limited hardware and a small power supply is required.
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Figure 2.2: Structure of an RFID Device

2.2.3 Smart Agriculture Sensors

It is said that, when raising crops, taking appropriate measures according to changes in the weather
stabilizes the yield, which increases productivity and improves the quality of the product. To do
this, many farmers depend on their experience and intuition. If this process can be digitized by
monitoring the weather conditions (temperature, humidity, hours, and quantity of sunlight, soil
moisture, wind direction and speed, and precipitation), inexperienced farmers can enjoy stable har-
vests similar to those of skilled farmers. The data obtained by monitoring can be used to control
the timing and amount of watering and to automatically open and close greenhouse windows. For
veteran farmers, monitoring enhances response to weather changes and facilitates planning, work
scheduling, and pest control. It also provides guidelines for evaluating and improving farmland to
help stabilize the yield.

The precision of analyzing data increases with the resolution of monitoring. Therefore, it is
preferable to divide a large farmland into sections and to collect data from each section. Farmers
can expect monitoring equipment that can be operated with a small amount of labor at low costs for
a long time. To meet this demand, the use of environmental sensor networks is spreading gradually.

The sensors of such networks have the following requirements:

• autonomously driven,

• small-sized,

• low power consumption, and

• used in large numbers.

For fine data acquisition, a large number of sensors are required; low-cost lightweight cryptog-
raphy is suitable for this purpose.

In addition to monitoring weather, the observation of crustal movements could contribute to the
timely prediction of earthquakes, volcanic eruptions, and landslides. Sensors serving these purposes
are often installed at locations not easily accessible by people or where no power supply is available.
Moreover, since disaster prevention data are crucial for the security of citizens, tampering, which
is much more serious than eavesdropping, must be prevented. If data are tampered with, false
warnings may be issued. Lightweight cryptography with authentication is suitable for preventing
sensitive data from being tampered with.

2.2.4 Medical Sensors

When a person is admitted to a hospital, several types of sensors may be attached to a patient for
measuring electrocardiogram, blood pressure, pulse, blood sugar, and blood-oxygen concentration.
These sensors are generally connected to main units with cables to carry data and receive power,
which inhibits the motion of patients. Patients who are allowed to leave the hospital may need
to have their conditions monitored at home and at work and need to have measuring instruments
implanted in their bodies. These external and internal devices are used to regularly measure data
and determine medication times. An implanted device is usually left inside the body for a long
time; therefore, it must be able to transmit data without wires and run on batteries for an extended
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period of time. Even in the case of externally attached devices, a wireless connection that provides
freedom of movement requires sensors that run for a long time on battery power.

These sensors collect very personal data that must be concealed from the perspective of pri-
vacy. Currently, particularly in the field of implant sensors, research and development of sensor
miniaturization is ongoing, and nanometer-sized devices are being developed. It follows that the
size of the cryptographic processing section must also be reduced.

Furthermore, with the recent advancement of wearable devices, a concept called “mHealth”
has emerged. It is sometimes described as an abbreviation of “Mobile Health,” but no established
definition exists. The term implies applications in which a person wears a device to collect bio-
logical data such as cardiopulmonary functions to help maintain the personfs health. Data are
accumulated daily and may be submitted during a physical checkup or medical examination at
a clinic or hospital. Not only biological data but also activities conducted to improve health are
also recorded. Today, conventional health promotion devices such as pedometers can detect such
personal information as a personfs location from the built-in GPS.

Some mHealth devices have mechanisms for generating power by the movement of the person
wearing the device. However, many wearable devices, which are measuring instruments, operate
on batteries.

Depending on its use, wireless transmission may be required for a device that constantly collects
data that are received, compiled, and analyzed by other equipment. Since such data are very
personal, they must be completely concealed to protect one’s privacy.

2.2.5 Industrial Systems

In factories, the transportation, processing, and assembly operations have been automated to
improve operational efficiency. Several machine tools and robots can be connected by a network
to share manufacturing information and to manage the processes based on the data collected by
sensors. Through a network, it is also possible to store information at a single place and to manage
the equipment from a central location.

Germany is leading the efforts for this type of automation. Under a national project, a large
budget has been spent to realize a smart factory (“thinking factory”) according to the Industry
4.0 concept, in which each machine or device has sensors and determines its operation based on
the data collected by sensors.

For the central management of manufacturing data, a network standard called “EtherCAT”
was proposed. In factory data management, the integrity of real-time data is important. In the
case of the conventional TCP/IP Internet protocol suite, collisions that occur on the network result
in processing delay and loss of data; therefore, it is not suitable for managing factory data. In
EtherCAT, each device is a slave and is connected in series with other devices.

Sensors are located at various places in a factory. Some are at locations difficult for humans
to access. Since they are attached to equipment, they have a stable power supply; however, it is
sometimes difficult to connect them serially with cables. Therefore, wireless data transmission is
considered. When sending data by radio waves, signals need to be transmitted for certain distances
and must be encrypted.

2.2.6 Automobiles

Currently, automobiles support not only in-vehicle communication but also communicating with
other entities. To support the driving assistance system that enables safe driving through mutual
communication between vehicles and one-way communication with infrastructures such as traffic
signals and road signs (Car2X communication), a large amount of information needs to be pro-
cessed. The Car2X system consists of an on-board information system connected to the cloud
to provide contents and services and an on-board control system that collects data from external
radar and sensors and exchanges information between electronic control units (ECUs) of the body,
chassis, and other parts of the vehicle.

For the coordinated control of the on-board ECUs, several types of networks including the
controller area network (CAN), local interconnect network (LIN), and Ethernet are installed. The
CAN is the main on-board network widely used for the coordinated control of the power train,
chassis, and body systems. For example, the distance to a vehicle ahead is measured with a
millimeter-wave radar, and if this distance becomes too short, the information shared through the
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CAN activates a collision detection system that activates a warning sign or sound, applies the
brake assistant system, and tightens the seatbelts. There have been demonstrations of attacks on
actual automobiles. If incorrect messages are sent through the CAN, serious situations including
improper braking may occur. Therefore, it will be necessary to encrypt messages and check for
tampering of messages by authentication. These networks do not demand the very high level
of processing performance and low latency required for the communication between vehicles and
roadside infrastructures; however, real-time processing and other levels of high-speed processing
need to be realized.

In the driving assistance system, there are a significant number of devices that communicate
with each other (vehicle-to-vehicle and road-to-vehicle), and cryptographic processing is required
to prevent the leakage of personal information. Therefore, a low-latency cryptography system that
can be implemented in a small circuit size must be developed. On-board information terminals
connect to the cloud and provide various services including traffic information and traffic congestion
prediction. This information needs to be protected to prevent tampering. For content protection,
high-throughput cryptographic processing is required.

The worldwide automotive open system architecture (AUTOSAR) development partnership
describes the necessity for implementing message authentication technology for in-vehicle commu-
nication. It specifies message authentication with a counter and a message authentication code
(MAC) for secure on-board communication (SecOC) stipulated in R4.2.2 of the AUTOSAR stan-
dard [1]. For external communication, the Car 2 Car Communication Consortium (C2C-CC) in
Europe[2] or any other organizations discuss on vehicle-to-vehicle communication infrastructures.
Based on these situation we can expect to apply lightweight cryptography for such an infrastruc-
ture.

2.3 Selection of Lightweight Cryptographic Algorithms and
Parameters

2.3.1 General Policy

As shown in Section 2.1, compared to conventional cryptographic algorithms, the implementation
of lightweight cryptographic algorithms is superior in one or more of the following criteria:

• Circuit size

• Energy

• Latency

• Memory size

In other words, there may be lightweight cryptographic algorithms featuring a circuit size
smaller than a conventional cryptographic algorithms that do not necessarily have lower power
consumption. As such, there is no versatile cryptographic algorithm. In actual systems, it is
sometimes difficult to specify the required performance indices for cryptography. However, it is
important to clarify the system requirement to some extent first, although this may not be easy, be-
fore considering the use of lightweight cryptographic algorithms. Then, conventional cryptographic
algorithms, in particular, those on the CRYPTREC Cipher List, should be reviewed, and if con-
ventional algorithms cannot satisfy the above criteria, then the use of lightweight cryptography
should be considered.

Lightweight cryptographic algorithms are used to protect the privacy of sensitive information
and/or to authenticate data. It is important to choose an algorithm that matches the purpose. For
example, when using a block cipher, if the mode of operation does not use the decryption of the
block cipher, its implementation cost can be lowered. Hard-coding the secret key can also reduce
costs. An appropriate method should be selected according to the purpose and the constraints
that accompany the implementation.
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2.3.2 Selection of a Key Length

The key length is an important parameter that forms the basis of security and must be selected
with great care. In a block cipher, in theory, an exhaustive search is possible with a single or a
small number of input/output sets. This attack scenario is possible in many cases described in the
next section. Let us consider reducing the key length from 128 bits to 80 bits. It should be noted
that Moore’s law, in which the density of an integrated circuit is quadrupled (= 22) every three
years, the lifetime of the key will be shortened by 72 years ((128− 80)/2× 3 = 72).

2.3.3 Selection of a Block Length

The block length of a block cipher is also an important parameter directly affects the security.
In particular, when using a block cipher with a short block for block cipher modes and/or au-
thenticated encryption, severe restrictions are posed on the amount of data for which security is
maintained, and measures must be taken.

As an example, we introduce the method for evaluating the security of the CTR mode. Assum-
ing a block cipher of block length n bits and σ, the total number of times the block cipher is called
under the same key, it has been shown that the probability that the output can be distinguished
from a random bit sequence does not exceed σ2/2n+1. (See p. 47 of CRYPTREC Technical Report
No.2012 (updated on March 4, 2011).)

Table 2.1: Maximum Data Length with which a Ciphertext of a Single User Can Be Distinguished
from a Random Character Sequence

Block Length n (bit) # of Users Data Length nσ
64 103 1.4Gbyte

106 46.3Mbyte
109 1.4Mbyte

48 103 4.3Mbyte
106 139.0Kbyte
109 4.4Kbyte

Under this probability, assuming that the risk of at most one user’s ciphertext being distin-
guished from a random bit sequence is acceptable, the maximum data length that can be processed
with the same key can be obtained as shown in Table 2.1. It should be noted that the data size is
rather limited.

In addition, there is a known method to construct a hash function using a block cipher as a
primitive. The security of this method is maintained by using a block cipher with a sufficiently
long block. Therefore, lightweight block ciphers that have shorter blocks are not suitable for this
purpose.

2.3.4 Amount of Data Processed, Key Update, and Other Measures

In the use case where the secret key can be updated, frequent updating is a way to maintain the
security. If the secret key is hard-coded, it is impossible to change the secret key. In such a case,
one solution is to set a limit on the amount of data processed and discard the device before the
limit is exceeded.

In general, the security of a cryptographic algorithm gradually degrades each time it processes
data. Therefore, it is preferable to update the key while the success probability of an attacker
is sufficiently low and acceptable. For example, as mentioned in [3], CMAC recommends that in
general applications, if AES with a block length of 128 bits is used, the key should be updated
before processing 248 blocks (222 Gbytes) of data, and if TDES with a block length of 64 bits
is used, the key should be changed before processing 221 blocks (16 Mbytes) of data. By posing
these limits, the probability of a successful attack is expected to be only one in a billion for AES
and one in a million for TDES. The acceptable probability of a successful attack depends on the
application and should be chosen with care.

An appropriate key-update method should be selected according to the application. In the use
case where a key exchange protocol can be executed, there is no problem in updating the key.
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Another method is to generate a session key from a master key and to maintain synchronization
while updating the key.

In any method, it is necessary to update or discard the key at some time interval. Several cryp-
tographic algorithms that can reduce the update frequency are known, including SUM-ECBC [6]
and PMAC Plus [7] for MAC, and CENC [5] for encryption. In these algorithms, assuming the
block length of a block cipher is n bits and the number of times the block cipher is called is σ,
the success probability of an attacker is approximately at most σ3/22n. Compared to the previous
method, the probability of a successful attack on a 64-bit block cipher is σ/264 times smaller, which
implies that a larger amount of data can be processed before the probability threshold is reached.

2.3.5 Use Scenarios

Lightweight block ciphers are generally designed to be sufficiently secure against linear and differ-
ential attacks. This level of security is expected not only for lightweight block ciphers but also for
general-purpose block ciphers. In typical block ciphers, the security is evaluated by considering
significantly powerful attackers including related-key, known-key, and chosen-key attacks. From
the view point of implementation efficiency, lightweight block ciphers often adopt a simple design
that is not necessarily secure against these attacks or has undergone sufficient security evalua-
tion. Some lightweight block ciphers are known to be vulnerable to related-key and/or chosen-key
attacks; when using these algorithms, measures should be taken to prevent these attack scenarios.

2.3.6 Note on Side-channel Attacks

There are many uses for lightweight cryptographic algorithms, and it is important to choose a
proper algorithm for each implementation environment. Some algorithms are suitable for soft-
ware implementation, and some for hardware implementation. It is important to review not only
cryptanalytic attacks but also to take measures against side-channel attacks. In general, there
are many scenarios where the side-channel attacks are possible, and it is necessary to consider
countermeasures at the implementation level.

2.3.7 Difference from the CRYPTREC Cipher List

The block ciphers on the CRYPTREC Cipher List have a block length of 64 or 128 bits, and a
key length of 128 bits or more. For lightweight block ciphers, there are many proposals that have
a block length of 32 bits or a key length of 80 bits, which are both shorter than the algorithms
listed on the CRYPTREC Cipher List.

The block length and key length are the parameters directly related to the security. It is
necessary to consider if the risks by reducing the block and key lengths are acceptable.

Even within the range where the ciphers on the CRYPTREC Cipher List with no annotations
can be used securely, when using a lightweight cipher with small parameters, it is necessary to
re-evaluate the amount of data that can be securely processed.

No cryptographic algorithm is unconditionally and permanently secure; however, with proper
definition of the purpose and evaluation of risks, the use of lightweight cryptographic algorithms
are recommended if cryptographic algorithms cannot be used.

2.4 Examples and Effects of Lightweight Cryptography

For the applications described in Section 2.2, this section provides some criteria for selecting
lightweight cryptography, in particular, lightweight block ciphers or authenticated encryption
schemes. The description is based on the performance comparison of lightweight cryptography
indicated in Chapter 3 as an example.

2.4.1 Electrical Home Appliances and Smart TV

For smart TV, in which resource contention can occur, lightweight cryptographic algorithms like
SPECK, SIMON, Piccolo, and TWINE may be suitable because its software consumes less CPU
time and occupies a smaller ROM space, according to Figure 3.40 in Chapter 3.
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When protecting data in electrical home appliances, the updatable software will play the main
role, and the CPU on which the software runs is a low-end model. To realize data protection with
this type of CPU, lightweight cryptographic algorithms like SPECK with its lower CPU usage will
be suitable examples, according to Figure 3.34 in Chaphter 3.

2.4.2 RFID Tag Applications (Logistics Control etc.)

In RFID devices, the amount of circuit area available for the cryptographic function is limited, and
allowable power consumption is seriously restricted. Therefore, suitable lightweight cryptographic
algorithms examples include SIMON, SPECK, Piccolo, and PRINCE, because they can be imple-
mented in a circuit size of several kgates smaller than AES and consumes less power, according to
Figure 3.18 etc. in Chapter 3. The difference in circuit sizes from the other algorithms is critical,
especially in legacy chip manufacturing processes with a size of 180 nm or larger. Even in the 40 nm
generation process, the difference determines whether cryptographic algorithm is implementable
in the very small 50µm class chips.

2.4.3 Smart Agriculture Sensors

To improve crop productivity, a large number of sensors are required to provide the necessary fine
data acquisition. Low-cost lightweight cryptographic algorithms will be suitable for encrypting
the data from these sensors. In terms of disaster prevention, it is necessary to encrypt the data
and append a MAC. For this purpose, lightweight authenticated encryption schemes like JAMBU-
SIMON, SILC-PRESENT, ACORN, Ascon, and Minalpher may fit because they require only a
small amount of ROM and are suitable for compact implementation, according to Figures 3.45
and 3.47 in Chapter 3. If a lightweight block cipher is implemented, SPECK, SIMON, PRESENT,
TWINE, and Midori will be good candidates, because they run with the number of processing cycles
smaller than AES, according to Figure 3.42 in Chaphter 3, which means lower power consumption
and longer battery life. If messages are short and do not need encryption, the size can be reduced
by using the SipHash lightweight MAC shown in Section 4.4 or by applying a lightweight block
cipher with the CMAC mode.

2.4.4 Medical Sensors

Medical sensors collect very personal data that must be concealed to ensure privacy. Currently,
particularly in the field of implant sensors, miniaturization research and development are ongo-
ing, and nanometer-sized devices are being developed. Thus, the size reserved for cryptographic
processing must also be reduced. Lightweight cryptographic algorithms SIMON, SPECK, Picollo,
PRESENT etc. satisfy these requirements and can be implemented in hardware with less power
consumption, according to Figure 3.14 etc. in Chapter 3.

For mHealth, assuming an able-bodied person is wearing the terminal, miniaturization and
extended battery life are not serious issues; however, use of lightweight cryptography is preferable
to reduce the size and cost of the CPUs.

