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Executive Summary

This report presents the results of a limited evaluation of the block cipher
Camellia. We have found no important flaws nor weaknesses in Camellia.

Camellia is an iterated cipher which runs in at least 18 rounds. The cipher
has a simple and conservative design, which facilitates an easy analysis. It is
relatively easy to be convinced about the resistance of Camellia with respect to
differential and linear cryptanalysis.

It is further believed that any practical attacks against Camellia is not pos-
sible with respect to the state of the art, and it would require a major break-
through in the area of cryptanalysis of encryption systems.

Finally we mention that a concentrated, longer analysis might reveal prop-
erties which we did not detect in the limited-time review. Also, the analysis was
performed without access to computer code implementing the block cipher.
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1 Structural features and characteristics

Camellia is an iterated block cipher with 128-bit blocks and allows for three
different key sizes to be compliant with the AES [29].

The structure is the classical Feistel network, but where special operations
are inserted after each six Feistel rounds. These operations seems to have a
good effect in complicating certain attacks, but also destroy the classical Feistel
structure, from which a cipher can benefit. However, since these operations
are inserted only after every six rounds and since Camellia runs in at least 18
rounds (and at most 24 rounds), the negative effects of the special operations
may be hard to spot. The Feistel round function is reminiscent of, but simpler
than, the round function in the block cipher E2 [31]. The eight input bytes are
first exclusive-ored with some key bytes, and then input to one of in total four
S-boxes. Before output the bytes are mixed such that each output byte depends
on at least five and at most six input bytes. This allows for certain structures to
pass one round of Camellia with probability one, however when iterated it seems
that such (dis)advantages disappear. The S-boxes are all constructed from the
inverse function over a Galois field, which is known to have excellent properties
for increasing resistance against differential and linear cryptanalysis.

2 Differential and linear cryptanalysis

In this section we evaluate Camellia with respect to differential and linear crypt-
analysis. A difference of two bit-strings of equal lengths is defined via the
exclusive-or operation. The maximum probability of a differential through one
S-box is 2−6. The maximum bias of a linear approximation through one S-box
is 2−4, which gives a “linear probability”, see Appendix, of 2−6. The question is
how we can use these in combination to obtain differentials and linear approxi-
mations for several or many rounds. One possible tool to make such multi-round
structures is to estimate or measure the total number of active S-boxes in an
analysis. For a few rounds of Camellia it is easy to find the minimum number
of active S-boxes. For differential attacks with equal inputs to the round func-
tion in one round the number of active S-boxes is zero, and similarly for linear
approximations the minimum number of active S-boxes is zero. However, when
moving to more rounds, the number of active S-boxes will increase. It follows
from a simple inspection of the structure in the round function of Camellia that
for two rounds of Camellia the minimum total number of active S-boxes will
be one, for three rounds the minimum total number of active S-boxes will be
six. This number will increase rapidly for more than 3 rounds. A conservative
estimate for both differential and linear attacks would be to expect at least 3
active S-boxes in each round on the average. This would mean a probability of
2−18 per round for differential attacks and a bias of 2−10 per round for linear
attack. Iterated to six rounds this gives a probability of 2−108 for differential
attacks and a bias of 2−55 for linear attacks. All in all, in an attack this would
mean a requirement of 2108 pairs of chosen plaintexts for the differential attack,
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and 2110 known plaintexts for the linear attack. These estimates are very con-
servative. First of all, in the estimates we have used the maximum probabilities
and biases for every active S-box. Furthermore we have estimated a maximum
number of three active S-boxes for every round, which may be quite optimistic.
For both attacks, there is a sufficient level of security for all versions of Camellia.

3 Truncated Differentials

In this section we report on several truncated differentials for Camellia. We use
the following notation. Let (x1 · · ·xs) denote a vector of s bytes. With s = 16
this will be a plaintext block or a ciphertext block after i rounds of encryption.
With s = 8 this will typically be the input or the output of the function F . The
difference between two s-byte vectors, s ∈ {8, 16} will be the exclusive-or of the
individual bytes in the vectors. Also, we let

x = (x1 · · ·x8)
F→ (y1 · · · y8) = y,

denote that a difference of x in two input vectors to F can result in a difference
of y in the two output vectors with probability p. A one-round differential will
be denoted

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

x1 x2 x3 x4 x5 x6 x7 x8
F→ y1 y2 y3 y4 y5 y6 y7 y8

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16

Here x1, . . . , x16 denote the difference in the two 128-bit texts before the round,
and z1, . . . , z16 denote the difference in the texts after the round. Also, zj+8 = xj

for j = 1, . . . , 8, and zi = xi+8 ⊕ yi for i = 1, . . . , 8. Note that the halves after
one application of F are swapped.

