
Analysis of MARS

January 12, 2001

Executive Summary

This report presents the results of a limited evaluation of the block cipher
MARS.

No important weaknesses or flaws were found on MARS. The round func-
tion of MARS looks simple but is relatively complex to analyse because of the
different natures of the involved components.

MARS is an iterated cipher which runs in 32 rounds, but the rounds are not
of the same type, which is somewhat unusual. The middle 16 rounds are the
conjectured cryptographically strong part of MARS. The outer forward eight
rounds and backward eight rounds are faster and not keyed, and were introduced
to make attacks in the inner rounds more complicated. We believe that with
respect to the state-of-the-art a cryptanalytic attack on 16 middle (core) rounds
of MARS alone is likely to be of a very high complexity.

Finally we mention that this report is the result of a limited time of review.
A concentrated long analysis might reveal properties of MARS, which we were
not able to detect, however it is felt with respect to the currently known attacks
on block ciphers, the security margin of MARS is sufficiently high for many
years.
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1 Structural features and characteristics

MARS is an iterated block cipher with 128-bit blocks and allows for three dif-
ferent key sizes to be compliant with the AES [38].

MARS is a 32-round Feistel-like network, but where the round function is not
identical in each round. There are two types of rounds in MARS, the so-called
“wrapper rounds” and the so-called “core-rounds”. The wrapper rounds are
unkeyed and designed to make a quick scrambling of the data, the core rounds
are keyed and supposedly the cryptographically strong rounds. First a 128-bit
key is added word-wise modulo 232 to the 128-bit plaintext. This key is also
called the “pre-whitening key”. Then the text is split into 4 words, each of 32
bits. The words are then input to eight wrapper rounds, also called the “forward
mixing phase”. The resulting words are then input to eight core-rounds, also
called the keyed forward transformation. The resulting words are then input
to another eight core-rounds, also called the keyed backward transformation.
Finally the words are input to eight wrapper rounds, called the “backward
mixing phase” and a final subkey is subtracted modulo 232 to each word to
form the outputs. The final key is also called the “post-whitening key”.

The idea behind the forward and backward phases is that this structure
makes the encryption operation similar to the decryption operation.

2 Differential cryptanalysis

In this section we evaluate MARS with respect to differential cryptanalysis.
First we consider the cases where a difference of two bit-strings of equal lengths
is defined via the exclusive-or operation. We shall examine the different com-
ponents of the MARS rounds with respect to differential cryptanalysis.

The notation used is

(x0, x1, x2, x3)
G→ (y0, y1, y2, y3)

if texts of differences (x0, x1, x2, x3) can result texts of differences (y0, y1, y2, y3)
after one application of a function G, where each xi and yi are 32-bit values.

Consider first the forward mixing phase, which consists of eight wrapper
rounds. In each round there are four table lookups, using two S-boxes each
taking an eight-bit input and returning a 32-bit output. It is not clear where
and how to split the four wrapper rounds into four single wrapper rounds, but let
us make the convention that a single wrapper round starts with an application
of the S-box S0, and such that each wrapper round consists of two applications
of the S-box S0 and two applications of the S-box S1. Consider two inputs each
of 128 bits, such that these differ only in the most signficant byte of the most
significant 32-bit word. Let ifmr denote i forward mixing rounds. Then it holds
that

(x, 0, 0, 0)
4fmr→ (y, w, 0, z)

where x and z are zero in the least signficant 24 bits, y is zero in the most
significant 24 bits, and w is a value not predicted. In particular, if x and z are
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both set only in the most significant bit, and y is set only in the most significant
bit of the least significant byte. The difference w in the second words is one
of 256 possible nonzero 32-bit values. In plain words, this differential says that
for two 128-bit texts different in only the most significant bit will after the first
four wrapper rounds be equal in one of the four words, different only in one
bit in each of two words, and the difference in the last words will be one of
256 predetermined differences. We shall continue this analysis with this specific
value of x. Let us consider five wrapping rounds. It holds that