2.4.5 Industrial Systems

In industrial automation, open-field networks are emerging, and the EtherCAT ultra-high-speed
industrial open network is drawing attention. At a node connected to such a network, a 1,000-point
digital I/O must be completed in 30 µs. Each Ethernet frame can exchange up to 1,486 bytes of
data. To encrypt the communication channel and prevent tampering with AES, it is necessary to
call the encryption circuit four times per block for MAC verification, decryption, (interpretation,
rewriting), encryption, and MAC generation. Assuming it takes 100 ns to encrypt a single AES
block, a total of 37.2 µs is required; therefore, the conditions are severe in AES. In contrast,
according to Figure 3.7 in Chapter 3, the lightweight block ciphers Midori and PRINCE achieve
the throughput of 3.9 Gbps and 3.6 Gbps, respectively, with circuit size smaller than AES in
the Unrolled implementation. These lightweight cryptographic algorithms are expected to satisfy
real-time processing requirements.
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2.4.6 Automobiles

When implementing encryption and authentication functions in on-board hardware, the lightweight
cryptographic algorithms Midori, PRINCE, PRESENT, and SIMON will be possible candidates
because they can reduce the circuit size while maintaining the throughput of AES, according to
Figures 3.14 and 3.15 in Chapter 3.

For the cryptographic algorithms suitable for an automatic driving assistance system, a process
of several rounds, rather than a single round, is implemented in hardware to reduce latency.
Therefore, Midori, PRINCE, PRESENT, and SIMON are promising because they have lower
latency and can be implemented with a smaller circuit size compared to AES, according to Figures
3.6 and 3.7 in Chaphter 3.

To protect the information of on-board information terminals, high-throughput encryption/
decryption processing is required for content protection; therefore, for example, the lightweight
block cipher Midori is a good candidate, according to Figure 3.15 in Chapter 3.
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Chapter 3

Comparing the Performance of
Lightweight Cryptography

This chapter shows the result of comparing the performance of different cryptographic algorithms
implemented on the same platform in hardware and software by the same implementer or under
a single implementation policy in a single evaluation environment. For hardware implementation,
lightweight block ciphers, and for software implementation, lightweight block ciphers and authen-
ticated encryptions, are evaluated. In the examination of the existing literature, it was difficult to
compare cryptographic algorithms because of the differences in the evaluating environments and
the implementer.

Twelve lightweight block ciphers listed in Table 3.1 and ten authenticated encryptions listed in
Table 3.2 were evaluated.

Table 3.1: Evaluated Lightweight Block Ciphers

Evaluated Block Cipher Evaluated Block/Key Length Reference Specifications

AES 128/128 [8]
Camellia 128/128 [9]
CLEFIA 128/128 [25]
TDES 64/168 [11]
LED 64/128 [17]

PRINCE 64/128 [16]
PRESENT 64/80 [19]
Piccolo 64/80 [24]
TWINE 64/80 [26]
SIMON 32/64, 64/96, 64/128, 128/128 [15]
SPECK 32/64, 64/96, 64/128, 128/128 [15]
Midori 64/128, 128/128 [14]

3.1 Block Cipher

3.1.1 Evaluation of Hardware Implementations

Various ways for implementing an encryption circuit are available depending on the purpose. This
guideline considers three basic architectures systems: unrolled, round, and serial as indicated in
Figure 3.1. In Figure 3.1, the box with Round Function represents a combinational circuit that
performs the calculations for the basic functions specified in each encryption algorithm. In the case
of the hardware implementation of 12 algorithms, two types of implementation were evaluated: one
performing only the encryption operation and the other performing both encryption and decryption
with the same module in which the operations are switched by a control signal. In this guideline,
the former implementation is described as Enc and the later as Enc/Dec.
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Table 3.2: Evaluated Authenticated Encryption

Evaluated Authenticated Encryption Reference Specifications

ACORN [27]
AES-GCM [10]
AES-OTR [2]
Ascon [1]
CLOC [18]
SILC [12]

JAMBU [7]
Ketje [3]

Minalpher [4]
OCB [5]

In general, the block cipher algorithm can be divided into the key scheduling function and the
encryption/decryption function. For the evaluation in this guideline, an implementation having
both functions was built. The key scheduling function and the encryption/decryption function
were controlled by the same clock. Algorithms that required no registers for key scheduling were
implemented without registers.

Figure 3.1: Basic Implementation Methods

3.1.1.1 Performance Comparison

Tables 3.3 to 3.5 show the implementation evaluation results. Table 3.6 compares the implemented
circuit sizes excluding the interface circuits. Figures 3.2 to 3.25 graphically compare the circuit
sizes, processing speeds, peak currents, and leakage currents of the target implementations.

In the tables, “(comp)” means that the S-box is implemented using composite field arithmetic,
and “(table)” means that the S-box is implemented using Table lookups.

In Table 3.3 unrolled implementation, the CRYPTREC block ciphers including AES were
much larger than those of the lightweight cryptography/low-latency cryptography (except LED).
As Table 3.7 indicates, the difference in the performance of the S-box was the dominant factor.
In the table implementation optimized for speed, the 8-bit S-box was 100 times larger than the
4-bit S-box of PRESENT and PRINCE, and the delay was five times longer. To achieve a delay
performance similar to that of the 4-bit S-box with an 8-bit S-box without compromising efficiency,
the number of rounds must be cut to a quarter compared to that of the 4-bit S-box. Even if that
could be achieved, the S-box circuit size would be nearly 100 times larger.

From this viewpoint, since PRINCE has almost the same number of rounds as the AES, the
difference in the performance of the S-box is directly related to the entire performance. The number
of rounds of PRINCE is approximately one third of PRESENT. However, as Table 3.8 indicates,
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PRESENT had the faster P-layer, which resulted in a speed difference of less than three times
that of PRINCE. Therefore, PRINCE was approximately twice as superior to PRESENT in both
circuit size and delay.

The area advantage of PRINCE, TWINE and Piccolo over PRESENT and LED becomes even
bigger in implementations with decryption because of the influences of Generalized Feistel Net-
work (GFN) and α-reflection properties. SIMON and Midori have similar throughput as that
of PRINCE. Furthermore, the unrolled implementation cases of AES and LED, which need to
generate a decryption key before starting decryption, and Camellia and CLEFIA, which gener-
ate an intermediate key, had the disadvantage of an additional delay in the critical path. For
Piccolo and PRINCE, the maximum operating frequencies of the encryption circuit and the en-
cryption/decryption circuit could be configured to be almost identical.

The next performance comparison is between the round implementation and serial implemen-
tation. In AES, around nine kgates could be reduced, but in the cases of PRESENT and PRINCE,
the amount of reduction was only several hundred gates to one kgate. As Table 3.7 and Table 3.8
indicate, reducing the number of functional units for the S-box and P-layer has limited effects.
However, since the processing speed drops to 1/10 or lower, the serial implementations are ineffi-
cient in terms of throughput/area. In addition, serial implementaions are more complicated and
thus their source codes become less maintainable. Therefore, if there are no extreme restrictions in
implementation, using the serial implementation for lightweight cryptography has no advantages.

Finally, the serial implementation will be discussed. In literature [22], the AES was implemented
with 2.4 kgates, but our serial implementation is 1 kgate lager. The reason for the difference is
that the number of gates per flip-flop in this implementation is approximately one gate more
than the number in literature [22]. Other possible reasons include the buffers inserted during
synthesis and the configuration of the control circuit. As described in literature [22], the lack of an
optimization using Scan-FF also generates a difference. For PRESENT and PRINCE, the results
in this guideline also indicate circuit sizes 1 to 2 kgates smaller than that of AES. Although there
is no difference in the PRESENT and PRINCE circuit sizes, PRINCE can be implemented with
half-number cycles compared to PRESENT.
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Table 3.3: Evaluation of Unrolled Implementation
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Table 3.4: Evaluation of Round Implementation
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Table 3.5: Evaluation of Serial Implementation
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Table 3.6: Circuit Size of Each Implementation
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Table 3.7: Comparison of S-boxes

Module Area Path delay
[gate] [ns]

AES 8bit S-box (Table) 3,194 2.43
AES 8bit S-box (Composite) 315 5.75

PRESENT 4bit S-box (Table) 26 0.57
PRINCE 4bit S-box (Table) 18 0.48

Table 3.8: Comparison of P-Layers

Module Area Path delay
[gate] [ns]

AES 128bit permutation 864 0.89
PRESENT 64bit permutation 0 0
PRINCE 64bit permutation 192 0.51
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Figure 3.2: Area of Enc, Unrolled Implementation

Figure 3.3: Throughput of Enc, Unrolled Implementation
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Figure 3.4: Peak power of Enc, Unrolled Implementation

Figure 3.5: Leak power of Enc, Unrolled Implementation
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Figure 3.6: Area of Enc/Dec, Unrolled Implementation

Figure 3.7: Throughput of Enc/Dec, Unrolled Implementation
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Figure 3.8: Peak power of Enc/Dec, Unrolled Implementation

Figure 3.9: Leak power of Enc/Dec, Unrolled Implementation
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Figure 3.10: Area of Enc, Round Implementation

Figure 3.11: Throughput of Enc, Round Implementation
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Figure 3.12: Peak power of Enc, Round Implementation

Figure 3.13: Leak power of Enc, Round Implementaiton
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Figure 3.14: Area of Enc/Dec, Round Implementation

Figure 3.15: Throughput of Enc/Dec, Round Implementation
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Figure 3.16: Peak power of Enc/Dec, Round Implementation

Figure 3.17: Leak power of Enc/Dec, Round Implementation
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Figure 3.18: Area of Enc, Serial Implementation

Figure 3.19: Throughput of Enc, Serial Implementation
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Figure 3.20: Peak power of Enc, Serial Implementation

Figure 3.21: Leak power of Enc, Serial Implementation
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Figure 3.22: Area of Enc/Dec, Serial Implementation

Figure 3.23: Throughput of Enc/Dec, Serial Implementation
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Figure 3.24: Peak power of Enc/Dec, Serial Implementation

Figure 3.25: Leak power of Enc/Dec, Serial Implementation
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3.1.1.2 Outline of Evaluation Method

This section outlines the evaluation method. The evaluation measured the amounts of circuit
resource usage and the maximum operating frequencies of various types of lightweight cryptography
using an open-source CMOS cell library. The implementation environment is shown in Table 3.9.

Table 3.9: Implementation Environment

Synthesis Tool Design Compiler (Version G-2012.06-SP5 )
Power Analysis Tool PrimeTime PX (Version G-2012.06-SP3-2)
Optimization Minimal Area
Library NANGATE Open Cell Library (45-nm CMOS)

http://www.nangate.com/

Delay Condition NangateOpenCellLibrary slow (Logical delay in worst conditions)

The functional properties of the logical circuit to be implemented is as follows:

F1. The evaluation is performed with a key length of 80 bits or more with minimum parameters.
However, LED is evaluated with a key length of 128 bits for which a test vector is provided.

F2. An encryption circuit and an encryption/decryption circuit are implemented.
F3. provides compact and low-power APB bus interface [13] for the use as coprocessor.

Figure 3.26 is a block diagram of the APB bus and the encryption circuit. The meaning of
each signal in the figure is listed in the legend below.

* PCLK:Bus clock signal
* PRESETn:Asynchronous reset signal
* PADDR[31:0]:Address signal
* PSEL:IP selection signal
* PENABLE:Enable signal
* PWRITE:Write signal (1: Write: 0: Read)
* PWDATA[31:0]:Write data
* PRDATA[31:0]:Read data

Figure 3.26: APB Bus and Encryption Circuit

APB signal specifications not used in this evaluation include PSTRB[3:0] (write strobe signal)
and PREADY (APB extended transfer signal).

The design policy will be discussed in the following:
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P1. There are three types of implementation for each algorithm: (i) the typical round-based im-
plementation, (ii) the unrolled implementation in which the process is completed in a single
cycle, and (iii) the serial implementation where the size of the data path is the size of the
S-box.

P2. Key scheduling is implemented on-the-fly.
P3. An optimization that directly instantiates the CMOS cell library is not performed; a synthe-

sizable description independent of the library is used.

For the logical circuits designed based on the above policy, the number of cycles, maximum
operating frequencies (maximum delays), throughputs, number of gates, peak power, and leakage
power were evaluated.
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3.1.2 Evaluation of Software Implementations

This section compares the results of measuring the speeds of software implementation of the
lightweight block cipher under a restricted memory resource on an embedded microprocessor.

3.1.2.1 Performance Evaluation

In this subsection, the results of implementing nine block ciphers on RL78, a 16-bit microprocessor
from Renesas Electronics, will be presented. In the category column of the table below, ROM-Min
indicates the implementation with the minimum ROM size and (n, m) the implementation with a
ROM size of n bytes (n = 512 or 1,024) and a RAM size of m bytes (m = 64 or 128). Fast is an
implementation that aims a higher processing speed with a ROM size of around 2 KB or less. All
implementation types performed key scheduling in parallel with encryption/decryption (on-the-fly
key scheduling).

AES

Table 3.10 shows the result of implementing AES on RL78. Implementation with a RAM size of
128 bytes was omitted because 64 bytes of RAM is sufficient when only encryption is implemented.
In the implementation with both encryption and decryption, the S-box itself consumed 512 bytes
of ROM; therefore, only the 1,024-byte category was implemented.

In general implementation, the more severe the memory size restrictions, the greater the number
of loops in a round. The rightmost column shows the MixColumns implementation that greatly
affects the code size for reference. M4 had an independent code for each of the four matrix
multiplications of MixColumns. M1 had a code for only a single matrix multiplications that is
looped four times in each round to execute MixColumns. MQ had a code for a single row of the
matrix and it 16 times in a nested loop to perform one round of MixColumns calculation.

For the minimization of ROM [20], a ROM size of 430 bytes was achieved for encryption, which
is the smallest as far as we know. When implementing AES encryption/decryption, a ROM size
of 1,024 bytes was a great restriction, and the performance degradation because of a heavy use of
loops was inevitable. This is why in most existing implementations with ATtiny, the size of the
ROM is 1,500 bytes or greater. To speed up the processing time, almost all loops can be unrolled
with 2 KB of ROM. Therefore, the maximum performance of AES on the RL78 processor may be
approximately 3,500 cycles/block.

Table 3.10: AES Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed Method
AES (E) ROM-Min 430 66 + 14 8753n - MQ
AES (E) (512,64) 510 48 + 10 5302n - M1
AES (E) (1024,64) 926 48 + 8 3554n - M4
AES (ED) (1024,64) 1020 48 + 14 8193n 9719n M1
AES (ED) (1024,128) 1020 66 + 14 6946n 1380+8490n M1
AES (ED) Fast 2044 50 + 10 3554n 753+5527n M4
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Camellia

Table 3.11 shows the result of implementing Camellia on RL78. Camellia includes many 128-bit
rotating and shifting operations. However, since there are no rules for the number of rotations, the
ROM size increases. In addition, the sizes of the FL function and Σ constant are not small, and
with only a single S-box, the minimum ROM size was 749 bytes. To implement both encryption
and decryption, the subroutines required to shrink the code size resulted in an increase in the
number of stacks used, and thus it was unable to satisfy a RAM size of 64 bytes.

However, when only encryption was implemented under a 2-KB ROM size condition, a speed
similar to AES was obtained. Therefore, if more ROM is available, Camellia, which is a Feistel
cipher, is expected to be faster than AES in decryption. Thus, with a relatively large amount of
memory, Camellia exhibits high performance.

In the implementation, the code implementing only encryption other than ROM-Min had a
dedicated group of the required rotating and shifting subroutines inside. The code implementing
both encryption and decryption included only 8-bit rotating and shifting routines and 1-bit rotating
and shifting routines and realized a necessary number of bits of rotation and shifting online. The
ROM-Min implementation had only a 1-bit rotating and shifting routine and similarly realized
a necessary number of bits of rotation and shifting online. The rightmost column indicates the
number of bits of rotation and shifting performed by the routine in each type of implementation
for reference.

Table 3.11: Camellia RL78 Implementation

Algorithm Category ROM RAM Enc Speed Dec Speed Method
static+stack

Camellia (E) ROM-Min 749 56 + 16 58382n - 1
Camellia (E) (1024,64) 1024 54 + 10 889+4709n - 17,15
Camellia (E) (1024,128) 1018 56 + 14 884+4520n - 17,15
Camellia (E) Fast 1995 66 + 12 740+3638n - 34,30,17,15
Camellia (ED) (1024,128) 1021 58 + 22 3034+25470n 3907+25498n 8,1
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CLEFIA

Table 3.12 shows the implementation of CLEFIA on RL78. Since CLEFIA consumes a large
amount of memory to store an intermediate key in the key scheduling part, it cannot be realized
with a RAM size of 64 bytes. In addition to the fact that there are two pieces of S-box and
MixColumns, the constant consumes 384 bytes, which necessitates a large ROM size. Therefore,
it is difficult to implement this method with a ROM size of 512 bytes.

However, one of the two pieces of the S-box and the constants can be dynamically generated
during execution. In the cases of implementing ROM-Min and implementing both encryption and
decryption, these items are actually created dynamically. When only encryption is implemented
with (1,024, 128), only the constants were dynamically generated and the two S-boxes were stored
in ROM. Therefore, 800 bytes of ROM were required in the minimum configuration. The rightmost
column shows which implementation method was used as a reference. S indicates that S-box was
generated dynamically, and C indicates that a constants were generated dynamically.