One of the best ways to push information about differences through sev-
eral rounds in an iterated cipher is to use what is called iterative differentials.
These are differentials which can be concatenated with themselves any number
of times. For Camellia the following 1-round differential of probability 2−16

exists, called Ω1.

x1 0 x3 0 x5 0 x7 0 x9 0 x11 0 x13 0 x15 0

x1 0 x3 0 x5 0 x7 0 F→ y1 0 y3 0 y3 0 y1 0
z1 0 z3 0 z5 0 z7 0 z9 0 z11 0 z13 0 z15 0

where it is assumed that xi 6= 0 for i ∈ {1, 3, 5, 7}. The differential is iterative,
which means that it can be concatenated with itself r times, yielding an r-
round differential of probability 2−16r. The probability is calculated as follows.
A difference x5 6= 0 in two input bytes to the S-box 4 results in some difference
y3, and a difference x7 6= 0 in two input bytes to the S-box 2 results in some
difference y1. Then with an average probability of 2−8 a difference x1 6= 0 in
two input bytes to the S-box 1 results in the difference y1 ⊕ y3. Similarly, with
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an average probability of 2−8 a difference x3 6= 0 in two input bytes to the
S-box 3 results in the difference y1 ⊕ y3. Both these events will happen with
probability 2−16. The mixing of bytes at the end of the round function results
in the difference indicated above. Note that in this report we use a top-down
numbering of the bytes in the round function of one Feistel-round, opposite to
the designers’ numbering from [1], e.g., in Figure 5.

In [24] similar differentials are exploited in cryptanalytic attacks on the block
cipher E2. As noted in [24] the above individual probabilities are in fact 1

255
rather than 2−8, however since we are going to iterate this differential there will
be a dependency between the different rounds and the exact probability will
be hard to calculate. However, it seems plausible in the analysis of Camellia
to assume independence between the rounds, just as the authors assumed in
the analysis of E2 [24]. Therefore, for convenience, we shall use 2−8 as an
approximation of the individual probabilities.

The differential Ω1 iterated to five rounds looks as follows, where we specify
the difference in all sixteen bytes in the input to and in the output of the five
rounds, but only the combinations through the function F in every intermediate
round.

x1 0 x3 0 x5 0 x7 0 x9 0 x11 0 x13 0 x15 0

a1 0 a3 0 a5 0 a7 0 F→ A1 0 A3 0 A3 0 A1 0
b1 0 b3 0 b5 0 b7 0 F→ B1 0 B3 0 B3 0 B1 0
c1 0 c3 0 c5 0 c7 0 F→ C1 0 C3 0 C3 0 C1 0
d1 0 d3 0 d5 0 d7 0 F→ D1 0 D3 0 D3 0 D1 0
e1 0 e3 0 e5 0 e7 0 F→ E1 0 E3 0 E3 0 E1 0
y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y13 0 y15 0

Note that ai = xi for i ∈ {1, 3, 5, 7}. Here it is assumed that ai 6= 0, bi 6= 0,
ci 6= 0, di 6= 0, ei 6= 0, for i ∈ {1, 3, 5, 7}. In a chosen plaintext attack one can
choose the plaintexts such that ai = xi 6= 0 for i ∈ {1, 3, 5, 7}. The probability
that the difference in the four input words is nonzero in one round is ( 255

256 )4 ≈
0.984. The total probability is therefore (0.984)42−80 ≈ 2−80. In the following
we shall ignore the factors 0.984.

Note that the exclusive-or of the difference in the plaintext vectors and the
difference in the ciphertext vectors (after five rounds) has the following form.

z1 0 z3 0 z3 0 z1 0 z9 0 z11 0 z11 0 z9 0 (1)

This follows from the observation that the exclusive-or of the right halves of
the plaintext and the left halves of the ciphertext equals the exclusive-or of
the outputs of the F -function in the fourth and second rounds. And similarly,
the exclusive-or of the left halves of the plaintext and the right halves of the
ciphertext equals the exclusive-or of the outputs of the F -function in the fifth,
third and first rounds. For a randomly chosen permutation the exclusive-or of
the pairs of plaintexts and pairs of ciphertexts will have the form of (1) with a
probability of 2−96. For five rounds of Camellia this happens with a probability
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of at least 2−80, since if the texts follow the differential we will have the form
(1).