(x, 0, 0, 0)
4fmr→ (y, w, 0, z)

1fmr→ (s, t, 0, u),

where t is closely related to w and s closely related to z. The value of t is closely
related to w since the only thing that has happened to the texts of difference w
is that some constant words have been added modulo 232 to each texts in the
difference. Also, s is closely related to z, since the four words before the very
last operation in the fifth round differ in only the most significant bit of the
least signficant bit, and in the last operation have been added modulo 232 texts
of (exor-)difference s. After the sixth wrapper round all four words have been
affected by a differential:

(x, 0, 0, 0)
5fmr→ (s, t, 0, u)

1fmr→ (s′, t′, v, u),

but where in a similar manner as above, s′ is related to s and t′ is related to t.
After seven wrapper rounds, the difference in the second words is the same as
after six rounds, but all other words have been affected. These (strong) relations
are not present after an additional round, in total eight wrapper rounds.

Now, let ibmr denote i backward mixing rounds. Let x be a 32-bit difference
set only in the most significant bit. Then the following holds

(x, 0, 0, 0) 4bmr→ (y, w, 0, 0),

where y is a difference with a 1-bit set only in the most significant bit of the
least signficant byte. The difference w in the second words is one of 256 possible
nonzero 32-bit values.

For five backward mixing rounds the following holds

(x, 0, 0, 0) 4bmr→ (y, w, 0, 0) 1bmr→ (y′, w, 0, 0),

where y′ and y are related. Note that the Hamming weight of the difference y
is one. The texts of difference y are added modulo 232 a constant value plus
exclusive-ored with a constant value. It holds [27] that with probability 1/2
y′ = y, with probability 1/4 y′ has a Hamming weight of two etc.

For six backward mixing rounds the following holds

(x, 0, 0, 0) 5bmr→ (y′, w, 0, 0) 1bmr→ (y′, w′, 0, 0),

where w′ and w are related.
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For seven and eight backward mixing rounds none of the four values can be
predicted with certainty.

This analysis of the forward and backward mixing rounds shows that al-
though none of the four words after eight forward or eight backward wrapper
rounds can be predicted with certainty, the distribution of the differences in the
four words is not uniform. Therefore 8 forward mixing rounds or 8 backward
mixing rounds by themselves are not able to prevent high probability differen-
tials. However in combination and assuming they were keyed (e.g., by adding
key material to the input of each S-box) the sixteen rounds together would very
likely well resist attacks based on differential cryptanalysis. This illustrates
that the mixing rounds are important in helping to resist a differential attack
on MARS.

Let us next consider the core rounds of MARS. The different components
are fixed rotations, data-dependent rotations, the multiplication of an odd key
modulo 232, the addition modulo 232 and an S-box taking nine inputs bits
and producing a 32-bit output. The core rounds work on 32-bit words. In one
rounds, one of the 32-bits word is used as input to the round function E and three
32-bit words are output, which are added modulo 232, added modulo 232, and
exored respectively to the three other input words of the round. After one round,
the four 32-bit words are shifted one position, such that a different word is input
to the function E in each of four (consecutive) rounds. E takes as input also two
subkeys, where one of the keys, the one used in the multiplication operation,
is always odd (when viewed as a 32-bit integer). In the first output word, the
input is computed by first rotating the words by 13 positions to the left, the
multiplying the odd subkey, then rotating the result by 10 positions to the left.
The second output is computed by first adding the second subkey modulo 232,
and then rotating the 32-bit result by an amount from an intermediate value
from the computation of the first output. The third output is computed by first
adding the second subkey modulo 232, then the least significant nine bits are
input to the S-box, whose output is exclusive-ored by an intermediate value from
the computation of the first output and then exclusive-ored by an intermediate
value from the computation of the second output and finally the 32 bits are
rotated by an amount from an intermediate value from the computation of the
first output.