Table 3.12: CLEFIA Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed Method
CLEFIA (E) ROM-Min 800 58 + 22 23854n - SC
CLEFIA (E) (1024,128) 1021 58 + 16 12351n - C
CLEFIA (E) Fast 1681 74 + 14 3010+5899n -
CLEFIA (ED) (1024,128) 1018 90 + 26 19879n 20797n SC

TDES

Table 3.13 shows the implementation of TDES on RL78. TDES can be implemented with a
RAM size of 64 bytes. However, since the algorithm mainly executes irregular bit operations,
the tables for the S-box and bit indices occupy 400 bytes or more of ROM. Therefore, the entire
program cannot be implemented in a ROM size of 512 bytes.

In the implementation with 1,832 bytes of ROM, since most speed-related parts of the algorithm
are unrolled, the almost maximum speed achievable was obtained, and the speed of TDES was
approximately 1/15 that of AES.

Table 3.13: TDES Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed
TDES (E) ROM-Min 958 50 + 14 111183n -
TDES (E) (1024,64) 1024 50 + 14 77708n -
TDES (E) Fast 1832 50 + 8 26697n -
TDES (ED) (1024,64) 1019 50 + 14 87879n 87543n
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LED

Table 3.14 shows the result of implementing the LED on RL78. The LED has a similar structure
to AES with a 4-bit word. In the case of ciphers having such a structure, it is necessary to divide
an 8-bit plaintext or key into two pieces of 4-bit data at some point. A trade-off exists between
memory size and speed depending on the stage (before encryption or during execution) in which
the division is performed. Transferring the 4-bit S-box from ROM to RAM in advance increases
the speed in return for an increase in code and RAM sizes. This is because, on RL78, it takes
four cycles to read data from the ROM, but only one cycle to read data from the RAM. Another
trade-off is possible by performing a doubling operation on GF(16) during execution or on a table
in RAM.

Under these trade-offs, it is a complicated task to determine the fastest solution under the given
memory-size conditions. The rightmost column of the table lists symbols indicating which types
of implementation were used for reference. S means that the S-box was transferred to the RAM,
G means that the table used for the doubling operation on GF(16) was transferred to the RAM, T
indicates that the plaintext (ciphertext) was initially divided into 4-bit units, and K that the key
was initially divided into 4-bit units.

In the implementation of encryption only with (1,024, 128), since all major parts were unrolled,
the maximum speed for RL78 was almost obtained.

Table 3.14: LED Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed Method
LED (E) ROM-Min 298 54 + 12 36779n - T
LED (E) (512,64) 510 54 + 10 18055n - S
LED (E) (512,128) 504 100 + 12 17207n - SGTK
LED (E) (1024,64) 956 54 + 10 15899n - S
LED (E) (1024,128) 1023 100 + 8 14478n - SGTK
LED (ED) (512,64) 508 54 + 10 35726n 32219n T
LED (ED) (512,128) 508 54 + 14 33950n 31787n T
LED (ED) (1024,64) 1007 54 + 10 17717n 17788n S
LED (ED) (1024,128) 1023 100 + 8 16753n 17472n SGT

PRINCE

Table 3.15 shows the result of implementing PRINCE on RL78. The implementation with a
RAM size of 128 bytes aimed to speed up processing by transferring a total of 32 bytes for the
two pieces of the S-box to the RAM, which is indicated by the symbol S in the rightmost column
of the table. The high-speed implementation aimed to increase the processing speed by using two
256-byte tables to parallelize two pieces of S-box, indicated by the symbol S8.

PRINCE does very little key schedule processing, and both encryption and decryption can be
realized in similar processes. However, since the number of constants is large and overhead exists
in the matrix operation code, the size of the ROM in the minimum configuration is larger than
the other lightweight 64-bit block ciphers.
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Table 3.15: PRINCE Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed Method
PRINCE (E) ROM-Min 424 42 + 22 9905n -
PRINCE (E) (512,64) 512 42 + 12 7611n -
PRINCE (E) (512,128) 511 74 + 12 7320n - S
PRINCE (E) (1024,64) 1019 42 + 12 4928n -
PRINCE (E) (1024,128) 1020 74 + 12 4541n - S
PRINCE (E) Fast 1789 42 + 8 3307n - S8
PRINCE (ED) (512,64) 511 44 + 20 9925n 10050n
PRINCE (ED) (512,128) 511 76 + 24 9541n 9810n S
PRINCE (ED) (1024,64) 1007 42 + 12 5117n 5214n
PRINCE (ED) (1024,128) 1017 74 + 12 4745n 4832n S

PRESENT

Table 3.16 shows the result of implementing PRESENT on RL78. Since PRESENT has a
regular structure, it can be implemented in a very compact code. A minimum ROM implementation
size of 164 was achieved for encryption. This is much smaller than and superior in speed to [23]
and [20].

In any method, PRESENT is basically implemented by shifting the data in an input register
by one bit, moving one carry bit into an output register and repeating this simple process. Using
the 16-bit instruction of RL78, the movement of the carry bit can be performed with a single
instruction, which contributes to the reduction in code size.

In PRESENT, size and speed trade-offs exist between how to create tables and whether to
transfer their contents to RAM. In the rightmost column of the table, Sn-m means that the
implementation had n 16-bit tables in ROM and transferred m out of n tables to RAM. S8 indicates
the use of two parallel 256-byte tables.

The (1,024, 64) implementation of encryption completely unrolled a single stage and was as-
sumed to indicate the speed limit of RL78. The PRESENT algorithm was slow but had the
advantage of small memory size.

Table 3.16: PRESENT Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed Method
PRESENT (E) ROM-Min 164 38 + 22 93412n - S1-0
PRESENT (E) (512,64) 491 44 + 16 11344n - S2-1
PRESENT (E) (512,128) 499 60 + 16 10560n - S2-2
PRESENT (E) (1024,64) 952 28 + 10 9007n - S8
PRESENT (ED) (512,64) 512 42 + 18 16924n 3736+19131n S2-0
PRESENT (ED) (512,128) 509 74 + 18 16407n 3643+18614n S2-2
PRESENT (ED) (1024,64) 989 38 + 18 12048n 1996+12367n S4-0
PRESENT (ED) (1024,128) 1003 102 + 18 10691n 1903+11010n S4-4

Piccolo

Table 3.17 shows the result of implementing Piccolo on RL78. The meaning of the symbols in
the rightmost column of the table is the same as PRESENT. Since Piccolo can be implemented
with a small amount of RAM, 64 bytes of RAM was sufficient in all categories.

Falling short of the level of PRESENT in the minimum implementation size, Piccolo was
generally a fast algorithm.
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Table 3.17: Piccolo Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed Method
Piccolo (E) ROM-Min 275 24 + 18 12220n - S1-0
Piccolo (E) (512,64) 498 52 + 8 5779n - S2-2
Piccolo (E) (1024,64) 1018 40 + 8 4961n - S8
Piccolo (E) Fast 1172 40 + 8 4636n - S8
Piccolo (ED) (512,64) 512 54 + 8 6186n 6084n S2-2
Piccolo (ED) (1024,64) 966 52 + 8 5779n 5779n S2-2

TWINE

Table 3.18 shows the result of implementing TWINE on RL78. The meaning of the symbols in
the rightmost column of the table is the same as PRESENT and Piccolo. The TWINE algorithm
had little software overhead, which accommodated an extremely small code size. Similar to Piccolo,
the implementation consumed little RAM, and a RAM size of 64 bytes served all categories.

For encryption only, the fastest implementation was realized in almost all categories with 512
bytes of ROM and 64 bytes of RAM. In terms of speed, TWINE achieved a similar level to Piccolo.

Table 3.18: TWINE Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed Method
TWINE (E) ROM-Min 232 52 + 8 11043n - S1-0
TWINE (E) (512,64) 468 52 + 6 4957n - S1-1
TWINE (ED) (512,64) 510 54 + 10 6132n 2463+5570n S1-1
TWINE (ED) (1024,64) 972 54 + 6 4957n 1727+4892n S1-1

SIMON

Table 3.19 shows the result of implementing SIMON on RL78. The category “ROM-min” aims
to minimize ROM size by introducing loops or subroutines for common modules. Because SIMON
has the Feistel structure, the data randomization module is commonly used for encryption and
decryption in the program supporting both encryption and decryption. The category “One” in
Table 3.19 indicates the one-round implementation where the round function is unrolled and it is
repeated the number of rounds. The data randomization and the key schedule modules are not
shared, but the modules for the initialization and the key schedule are shared between encryption
and decryption in the program supporting both encryption and decryption.

The category “Fast” aims a faster implementation by unrolling plural rounds and repeating it
necessary times and by preventing common modules or subroutines. In the fast implementation of
SIMON, the optimal number of rounds for unrolling is LCM(2,m), where m = (key size) / (word
size), because the data randomization of SIMON has a 2-round cycle, and the key schedule has an
m-round cycle.

SPECK

Table 3.20 shows the result of implementing SPECK on RL78. The category “ROM-min”
aims to minimize ROM size by introducing loops or subroutines for common modules. The data
randomization and the key schedule modules share some common modules. The category “One”
in Table 3.20 indicates the one-round implementation where the round function is unrolled and it
is repeated the number of rounds. The data randomization and the key schedule modules are not
shared, but the modules for the initialization and the key schedule are shared between encryption
and decryption in the program supporting both encryption and decryption. The category “Fast”
aims a faster implementation by unrolling plural rounds and repeating it necessary times and by
preventing common modules or subroutines. In the fast implementation of SPECK, the optimal
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Table 3.19: SIMON Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed
SIMON(32/64)(E) ROM-Min 127 20 + 8 3706n -
SIMON(32/64)(E) One 171 20 + 6 2480n -
SIMON(32/64)(E) Fast 413 20 + 6 1872n -
SIMON(64/96)(E) ROM-Min 112 32 + 8 7354n -
SIMON(64/96)(E) One 243 32 + 6 4598n -
SIMON(64/96)(E) Fast 859 32 + 6 3450n -
SIMON(64/128)(E) ROM-Min 128 40 + 8 9094n -
SIMON(64/128)(E) One 303 40 + 6 6404n -
SIMON(64/128)(E) Fast 753 40 + 6 4688n -
SIMON(128/128)(E) ROM-Min 111 48 + 8 21050n -
SIMON(128/128)(E) One 415 48 + 6 13148n -
SIMON(128/128)(E) Fast 629 48 + 6 10836n -
SIMON(32/64)(ED) ROM-Min 273 20 + 14 4227n 6586n
SIMON(32/64)(ED) One 310 30 + 10 2777n 4473n
SIMON(32/64)(ED) Fast 1035 20 + 6 1872n 3069n
SIMON(64/96)(ED) ROM-Min 244 32 + 14 8035n 12063n
SIMON(64/96)(ED) One 436 32 + 10 4985n 7559n
SIMON(64/96)(ED) Fast 1888 32 + 6 3450n 5217n
SIMON(64/128)(ED) ROM-Min 277 40 + 14 9807n 15408n
SIMON(64/128)(ED) One 546 40 + 10 6809n 11057n
SIMON(64/128)(ED) Fast 1883 40 + 6 4688n 7551n
SIMON(128/128)(ED) ROM-Min 203 48 + 14 22147n 34005n
SIMON(128/128)(ED) One 506 48 + 10 13767n 21023n
SIMON(128/128)(ED) Fast 1457 48 + 6 10836n 16116n

number of rounds for unrolling is m − 1, where m = (key size) / (word size), because the data
randomization of SPECK has no cycle, and the key schedule has an (m− 1)-round cycle.

Table 3.20: SPECK Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed
SPECK(32/64)(E) ROM-Min 96 24 + 8 1817n -
SPECK(32/64)(E) One 115 20 + 6 1249n -
SPECK(32/64)(E) ROM-Min 261 20 + 6 1006n -
SPECK(64/96)(E) ROM-Min 90 44 + 8 6645n -
SPECK(64/96)(E) One 185 32 + 6 2335n -
SPECK(64/96)(E) Fast 308 32 + 6 2062n -
SPECK(64/128)(E) ROM-Minl 89 52 + 8 7448n -
SPECK(64/128)(E) One 205 40 + 6 2644n -
SPECK(64/128)(E) Fast 451 40 + 6 2122n -
SPECK(128/128)(E) ROM-Min 71 67 + 8 11432n -
SPECK(128/128)(E) One 205 64 + 6 5662n -
SPECK(128/128)(E) Fast 309 48 + 6 4793n -
SPECK(32/64)(ED) ROM-Min 211 24 + 10 2308n 3684n
SPECK(32/64)(ED) One 283 20 + 6 1249n 1918n
SPECK(32/64)(ED) Fast 623 20 + 6 1006n 1392n
SPECK(64/96)(ED) ROM-Min 211 44 + 10 6600n 10837n
SPECK(64/96)(ED) One 447 32 + 6 2335n 3585n
SPECK(64/96)(ED) Fast 742 32 + 6 2062n 3088n
SPECK(64/128)(ED) ROM-Min 210 52 + 10 7078n 11690n
SPECK(64/128)(ED) One 499 40 + 6 2644n 4152n
SPECK(64/128)(ED) Fast 1087 40 + 6 2122n 3165n
SPECK(128/128)(ED) ROM-Min 157 67 + 10 11471n 18074n
SPECK(128/128)(ED) One 391 64 + 10 5702n 8726n
SPECK(128/128)(ED) Fast 746 48 + 6 4793n 7343n
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Midori

Table 3.21 shows the result of implementing Midori on RL78. Midori consists of 4-bit S-boxes,
and it is implemented similarly to PRESENT. Therefore, the legend shown in the rightmost column
of the table (“Sn-m” in the Method column) is the same as that in the tables for PRESENT, Piccolo,
and TWINE. The fast implementation of Midori128 employs 8-bit S-box lookup tables and loop
unrolling. In the ROM-Min implementation of Midori128, 8-bit S-boxes are calculated using 4-bit
S-boxes, and loops and subroutines for common modules are employed.

Table 3.21: Midori Implementation on RL78

Algorithm Category ROM RAM static+stack Enc Speed Dec Speed Method
Midori64(E) Fast 871 64 + 8 6768n - S2-0
Midori64(E) ROM-Min 232 96 + 8 16979n - S2-0
Midori64(ED) Fast 1576 64 + 10 6768n 8360n S2-0
Midori64(ED) ROM-Min 374 96 + 6 17867n 27966n S2-0
Midori128(E) Fast 1346 64 + 8 9217n - -
Midori128(E) ROM-Min 560 64 + 8 31794n - -
Midori128(ED) Fast 1745 64 + 10 9217n 10166n -
Midori128(ED) ROM-Min 605 64 + 6 32495n 45586n -

3.1.2.2 Performance Comparison

Based on the implementation results, this subsection compares several criteria of the target algo-
rithms.

Implementation with restricted memory sizes (Encryption only)

Figure 3.27 compares the speeds of implementations for encryption only using a ROM size of
1,024 bytes or less and a RAM size of 128 bytes or less. Figure 3.28 is similar to Figure 3.27
with TDES excluded to improve legibility. With these amounts of memory, AES was the fastest,
followed by SPECK.

Figure 3.29 compares the speeds of implementations for encryption only using a ROM size of
1,024 bytes or less and a RAM size of 64 bytes or less. Figure 3.30 is similar to Figure 3.29 with
TDES excluded to improve legibility. Except for CLEFIA, the results were similar to the imple-
mentation with ROM of 1,024 bytes or less and 128-byte RAM. CLEFIA cannot be implemented
with 64 bytes of RAM and is indicated by a value of 0 in the figure.

Figure 3.31 compares the speeds of implementation for encryption only using a ROM size of
512 bytes or less and a RAM size of 128 bytes or less. Figure 3.32 compares the speeds of the same
implementation with a ROM size of 512 bytes or less and a RAM size of 64 bytes or less. When
the size of the ROM was reduced to 512 bytes or less, it was impossible to implement Camellia,
TDES, and CLEFIA. Among the other algorithms, AES and SPECK achieve fast speed.
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Figure 3.27: Speed with 1,024-byte ROM and 128-byte RAM

Figure 3.28: Speed with 1,024-byte ROM and 128-byte RAM (with TDES excluded)
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Figure 3.29: Speed with 1,024-byte ROM and 64-byte RAM

Figure 3.30: Speed with 1,024-byte ROM and 64-byte RAM (with TDES excluded)
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Figure 3.31: Speed with 512-byte ROM and 128-byte RAM

Figure 3.32: Speed with 512-byte ROM and 64-byte RAM
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Implementation with restricted memory sizes (Encryption/Decryption)

Figure 3.33 compares the speeds of the implementation for both encryption and decryption
using a ROM size of 1,024 bytes or less and a RAM size of 128 bytes or less. Figure 3.34 is similar
to Figure 3.33 with TDES excluded to improve legibility. Also in this category, SPECK is the
fastest, but the difference in speed from Piccolo, PRINCE, and TWINE is smaller than that in the
category of implementation of encryption only.