Also, the following three-round iterative differential, called Ω2, is possible,
but less useful as we shall see.

x1 0 x3 0 x3 0 x1 0 x9 0 x11 0 x11 0 x9 0

a1 0 a3 0 a3 0 a1 0 F→ A1 0 A3 0 A3 0 A1 0
b1 0 b3 0 b3 0 b1 0 F→ B1 0 B3 0 B3 0 B1 0
0 0 0 0 0 0 0 0 F→ 0 0 0 0 0 0 0 0
y1 0 y3 0 y3 0 y1 0 0 0 0 0 0 0 0 0

Here the differences in the inputs are equal in the third and fifth bytes, in the
first and seventh bytes, in the ninth and fifteenth bytes, and in the eleventh and
thirteenth bytes. The first round of the differential is similar to the rounds of
the previously shown differentials and has a probability of approximately 2−16.
The second round is also similar to before, but the important difference to the
first-round differential is that the outputs when exclusive-ored to the outputs of
the first round, will cancel the differences, and consequently there will be equal
inputs to the F function in the third round. The probability in the second round
is 2−16 as before plus an additional factor of 2−16 to make the inputs to the
third round equal. Thus, the second round has a probability of approximately
2−32, and in total the three round differential has a probability of 2−48.

In the following we shall apply these differentials in distinguishing attacks
on Camellia.

3.1 Distinguishing attacks

The differential consisting of iterations of Ω1 can be enhanced by letting the
first round be a trivial round with probability one.

0 0 0 0 0 0 0 0 x9 0 x11 0 x13 0 x15 0

0 0 0 0 0 0 0 0 F→ 0 0 0 0 0 0 0 0
b1 0 b3 0 b5 0 b7 0 F→ B1 0 B3 0 B3 0 B1 0
c1 0 c3 0 c3 0 c1 0 F→ C1 0 C3 0 C3 0 C1 0
d1 0 d3 0 d5 0 d7 0 F→ D1 0 D3 0 D3 0 D1 0
e1 0 e3 0 e3 0 e1 0 F→ E1 0 E3 0 E3 0 E1 0
y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y11 0 y9 0

The probability of this differential is 2−64. Note that in the right halves of
the ciphertext differences, the ninth and fifteenth bytes and the thirteenth and
fifteenth bytes are equal.

There are four nonzero bytes in the plaintext difference. From one structure
of 232 plaintexts different in these four bytes, one can form about 263 pairs
of plaintexts with the desired difference. There are twelve zero bytes in the
input difference, so in theory it is possible to form 296 such structures. For
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Camellia reduced to 5 rounds, with four structures one would get 265 pairs
of plaintexts, and consequently one would get approximately two ciphertext
pairs for which (1) is satisfied. For a randomly chosen permutation one would
get approximately 2−31 ciphertext pairs with the desired relationship between
the plaintexts and ciphertexts differences. Thus with a high probability one can
distinguish Camellia with five rounds from a randomly chosen permutation with
234 chosen plaintexts.

Fact 1 The first five rounds of Camellia can be distinguished from a randomly
chosen permutation using about 234 chosen plaintexts.

Note that it is possible to use also the differential Ω2. Let the first round
be a trivial round where equal inputs lead to equal outputs in the F-function.
Let the next three rounds be as specified in Ω2, and let the fifth round be as in
Ω1. This differential also has a probability of 2−64. However, since the input
difference to this differential will require a special form of the nonzero bytes in
the input difference, a structure similar to the above with 232 plaintexts will
contain less good pairs to be used in the analysis and in total more plaintexts
would be required. This seems to be the case also in the examples to follow, so
we shall concentrate on differentials constructed from Ω1.

The above attack on five rounds can be adapted to an attack on six rounds
of Camellia. The differential can be extended to six rounds by adding one round
of probability 2−16.

0 0 0 0 0 0 0 0 x9 0 x11 0 x13 0 x15 0

0 0 0 0 0 0 0 0 F→ 0 0 0 0 0 0 0 0
a1 0 a3 0 a5 0 a7 0 F→ A1 0 A3 0 A3 0 A1 0
b1 0 b3 0 b5 0 b7 0 F→ B1 0 B3 0 B3 0 B1 0
c1 0 c3 0 c5 0 c7 0 F→ C1 0 C3 0 C3 0 C1 0
d1 0 d3 0 d5 0 d7 0 F→ D1 0 D3 0 D3 0 D1 0
e1 0 e3 0 e5 0 e7 0 F→ E1 0 E3 0 E3 0 E1 0
y1 0 y3 0 y3 0 y1 0 y9 0 y11 0 y13 0 y15 0

This differential has a probability of approximately 2−80. For a pair of plain-
texts following the differential one will have the form of (1) for the exclusive-or
of the ciphertext and plaintext differences. To use this differential to distin-
guish Camellia from a randomly chosen permutation, one has to generate about
281 pairs of plaintexts with the desired difference. So to generate 281 pairs
one would need about 218 structures, totally about 250 chosen plaintexts. The
distinguishing technique is the same as above for five rounds.