Let us first consider the components of the round function E. Let ⊗K

denote a multiplication of a key modulo 232 used in MARS. Then the following
differentials hold with probability one

(a | ‘0′) ⊗K→ (A | ‘0′).

Here a and A denote some nonzero values of some t bits and “0” denotes a
sequence of 32− t bits. In other words, if a pair of texts are equal in the lower
s bits 1 ≤ s ≤ 32, then the texts after a multipication of a constant modulo 232

have the same property. In particular, it holds with probability one, that two
texts different in only the most significant bit have the same property after a
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multiplication with an odd key.
The input to the S-box is 32 bits but only nine bits are used. Therefore there

exist differentials of probability one through the application of an S-box, if the
lower nine bits of the two 32-bit inputs are equal. When the lower nine inputs
bits are different the differences in the outputs of the S-box are the exclusive-or
of two (of totally 512) randomly chosen 32-bit quantities. Therefore, differentials
which try to exploit the distribution of such differentials are expected not to be
very effective in attacks on the full version of MARS.

A modular addition of a round key modulo 232 has only a limited effect on
differences of low Hamming weights. Let A and B be two 32-bit words which
only differ in few bits. Then an integer addition of a (constant) key K does not
necessarily lead to an increase of bit differences in the sums A + K and B + K.
This is illustrated in the following. Suppose the words A and B only differ in
the most significant bit. Then it follows that A + K and B + K also differ in
only the most significant bit. Suppose next that the words A and B only differ
in the i-th bit, i < 31. Then it can be shown that with probability 1

2 , A + K
and B + K also differ in only the i-th bit. If we use the binary representation
of words, i.e., A = aw−12w−1 + · · · + a12 + a0, and similarly for B and K, the
binary representation of the sum Z = A + K may be obtained by the formulae

zj = aj + kj + σj−1 and σj = ajkj + ajσj−1 + kjσj−1, (1)

where σj−1 denotes the carry bit and σ−1 = 0 (cf. [41]). Using these formulae
one sees that A + K and B + K with probability 1

4 differ in exactly two (con-
secutive) bits. Suppose now the words A and B already differ in exactly two
consecutive bits. Then again using the formulae (1) one can see that with prob-
ability 1

4 , A + K and B + K differ in exactly one bit and that with probability
3
8 , A + K and B + K differ in exactly two (not necessarily consecutive) bits.
Thus with probability 5

8 the words A + K and B + K differ again in at most
two bits if A and B differ in two consecutive bits. Using the formulae (1) one
could discuss relations between integer addition and bit differences in a more
general setting. However the above suggests that addition of fixed keys can only
moderately contribute to an avalanche effect of bit differences.

Next let us consider rotations. Using the exclusive-or operation to define a
difference, it is clear that fixed rotations allow only for differentials of probability
one. This does not mean that fixed rotations can be ignored, since the moving
of certain bits to certain positions can have a dramatic effect on the differences
in other components. Data-dependent rotations share some of these properties
but only when the two texts in a differential are rotated by the same amount.
Since the rotations are determined by the least significant five bits of a word,
two words A and B different in one or several of these five bits, will have an
difference after the rotations which depend on both A and B and not only on
their difference (as is the case for fixed rotations).