Figure 3.35 compares the speeds of the implementation for both encryption and decryption
using a ROM size of 1,024 bytes or less and a RAM size of 64 bytes or less. Figure 3.36 is similar
to Figure 3.35 with TDES excluded to improve legibility. In this category, CLEFIA, Camellia
cannot be implemented. The difference between the speed of AES and that of Piccolo, PRINCE,
and TWINE was reduced, indicating that the speed of AES decreased because of insufficient
memory resources. In this category, CLEFIA, Camellia, and Midori128 can not be implemented.
The difference in speed between AES and Piccolo, PRINCE, and TWINE is small, because the
speed of AES decreases due to lack of memory. Also in this category, SPECK is the fastest.

Figure 3.37 compares the speeds of the implementation for both encryption and decryption
using a ROM size of 512 bytes or less and a RAM size of 128 bytes or less. Figure 3.38 compares
the speeds of the same implementation with a ROM size of 512 bytes or less and a RAM size of 64
bytes or less. In this case, it was impossible to implement AES. As a result, only five algorithms
survived. Among others, Piccolo and TWINE indicated similar speeds. In particular, SPECK
achieves fast speeds which are not affected so much by restricted ROM sizes.

50



Figure 3.33: Speed with 1,024-byte ROM and 128-byte RAM

Figure 3.34: Speed with 1,024-byte ROM and 128-byte RAM (with TDES excluded)
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Figure 3.35: Speed with 1,024-byte 64-byte RAM

Figure 3.36: Speed with 1,024-byte ROM and 64-byte RAM (with TDES excluded)
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Figure 3.37: Speed with 512-byte ROM and 128-byte RAM

Figure 3.38: Speed with 512-byte ROM and 64-byte RAM
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Implementation with restricted memory sizes (Summary)

Figure 3.39 and Figure 3.40 summarize the above results. Figure 3.40 is similar to Figure 3.39
with TDES excluded. Generally speaking, the more severe the memory-size restrictions (further
right on the table), the lower the performance. SIMON, SPECK, Piccolo and TWINE don’t show
this performance reduction, which means that they can afford more memory-size reduction.

Figure 3.39: List of Speeds with Restricted Memory Sizes

Figure 3.40: List of Speeds with Restricted Memory Sizes (with TDES excluded)
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High-speed implementation

Figure 3.41 compares the speeds of the implementations designed to achieve high speeds with
ROM of around 2 KB. The results indicate that the highest performance of each algorithm was
attainable on the RL78 processor. In the evaluation, AES, Camellia and SPECK indicated similar
performance.

Figure 3.41: List of Speeds with Constrained Implementations
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Minimum implementation

Figure 3.42 evaluates the implementation for encryption only with the minimum possible ROM
sizes. The comparison clarifies the difference between recent lightweight cryptographic algorithms
and other algorithms.

Figure 3.42: List of Speeds with Minimum Implementations
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Other considerations

Figure 3.43 plots all implementations for encryption only with a ROM size of 512 bytes or less.
The horizontal axis shows the ROM size and the vertical axis the speed. For AES, as long as S-box
tables exist, the minimum ROM size was around 400 bytes; below this level, only the algorithms
having a smaller S-box or having no S-box were feasible. As shown in the figure, the area of a
ROM size of 200 bytes or less and 2,000 cycles/byte or less, could be attained only with SIMON
and SPECK, thereby indicating a future direction for lightweight cryptography.

Figure 3.43: Trade-off between Memory Size and Speed

From an algorithmic structure viewpoint, an entire algorithm needs to have a simple structure
with a small number of task repetitions to reduce the implementation size. In compact imple-
mentation, simple data movement and constant storage create significant overhead. If there are
restrictions in the RAM size, it is necessary to perform key scheduling on-the-fly. However, key
scheduling often causes a bottleneck in some algorithms.

Moreover, in terms of the structure of the processor, the efficiencies of the rotating and shifting
instructions heavily depend on the processor types. Since most modern processors are now little
endian, algorithms that assume big endian could cause overhead of changing the byte order, which
should be considered when designing lightweight cryptography.
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3.1.2.3 Outline of Evaluation Method

This subsection describes the environment in which the software implementation performance of
lightweight cryptography was evaluated and the conditions of implementation.

RL78 embedded microprocessor and evaluation environment

In this evaluation, the target block ciphers were implemented on RL78, an embedded micro-
processor from Renesas Electronics [6]. RL78 is an accumulator-based 16-bit CISC processor. Its
instruction set contains many single-byte instructions, and load-modify instructions are supported.
Therefore, this processor is suitable for reducing the ROM size. However, not all RL78 instructions
can handle 16-bit data. For example, for the logical operations and rotating and shifting operations
often used in block ciphers, only 8-bit instructions are supported.

RL78 has several series. The general-purpose low-end products of the G1x series have a ROM
size of 1 KB and a RAM size of 128 bytes. The low-end products in the F1x series developed for
automobiles have 8 KB of ROM and 512 bytes of RAM.

The RL78 series have a common instruction set (except for multiplication instructions which
are not supported by some models), and their instruction lengths are the same. Therefore, as
long as general-purpose instructions other than multiplication instructions are used, RL78 codes
operate on all models and occupy the same amount of memory. There are differences in execution
speed depending on the type of hardware core (S1, S2, or S3 [6]) used in some codes. In this
evaluation, the speeds were measured on the S2, which is used in most models.

CubeSuite+ provided by Renesas Electronics was used for the development environment.

Conditions for implementation

To evaluate the performance of various memory resources, the speeds were measured in the
implementation for both encryption only and encryption and decryption under four memory re-
strictions: 512 bytes and 1,024 bytes of ROM, and 64 bytes and 128 bytes of RAM. In addition,
the implementation with the minimum ROM size without considering speed and the speed en-
hancement by allowing up to around 2 KB of ROM were evaluated.

Depending on the target block cipher algorithm, it was impossible to implement some algo-
rithms under certain memory restrictions, and sufficient performance could be obtained with a
limited amount of resources, but adding memory did nothing to enhance performance. In such
cases, the corresponding implementation was omitted. The evaluation was conducted with a max-
imum RAM size of 128 bytes such that all target algorithms were implemented with on-the-fly key
scheduling.

The program interface of the library and the method for calculating ROM and RAM sizes
were similar to those used in literature [20]. Therefore, the programs were written as subroutines
in assembly language to encrypt and decrypt a single block of data, which were with callable by
C-language programs. Each subroutine had only one argument, and plaintext, ciphertext, key, and
temporal data were stored at the address pointed to by the argument. To minimize the RAM size
and achieve practical advantages, the algorithms were implemented under the following conditions:

• plaintext and ciphertext share the same area,

• the contents of the key area do not change before or after calling a subroutine, but may
temporarily change during execution,

• the zero-page area (area with an absolute address less than 256) should not be used (reserved
for the system),

• programs should be relocatable (no absolute addresses should be hard-coded), and

• no system-dependent coding (e.g., register-bank switching and writing to special-purpose
registers directly) is allowed.

The calculation of the ROM and RAM sizes included all resources required to execute each
subroutine. Specifically, the ROM size included the code and constant, and the RAM size included
the plaintext (which shares the same area with the ciphertext), key, and temporary data stacks.
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Therefore, in the case of a 128-bit block cipher and a 128-bit key, an area of 32 bits was occupied
by only the plaintext and key. The size of the stack frame required for function calling was 6 bytes
(4 bytes for the call instruction and 2 bytes for storing the callee- save register). It follows that, in
the implementation with a RAM size of 64 bytes or less, only 28 bytes of RAM including stacks
remains, and this is a severe constraint.
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3.2 Authenticated Encryption

3.2.1 Evaluation of Software Implementations

This section shows the results of software implementations of authenticated encryption schemes
on RL78, an embedded microprocessor with limited memory resources. The target schemes are
shown in Figure 3.44.

Figure 3.44: Evaluated Authenticated Encryption Schemes and their Parameters

Since there is a ongoing project on hardware implementations of authenticated encryption
schemes using a unified platform by a research team at George Mason University, it is not mentioned
in this guideline. For details of the hardware implementation, refer to the following URL:
Authenticated Encryption FPGA Ranking
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view

3.2.1.1 Performance Comparison

Result of evaluating the implementation of authenticated encryption

Figure 3.45 shows the result of evaluating the compact implementation of authenticated en-
cryptions. In the table above, the columns indicate, from left to right: algorithm name, security
level (bit), ROM size (bytes), RAM size (bytes), speed of each function for processing relevant
data (red: cycles/byte; black: cycles), names of the Core Functions used inside, ROM size of the
Core Functions (bytes), and speeds of the Core Functions (cycles/byte). The table below lists the
speed of each function for processing encryption and decryption.

In CLOC-TWINE, the speeds of ENC NULL and DEC NULL are 11,160 and 11,099 cycles,
respectively, and in CLOC-AES, the speeds of ENC NULL and DEC NULL are 8,895 and 8,790
cycles, respectively.

Figure 3.46 shows the result of evaluating the high-speed implementation of authenticated
encryptions. The meaning of each column is the same as that in Figure 3.45.

The speeds of ENC NULL and DEC NULL in CLOC-TWINE are 5,074 and 5,013 cycles,
respectively, and in CLOC-AES, the speeds of ENC NULL and DEC NULL are 3,748 and 3,643
cycles, respectively.

Above are the evaluation results of the programs that include the modules for encryption (and
tag generation) and decryption (and tag verification). Removing the decryption functional group
(DEC 0, DEC 1, DEC 2, DEC 3, DEC 4) from these programs left only the encryption function
(and tag generation) in which the performance of other functions did not change and only the
ROM size decreased as shown below (in bytes). The ROM sizes were constant and independent
of the type of Core Function and compactness or speed of the implementation (and they were
designed so).

It should be noted that the encryption/decryption functions for block ciphers used in Core
Functions are different from the encryption/decryption functions for authenticated encryptions.
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Figure 3.45: Implementation of Authenticated Encryption (Compact Implementation)

Table 3.22: Amount of ROMReduction by Implementing only Encryption Module of Authenticated
Encryption Schemes

Algorithm AES-GCM CLOC SILC AES-OTR Ketje Minalpher
ROM Reduction (bytes) 47 102 59 255 108 93

All of the target authenticated encryption schemes of this evaluation, except Minalpher and AES-
OCB, do not require the inverse functions of the Core Functions for decrypting authenticated
encryption (or for a decrypting block cipher if the Core Function was a block cipher). The Core
Function of Minalpher and its inverse are not precisely the same, but very similar because of an
involution structure.

The interface in this evaluation was created so that the functions for encryption and the func-
tions for decryption for authenticated encryption were clearly separated. Therefore, the size of an
authenticated encryption module that has only encryption (and tag generation) could be calculated
simply by subtracting the size of the functions for decryption from the total size, and the speed
was kept constant.

Figure 3.47 is a chart for comparing the ROM sizes in compact implementation. Figure 3.48
divides the ROM sizes into those of the Core Functions (below) and those of the other parts that
correspond to the mode of operation (above). Figure 3.49 is a chart for comparing the speeds (more
precisely the asymptotic speeds for a sufficiently large plain text) of the high-speed implementation.
Figure 3.50 divides the speeds into those of the Core Functions (below) and those of the other parts
that correspond to the mode of operation (above).

In these charts, the security levels (32-bit, 64-bit, and 128-bit) of the authenticated encryption
schemes are shown in different colors.
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Figure 3.46: Implementation of Authenticated Encryption (Fast Implementation)
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Figure 3.47: Comparison of the ROM Sizes in Compact Implementations

Figure 3.48: Comparison of the ROM Sizes in Compact Implementations (with Core Functions
and Modes Separated)
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Figure 3.49: Comparison of Encryption Speed (Asymptotical Speeds) in Fast Implementations

Figure 3.50: Comparison of Encryption Speed (Asymptotical Speeds) in Fast Implementations
(with Core Functions and Modes Separated)
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3.2.1.2 Outline of Evaluation Method

Coding policy and interface specifications

Since an authenticated encryption has many input/output parameters including plaintext, ci-
phertext, key, associated data, and nonce, it is difficult to perform a one-dimensional evaluation of
speed as in the case of lightweight cryptography. Therefore, this evaluation divides each authenti-
cated encryption scheme into several units and measures the speed of each unit while conforming
to the coding policy indicated in literature [21]. Given the lengths of the plaintext and associated
data, anyone can obtain the number of calculation cycles using the table created in this report.

However, if the scheme is divided into small parts, a high-layer program for controlling the
overall flow is required to process the entire authenticated encryption, and if the program has large
overhead, it is impossible to correctly estimate the total speed by accumulating the performance
data of each part.

A method for dividing the scheme into blocks while keeping the overhead of the high-order
program as small as possible is proposed here. Concretely, an authenticated encryption scheme is
divided into an associated data processing part (AD), an encryption part (ENC), and a decryption
part (DEC), and each of the three parts is sub-divided into five functions as listed below:

1 Initialization (process before feeding associated data, plaintext, and ciphertext)

2 Calculation of the first block

3 Calculation of intermediate blocks (each block from the second to the penultimate block)

4 Calculation of the last block

5 Finalization (process after feeding associated data, plaintext, and ciphertext)

Each function was coded as a single program function. However, since there were some un-
necessary functions and duplicated functions, it was not necessary to implement each of a total
of 15 functions for all authenticated encryption schemes. In addition, the boundary between two
functions could not be determined precisely; therefore, the presumably most reasonable boundary
was set for each scheme.

Notation used for the functions are exemplified as follows:

AD 0 Initialization of the associated data processing part

ENC 123 Calculation of the first, intermediate, and last blocks of the encryption part, which
means ENC 1, ENC 2, and ENC 3 can be merged.

As an example of the AES-GCM encryption mode, a high-layer program that describes the
entire authenticated encryption using the functions above is shown in Figure 3.51. Note that alen
and mlen indicate the lengths of the associated data and plaintext, respectively. BLEN is the block
length, which is 16 in this example. The functions defined above are shown in red.
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Figure 3.51: Sample Code of AES-GCM Encryption Mode
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AES-GCM

In this evaluation, the AES-GCM algorithm described in [10] was implemented using the fol-
lowing common parameters.

Table 3.23: AES-GCM Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
AES-GCM 128 bits 128 bits 96 bits 64 bits

The AES-GCM algorithm was further divided into the functions shown in Figure 3.52.

Figure 3.52: Functional Division of AES-GCM for Evaluation

67



CLOC

For the CLOC algorithm v2 [18], three parameters were recommended. In this evaluation, two
were implemented; one used TWINE-64-80 for the Core Function, and the other used AES-128-128
for the Core Function.

Table 3.24: CLOC Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
CLOC-TWINE 80 bits 64 bits 48 bits 32 bits
CLOC-AES 128 bits 128 bits 96 bits 64 bits

The CLOC algorithm was further divided into the functions shown in Figure 3.53. When the
size of the plaintext was 0, CLOC performed a special process called ENC NULL.

Figure 3.53: Functional Division of CLOC for Evaluation
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SILC

For the SILC algorithm v2 [12], four parameters were recommended. In this evaluation, two
were implemented; one used PRESENT-64-80 for the Core Function, and the other used AES-128-
128 for the Core Function.

Table 3.25: SILC Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
SILC-PRESENT 80 bits 64 bits 48 bits 32 bits

SILC-AES 128 bits 128 bits 96 bits 64 bits

The SILC algorithm was further divided into the functions shown in Figure 3.54.

Figure 3.54: Functional Division of SILC for Evaluation
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Minalpher

For the Minalpher algorithm [4], substitution, called Minalpher-P, was used as the Core Func-
tion. It had one parameter, indicated in the following.

The Minalpher algorithm was further divided into the functions shown in Figure 3.55.

Table 3.26: Minalpher Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
Minalpher 128 bits 256 bits 104 bits 128 bits

Figure 3.55: Functional Division of Minalpher for Evaluation
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AES-OTR

The AES-OTR algorithm [2] uses AES-128-128 or AES-128-256 as the Core Function. Several
parameters are defined for AES-OTR. The implementation for this evaluation used the one called
primary parameter and AES-128-128 as the Core Function.

Table 3.27: AES-OTR Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
AES-OTR 128 bits 128 bits 96 bits 128 bits

The AES-OTR algorithm was further divided into the functions shown in Figure 3.56.

Figure 3.56: Functional Division of AES-OTR for Evaluation
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Ketje

The Ketje algorithm [3] is an authenticated encryption scheme based on the sponge function,
and employs a dedicated function f as the Core Function There are two parameters for Ketje:
Ketje-SR and Ketje-JR. In this evaluation we implemented the former (primary recommendation)
with 50-byte state size.

Table 3.28: Ketje Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
Ketje-SR 128 bits 32 bits 128 bits 128 bits

The Ketje algorithm was further divided into the functions shown in Figure 3.57.
AD 12 and AD 3 are the same function except that the constants are different. The number

below f indicates the number of repetitions inside the function f.

Figure 3.57: Functional Division of Ketje for Evaluation
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ACORN

ACORN is a stream-cipher-based authenticated encryption scheme. In ACORN, the 293-bit
state is updated by repeating the Core Function StateUpdate with changing the control bits and
input bits.

The implementation for this evaluation used the parameters shown in Table 3.58.