Fact 2 The first six rounds of Camellia can be distinguished from a randomly
chosen permutation using about 250 chosen plaintexts.

If we ignore the functions FL and FL−1 we can extend the attack to seven
rounds of Camellia. First we extend the above six-round differential by adding
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another 1-round differential of probability 2−16.

0 0 0 0 0 0 0 0 x9 0 x11 0 x13 0 x15 0

0 0 0 0 0 0 0 0 F→ 0 0 0 0 0 0 0 0
a1 0 a3 0 a5 0 a7 0 F→ A1 0 A3 0 A3 0 A1 0
b1 0 b3 0 b5 0 b7 0 F→ B1 0 B3 0 B3 0 B1 0
c1 0 c3 0 c5 0 c7 0 F→ C1 0 C3 0 C3 0 C1 0
d1 0 d3 0 d5 0 d7 0 F→ D1 0 D3 0 D3 0 D1 0
e1 0 e3 0 e5 0 e7 0 F→ E1 0 E3 0 E3 0 E1 0
f1 0 f3 0 f5 0 f7 0 F→ F1 0 F3 0 F3 0 F1 0
y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y11 0 y9 0

This differential has a probability of approximately 2−96. As before, we will
generate many plaintext pairs and count the number of pairs for which (1)
hold. However, note that the probability of the differential is the same as the
probability that for a randomly chosen permutation (1) will hold. For Camellia
with seven rounds, ignoring the functions FL and FL−1, (1) will hold for all
pairs which follow the differential. Clearly for all pairs the first round of the
differential will hold. A pair of plaintexts will not follow the second round with
probability 1 − 2−16. If we assume, which seems plausible, that the ciphertext
differences in these cases look random, then (1) will hold also in these cases
with a probability of 2−96. All together, the probability for this seven-round
version of Camellia that the plaintext and ciphertext difference will satisfy (1)
is approximately 2−96 + (1− 2−16)2−96 ' 2−95. (Actually, this probability also
covers the cases where the pair of texts follow the differential in the first round,
but not the second, and the cases where the pair of texts follow the differential
in the first two rounds, but not in the third, and so on. However, the sum of the
probabilities of all these cases are small compared to the above probabilities.)
To distinguish this version of Camellia from a randomly chosen permutation
we pick 236 structures (as above) which gives us 299 pairs of plaintexts with
the desired differences. For the Camellia-version this yields about 16 pairs of
texts for which (1) holds, while the expected number for a randomly chosen
permutation is 8. Since the standard deviation in the first case is 4 and around
3 in the last case, with a high probability we will be able to distinguish between
the two cases. Totally this attack needs 268 chosen plaintexts and we have the
following result.

Fact 3 The first seven rounds of Camellia without the functions FL and FL−1

can be distinguished from a random permutation using about 268 chosen plain-
texts.

We could try and extend this one round further by adding another round of
probability 2−16 to the above differential. The probability will be 2−112. How-
ever, in this case the difference in probabilities of obtaining texts on the form of
(1) will be very small. For the Camellia-version the total probability of getting
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such pairs will be approximately 2−112 + (1 − 2−16)2−96 = 2−96 which is what
one can expect also for a randomly chosen permutation.

It does not seem possible to extend the approach of distinguishing Camellia
from a randomly chosen permutation further than to versions reduced to 7
rounds. However, there exist differentials for Camellia for even more number of
rounds.

3.2 The existence of differentials

Consider the above differentials for five, six and seven rounds. There are 216−28

pairs of bytes with a nonzero exclusive-or difference, and 28 pairs of bytes with
zero exclusive-or. The differences x9, x11, x13, and x15 can take any value, thus
totally 232 values and consequently there are approximately 263 possible pairs for
all four bytes together. Thus, there are approximately 263 × (28)12 = 2159 pairs
of plaintexts with the desired difference. If we ignore the keyed functions FL and
FL−1 in Camellia we can iterate the above differential to any number of rounds,
with a decrease in probability of a factor of 2−16 for every additional round.
Iterated to eleven rounds the probability is approximately (2−16)10 = 2−160.
Therefore, for this version of Camellia for about one in every two keys, one can
expect to find one pair of plaintexts, which will follow the expected (zero) values
specified in the differential in every round.