Let us consider the function E. Consider the computation of the first output.
From above it follows that texts which are equal in the lower bits but different
in the higher bits can be well predicted after the multiplication operation. The
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outputs of the multiplication operation are first rotated five positions to the
left. This has the effect that the five most significant bits of the multiplication
result are used as the amount by which the 32 bits in the computation of the
second output are rotated. Thus, this rotation can be expected to depend on
many on the 32 input bits to E. The intermediate first output is then rotated
by another five positions to the left. Thus the amount used to rotate 32 bits
in the computation of the third output are the sixth to tenth most significant
bits of the output of the multiplication operation. Thus, these bits can also be
expected to depend on many of the input bits to E. So, although differences
in the higher bits only perform well through a multiplication operation, the E
function is designed such that in these cases, this may have a dramatic effect on
the differences in the outputs of the other two words. Consider the second output
word. This is just the input to E added the second subkey, then rotated by some
variable amount. Thus, a difference in two inputs to E of a low Hamming weight
will result in the low Hamming weight difference in the second output words.
However, note that in both the forward core rounds and in the backward core
rounds, in the following round, this second output word does not become the
input word to E. Before this word becomes the input to E, it has appeared in
one other round and been added either a first or third output. Consider the
third output word. If in a differential the lower nine bits are zeros, then the
application of the S-box has no effect on the difference. The third output is
exclusive-ored with 32 intermediate bits from the first output, then exclusive-
ored with the final first output, and finally rotated by an amount determined
from the final first output. Thus, if the differences in the inputs escape the
S-box, then later there will be either different rotation amounts or the texts
exclusive-ored from quantities from the computation of the first output word
will be different and not easily predicted. Thus, it appears to be very difficult
to predict the exact values in the differences of the outputs of E over several
rounds with a high probability. This is supported by the report of the designers,
which include crude estimates of the probabilities of differentials, plus by the
results previously reported by other researchers. The best known results are
those of [18, 19, 7], which all make us of a trivial 3-round differential, which is
applied twice. The latter results will be reviewed later in this report.

We believe that a differential attack on the 16 core rounds by themselves is
very unlikely to exist, and if it does it will have a very high complexity. Together
with the relative good resistance of the 16 wrapper rounds in addition, it is safe
to conclude that with respect to the state-of-the-art a differential attack on
MARS is unlikely to exist.

3 Linear cryptanalysis

In this section we consider attacks based on linear cryptanalysis. In the following
we examine the different components of the Feistel round function with respect
to linear cryptanalysis.

Consider the 16 wrapper rounds and consider first the four output words
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from four forward mixing rounds. It follows that each word is exclusive-ored
or added modulo 232 with the outputs of 4 S-box evaluations. In addition the
third and fourth words are added intermediate values from the computations of
the second and first words respectively. Consequently, a linear relation through
eight mixing rounds needs to take many S-box linear relations into account.
Since these are of low probabilities, such an approach is likely not to produce
good results for neither eight forward mixing rounds nor for eight backward
mixing rounds. Taking the designers own analysis for the sixteen core rounds
into consideration which asserts that a linear attack is not possible, it is safe
to conclude that for MARS as a whole a linear attack is very likely not to
exist. What also speaks in favor of this claim is that linear cryptanalysis has
proven most useful for ciphers which are limited to the exclusive-or operation
and relatively small S-boxes.

4 Other cryptanalysis

In this section we consider other attacks. First of all, there are trivial attacks
which apply to all block ciphers. An exhaustive key search will take 2k opera-
tions to succeed, where k is the key size. Also, the “matching ciphertext attack”
applies in ECB and CBC mode, but requires about 2n/2 ciphertext blocks to
succeed with good probability, where n is the block size. With n = 128 as in
MARS, 264 ciphertext blocks are required after which an attacker would be able
to deduce information about the plaintext blocks.

Higher order differentials. This attack applies to ciphers which uses nonlinear
components of a low algebraic degree. MARS uses S-boxes of a high nonlinear
order in a relatively complex round function, and the probability that a higher
order differential attack could be applicable is very small. Moreover, a dth
order differential attack considers a collection of 2d texts. The data-dependent
rotations used in MARS should be equal for these 2d texts in order that one
should be able to predict the differential after the rotation. This makes the
higher order differential attack very unlikely to succeed.

The slide attacks, the non-surjective attacks and the “mod n” attacks do
not seem applicable, since the structure and components of MARS do not seem
friendly to these attacks.

The integral attacks apply to MARS but only for a few of the core rounds,
at most six rounds, we claim.