Table 3.29: ACORN Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
ACORN 128 bits 128 bits 128 bits 128 bits

Figure 3.58: Functional Division of ACORN for Evaluation
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AES-OCB

AES-OCB [5] uses AES-128, AES-192 or AES-256, as the Core Function. The implementation
for this evaluation used the parameter considered as the primary recommendation, where AES-128
is used as the Core Function.

Note that AES-OCB requires the AES decryption in the decryption of authenticated encryption
scheme, which is only one scheme among the AES-based authenticated encryption schemes in this
evaluation.

Table 3.30: AES-OCB Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
AES-OCB 128 bits 128 bits 96 bits 128 bits

The AES-OCB algorithm was divided into the functions shown in Figure 3.59

Figure 3.59: Functional Division of AES-OCB for Evaluation
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JAMBU

The Jambu algorithm [7] uses Simon-96-96, Simon-64-96, Simon-128-128, or AES-128-128 as
the Core Function. The implementation for this evaluation used two parameter sets shown in
Table 3.31: one using Simon-96-96 (primary recommendation), and the others using AES-128-128.

Table 3.31: JAMBU Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
JAMBU-SIMON 96 bits 96 bits 48 bits 48 bits
JAMBU-AES 128 bits 128 bits 64 bits 64 bits

The JAMBU algorithm was divided into the functions shown in Figure 3.60.

Figure 3.60: Functional Division of JAMB for Evaluation
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Ascon

The Ascon [1] is an authenticated encryption scheme based on the sponge function, likely to
Ketje, and employs a dedicated function p as the Core Function. The implementation for this
evaluation used the parameter shown in Table 3.32 considered as the primary recommendation,
where p has 40-byte input/output.

Table 3.32: Ascon Parameters Used in Evaluation

Algorithm Key Size Block Size Nonce Size Tag Size
Ascon 128 bits 128 bits 96 bits 128 bits

The Ascon algorithm was divided into the functions shown in Figure 3.61. In this figure, p12

and p6 denote 12 and 6 times repetitions of the function p, respectively.

Figure 3.61: Functional Division of Ascon for Evaluation

76



Bibliography

[1] ACORN v2. https://competitions.cr.yp.to/round3/asconv12.pdf.

[2] AES-OTR v1. http://competitions.cr.yp.to/round1/aesotrv1.pdf.

[3] Ketje. http://ketje.noekeon.org/.

[4] Minalpher Homepage. http://info.isl.ntt.co.jp/crypt/minalpher/index.html.

[5] OCB (v1.1).

[6] RL78 Family. http://japan.renesas.com/products/mpumcu/rl78/index.jsp?campaign=

tb_prod.

[7] The JAMBU Lightweight Authentication Encryption Mode. https://competitions.cr.yp.
to/round3/jambuv21.pdf.

[8] Specification for the Advanced Encryption Standard (AES), 2001. http://csrc.nist.gov/

publications/fips/fips197/fips-197.pdf.

[9] Specification of Camellia - a 128-bit Block Cipher, 2001. http://info.isl.ntt.co.jp/

crypt/camellia/dl/01espec.pdf.

[10] NIST SP 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC, 2007. http://csrc.nist.gov/publications/nistpubs/

800-38D/SP-800-38D.pdf.

[11] Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher, 2012.
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67r1.

pdf.

[12] CLOC and SILC—Authenticated Encryption Schemes for Constrained Devices, 2014. http:
//www.nuee.nagoya-u.ac.jp/labs/tiwata/AE/.

[13] ARM. AMBA 3 APB Protocol Specification v2.0, 2008. http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ihi0024c/index.html.

[14] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari,
Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low energy. In Ad-
vances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland, New Zealand, November 29 -
December 3, 2015, Proceedings, Part II, pages 411–436, 2015.

[15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis
Wingers. SIMON and SPECK: block ciphers for the internet of things. IACR Cryptology
ePrint Archive, 2015:585, 2015.
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Chapter 4

Lightweight Cryptographic
Algorithms and Schemes

4.1 Block Ciphers

This chapter shows the summary of the major lightweight block cipher algorithms presented in ma-
jor cryptographic conferences/workshops: CLEFIA, LED, Midori, Piccolo, PRESENT, PRINCE,
SIMON, SPECK, and TWINE. No effective attack against these algorithms has been found at this
time, and they are thought to have sufficient levels of implementation performance. In addition to
the basic input/output information including the block length and key length, the overall structure
and number of rounds are described for each algorithm. The names of algorithms having unique
names according to their key length and block length are also indicated. The features as described
by the designers and authors of the proposal paper are shown as they are, as much as possible.
The Security Analysis column describes the security analysis on the full round algorithms. For
algorithms for which there are no known efficient attacks according to the specifications, the se-
curity analysis is based on the simplified algorithm for reference. The general security of block
ciphers is determined by those key length and block length. However, it should be noted that the
general security of PRINCE was claimed to be lower than the basic security setting. Regarding a
designers’ assumed attacker capacity, some algorithms were designed to resist more powerful at-
tacks, including related-key and weak-key attacks, as well as attacks under the single-key setting;
these algorithms are indicated in the feature column. The research on hardware implementation
performance targets ASIC implementation, for which a sufficient number of evaluations have been
conducted, and describes the gate equivalent (GE), number of cycles required for the operation of
a single block (cycles/block), and throughput at 100 kHz. For the software implementation per-
formance in high-end CPUs, the number of cycles required to process a single byte (cycles/byte) is
indicated. The results of the implementation in low-end CPUs include the ROM and RAM usage
as well as cycles/byte.
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Block cipher
Name CLEFIA
Designers Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai (Sony Corporation,

Japan), Tetsu Iwata (Nagoya University, Japan)
Publication 2007 (FSE 2007 [31])
Specifications http://www.sony.net/Products/cryptography/clefia/[31]
Features The designers claim that the algorithms have high performance in both hard-

ware and software implementation while maintaining high levels of security.
They also feature an interface identical to the AES.
Overall Structure 4-line type-II generalized Feistel type
Block Length [bits] 128
Key Length [bits] 128 192 256

(CLEFIA-128) (CLEFIA-192) (CLEFIA-256)
No. of Rounds [rounds] 18 22 26

Security
Analysis

Many papers on security analysis have been published, but no attack more
efficient than exhaustive search have been found for the specified number of
rounds.
For CLEFIA-128 reduced to 13 rounds, CLEFIA-192 reduced to 14 rounds,
and CLEFIA-256 reduced to 15 rounds, attacks more efficient than exhaustive
search have been found [22, 9].

Performance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput Ref.
[GE] @100kHz [kbps]

CLEFIA-128 (Enc) 2,488 328 39.0 [2]
CLEFIA-128 (Enc/Dec) 2,604 328/320 39.0/40.0 [2]
CLEFIA-128 (Enc/Dec) 5,979 18 711.1 [31]

Software implementation (low-end CPU) evaluation results
Algorithm ROM RAM Cycles/byte Platform Ref.

[byte] [byte] [Enc/Dec]
CLEFIA-128 1,309 78 39,357/152,023 RL78 [24]
CLEFIA-128 2,026 64 4,337/4,477 RL78 [24]

Standardi-
zation

ISO/IEC 29192-2
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Block cipher
Name LED
Designers Jian Guo (Institute for Infocomm Research, Singapore), Thomas Peyrin,

Axel Poschmann (Nanyang Technological University, Singapore),
Matt Robshaw (Orange Labs, France)

Publication 2011 (CHES 2011 [19])
Specifications http://led.crypto.sg/home-1 [19]
Features The designers claim that the algorithm has sufficient software implementation

performance and eliminates key scheduling, resists against related-key attacks,
and is tuned for lightweight hardware implementation. Similar to lightweight
hash function PHOTON, it has a serialized MDS as an internal structure.
Overall Structure SPN type
Block Length [bits] 64
Key Length [bits] 64 (LED-64) 128 (LED-128)
Number of Rounds [rounds] 32 (8 steps) 48 (12 steps)

Security
Analysis

Some papers on security analysis have been published, but no attack more
efficient than exhaustive search has been found for the specified number of
rounds.
For LED-64 reduced to 12 rounds and LED-128 reduced to 32 rounds, attacks
more efficient than exhaustive search have been found [17].

Performance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput Ref.
[GE] @100kHz [kbps]

LED-64 (Enc) 966 1,248 5.1 [19]
LED-64 (Enc) 2,695 32 200.0 [1]
LED-128 (Enc) 1,265 1,872 3.4 [19]
LED-128 (Enc) 3,036 48 133.3 [1]

Software implementation evaluation results
Algorithm Type Cycles/byte Platform Ref.
LED-64 Table/VPI/Bitslice 76.0/48.1/13.1 Core i3 2367M [6]
LED-128 Table/VPI/Bitslice 113.3/54.6/17.6 Core i3 2367M [6]

Open Source
Information

The implementations available on the LED website.

http://led.crypto.sg/software

lightweight-crypto-lib
https://github.com/rb-anssi/lightweight-crypto-lib
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Block cipher
Name Midori
Designers Subhadeep Banik, Andrey Bogdanov (Technical University of Denmark, Den-

mark), Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari, Toru Akishita
(Sony Corporation, Japan), Francesco Regazzoni (University of Lugano,
Switzerland)

Publication 2015 (ASIACRYPT 2015 [3])
Specifications [3]
Features The designers claim that the algorithm has low energy consumption, has com-

pact hardware implementation, and is low latency.
Overall Structure SPN type
Block Length [bits] 64 (Midori64) 128 (Midori128)
Key Length [bits] 128
Number of Rounds [rounds] 16 20

Security
Analysis

Some papers on security analysis have been published, but no attack more
efficient than exhaustive search have been found for the specified number of
rounds.
Weak keys exist for Midori64. If those keys are used, efficient attacks can
be performed even on the specified numbers of rounds [18]. In addition, for
Midori64 reduced to 12 rounds, more efficient attacks have been found [21].

Performance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput Ref.
[GE] @100kHz [kbps]

Midori64 (Enc) 1,542 16 400.0 [3]
Midori64 (Enc/Dec) 2,450 16 400.0 [3]
Midori128 (Enc) 2,522 20 640.0 [3]

Midori128 (Enc/Dec) 3,661 20 640.0 [3]
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Block cipher
Name Piccolo
Designers Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru

Akishita, Taizo Shirai (Sony Corporation, Japan)
Publication 2011 (CHES 2011 [30])
Specifications [30]
Features The designers claim that the algorithm is sufficiently secure against related-

key attacks and meet-in-the-middle attacks, as well as conventional attacks,
has particularly high performance in hardware implementation, is structured
so that a decryption function can be implemented without causing serious
overhead, and is superior in lightweightness and energy efficiency.
Overall Structure 4-line type-2 generalized Feistel type
Block Length [bits] 64
Key Length [bits] 80 (Piccolo-80) 128 (Piccolo-128)
Number of Rounds [rounds] 25 31

Security
Analysis

Some papers on security analysis have been published, but no attack more
efficient than exhaustive search has been found for the specified number of
rounds.
For Piccolo-80 reduced to 14 rounds and Piccolo-128 reduced to 21 rounds,
more efficient attacks [30], and related-key attacks [25] have been found.

Performance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput Ref.
[GE] @100kHz [kbps]

Piccolo-80 (Enc) 1,048 432 14.8 [30]
Piccolo-80 (Enc) 1,499 27 237.0 [30]

Piccolo-80 (Enc/Dec) 1,109 432 14.8 [30]
Piccolo-128 (Enc) 1,338 528 12.1 [30]
Piccolo-128 (Enc) 1,776 33 193.9 [30]

Piccolo-128 (Enc/Dec) 1,397 528 12.1 [30]

Software implementation evaluation results
Algorithm Type Cycles/byte Platform Ref.
Piccolo-80 Bitslice 4.57 Core i7 870 [23]
Piccolo-128 Bitslice 5.52 Core i7 870 [23]
Piccolo-80 Table/VPI/Bitslice 89.3/33.3/9.2 Core i3 2367M [6]
Piccolo-128 Table/VPI/Bitslice 103.6/41.6/10.9 Core i3 2367M [6]

Open Source
Information

lightweight-crypto-lib
https://github.com/rb-anssi/lightweight-crypto-lib
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Block cipher
Name PRESENT
Designers Andrey Bogdanov1, Lars R. Knudsen2, Gregor Leander1, Christof Paar1,

Axel Poschmann1, Matthew J. B. Robshaw3, Yannick Seurin3, C. Vikkelsoe2

(1: Ruhr-University Bochum, Germany, 2: Technical University of Denmark,
Denmark, 3: France Telecom, France)

Publication 2007 (CHES 2007 [10])
Specifications [10]
Features This is a pioneering algorithm for a lightweight block cipher. It has particularly

high performance in compact hardware implementation.
Overall Structure SPN type
Block Length [bits] 64
Key Length [bits] 80 (PRESENT-80) 128 (PRESENT-128)
Number of Rounds [rounds] 31

Security
Analysis

Many papers on security analysis have been published, but no attack more effi-
cient than exhaustive search has been found for the specified number of rounds.
For PRESENT-80/128 reduced to 26 rounds, more efficient attacks have been
found [14, 8].

Performance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput Ref.
[GE] @100kHz [kbps]

PRESENT-80 (Enc) 1,000 563 11.4 [29]
PRESENT-80 (Enc) 1,570 32 200.0 [10]
PRESENT-128 (Enc) 1,391 559 11.4 [27]
PRESENT-128 (Enc) 1,886 32 200.0 [10]

Software implementation (high-end CPU) evaluation results
Algorithm Type Cycles/byte Platform Ref.

PRESENT-80/128 Bitslice 5.79 Core i7 870 [23]
PRESENT-80 Table/VPI/Bitslice 72.6/35.0/17.4 Core i3 2367M [6]
PRESENT-128 Table/VPI/Bitslice 72.5/35.0/18.9 Core i3 2367M [6]

Software implementation (low-end CPU) evaluation results
Algorithm ROM RAM Cycles/byte Platform Ref.

[byte] [byte] [Enc/Dec]
PRESENT-80 512 62 61,634/60,834 RL78 [24]
PRESENT-80 1,855 48 9,007/8,920 RL78 [24]

Standardi-
zation

ISO/IEC 29192-2

Open Source
Information

lightweight-crypto-lib
https://github.com/rb-anssi/lightweight-crypto-lib
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Block cipher
Name PRINCE
Designers Julia Borghoff1, Anne Canteaut1,2, Tim Guneysu3, Elif Bilge Kavun3, Miroslav

Knezevic4, Lars R. Knudsen1, Gregor Leander1, Ventzislav Nikov4, Christof
Paar3, Christian Rechberger1, Peter Rombouts4, Soren S. Thomsen1, Tolga
Yalcin3 (1: Technical University of Denmark, Denmark, 2: INRIA, France, 3:
Ruhr-University Bochum, Germany, 4: NXP Semiconductors, Netherlands)

Publication 2012 (ASIACRYPT 2012 [11])
Specifications [11]
Features The designers claim that the algorithm has low latency and is compact in

hardware implementation.
Since the algorithm has symmetry called α-reflection, which is different from
normal block ciphers, if the attacker has 2n pairs of plain text and cipher text,
only (127− n)-bit security can be claimed although a 128-bit key is used.
Overall Structure SPN type
Block Length [bits] 64
Key Length [bits] 128
Number of Rounds [rounds] 12

Security
Analysis

Some papers on security analysis have been published, but no attack more
efficient than exhaustive search have been found for the specified number of
rounds.
For PRINCE reduced to 10 rounds, more effective attacks have been found [12].

Perfor-
mance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput Ref.
[GE] @100kHz[kbps]

PRINCE (Enc/Dec) 2,953 12 533.3 [4]
PRINCE (Enc/Dec) 8,577 1 6400.0 [4]

Software implementation (low-end CPU) evaluation results
Algorithm ROM RAM Cycles/byte Platform Ref.

[byte] [byte] [Enc/Dec]
PRINCE 2,382 220 225.4 ATtiny85 [26]

Open Source
Information

The source codes are not provided on an official PRINCE web page (this is
something we should do at some point) or some personal web page. However,
the designers will provide hardware (Verilog-HDL) and software (C) source
codes when requested.

85



Block cipher
Name SIMON
Designers Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,

Louis Wingers (National Security Agency, USA)
Publica-
tion

2013 (Cryptology ePrint Archive [5])

Specifi-
cations

[5]

Features The designers claim that the algorithm supports various lengths of blocks and keys
and has superior lightweightness in both hardware and software implementation,
particularly in hardware implementation.
SIMON with a 2n-bit block cipher and a m-word key is indicated as SIMON2n/mn.
For example, SIMON64/128 means SIMON with a block length of 64 bits and a key
length of 128 bits.
Overall Structure Feistel type
Block Length [bits] 32 48 64 96 128
Key Length [bits] 64 72 96 96 128 96 144 128 192 256
No. of Rounds [rounds] 32 36 42 44 52 54 68 69 72

Security
Analysis

Many papers on security analysis have been published, but no attack more efficient
than exhaustive search has been found for the specified number of rounds.
For SIMON with block lengths of 32, 48, 64, 96, and 128 bits reduced to 23, 25, 31,
38, and 53 rounds, more efficient attacks have been found [13].

Perfor-
mance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput@100kHz Ref.
[GE] [kbps]

SIMON64/96 809 1,455 4.4 [5]
SIMON64/128 958 1,524 4.2 [5]
SIMON128/128 1,234 4,414 2.9 [5]
SIMON128/256 1,782 4,923 2.6 [5]

Software implementation (low-end CPU) evaluation results
Algorithm ROM RAM Cycles/byte Platform Ref.