However, here we assumed that the functions FL and FL−1 were not used.
Let us analyse these functions with respect to the differences used above. If
two 64-bit texts have a difference of (a 0 b 0 b 0 a 0) in the input to FL (or
FL−1) then the differences in the outputs will be of the form (f 0 e 0 c 0 d 0)
with some high probability. However, the values of f and e will not be equal
nor will the values of c and d. To see why this is the case, let us take a closer
look at FL. The first operation is to bitwise ‘AND’ the left half of the input
with a subkey, rotate the result by one position to the left, and exclusive-or this
result to the right half of the input. Thus, if the left halves of two inputs has a
difference (a 0 b 0), the difference after the ‘AND’ of a key will be (a′ 0 b′ 0),
where a′ and b′ have Hamming weights at most those of a and b respectively.
If the most significant bits of the leftmost bytes of the inputs (the bytes with
difference a) are equal, they will be equal after the ‘AND’ operation; if the bits
are different they will be equal after the ‘AND’ operation with a probability of
1/2, where the probability is taken over all keys. Similar observations for the
most significant bits of the third leftmost bytes (the bytes with difference b).
If the involved bits are equal, the one-bit rotation leaves the difference in the
second and fourth bytes zero. Note that in that case the right halves of the
output of FL will have the form (c 0 d 0). The ’OR’ operation in the second
“round” of FL means that the left halves of the outputs of FL will have the
form (f 0 e 0). In total the differential

(a 0 b 0 b 0 a 0) FL→ (f 0 e 0 c 0 d 0)

has probability at least 1/4 for all keys, probability at least 1/2 for three of four



Analysis of Camellia 10

keys, and probability 1 for one in four keys, where the probability is taken over
all input texts. A similar observation can be made about the function FL−1.

In an attempt to specify differentials for more rounds of Camellia, one could
allow both the left and the right halves of the plaintexts to take any values, and
modify the differential accordingly. The differential would have the following
form.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

a1 a2 a3 a4 a5 a6 a7 a8
F→ A1 A2 A3 A4 A5 A6 A7 A8

b1 0 b3 0 b5 0 b7 0 F→ B1 B2 B3 B4 B5 B6 B7 B8

c1 0 c3 0 c5 0 c7 0 F→ C1 0 C3 0 C3 0 C1 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

m1 0 m3 0 m5 0 m7 0 F→ M1 0 M3 0 M3 0 M1 0
y1 0 y3 0 y5 0 y7 0 y9 0 y11 0 y13 0 y15 0

Here it is assumed that xi+8 = Ai for i ∈ {2, 4, 6, 8} and that ai = Bi for
i ∈ {2, 4, 6, 8}. The probability for r rounds, r > 2 is 2−16r−32 with an additional
decrease in probability of a factor of 2−4 for every layer of FL and FL−1. Such a
differential would have probabilities 2−32 in the first two rounds, and as before,
a probability of 2−16 in subsequent rounds. This would give approximately 2255

pairs of plaintexts available in the analysis. However, for such pairs of plaintexts
and ciphertexts, pairs satisfying the differential can no longer be assumed to
have the form of (1) for neither halves. However, the value of every second byte
of the difference in the ciphertexts would still be expected to be zero.

This means that for Camellia (including FL and FL−1) reduced to 13
rounds, the above differential has a probability of 2−16·13−32−4−4 = 2−248. Thus,
there will exist pairs of plaintexts following the expected values in the differen-
tial for up to 13 rounds. However, it is very difficult to see the applications of
such (good) pairs in cryptanalytic attacks.

Summing up, there exist truncated differentials for every fixed key for up to
13 rounds of Camellia, specifying 64 bits of information after every round. We
showed that these differentials can be used to distinguish Camellia when reduced
to 6 rounds from a randomly chosen permutation. We expect that this 6-round
distinguisher can be extended to a key-recovery attack on Camellia reduced to
7 rounds. Also, we showed that for Camellia reduced to 7 rounds but without
the functions FL and FL−1 there is a distinguishing attack requiring 268 chosen
plaintexts. Since Camellia operates in at least 18 Feistel rounds, these attacks
have no impact of the security of Camellia.

4 The Key-schedule

The key-schedule takes a 128-bit, a 192-bit or a 256-bit key, K, as input. In the
first phase the key-schedule defines two keys KL and KR each of 128 bits, and
then computes two other keys of 128 bits each, KA and KB , as a function of
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the user-selected key. The key KB is used only for the 192-bit and 256-bit key
versions.