The interpolation attacks apply to ciphers which use simple mathematical
functions only. The S-boxes used in MARS are generated in a pseudo-random
fashion from the hash function SHA-1 [35]. This together with multiplications
mod 232, the mixed use of exclusive-ors and modular additions and the different
types of rounds make the interpolation attacks very unlikely to be applicable.

The key-schedule of MARS does not seem to allow for related-key attacks.
The schedule is rather complex and involves S-box evaluations, fixed constants,
rotations and both exclusive-ors and modular additions. Therefore, it seems
unlikely that any easily identified weak keys exist.
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5 Survey of previous results

In [42] it was shown that in the first proposed key-schedule of MARS it was
possible to find so-called equivalent keys. That is, pairs of keys which produce
the same set of round keys. This was possible also because that key-schedule
allowed for keys up to 1248 bits. In [4] a new key-schedule was proposed, which
is the current key-schedule of MARS. The before-mentioned equivalent keys do
not exist for MARS with the new key-schedule.

In [9] it was shown that the MARS S-boxes do not satisfy exactly the crite-
ria claimed by the designers. Also, in [29] it was shown that there exist linear
relations in the 9 to 32 bit S-box of MARS higher than conjectured by the de-
signers. However, none of these findings have been utilised in any improvement
of cryptanalysis on MARS. Also, K. Aoki made an exhaustive search for all
linear relations through this S-box and found many more examples than those
of [29].

In [40] it is claimed that the linear analysis done by the designers of MARS
was too optimistic. It was claimed that the bound on the best biases in a linear
approximation on the core rounds was “only” 2−49 where the designers’ bound
was 2−69. First of all, these numbers are only bounds, and do not represent the
biases of linear approximations actually determined. It is therefore likely that
any linear approximation will have a lower bias. Secondly, since a linear attack
needs approximately b−2 texts to succeed where b is the bias, both numbers are
low enough to conclude that MARS is not vulnerable to a linear attack taken
into the account that the 16 mixing rounds also help prevent the success of a
linear attack.

In [19] the authors consider a number of attacks on reduced-round variants
of MARS. First the authors consider a MARS variant consisting of 8 forward
mixing rounds, then 5 core rounds, and then finally 8 backward mixing rounds.
First of all, attacks on this variant do not give a good picture of the strength of
MARS itself. The attacker is guessing the values of the pre- and postwhitening
keys, and therefore he can unwrap the wrapping rounds. These attacks require
the time equivalent to more than 2230 encryptions, and at least 2197 bytes of
memory. Also, the authors present an attack on a more realisticly downscaled
version of MARS. The variant consists of 3 forward mixing rounds, then 3
forward core rounds, three backward core rounds, and finally 3 backward mixing
rounds. The attack requires 269 chosen plaintexts, 273 bytes of memory, and
the time equivalent to 2194 encryptions or more.

In [18] the authors state a so-called boomerang-amplifier differential attack,
which is claimed to break MARS reduced to 11 core rounds. The attack requires
265 chosen plaintexts, 270 bytes of memory, and the time equivalent to 2225

encryptions or more. This differential attack is based on a 3-round differential
of probability one, which is due to the fact that one word of a plaintext is not
modified before the fourth round. The differential is used twice in a boomerang-
fashion together with some specific, intrinsic properties of the E function.

In [7] the authors present an impossible differential on eight core rounds
of MARS. This differential is based on the 3-round differential of probability
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one which was discussed in the previous paragraph, together with some other
intrinsic properties of the E function. It does not seem likely that this attack
can be extended to all rounds of MARS not even to only the core rounds.

These attacks on MARS are completely unpractical and have no effect on
the security on the unmodified MARS. One might even claim that the attacks
show the strength of MARS.
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A Block Ciphers in General

In the following we give a compressed overview of the state-of-the-art of block
cipher cryptanalysis, and outline the following known attacks.