[byte] [byte] [Enc/Dec]
SIMON64/96 274 0 239 ATtiny45 [5]
SIMON64/128 282 0 250 ATtiny45 [5]
SIMON128/128 732 0 376 ATtiny45 [5]
SIMON128/256 764 0 398 ATtiny45 [5]

Open
Source
Informa-
tion

The SIMON and SPECK team has released public domain software implementing
several versions of SIMON and SPECK for different platforms [1]. The contributions
to the FELICS benchmarking framework [2] provide implementations of the 64-bit
block sizes of SIMON and SPECK optimized for the AVR, MSP430, and ARM
Cortex M microcontrollers. The contributions to the SUPERCOP benchmarking
framework [3] provide implementations of the 64 and 128-bit block sizes of SIMON
and SPECK optimized for higher-end CPUs such as X86 and ARM Cortex A.
An Internet search uncovers a number of other small open source software projects
implementing SIMON or SPECK [4, 5, etc.]. However, they are not included in
broadly used cryptographic libraries such as OpenSSL.
[1]https://iadgov.github.io/simon-speck/implementations/
[2]https://www.cryptolux.org/index.php/FELICS
[3]https://bench.cr.yp.to/supercop.html
[4]https://rweather.github.io/arduinolibs/crypto.html
[5]http://cppcrypto.sourceforge.net/
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Block cipher
Name SPECK
Designers Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,

Louis Wingers (NSA, USA)
Publica-
tion

2013 (Cryptology ePrint Archive [5])

Specifi-
cations

[5]

Features The designers claim that the algorithm supports various lengths of blocks and keys,
and has superior lightweight for both hardware and software implementation, par-
ticularly software implementation.
Similar to SIMON, SPECK with a 2n-bit block cipher and a m-word key is indicated
as SPECK2n/mn. For example, SPECK64/128 means SPECK with a block length
of 64 bits and a key length of 128 bits.
Overall Structure Feistel variant
Block Length [bits] 32 48 64 96 128
Key Length [bits] 64 72 96 96 128 96 144 128 192 256
No. of Rounds [rounds] 22 23 26 27 28 29 32 33 34

Security
Analysis

Many papers on security analysis have been published, but no attack more efficient
than exhaustive search has been found for the specified number of rounds.
For SPECK with block lengths of 32, 48, 64, 96, and 128 bits reduced to 14, 15, 19,
17, and 19 rounds, more efficient attacks have been found [7, 16].

Perfor-
mance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput@100kHz Ref.
[GE] [kbps]

SPECK64/96 860 1,778 3.6 [5]
SPECK64/128 996 1,882 3.4 [5]
SPECK128/128 1,280 4,267 3.0 [5]
SPECK128/256 1,840 4,571 2.8 [5]

Software implementation (low-end CPU) evaluation results
Algorithm ROM RAM Cycles/byte Platform Ref.

[byte] [byte] [Enc/Dec]
SPECK64/96 182 0 144 ATtiny45 [5]
SPECK64/128 186 0 150 ATtiny45 [5]
SPECK128/128 396 0 167 ATtiny45 [5]
SPECK128/256 412 0 177 ATtiny45 [5]

Open
Source
Informa-
tion

The SIMON and SPECK team has released public domain software implementing
several versions of SIMON and SPECK for different platforms [1]. The contributions
to the FELICS benchmarking framework [2] provide implementations of the 64-bit
block sizes of SIMON and SPECK optimized for the AVR, MSP430, and ARM
Cortex M microcontrollers. The contributions to the SUPERCOP benchmarking
framework [3] provide implementations of the 64 and 128-bit block sizes of SIMON
and SPECK optimized for higher-end CPUs such as X86 and ARM Cortex A.
An Internet search uncovers a number of other small open source software projects
implementing SIMON or SPECK [4, 5, etc.]. However, they are not included in
broadly used cryptographic libraries such as OpenSSL.
[1]https://iadgov.github.io/simon-speck/implementations/
[2]https://www.cryptolux.org/index.php/FELICS
[3]https://bench.cr.yp.to/supercop.html
[4]https://rweather.github.io/arduinolibs/crypto.html
[5]http://cppcrypto.sourceforge.net/
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Block cipher
Name TWINE
Designers Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, Eita Kobayashi (NEC,

Japan)
Publica-
tion

2011 (ECRYPT Workshop on Lightweight Cryptography, SAC 2012 [32])

Specifi-
cations

http://jpn.nec.com/rd/crl/code/research/image/twine_SAC_full_v5.pdf,
[32]

Features The designers claim that the algorithm has superior lightweight in hardware imple-
mentation and software implementation in a wide range of CPUs from low-end to
high-end. It uses an improved block shuffle proposed by the designers at FSE 2010
to enhance security.
Overall Structure 16-line generalized Feistel type
Block Length [bits] 64
Key Length [bits] 80 (TWINE-80) 128 (TWINE-128)
Number of Rounds [rounds] 36

Security
Analysis

Some papers on security analysis have been published, but no attack more efficient
than exhaustive search have been found for the specified number of rounds.

Perfor-
mance
Analysis

Hardware implementation evaluation results

Algorithm Area Cycles/block Throughput Ref.
[GE] @100kHz [kbps]

TWINE-80 (Enc) 1,503 36 177.8 [32]
TWINE-80 (Enc) 1,011 393 16.3 [32]

TWINE-80 (Enc/Dec) 1,799 36 177.8 [32]
TWINE-128 (Enc) 1,866 36 177.8 [32]

TWINE-128 (Enc/Dec) 2,285 36 177.8 [32]

Software implementation (high-end CPU) evaluation results
Algorithm Type Cycles/byte Platform Ref.

TWINE-80/128 Bitslice (Single/Double) 11.10/5.55 Core i7 2600S [32]

Software implementation (low-end CPU) evaluation results
Algorithm ROM RAM Cycles/byte Platform Ref.

[byte] [byte] [Enc/Dec]
TWINE-80 2,294 386 163/163 ATmega163 [32]
TWINE-80 792 191 2,350/2,337 ATmega163 [32]

Market NEC Engineering Industrial IoT Solution: Secure Sensors
Deploy-
ment

http://jpn.nec.com/engsl/pro/securesensor/index.html

http://www.nec-eng.co.jp/press/161024press.html

NEC Store Video Surveillance Cloud Service
http://jpn.nec.com/press/201604/20160421_02.html

NEC ExpEther 40G
http://jpn.nec.com/press/201511/20151109_01.html
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4.2 Stream Ciphers

This section shows the summary of the major lightweight stream ciphers. Stream ciphers mainly
provide only confidentiality unlike block ciphers, which can provide other functionalities as well
as confidentiality. In resource constrained environment where program size in software implemen-
tation or circuit size in hardware implementation are strongly limited, it may not be acceptable
to implement various cryptographic algorithms. In this case using a cryptographic algorithm to
achieve various functions is more desirable and a block cipher is the appropriate option. In ad-
dition, many stream ciphers take more time for initialization therefore a block cipher is often a
better choice for processing short data. On the other hand, if only confidentiality is required and
the process must be executed at a high speed with a small amount of resources, a stream cipher is
more suitable.

Some stream ciphers proposed and evaluated earlier than other lightweight ciphers, so there are
more mature algorithms. This section introduces several stream ciphers from eStream portfolio [24]
and ISO/IEC 29192-3 [13], on which sufficient security evaluations have been conducted. The
eStream project called for and evaluated algorithms in two categories: Profile 1 (software) and
Profile 2 (hardware). This section describes three algorithms published in Profile 2 portfolio –
Grain v1 [17], MICKEY 2.0 [4], and Trivium [9]. Four algorithms of Profile 1 portfolio – HC-128,
Rabbit, Salsa20/12, and SOSEMANUK – are software oriented ciphers. Salsa20/12 is the fastest
on CPUs for PCs and servers to process long data. This section describes ChaCha20 [7] instead of
Salsa20/12, which was publised in RFC in 2015. ChaCha20, an improved version of Salsa20/12,
is a stream cipher for software implementation. It is slightly slower than Salsa20/12 but has been
adopted by various open source softwares. Therefore it is much easier to use ChaCha20 than
Salsa20/12 in real applications while the performance difference is not so large. ISO/IEC 29192-3
includes two algorithms; Trivium and Enocoro. Therefore we also pick up Enocoro in this section.

The ISO/IEC 29167 standard specifies cryptographic suites for RFID. However, it includes
a crypto suite “XOR,” which is undesirable for security reasons, and its use is not generally
recommended by CRYPTREC.
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Stream cipher
Name ChaCha20
Designers Daniel J. Bernstein (University of Illinois at Chicago, USA)
Publication 2008 (SASC 2008) [7]
Specifications [6, 23]
Features This is a stream cipher with a 256-bit key and a 96-bit initialization vector

(IV). In addition to a secret key and an IV, it receives a 128-bit constant and
a 32-bit block counter, and outputs a 512-bit pseudo-random number. The al-
gorithm utilizes 32-bit word arithmetic additions, exclusive ORs (XORs), and
cyclic shifts, and is suitable for software implementation. Since it requires lit-
tle cost for initialization, it can process short messages quickly. In addition,
since ChaCha20 uses no table lookups, straightforward implementation is se-
cure against cache-timing attacks.

Security
Analysis

As of 2016, no results compromising the security of ChaCha20 have been found.
Aumasson et al. have demonstrated that 7 out of 20 rounds can be attacked
using differential attacks more efficiently than exhaustive search [3]. Other
analyses include that by Shi et al. [25] and that by Maitra [20]. Both have
improved the result of Aumasson et al., but the number of attackable rounds
was limited to 7.

Performance
Analysis

According to the evaluation at eBASC [1] (as of June 2016), the algorithm
achieved 1.2 cycles/byte on the Intel Core i5 processor. In addition, according
to the evaluation of the Fair Evaluation of Lightweight Cryptographic Systems
(FELICS) project [2] (as of June 2016), the algorithm requires 144 cycles for
initialization on ARM Cortex-M3 processor and has a throughput of 54.3 cy-
cles/byte.

Standardi-
zation

ChaCha20 has been standardized in IETF RFC 7539 [23].

Market De-
ployment

This cipher is mainly used in combination with a message authentication code,
Poly-1305, to serve as an authenticated encryption. The cipher is used to
protect the communication channels (https) for services provided by Google [8].

Open Source
Information

OpenSSL, Google Chrome, Mozilla Firefox, OpenSSH. https://ianix.com/
pub/chacha-deployment.html
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Stream cipher
Name Enocoro
Designers Hitachi, Ltd.
Publication 2008 (WAIS 2008), 2010 (ISITA 2010)
Specifications http://www.hitachi.co.jp/rd/yrl/crypto/enocoro/

Features This cipher consists of two algorithms, Enocoro-80 with 80-bit key and
Enocoro-128v2 with 128-bit key. Both algorithms claim a level of security
corresponding to the key length. However, the output data is limited to 232

bytes and 264 bytes, respectively, by fixing the key and IV. Uncommon for
lightweight stream ciphers, this cipher processes in 8-bit units and can achieve
processing speeds similar to AES even in software implementation.

Security
Analysis

No vulnerability has been found in the single-key setting for either Enocoro-80
or Enocoro-128v2; however, their forerunner, Enocoro-128v1.1, has been found
to be vulnerable to related-key attacks [12, 19, 18, 10]. For example, according
to the evaluation by Ding et al. [10], the secret key of Enocoro-80 is weak with
a probability of 2−8, and it can be recovered with complexity of 248 using 217

chosen IVs. The effectiveness of related-key attacks on Enocoro-128v2 has not
been confirmed.

Performance
Analysis

Enocoro-80 [26]: With implementation on Pentium 4, 1,335 cycles is required
for initialization, and the throughput is 27 cycles/byte. Regarding hard-
ware implementation (ASIC), the circuit size is 2.7K GE, and the pro-
cessing speed is 2197.6 Mbps (180nm process and maximum frequency of
274.7 MHz).

Enocoro-128v2 [22]: With implementation on Intel Core2 Duo, 1,530 cycles is
required for initialization, and the throughput is 14.8 cycles/byte. Re-
garding hardware implementation (ASIC), the circuit size is 2.4K GE,
and processing speed is 6,250 Mbps (90-nm process and maximum fre-
quency of 781.3 MHz).

Standardi-
zation

CRYPTREC Candidate Recommended Cipher (Enocoro-128v2), ISO 29192-3
(Enocoro-80, Enocoro-128v2)

94



Stream cipher
Name Grain v1
Designers Martin Hell, Thomas Johansson (Lund University) Willi Meier (FH Aargau)
Publication 2005 (eSTREAM Project)
Specifications http://www.ecrypt.eu.org/stream/e2-grain.html

Features This is a hardware-oritented stream cipher and consists of two algorithms se-
lected for the eSTREAM portfolio: one with an 80-bit key and a 64-bit IV
and the other with a 128-bit key and an 80-bit IV. It comprises one bitwise
linear feedback shift register and one non-linear feedback shift register. Among
other lightweight stream ciphers, this stream cipher is superior for lightweight
hardware implementation. It can achieve certain degrees of parallelism, and its
software implementation performs sufficiently for practical uses.

Security
Analysis

Berbain et al. evaluated Grain, which is the forerunner of Grain v1, and re-
ported that an 80-bit secret key can be recovered with a key stream of 238 bits
and a complexity of 243 [5]. Since Grain v1 is the version with an improved
algorithm based on the above report, the attack attempted by Berbain et al.
is not directly applicable.
Dinur et al. have pointed out that Grain v1 with a 128-bit key has insufficient
initialization and has a weak key space of 118 bits [11]. This weak key space is
large, but the key recovery attack requires complexity of around 2103.

Performance
Analysis

Good et al. [16] provide a detailed evaluation of hardware implementation per-
formance of Grain v1. This evaluation uses a 0.13µm standard cell library.

80-bit: The circuit size is 1,294 GE, the maximum operating frequency is
724.6 MHz, and the throughput is 724.6 Mbps. The cipher is designed to
allow up to 16 rounds to be carried out in parallel.

128-bit: The circuit size was 1,857 GE, the maximum operating frequency was
925.9 MHz, and the throughput was 925.9 Mbps. The cipher is designed
to allow up to 32 rounds to be carried out in parallel.

Standardi-
zation

Grain-128a, which is an authenticated encryption based on Grain v1, has been
standardized in ISO/IEC 29167-13 [14].

95



Stream cipher
Name MICKEY 2.0
Designers Steve Babbage (Vodafone), Matthew Dodd (Independent consultant)
Publication 2005 (eSTREAM Project)
Specifications http://www.ecrypt.eu.org/stream/mickeypf.html

Features This is a hardware-oriented stream cipher selected in the eSTREAM portfolio.
It accepts an 80-bit key and an 80-bit IV. The number of available IVs for a fixed
key is limited up to 240. In addition, the maximum length of a keystream for a
pair of key and IV is 240 bits. This srteam cipher comprises one linear feedback
shift register and one non-linear feedback shift register, featuring irregular clock
control. Parallel processing is difficult due to the clock control mechanism.

Security
Analysis

For the security evaluation of MICKEY 2.0, only a self-evaluation exists and
no vulnerability has been found.

Performance
Analysis

Good et al. [16] provides a detailed evaluation of the MICKEY 2.0 hardware
implementation performance. This evaluation uses a 0.13 µm standard cell
library. MICKEY 2.0 has a circuit size of 3,188 GE, a maximum operating
frequency of 454.5 MHz, and a throughput of 454.5 Mbps.

Open Source
Information

The designers’ code is freely available at http://www.ecrypt.eu.org/stream/
p3ciphers/mickey/mickey_p3source.zip. It is also known that several re-
searchers implemented MICKEY 2.0, but if open source code is made available
is not known.
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Stream cipher
Name Trivium
Designers Christophe De Cannière, Bart Preneel (Katholieke Universiteit Leuven)
Publication 2005 (eSTREAM Project)
Specifications http://www.ecrypt.eu.org/stream/e2-trivium.html

Features This is a hardware-oriented stream cipher selected in the eSTREAM portfolio.
It accepts an 80-bit key and an 80-bit IV. A keystream generated for each pair
of key and IV is limited to 264 bits. It has a unique design consisting of three
serial non-linear feedback shift registers of different lengths. Based on bitwise
operations, but having high levels of parallelism, this stream cipher features
lightweight hardware implementation and high speeds in software implementa-
tion. However, it is not suitable for processing short data because of its long
initialization time.

Security
Analysis

As of 2016, no results compromising the security of Trivium have been found.
For attacks recovering the internal state from the key stream, Maximov et al.
reported that it was possible to recover the internal state from a keystream of
261.5 bits with complexity similar to 289.5 exhaustive search [21]. In addition,
Fouque et al. conducted cube attacks on the initialization of Trivium, and
reported that it was possible to recover the key up to 799 steps out of 1,152 steps
with 240 IVs (and a corresponding keystream) and 262 exhaustive search [15].