For the 128-bit key version KL = K and KR = 0. For the 192-bit key
version KL is the leftmost 128 bits of K, and the remaining 64 bits are assigned
the left half of KR. The right half of KR is the bitwise negated value of its left
half. For the 256-bit key version, KL is the leftmost 128 bits of K, and KR the
rightmost 128 bits of K. KA is computed as follows. Let Ci = Ci

L | Ci
R and let

C0 = KL ⊕KR. Then we compute

C1
L = F (C0

L, σ1)⊕ C0
R (2)

C1
R = C0

L (3)
C2

L = F (C1
L, σ2)⊕ C1

R (4)
C2

R = C1
L (5)

C2 = C2 ⊕KL (6)
C3

L = F (C2
L, σ3)⊕ C2

R (7)
C3

R = C2
L (8)

C4
L = F (C3

L, σ4)⊕ C3
R (9)

C4
R = C3

L, (10)

and define KA = C4. Set C4 = C4 ⊕KR, compute

C5
L = F (C4

L, σ5)⊕ C4
R (11)

C5
R = C4

L (12)
C6

L = F (C5
L, σ6)⊕ C5

R (13)
C6

R = C5
L, (14)

and define KB = C6. The values σi are fixed constants. For the 128-bit key
version the 26 round keys of each 64 bits are computed from the keys KL and
KA. For the 192-bit key and 256-bit versions the 34 round keys of each 64 bits
are computed from the keys KL,KR, KA and KB .

First, we are convinced that the above key-schedule makes related-key at-
tacks very difficult. In these attacks an attacker must be able to get encryptions
under several related keys. If the relation between, say, two keys is known then
if the corresponding relations between the round-keys can be predetermined,
sometimes one can predict how the keys encrypt a pair of different plaintexts.
However, since the round-keys depend on KA and KB , which are results of en-
cryptions, these round-key relations will be very hard to control and predict.
Also, the slide-attacks seems to be very unlikely to succeed for Camellia.

Our second observation is that the above description of the key-schedules can
be simplified somewhat. Consider the version of Camellia with 128-bit keys. Let
KL = KLL | KLR and set C0 = 0. Then we compute

C1
L = F (C0

L,KLL ⊕ σ1)⊕ C0
R (15)

C1
R = C0

L (16)
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C2
L = F (C1

L,KLR ⊕ σ2)⊕ C1
R (17)

C2
R = C1

L (18)
C3

L = F (C2
L, σ3)⊕ C2

R (19)
C3

R = C2
L (20)

C4
L = F (C3

L, σ4)⊕ C3
R (21)

C4
R = C3

L. (22)

Then again KA = C4. Note that this definition saves one exclusive-or operation
and further the structure is now of a classical Feistel-type. All in all, the key KA

is the ciphertext of the plaintext zero in a four-round Feistel encryption scheme
using the Camellia round function. The round keys in this Feistel scheme are
dependent on the halves of the key KL in the first two rounds, but they are
fixed in the final two rounds. This has the effect that if an attacker is able,
by some means, to find the value of KA, then he can compute the key KL in
a straightforward manner. Also, if an attacker is able to find KAR and KLL

(totally 128 bits), then he can compute all of KA and KL. In both cases, the
attacker can compute the values of all round-keys. Since KA is the ciphertext of
a 4-round Feistel cipher depending on KL, the above properties are somewhat
surprising.

Consider next the version of Camellia with 192-bit and 256-bit keys. Let
KL = KLL | KLR, KR = KRL | KRR, and set C0 = 0. Then we compute

C1
L = F (C0

L,KLL ⊕KRL ⊕ σ1)⊕ C0
R (23)

C1
R = C0

L (24)
C2

L = F (C1
L,KLR ⊕KRR ⊕ σ2)⊕ C1

R (25)
C2

R = C1
L (26)

C3
L = F (C2

L, σ3 ⊕KRL)⊕ C2
R (27)

C3
R = C2

L (28)
C4

L = F (C3
L, σ4 ⊕KRR)⊕ C3

R (29)
C4

R = C3
L (30)

C5
L = F (C4

L, σ5)⊕ C4
R (31)

C5
R = C4

L (32)
C6

L = F (C5
L, σ6)⊕ C5

R (33)
C6

R = C5
L (34)

Then KA = C4⊕KR and KB = C6. Here one can compute KA⊕KR from KB

and similarly from KB one can compute KA ⊕KR.
The above considerations will very likely not imply a speed-up of an ex-

haustive key search, they only say that knowledge of some round-keys gives
immediate knowledge of other round-keys.
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5 Other cryptanalysis

In this section we consider other attacks. First of all, there are trivial attacks
which apply to all block ciphers. An exhaustive key search will take 2k opera-
tions to succeed, where k is the key size. Also, the “matching ciphertext attack”
applies in ECB and CBC mode, but requires about 2n/2 ciphertext blocks to
succeed with good probability, where n is the block size. With n = 128 as in
Camellia, 264 ciphertext blocks are required after which an attacker would be
able to deduce information about the plaintext blocks.

The S-boxes used in Camellia have the highest possible nonlinear order of
8-bit S-boxes, namely seven. Therefore it can be expected that higher order
differential attacks will have only limited applications.