1. Exhaustive Key Search

2. Matching Ciphertext Attacks

3. Differential Cryptanalysis

4. Truncated Differential Attacks

5. Higher-order Differential Attacks

6. Linear Cryptanalysis

7. Related-key Attacks

8. Non-surjective Attacks

9. Interpolation Attacks

10. Mod-n Attacks

11. Slide Attacks

12. Integral Attacks

A.1 Exhaustive key search

This attack needs only a few known plaintext-ciphertext pairs. An attacker
simply tries all keys, one by one, and checks whether the given plaintext encrypts
to the given ciphertext. For a block cipher with a k-bit key and n-bit blocks the
number of pairs of texts needed to determine the key uniquely is approximately
dk/ne. Also, if the plaintext space is redundant, e.g., consists of English or
Japanese text, the attack will work if only some ciphertext blocks is available.
The number of ciphertext blocks needed depends on the redundancy of the
language.

A.2 The matching ciphertext attack

The matching ciphertext attack is based on the fact that for block ciphers of m
bits used in the modes of operations for the DES [37] after the encryption of
2m/2 blocks, equal ciphertext blocks can be expected and information is leaked
about the plaintexts [11, 23, 34].
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A.3 Differential cryptanalysis

The most well-known and general method of analysing conventional cryptosys-
tems today is differential cryptanalysis, published by Biham and Shamir in 1990.
Differential cryptanalysis is universal in the sense that it can be used against
any cryptographic mapping which is constructed from iterating a fixed round
function. One defines a difference between two bit strings, X and X ′ of equal
length as

∆X = X ⊗ (X ′)−1, (2)

where ⊗ is the group operation on the group of bit strings used to combine
the key with the text input in the round function and where (X)−1 is the
inverse element of X with respect to ⊗. The idea behind this is, that the
differences between the texts before and after the key is combined are equal,
i.e., the difference is independent of the key. To see this, note that

(X ⊗K)⊗ (X ′ ⊗K)−1 = X ⊗K ⊗K−1 ⊗X ′−1 = X ⊗ (X ′)−1 = ∆X.

In a differential attack one exploits that for certain input differences the distri-
bution of output differences of the non-linear components is non-uniform.

Definition 1 An s-round characteristic is a series of differences defined as an
s + 1-tuple {α0, α1, . . . , αs}, where ∆P = α0, ∆Ci = αi for 1 ≤ i ≤ s.

Here ∆P is the difference in the plaintexts and ∆Ci is the difference in the
ciphertexts after i rounds of encryption. Thus, the characteristics are lists of
expected differences in the intermediate ciphertexts for an encryption of a pair
of plaintexts. In essence one specifies a characteristic for a number of rounds
and searches for the correct key in the remaining few rounds. In some attacks
it is not necessary to predict the values α1, . . . , αs−1 in a characteristic. The
pair (α0, αs) is called a differential. The complexity of a differential attack is
approximately the inverse of the probability of the characteristic or differential
used in the attack.

A.4 Truncated differentials

For some ciphers it is possible and advantageous to predict only the values of
parts of the differences after each round of the cipher. The notion of truncated
differentials was introduced by Knudsen [25]:

Definition 2 A differential that predicts only parts of an n-bit value is called
a truncated differential. More formally, let (a, b) be an i-round differential. If
a′ is a subsequence of a and b′ is a subsequence of b, then (a′, b′) is called an
i-round truncated differential.

A truncated differential can be seen as a collection of differentials. As an exam-
ple, consider an n-bit block cipher and the truncated differential (a′, b), where
a′ specifies the least n′ < n significant bits of the plaintext difference and b
specifies the ciphertext difference of length n. This differential is a collection
of all 2n−n′ differentials (a, b), where a is any value, which truncated to the n′

least significant bits is a′.
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A.5 Impossible differentials

A special type of differentials are those of probability zero. The attack was first
applied to the cipher DEAL [26] and later to Skipjack [6]. The main idea is
to specify a differential of probability zero over some number of rounds in the
attacked cipher. Then by guessing some keys in the rounds not covered by the
differential one can discard a wrong value of the key if it would enable the cipher
to take on the differences given in the differential.