Performance
Analysis

Good et al. [16] evaluated in detail the hardware implementation performance
of Trivium. This evaluation uses a 0.13 µm standard cell library. Trivium has
a circuit size of 2,580 GE, a maximum operating frequency of 327.9 MHz, and
a throughput of 327.9 Mbps. In addition, up to 64 state bits of Trivium can
be generated in parallel. In this execution, the circuit size is 4,921 GE and the
throughput is 22,299.6 Mbps.
The software implementation has been evaluated at FELICS [2]. The through-
put of the ARM Cortex-M3 is 49.4 cycles/byte, which is faster than that of
ChaCha20. However, this stream cipher is not suitable for processing short
data because of its 7,195-cycle initialization.

Standardi-
zation

ISO/IEC 29192-3 [13]

97



98



Bibliography

[1] ebacs: Ecrypt benchmarking of cryptographic systems. http://bench.cr.yp.to/

results-stream.html.

[2] Felics stream ciphers brief results. https://www.cryptolux.org/index.php/FELICS_

Stream_Ciphers_Brief_Results.

[3] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and Christian Rech-
berger. New features of latin dances: Analysis of salsa, chacha, and rumba. In Kaisa Nyberg,
editor, Fast Software Encryption FSE 2008, volume 5086 of Lecture Notes in Computer Sci-
ence, pages 470–488. Springer Berlin Heidelberg, 2008.

[4] Steve Babbage and Matthew Dodd. The Mickey stream ciphers. In M. Robshaw and editors
O. Billet, editors, New Stream Cipher Designs: The eSTREAM Finalists, volume 4986 of
Lecture Notes in Computer Science, pages 191–209. Springer, 2008.

[5] C. Berbain, H. Gilbert, and A. Maximov. Cryptanalysis of Grain. In M. Robshaw, editor,
Fast Software Encryption, FSE’06, volume 4047 of Lecture Notes in Computer Science, pages
15–29. Springer-Verlag, 2006.

[6] Daniel J. Bernstein. Chacha, a variant of Salsa20. https://cr.yp.to/chacha/

chacha-20080128.pdf.

[7] Daniel J. Bernstein. Chacha, a variant of Salsa20. In The State of the Art of Stream Ciphers,
SASC 2008. ECRYPT, 2008.

[8] Elie Bursztein. Google security blog: Speeding up and strengthening https connections for
chrome on android (April 24, 2014), 2014. https://security.googleblog.com/2014/04/

speeding-up-and-strengthening-https.html.

[9] Christophe De Cannière. Trivium: A stream cipher construction inspired by block cipher
design principles. In Sokratis K. Katsikas, Javier López, Michael Backes, Stefanos Gritzalis,
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4.3 Hash Functions

This section describes lightweight hash functions. It covers four algorithms presented at major
international conferences or workshops – Keccak, PHOTON, QUARK, and SPONGENT. In terms
of lightweight, for Keccak, this section targets smaller permutations, which are not selected as
SHA-3. In addition, it should be noted that the implementation evaluation results have been
taken from the proposal papers and are not obtained in the same evaluation environment.
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Hash function
Name Keccak
Designers Guido Bertoni (STMicroelectronics), Joan Daemen (STMicroelectronics),

Michaël Peeters (NXP Semiconductors), Gilles Van Assche (STMicroelectron-
ics)

Publication 2008 (NIST SHA-3 Competition)
Specifications http://keccak.noekeon.org/
Features Keccak is a family of sponge functions. Seven permutations are defined and

indicated by Keccak-f[b] (b ∈ 25, 50, 100, 200, 400, 800, 1,600). From the view-
point of lightweight cryptography, the schemes using Keccak-f[100], Keccak-
f[200], and Keccak-f[400] will be described.
Keccak-f[b] n r r’
Keccak-f[100] 80 20 20
Keccak-f[200] 64 72 72
Keccak-f[400] 128 144 144

∗ n: output length, r: input block length, r’ : output block length
Security
Analysis

Many papers have analyzed Keccak, and no critical vulnerability has been
reported.

Performance
Analysis

Hardware implementation[6](130nm process)

Area [GE] Latency [clk] Throughput [kbps]
Keccak-f[100] 1250 800 2.5
Keccak-f[200] 2520 900 8.00
Keccak-f[400] 5090 1000 14.40

Standardi-
zation

The scheme using Keccak-f[1600] is standardized by NIST in FIPS202 [3]. For
SHA-3 derived functions, a series of special publication is available by NIST
SP800-185 [4].

Market SHA-3 is being adopted in many different applications.
Deployment http://csrc.nist.gov/groups/STM/cavp/documents/sha3/sha3val.html,

http://www.3gpp.org/DynaReport/35-series.htm.
Open Source http://keccak.noekeon.org/files.html,
Information https://github.com/gvanas/KeccakCodePackage
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Hash function
Name PHOTON
Designers Jian Guo (Institute for Infocomm Research, Singapore), Thomas Peyrin

(Nanyang Technological University, Singapore), Axel Poschmann (Nanyang
Technological University, Singapore)

Publication 2011 (CRYPTO2011)
Specifications https://sites.google.com/site/photonhashfunction/

Features PHOTON has a sponge structure and a variety of configurations according
to the internal parameters. ISO/IEC 29192 indicates five variations (see table
below). An AES-like internal permutation repeats four steps, “AddConstants”,
“SubCells”, “ShiftRows”, and “MixColumnsSerial” for 12 rounds. The 4-bit
PRESENT S-box is used in “SubCells”.
PHOTON-n/r/r’ n r r’
PHOTON-80/20/16 80 20 16
PHOTON-128/16/16 128 16 16
PHOTON-160/36/36 160 36 36
PHOTON-224/32/32 224 32 32
PHOTON-256/32/32 256 32 32

∗ n: output length, r: input block length, r’ : output block length
Security
Analysis

No critical vulnerability has been reported. However, since there have been
only a few analytical results, there is a possibility that potential vulnerability
exists.

Performance
Analysis

Hardware implementation[5](180nm process)

Area [GE] Latency [clk] Throughput [kbps]
PHOTON-80/20/16 865/1168 708/132 2.82/15.15
PHOTON-128/16/16 1122/1708 996/156 1.61/10.26
PHOTON-160/36/36 1396/2117 1332/180 2.70/20.00
PHOTON-224/32/32 1735/2786 1716/204 1.86/15.69
PHOTON-256/32/32 2177/4362 996/156 3.21/20.51

Software implementation[5] (Intel Core i7 @1.6GHz)
32bit optimized implementation

[cycles/byte]
PHOTON-80/20/16 95
PHOTON-128/16/16 156
PHOTON-160/36/36 116
PHOTON-224/32/32 227
PHOTON-256/32/32 135

Standardi-
zation

ISO/IEC 29192-5 (PHOTON-100, 140, 196, 256, 288)

Open Source
Information

https://sites.google.com/site/photonhashfunction/downloads
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Hash function
Name QUARK
Designers Jean-Philippe Aumasson (Nagravision SA, Cheseaux, Switzerland),

Luca Henzen (ETH Zurich, Switzerland), Willi Meier (FHNW, Windisch,
Switzerland), Maria Naya-Plasencia (FHNW, Windisch, Switzerland)

Publication 2010 (CHES2010)
Specifications http://aumasson.jp/quark/

Features QUARK has a sponge structure and a variety of configurations according to
the internal parameters. QUARK family is composed of the three instances
U-QUARK, D-QUARK, and S-QUARK. The permutation is designed by com-
bining the advantages of the stream cipher Grain and the block cipher KATAN.
The numbers of rounds are 544, 704, and 1024, respectively.

n r r’
U-QUARK 128 8 8
D-QUARK 160 16 16
S-QUARK 224 32 32

∗ n: output length, r: input block length, r’ : output block length
Security
Analysis

No critical vulnerability has been reported. However, since there have been
only a few analytical results, there is a possibility that potential vulnerability
exists.

Performance
Analysis

Hardware implementation[1](180nm process)

Area [GE] Latency [clk] Throughput [kbps]
U-QUARK 1379/2392 544/68 1.47/11.76
D-QUARK 1702/2819 704/88 2.27/18.18
S-QUARK 2296/4640 1024/64 3.13/50.00

Market De-
ployment

QUARK or its variants are deployed in products of at least two companies.

Open Source http://aumasson.jp/quark/

Information https://github.com/veorq/Quark
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Hash function
Name SPONGENT
Designers Andrey Bogdanov (KU Leuven, Belgium), Miroslav Knez̃ev́ıc (NXP Semicon-

ductors, Belgium), Gregor Leander (Technical University of Denmark, Den-
mark), Deniz Toz (KU Leuven, Belgium), Kerem Varıcı(KU Leuven, Belgium),
Ingrid Verbauwhede (KU Leuven, Belgium)

Publication 2011 (CHES2011)
Specifications https://sites.google.com/site/spongenthash/

Features SPONGENT has a sponge structure using a PRESENT-type permutation and
a variety of configurations according to the internal parameters. The designers
have indicated 13 variations (see table below), and five have been standardized
as ISO/IEC 29192-5 (⋆ in table).
SPONGENT-n/c/r n c r
SPONGENT-88/80/8⋆ 88 80 8
SPONGENT-88/176/88 88 176 88
SPONGENT-128/128/8⋆ 128 128 8
SPONGENT-128/256/128 128 256 128
SPONGENT-160/160/16⋆ 160 160 16
SPONGENT-160/160/80 160 160 80
SPONGENT-160/320/160 160 320 160
SPONGENT-224/224/16⋆ 224 224 16
SPONGENT-224/224/112 224 224 112
SPONGENT-224/448/224 224 448 224
SPONGENT-256/256/16⋆ 256 256 16
SPONGENT-256/256/128 256 256 128
SPONGENT-256/512/256 256 512 256

∗ n: output length, c: capacity, r: rate (input block length)
Security
Analysis

No critical vulnerability has been reported. However, since there have been
only a few analytical results, there is a possibility that potential vulnerability
exists.

Performance
Analysis

Hardware implementation[2](130nm process)

Area [GE] Latency [clk] Throughput [kbps]
SPONGENT-88/80/8 738/1127 990/45 0.81/17.78
SPONGENT-128/128/8 1060/1687 2380/70 0.34/11.43
SPONGENT-160/160/16 1329/2190 3960/90 0.40/17.78
SPONGENT-224/224/16 1728/2903 7200/120 0.22/13.33
SPONGENT-256/256/16 1950/3281 9520/140 0.17/11.43

Standardi-
zation

ISO/IEC 29192-5:2016 (SPONGENT-88, 136, 176, 240, 272)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=67173

Open Source
Information

https://sites.google.com/site/spongenthash/downloads
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4.4 Message Authentication Codes

This section describes lightweight message authentication codes (MACs). General-purpose MACs
include the mode of block ciphers (CMAC [9]) and the mode of hash functions (HMAC [10, 5]).
Since the overheads of the CMAC and the HMAC are not high, it is possible to configure lightweight
MACs by combining the lightweight block ciphers described in Section 4.1 with the lightweight
hash functions described in Section 4.3. The HMAC mode calls a hash function twice; therefore,
when processing a very short message, using the CMAC may be more efficient.

Focusing on software performance, the FELICS project (Fair Evaluation of Lightweight Cryp-
tographic Systems) [4] which benchmarks lightweight cryptography is useful for selecting block ci-
phers and hash functions. The FELICS project compares many algorithms (block ciphers, stream
ciphers, and hash functions) on the Atmel AVR ATmega128 (8-bit) microcontroller, the Texas In-
struments MSP430F1611 (16-bit) microcontroller, and the Arduino Due ARM Cortex-M3 (32-bit)
board.

Unlike block cipher modes and hash function modes, specially designed lightweight MACs are
not well known. A pseudo-random function specific to processing short messages, SipHash [2, 1],
is widely used as a MAC. However, since SipHash uses 64-bit addition for internal processing, it is
lightweight and fast on high-end CPUs, but it is not suitable for use on 8- to 32-bit CPUs.

Chaskey [8, 6] lightweight MAC targets low-end CPUs. The FELICS project has classified
Chaskey as a lightweight block cipher and it has recorded the highest scores in many categories.
However, it has been reported that key recovery attack is possible to seven out of eight rounds [8, 6].
Therefore, it has a small security margin. To improve this, Chaskey-12 [7] has been proposed, which
has increased the number of rounds from 8 to 12.

This section describes only SipHash, whose security is mature. The CMAC and the HMAC
modes are not covered here. The Chaskey algorithm has not undergone a sufficient number of
reviews and is not discussed.
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Message authentication code
Name SipHash
Designers Jean-Philippe Aumasson (Kudelski Security, Switzerland), Daniel J. Bernstein

(University of Illinois at Chicago, USA)
Publication 2012 (INDOCRYPT 2012)
Specifications [2, 1]
Features SipHash is a keyed hash function with a key length of 128 bits and an output

length of 64 bits developed for associative arrays. The upper limit of the length
of an input message is 2,039 bytes, which is shorter than that of general-purpose
hash functions. The SipHash algorithm consists of a compression phase of c
rounds and a final process phase of d rounds, and indicated as SipHash-c-d.
SipHash-2-4 with c = 2 and d = 4 is generally used. The algorithm consists of
arithmetic additions, exclusive ORs, and cyclic shifts of 64-bit words and runs
fast on a CPU that supports 64-bit operations. In addition, since the algorithm
has no loop up table, straightforward implementation is secure against cache-
timing attacks.

Security
Analysis

As of 2016, no vulnerability has been found on SipHash. Dobraunig et al. [3]
found a differential path with a differential characteristic probability of 2−236.3.
However, since SipHash has a key length of 128 bits, brute-force key attacks are
much more efficient. Therefore, the result does not compromise the security of
SipHash.

Performance
Analysis

According to the proposal paper [2], the throughput of SipHash is 1.5 to 3.0 cy-
cles/byte on amd64 architecture. Because of relatively heavy finalization, the
processing speed slows down for short data; For example 10 to 30 cycles/byte
for 8-byte data.

Market De-
ployment

See http://aumasson.jp/siphash/#us, SipHash is used in many systems, in-
cluding the Python and Rust languages, in the FreeBSD and OpenBSD oper-
ating systems, in the Wireguard VPN, and so on.

Open Source
Information

Open-source reference code is available at https://github.com/veorq/

siphash, and there are a multitude of third-party implementations, see http:
//aumasson.jp/siphash/#sw.
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siphash. In Antoine Joux and Amr Youssef, editors, Selected Areas in Cryptography – SAC
2014, volume 8781 of Lecture Notes in Computer Science, pages 165–182. Springer Interna-
tional Publishing, 2014.

[4] FELICS. Fair evaluation of lightweight cryptographic systems. https://www.cryptolux.

org/index.php/FELICS.

[5] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentication,
volume RFC2104 of Request For Comments. February. https://tools.ietf.org/html/

rfc2104.

[6] Nicky Mouha. Chaskey. http://mouha.be/chaskey/.

[7] Nicky Mouha. Chaskey: a mac algorithm for microcontrollers – status update and proposal
of chaskey-12 –. http://eprint.iacr.org/2015/1182.

[8] Nicky Mouha, Bart Mennink, Anthony Van Herrewege, Dai Watanabe, Bart Preneel, , and
Ingrid Verbauwhede. Chaskey: An efficient mac algorithm for 32-bit microcontrollers. In
Antoine Joux and Amr Youssef, editors, Selected Areas in Cryptography – SAC 2014, volume
8781 of Lecture Notes in Computer Science, pages 306–323. Springer, 2014.

[9] National Institute of Standards and Technology. Recommendation for Block Cipher Modes
of Operation: The CMAC Mode for Authentication. NIST Special Publication 800-38B. May
2005. http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf.

[10] National Institute of Standards and Technology. The Keyed-Hash Message Authentication
Code (HMAC). Federal Information Processing Standards Publication FIPS 198-1. July 2008.
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf.

111



4.5 Authenticated Encryption

This section focuses on the schemes proposed at the CAESAR competitions [6] featuring lightweight
for which no security problems have been found (as of July 28, 2016) and describes the outline.
We also include some recent results found after the above date for information. Many schemes
use a block cipher or tweakable block cipher. For these schemes, a rate will be introduced as
an index for measuring theoretical speeds. Rate indicates the number of input blocks that can be
processed by a single call of a block cipher. The software implementation evaluation value is, unless
otherwise specified, the result of processing a sufficiently long message on the Supercop Benchmark
System [7] in eBACS. Similarly, the hardware implementation evaluation value is, unless otherwise
specified, the result of the ATHENA Benchmark System [12]. The software evaluation scale is
the number of processing cycles per byte (cycles/byte, or C/B) for a sufficiently long message.
The hardware evaluation scales are the number of slices on an FPGA (slices) and the maximum
operating frequency (fmax). In the case of ASIC hardware implementation, the gate equivalent
(GE) is used as the scale for evaluating the size. In addition, some notable implementation cases,
which are not targets of these official benchmarks, will be reported as required. In any case,
it should be noted that the results could change greatly based on whether the implementation
is optimized and the degree of optimization. The affiliations of the authors are at the time of
proposal. On August 15, 2016, the 3rd round candidates of CAESAR were announced, and the
number of candidates was narrowed to 15. The schemes belonging to the 3rd round candidates are
noted.
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Authenticated encryption
Name ACORN
Designers Hongjun Wu (Nanyang Technological University, Singapore)
Publication 2014 (DIAC 2014 [41])
Specifications CAESAR Website [6]
Features This scheme uses LFSRs and simple non-linear operations. It has a simple

structure similar to that of Grain and Trivium, hardware-oriented stream ci-
phers.
The length of the key is 128 bits, and the state size is 293 bits. There are six
LFSRs being concatenated in ACORN-128.
Similar to Grain and Trivium, this scheme is suitable for hardware implemen-
tation.
This scheme is a CAESAR third-round candidate.