Since the round function of Camellia is bijective, the non-surjective attack
will not be applicable.

The interpolation attacks work particularly well for ciphers for which the
nonlinear components have a simple mathematical description. For Camellia,
the S-boxes used have a complex description. Furthermore the use of the func-
tions FL and FL−1 are likely to destroy any mathematical structure from the
S-boxes. In our opinion it is very unlikely that the interpolation attack will be
of any threat to Camellia.

The mod-n cryptanalysis works particularly well for ciphers using a mix of
rotations and modular additions. Since Camellia uses the exclusive-or operation
and no modular additions, the mod-n analysis will not be applicable to Camellia.

The key-schedule of Camellia does not seem to allow for related-key attacks.
The subkeys are generated by using the encryption function F . Therefore it is
unlikely that there exist any easily detectable weak keys, and the slide attacks
do not apply.

The integral cryptanalysis will apply to a few rounds of Camellia, but these
attacks are expected to be less effective than the attacks based on truncated
differentials.

Let us end this section with some comments on the S-boxes. Camellia uses
four S-boxes, s1, s2, s3, and, s4. s1 is derived from an inversion function in
GF (28) together with an affine transformation in the outputs and in the inputs.
The other S-boxes are derived from s1 by a simple rotation by one position of
either the input or the output. In more detail, s2(x) = s1(x) << 1, s3(x) =
s1(x) >> 1, and s4(x) = s1(x << 1). Clearly, the four S-boxes are very
related. The advantages of deriving all S-boxes from one S-box are clear for
implementation reasons. The disadvantages are not as clear, however, if an
attacker would find a weakness in one of the S-boxes, then there is a high
probability that this weakness would appear in all S-boxes. We have not found
any reason to suspect that cryptographic weaknesses are present nor will be
detected in any of the S-boxes. Also, ciphers like the AES-candidate Rijndael
make a more simple use of only one S-box. The S-box in Rijndael is derived
in a manner similar to that of Camellia and is used throughout the cipher. So
far, no reports have been published that this is a weakness for Rijndael. Thus
there is no immediate indication that this poses any threat for the security of
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Camellia.

6 Survey of previous results

The only previous results on Camellia that we are aware of are those of the
designers themselves [2].
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A Block Ciphers in General

In the following we give a compressed overview of the state-of-the-art of block
cipher cryptanalysis, and outline the following known attacks.

1. Exhaustive Key Search

2. Matching Ciphertext Attacks

3. Differential Cryptanalysis

4. Truncated Differential Attacks

5. Higher-order Differential Attacks

6. Linear Cryptanalysis

7. Related-key Attacks

8. Non-surjective Attacks

9. Interpolation Attacks

10. Mod-n Attacks

11. Slide Attacks

12. Integral Attacks

A.1 Exhaustive key search

This attack needs only a few known plaintext-ciphertext pairs. An attacker
simply tries all keys, one by one, and checks whether the given plaintext encrypts
to the given ciphertext. For a block cipher with a k-bit key and n-bit blocks the
number of pairs of texts needed to determine the key uniquely is approximately
dk/ne. Also, if the plaintext space is redundant, e.g., consists of English or
Japanese text, the attack will work if only some ciphertext blocks is available.
The number of ciphertext blocks needed depends on the redundancy of the
language.

A.2 The matching ciphertext attack

The matching ciphertext attack is based on the fact that for block ciphers of m
bits used in the modes of operations for the DES [28] after the encryption of
2m/2 blocks, equal ciphertext blocks can be expected and information is leaked
about the plaintexts [7, 16, 26].
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A.3 Differential cryptanalysis

The most well-known and general method of analysing conventional cryptosys-
tems today is differential cryptanalysis, published by Biham and Shamir in 1990.
Differential cryptanalysis is universal in the sense that it can be used against
any cryptographic mapping which is constructed from iterating a fixed round
function. One defines a difference between two bit strings, X and X ′ of equal
length as

∆X = X ⊗ (X ′)−1, (35)

where ⊗ is the group operation on the group of bit strings used to combine
the key with the text input in the round function and where (X)−1 is the
inverse element of X with respect to ⊗. The idea behind this is, that the
differences between the texts before and after the key is combined are equal,
i.e., the difference is independent of the key. To see this, note that

(X ⊗K)⊗ (X ′ ⊗K)−1 = X ⊗K ⊗K−1 ⊗X ′−1 = X ⊗ (X ′)−1 = ∆X.

In a differential attack one exploits that for certain input differences the distri-
bution of output differences of the non-linear components is non-uniform.

Definition 1 An s-round characteristic is a series of differences defined as an
s + 1-tuple {α0, α1, . . . , αs}, where ∆P = α0, ∆Ci = αi for 1 ≤ i ≤ s.