A.6 Higher-order differentials

An sth-order differential is defined recursively as a (conventional) differential
of the function specifying an (s − 1)st order differential. In order words, an
sth order differential consists of a collection of 2s texts of certain pairwise,
predetermined differences. We refer to [30, 25] for a more precise definition of
higher order differentials.

In most cases one considers differences induced by the exclusive-or operation
and the field of characteristic 2. The nonlinear order of a function f : GF (2n) →
GF (2n) is defined as follows. Let the output bits yj be expressed as multivariate
polynomials qj(x) ∈ GF (2)[x1, . . . , xn], where x1, . . . , xn are the input bits. The
nonlinear order of f is then defined to be the minimum total degree of any linear
combination of these polynomials. The higher order differential attacks exploit
the following result.

Corollary 1 Let f : GF (2n) → GF (2n) be a function of nonlinear order d.
Then any dth order differential is a constant. Consequently, any (d+1)st order
differential is zero.

The boomerang attack [43] can be seen as a special type of a second-order
differential attack. This variant applies particularly well to ciphers for which
one particular (first-order) differential applies well to one half of the cipher, and
where another particular (first-order) differential applies well to the other half
of the cipher.

A.7 Linear cryptanalysis

Linear cryptanalysis was proposed by Matsui in 1993 [31]. A preliminary version
of the attack on FEAL was described in 1992 [33]. Linear cryptanalysis [31] is
a known plaintext attack in which the attacker exploits linear approximations
of some bits of the plaintext, some bits of the ciphertext and some bits of the
secret key. In the attack on the DES (or on DES-like iterated ciphers) the linear
approximations are obtained by combining approximations for each round under
the assumption of independent round keys. The attacker hopes in this way to
find an expression

(P · α)⊕ (C · β) = (K · γ) (3)
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which holds with probability pL 6= 1
2 over all keys [31], such that |pL− 1

2 |, called
the bias, is maximal. In (3) P, C, α, β, γ are m-bit strings and ‘·’ denotes the
dot product. The bit strings α, β, γ are called masks.

Definition 3 An s-round linear characteristic is a series of masks defined as
an (s + 1)-tuple {α0, α1, . . . , αs}, where α0 is the mask of the plaintexts and αi

is the mask of the ciphertexts after i rounds of encryption for 1 ≤ i ≤ s.

As for differential cryptanalysis one specifies a linear characteristics for a number
of rounds and searches for the keys in the remaining rounds, we refer to [31] for
more details. A linear attack needs approximately about b−2 known plaintexts
to succeed, where b is the bias of the linear characteristic used.

Also, the concepts of linear hulls, the analogue to differentials as opposed to
characteristics in differentials cryptanalysis, has been defined in [36].

Finally, in [32] it has been shown that if one defines the quantity q = (2p−1)2

where p is the probability of a linear characteristic or hull, then when combining
several linear characteristics one can multiply their q values to get the q-value
of the combination. Sometimes the q values are referred to as the “linear prob-
ability”, which is somewhat misleading, but nevertheless seems to be widely
used.

A.8 Mod n cryptanalysis

In [21] a generalisation of the linear attacks is considered. This attack is applica-
ble to ciphers for which some words (in some intermediate ciphertext) are biased
modulo n, where n typically is a small integer. It has been shown that ciphers
which uses only bitwise rotations and additions modulo 232 are vulnerable to
these kinds of attacks.

A.9 Related-key attacks

There are several variants of this attack depending on how powerful the attacker
is assumed to be.

1. Attacker gets encryptions under one key.

2. Attacker gets encryptions under several keys.

(a) Known relation between keys.

(b) Chosen relation between keys.