Security
Analysis

Salam et al. have reported an attack against a variant of ACORN with re-
duced preprocessing. They also reported an attack under nonce-misuse sce-
nario, which is beyond the designer’s security claim [36]. The latter has been
reported to have a computational complexity of 272.8. There are also other
analytical results (e.g., [26]). However, they were structural analyses with
known keys or attacks with computational complexities larger than those of
brute-force attacks, thus they were not directly indicating the vulnerabilities
of the scheme. In December 2016, Roy and Mukhopadhyay posted a practi-
cal initial-state-recovery attack against ACORN which requires computational
complexity around 240 on ePrint archive [35]. We remark that this result is yet
to be verified.

Performance
Analysis

(SW) 8.46 C/B on Intel Core i5-6600 (Skylake 3.31 GHz)

(HW) 135 slices and fmax of 389 MHz on Virtex 6.
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Authenticated encryption
Name Ascon
Designers Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schlaffer

(Graz University of Technology, Austria)
Publication 2014 (DIAC 2014 [14])
Specifications CAESAR Web site [6] and Official Website: http://ascon.iaik.tugraz.at
Features This scheme has a sponge structure that was introduced to the SHA-3 hash

function. The modes of operation are based on MonkeyDuplex [13].
The internal cryptographic permutation is 320-bit wide. It is based on a 5-bit
S-box and has a structure intended for bitslice implementation. This scheme
aims at lightweight in both software and hardware implementations.
This scheme is a CAESAR third-round candidate.

Security
Analysis

The designers evaluated the security when the internal permutation has a re-
duced number of rounds [15]. If the permutation is reduced to five rounds
(from the full-spec, 12 rounds), then key recovery is possible with practical
computational complexity of O(235). Similarly, if it is reduced to six rounds,
the attack complexity is reported to be O(266). No successful attacks against
the full-spec have been reported.

Performance
Analysis

(SW) 11.51 C/B on Intel Core i5-6600 (Skylake 3.31 GHz).

(HW) 413 slices and fmax of 347.0 MHz on Virtex 6.
7,950 GE at 5.5 Mbps on ASIC implementation including I/O circuits. [16].
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Authenticated encryption
Name AES-JAMBU
Designers Hongjun Wu, Tao Huang (Nanyang Technological University, Singapore)
Publication 2014 (DIAC 2014 [42])
Specifications CAESAR Website [6]
Features This is a block cipher mode of operation. It uses AES-128 or SIMON [4] for

the internal block ciphers. For SIMON, three versions of block size/key length
(bit), 64/96, 96/96, and 128/128 are specified.
In addition to block cipher’s I/O state, half of the block size is used as a state
variable to perform processing, which is serial. In each block cipher invocation,
half of the block size is encrypted. Since the size of the state variable is small,
this scheme is suitable for small hardware applications.
This scheme is a CAESAR third-round candidate.

Security
Analysis

Unlike most of the general block cipher modes of operation, the designers did
not present a security reduction based on computational security of the under-
lying block cipher, except the latest specification document showing integrity
analysis JAMBUv2.1. The designers argue that for a 2n-bit block cipher with a
k-bit key, the security of encryption is k bits and the security of authentication
is n bits.
Peyrin et al. [31] have reported attacks by 2n/2 encryptions in the nonce-misuse
scenario and attacks with computational complexity of 23n/2 against the secu-
rity of CCA2 [5] in the nonce-respecting scenario.

Performance
Analysis

(SW) 5.71 C/B on Intel Core i5-6600 (Skylake 3.31 GHz) using AES-128.

(HW) 453 slices and fmax of 209.8 MHz on Virtex 6.
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Authenticated encryption
Name AES-OTR
Designers Kazuhiko Minematsu (NEC, Japan)
Publication 2014 (Eurocrypt 2014 [28])
Specifications CAESAR Website [6], Official Website: http://jpn.nec.com/rd/crl/code/

research/otr_en.html

Features This is a block cipher mode of operation. The CAESAR proposal uses AES.
It has a structure similar to OCB. It uses two-round Feistel permutation and
can perform processing with a computational complexity similar to that of
encryption. Parallel processing is possible. Unlike OCB, decryption for au-
thenticated encryption can be executed only with the AES encryption function
without using AES decryption.
This scheme is a CAESAR third-round candidate.

Security
Analysis

The proposal paper indicated that the security of OTR can be reduced to the
pseudorandomness of the block cipher. This algorithm has provable security of
n/2 bits when a n-bit block cipher is used.
Bost et al. [11] pointed out an inconsistency with the security proof for internal
mask generation, and the designer has proposed a revised version.

Performance
Analysis

(SW) 0.68 C/B on Intel Core i5-6600 (Skylake 3.31 GHz) using AES-128.

(HW) 1,385 slices and fmax of 256.9 MHz on Virtex 6.
ARM v7 Implementation [29]: 23.5 C/B (42.5 Mbyte/sec) on a 1-GHz Cortex-
A8 microprocessor board.
ASIC Implementation by Banik et al. [3]: On the order of 6,000 GE under
special conditions including partial use of external memory and restrictions on
the input length.

Market
Deploy-ment

NEC Solution Innovators for Embedded Automotive Solutions (trial produc-
tion, Japanese site)
http://www.nec-solutioninnovators.co.jp/sl/emb/automotive/
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Authenticated encryption
Name CLOC and SILC
Designers Tetsu Iwata (Nagoya University, Japan), Kazuhiko Minematsu (NEC, Japan),

Jian Guo (Nanyang Technological University, Singapore), Sumio Morioka (NEC
Europe, United Kingdom), Eita Kobayashi (NEC, Japan)

Publication 2014 (FSE 2014 [18], DIAC 2014 [19])
Specifications CAESAR Website [6], Official Website: http://www.nuee.nagoya-u.ac.jp/

labs/tiwata/AE/

Features These are block cipher modes of operation. They are rate 1/2 schemes based
on CFB and CBC-MAC and have small memory requirements except for the
key (approximately 2n bits when a n-bit block cipher is used). CLOC was de-
veloped to improve performance for short inputs by reducing process overhead
and is suitable for embedded software. SILC is a variant of CLOC designed to
be suitable for hardware implementation by simplifying the internal process of
CLOC.
This scheme is a CAESAR third-round candidate.
Both CLOC and SILC use AES for the 128-bit block cipher. CLOC is also
defined with a 64-bit block cipher TWINE [39]. SILC is also defined with
64-bit block ciphers, PRESENT [10] and LED [17].

Security
Analysis

The proposal paper indicated that the security of CLOC and SILC can be re-
duced to the pseudorandomness of the block cipher used. They have a security
of n/2 bits when a n-bit block cipher is used.
Even if nonce is reused during encryption by mistake, security against cipher-
text forgery is guaranteed.

Performance
Analysis

(SW) 2.82 C/B for CLOC and 2.78 C/B for SILC on Intel Core i5-6600 (Skylake
3.31 GHz).
(HW) 891 slices and fmax of 280.9 MHz for CLOC, and 989 slices and fmax of
280.7 MHz for SILC on Virtex 6.
Implementation of CLOC on an 8-bit Microprocessor [18]: AVR ATmega128
(16 MHz). 2,000 cycles for initialization and 550 C/B for 32-byte encryption.
ASIC Implementation by Banik et al. [3]: Approximately 3,100 GE for both
CLOC-AES and SILC-AES with implementation under special conditions in-
cluding partial use of external memory and restrictions on the input length.
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Authenticated encryption
Name Deoxys
Designers Jérémy Jean, Ivica Nikolić, Thomas Peyrin (Nanyang Technological University,

Singapore)
Publication 2014 (DIAC 2014 [22], Asiacrypt 2014 [23])
Specifications CAESAR Website [6] and Official Website: http://www1.spms.ntu.edu.sg/

~syllab/Deoxys/

Features This is a block cipher mode of operation using a dedicated tweakable block
cipher, Deoxys-BC.
Deoxys-BC is a 128-bit block cipher and has a 256-bit tweak+key. The round
function of Deoxys-BC is identical to that of AES, and the number of rounds
is 14 to 16.
There are two types of block cipher modes of operation: TAE [27] and SCT
[30]. When the TAE mode is used, the algorithm has 128-bit security.
The TAE mode operates similar to OCB, and parallel processing is possible
with rate 1. However, SCT is a 2-path rate 1/2 offline process. Since the
SCT mode functions as a deterministic (or misuse-resistant) authenticated-
encryption [34], it is secure against nonce reuse.
This scheme is a CAESAR third-round candidate.

Security
Analysis

The proposal [20] indicates that the security can be reducible to the security of
Deoxys-BC, and the algorithm has security of 128 bits in the TAE mode. The
security of the SCT mode has been proven in a recent paper [30].

Performance
Analysis

(SW) 0.87 C/B on Intel Core i5-6600 (Skylake 3.31 GHz).

(HW) 993 slices and fmax of 330 MHz on Virtex 6.
2,860 GE with ASIC implementation of Deoxys-BC alone [24].

Open Source
Information

Hardware implementations on the ATHENA website.
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Authenticated encryption
Name Joltik
Designers Jérémy Jean, Ivica Nikolić, Thomas Peyrin (Nanyang Technological University,

Singapore)
Publication 2014 (DIAC 2014 [22], Asiacrypt 2014 [23])
Specifications CAESAR Website [6] and Official Website: http://www1.spms.ntu.edu.sg/

~syllab/Joltik/

Features This scheme uses a dedicated tweakable block cipher, Joltik-BC.
Joltik-BC is a 64-bit block cipher and has a 128-bit tweak+key. The round
function has the SPN structure using 4-bit S-boxes. The number of rounds is
24 to 32.
Similar to Deoxys, there are two types of modes: TAE and SCT.

Security
Analysis

The proposal [21] indicates that the security is reducible to the security of
Joltik-BC, and the algorithm has security of 64 bits in the TAE mode.

Performance
Analysis

(SW) 13.32 C/B on Intel Core i5-6600 (Skylake 3.31 GHz).

(HW) 494 slices and fmax of 430 MHz on Virtex 6
Open Source
Information

Hardware implementations on the ATHENA website.
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Authenticated encryption
Name Ketje
Designers Guido Bertoni1, Joan Daemen1, Michael Peeters2, Gilles Van Assche1, Ronny

Van Keer1 (1: STMicroelectronics2: NXP Semiconductors)
Publication 2014 (DIAC 2014 [9])
Specifications CAESAR Website [6] and Official Website: http://ketje.noekeon.org/
Features This scheme has a sponge structure. The mode of operation is based on Mon-

keyDuplex [13].
The internal cryptographic permutation, called Keccak-p, is based on the
Keccak-f permutation [8] used in the SHA-3 function. The permutation us-
ing 200-bit width is called Ketje-JR, and the permutation with 400-bit width
is called Ketje-SR.
This scheme is designed to be lightweight in both software and hardware imple-
mentation because of its small memory size and low computational complexity.
This scheme is a CAESAR third-round candidate.

Security
Analysis

There is a security proof under the public random permutation model (i.e.
assuming the internal permutation as a publicly accessible random permuta-
tion) [13].
The designers state that the Keccak-p permutation is secure because most of
the results of security evaluation of Keccak-f can be inherited.

Performance
Analysis

(SW) Ketje-SR, 42.57 C/B on Intel Core i5-6600 (Skylake 3.31 GHz).

(HW) 456 slices and fmax of 229.5 MHz on Virtex 6.
Standardi-
zation

Ketje is submitted to the CAESAR competition and has been selected for the
third round of the competition.

Open Source
Information

https://github.com/gvanas/KeccakCodePackage
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Authenticated encryption
Name Minalpher
Designers Yu Sasaki1, Yosuke todo1, Kazumaro Aoki1, Yusuke Naito2,

Takeshi Sugawara2, Yumiko Murakami2, Mitsuru Matsui2, Shoichi Hirose3

(1: NTT, Japan, 2: Mitsubishi Electric Corporation, Japan, 3: University of
Fukui, Japan)

Publication 2014 (DIAC 2014 [38])
Specifications CAESAR Website [6] and Official Website: http://info.isl.ntt.co.jp/

crypt/minalpher/index-j.html/

Features This scheme uses a dedicated 256-bit tweakable block cipher based on the Even-
Mansour approach, called TEM. The TEM is based on a 256-bit cryptographic
permutation, Minalpher-P. A new mode of operation has been developed for
Minalpher.
The internal cryptographic permutation for TEM has the SPN structure using
4-bit S-boxes that facilitates the integration of the encryption and decryption
functions. It has security against nonce reuse, however, the protection is partial.

Security
Analysis

It has been demonstrated that the security is reducible to the security of the
TEM block cipher, and the scheme has 128-bit security.
Minalpher-P has a total of 17.5 rounds. For security evaluation, the CAESAR
proposal [37] indicates that when the number of rounds is reduced to 5.5,
theoretical attacks are possible.

Performance
Analysis

(SW) 5.81 C/B on Intel Core i5-6600 (Skylake 3.31 GHz).

(HW) 1,104 slices and fmax of 280.9 MHz on Virtex 6.
SIMD Implementation [37]: 5.6 C/B on Intel CPU Core i7 (Haswell)
Implementation on an 8-bit RL78 microprocessor [37]: Approximately 2,800
C/B with 514-byte ROM and 214-byte RAM, and 514 C/B with 1,275-byte
ROM and 470-byte RAM

Standardi- CAESAR: Competition for Authenticated Encryption
zation https://competitions.cr.yp.to/caesar-submissions.html

Open Source Reference code - Reference implementation in C for version 1.1.
Information https://info.isl.ntt.co.jp/crypt/minalpher/files/minalpherv11.tgz

- Reference implementation in C.
https://info.isl.ntt.co.jp/crypt/minalpher/files/minalpherv1.tar.

gz

Hardware code - Hardware implementation for version 1.1.
https://info.isl.ntt.co.jp/crypt/minalpher/files/minalpherv11_

MinalpherTeam.zip
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Authenticated encryption
Name OCB
Designers Ted Krovetz (California State University, U.S.), Phillip Rogaway (Univ. of

California, Davis, U.S.)
Publication 2001 (ACM CCS 2001 [33]), 2004 (ASIACRYPT 2004 [32]), 2011 (FSE

2011 [25])
Specifications CAESAR Website [6] and Official Website: http://web.cs.ucdavis.edu/

~rogaway/ocb/

Features This is a block cipher mode of operation. The version using AES has been
specified in RFC 7253. The CAESAR proposal is identical to RFC 7253. This
scheme has a structure similar to the ECB mode. However, message authen-
tication is realized by taking a checksum of the plain text block (obtaining an
exclusive XOR), and encrypting the result. Therefore, the entire computational
complexity is close to that of the algorithm with encryption-only modes. In
addition, each block encryption can be parallelized.
The basic structure was proposed in 2001, and several versions have been pro-
posed with differences mainly in mask generations. In the case of using AES,
the algorithm is significantly fast on CPUs that have AES-NI instructions.
This scheme is a CAESAR third-round candidate.

Security
Analysis

The designers [33, 32, 25] indicate that the security of OCB is reducible to the
strong pseudorandomness of the block cipher. It has a proven security of n/2
bits when a n-bit block cipher is used.

Performance
Analysis

(SW) 0.64 C/B on Intel Core i5-6600 (Skylake 3.31 GHz) using AES-128

(HW) 1,348 slices and fmax of 292.7 MHz on Virtex 6.
The implementation results of many other CPUs have been reported. [25].

Standardi-
zation

RFC 7253
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Authenticated encryption
Name PRIMATEs
Designers Elena Andreeva†, Begul Bilgin†, Andrey Bogdanov (Technical University of

Denmark, Denmark), Atul Luykx†, Florian Mendel (Graz University of Tech-
nology, Austria), Bart Mennink†, Nicky Mouha†, Qingju Wang†, Kan Yasuda
(NTT, Japan)
†: KU Leuven, Belgium

Publication 2014 (DIAC 2014 [1], FSE 2014 [2])
Specifications CAESAR Website [6] and Official Website: http://primates.ae/
Features This is essentially a family of three schemes having different modes of operation:

HANUMAN, GIBBON, and APE. All schemes are sponge-based, and have
200-bit or 280-bit cryptographic permutation as an internal element. When
public random permutation is used, 80-bit or 120-bit security is guaranteed.
The internal permutation is SPN similar to AES or Rijndael, but it uses 5-
bit S-box. HANUMAN and GIBBON are based on known modes of opera-
tion (SpongeWrap and MonkeyWrap). APE has a dedicated mode considering
nonce reuse.

Security
Analysis

Practical forgery attack on HANUMAN exploiting a flaw when there is no as-
sociated data, have been reported [40]. The designers have proposed a revision.

Performance For GIBBON,
Analysis (SW) 1,712 C/B on Intel Core i5-6600 (Skylake 3.31 GHz)

(HW) 419 slices and fmax of 333.4 MHz on Virtex 6.
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