Knudsen used the methods of 1 by giving a chosen plaintext attack of the first
kind on LOKI’91 [22], reducing an exhaustive key search by almost a factor of
four. The concept “related-key attack” was introduced by Biham [5], who also
introduced the attack scenarios of 2, where the encryptions under several keys
are requested. Knudsen later described a related key attack on SAFER K [24]
and Kelsey, Schneier, and Wagner [20] applied the related key attacks to a wide
range of block ciphers. It may be argued that the attacks with a chosen relation
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between the keys are unrealistic. The attacker need to get encryptions under
several keys, in some attacks even with chosen plaintexts. However there exist
realistic settings, in which an attacker may succeed to obtain such encryptions.
Also, there exists quite efficient methods to preclude the related key attacks
[20, 15].

A.10 Interpolation attack

In [17] Jakobsen and Knudsen introduced the interpolation attack on block
ciphers. The attack is based on the following well-known formula. Let R be a
field. Given 2n elements x1, . . . , xn, y1, . . . , yn ∈ R, where the xis are distinct.
Define

f(x) =
n∑

i=1

yi

∏

1≤j≤n,j 6=i

x− xj

xi − xj
. (4)

f(x) is the only polynomial over R of degree at most n− 1 such that f(xi) = yi

for i = 1, . . . , n. Equation (4) is known as the Lagrange interpolation formula
(see e.g.,[10, page 185]). In the interpolation attack an attacker constructs poly-
nomials using pairs of plaintexts and ciphertexts. This is particularly easy if
the components in the cipher can be expressed as easily described mathemat-
ical functions. The idea of the attack is, that if the constructed polynomials
have a small degree, only few plaintexts and their corresponding ciphertexts are
necessary to solve for the (key-dependent) coefficients of the polynomial, e.g.,
using Lagrange’s interpolation. To recover key bits one expresses the ciphertext
before the last round as a polynomial of the plaintext.

A.11 Non-surjective attack

In [39] Rijmen-Preneel-De Win described the non-surjective attack on iterated
ciphers. It is applicable to Feistel ciphers where the round function is not surjec-
tive and therefore statistical attacks become possible. In a Feistel cipher one can
compute the exclusive-or of all outputs of the round functions from the plain-
texts and the corresponding ciphertexts. Thus, if the round functions are not
surjective this gives information about intermediate values in the encryptions,
which can be used to get information about the secret keys.

A.12 Slide attacks

In [8] the “slide attacks” were introduced, based on earlier work in [5, 22]. In
particular it was shown that iterated ciphers with identical round functions,
that is, equal structures plus equal subkeys in the rounds, are susceptible to
slide attacks. Let Fr ◦ Fr−1 ◦ · · · ◦ F1 denote an r-round iterated cipher, where
all Fis are identical. The attacker tries to find pairs of plaintext P, P ∗ and
their corresponding ciphertexts C, C∗, such that F1(P ) = P ∗ and Fr(C) = C∗.
Subsequently, an attacker has twice both the inputs and outputs of one round
of the cipher. If the round function is simple enough, this can lead to very
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efficient attacks. To find such pairs of texts, one can in the worst case apply the
birthday paradox, such that one such pair is expected from a collection of 2n/2

texts, where n is the block size.

A.13 Integral Attacks

These attacks are sometimes referred to as the “Square attack”, since it was
first applied to the block cipher Square [13, 12]. The attack on Square slightly
modified also applies to the block ciphers Crypton and Rijndael [14].

In [28] these attacks are generalised under the name of “integral cryptanal-
ysis”. In differential attacks one considers differences of texts, in integral crypt-
analysis one considers sums of texts. In ciphers where all nonlinear functions
are bijective, it is sometimes possible to predict a sum of texts, even in the cases
where differential attacks are not applicable. The main observations are that in
a collection of texts which in a particular word take all values exactly equally
many times, the value of the words after a bijective function also take all values
exactly equally many times. Also, assume that s words have this property and
that in the cipher a linear combination of the s words are computed (with re-
spect to the group operation considered). Then it is possible to determine also
the sum of all linear combinations in a collection of texts. This attack is still
today the best attack reported on Rijndael which has been the selected for the
Advanced Encryption Standard.
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