Here ∆P is the difference in the plaintexts and ∆Ci is the difference in the
ciphertexts after i rounds of encryption. Thus, the characteristics are lists of
expected differences in the intermediate ciphertexts for an encryption of a pair
of plaintexts. In essence one specifies a characteristic for a number of rounds
and searches for the correct key in the remaining few rounds. In some attacks
it is not necessary to predict the values α1, . . . , αs−1 in a characteristic. The
pair (α0, αs) is called a differential. The complexity of a differential attack is
approximately the inverse of the probability of the characteristic or differential
used in the attack.

A.4 Truncated differentials

For some ciphers it is possible and advantageous to predict only the values of
parts of the differences after each round of the cipher. The notion of truncated
differentials was introduced by Knudsen [18]:

Definition 2 A differential that predicts only parts of an n-bit value is called
a truncated differential. More formally, let (a, b) be an i-round differential. If
a′ is a subsequence of a and b′ is a subsequence of b, then (a′, b′) is called an
i-round truncated differential.

A truncated differential can be seen as a collection of differentials. As an exam-
ple, consider an n-bit block cipher and the truncated differential (a′, b), where
a′ specifies the least n′ < n significant bits of the plaintext difference and b
specifies the ciphertext difference of length n. This differential is a collection
of all 2n−n′ differentials (a, b), where a is any value, which truncated to the n′

least significant bits is a′.
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A.5 Impossible differentials

A special type of differentials are those of probability zero. The attack was first
applied to the cipher DEAL [19] and later to Skipjack [4]. The main idea is
to specify a differential of probability zero over some number of rounds in the
attacked cipher. Then by guessing some keys in the rounds not covered by the
differential one can discard a wrong value of the key if it would enable the cipher
to take on the differences given in the differential.

A.6 Higher-order differentials

An sth-order differential is defined recursively as a (conventional) differential
of the function specifying an (s − 1)st order differential. In order words, an
sth order differential consists of a collection of 2s texts of certain pairwise,
predetermined differences. We refer to [21, 18] for a more precise definition of
higher order differentials.

In most cases one considers differences induced by the exclusive-or operation
and the field of characteristic 2. The nonlinear order of a function f : GF (2n) →
GF (2n) is defined as follows. Let the output bits yj be expressed as multivariate
polynomials qj(x) ∈ GF (2)[x1, . . . , xn], where x1, . . . , xn are the input bits. The
nonlinear order of f is then defined to be the minimum total degree of any linear
combination of these polynomials. The higher order differential attacks exploit
the following result.

Corollary 1 Let f : GF (2n) → GF (2n) be a function of nonlinear order d.
Then any dth order differential is a constant. Consequently, any (d+1)st order
differential is zero.

The boomerang attack [32] can be seen as a special type of a second-order
differential attack. This variant applies particularly well to ciphers for which
one particular (first-order) differential applies well to one half of the cipher, and
where another particular (first-order) differential applies well to the other half
of the cipher.

A.7 Linear cryptanalysis

Linear cryptanalysis was proposed by Matsui in 1993 [22]. A preliminary version
of the attack on FEAL was described in 1992 [25]. Linear cryptanalysis [22] is
a known plaintext attack in which the attacker exploits linear approximations
of some bits of the plaintext, some bits of the ciphertext and some bits of the
secret key. In the attack on the DES (or on DES-like iterated ciphers) the linear
approximations are obtained by combining approximations for each round under
the assumption of independent round keys. The attacker hopes in this way to
find an expression

(P · α)⊕ (C · β) = (K · γ) (36)
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which holds with probability pL 6= 1
2 over all keys [22], such that |pL− 1

2 |, called
the bias, is maximal. In (36) P,C, α, β, γ are m-bit strings and ‘·’ denotes the
dot product. The bit strings α, β, γ are called masks.

Definition 3 An s-round linear characteristic is a series of masks defined as
an (s + 1)-tuple {α0, α1, . . . , αs}, where α0 is the mask of the plaintexts and αi

is the mask of the ciphertexts after i rounds of encryption for 1 ≤ i ≤ s.

As for differential cryptanalysis one specifies a linear characteristics for a number
of rounds and searches for the keys in the remaining rounds, we refer to [22] for
more details. A linear attack needs approximately about b−2 known plaintexts
to succeed, where b is the bias of the linear characteristic used.

Also, the concepts of linear hulls, the analogue to differentials as opposed to
characteristics in differentials cryptanalysis, has been defined in [27].

Finally, in [23] it has been shown that if one defines the quantity q = (2p−1)2

where p is the probability of a linear characteristic or hull, then when combining
several linear characteristics one can multiply their q values to get the q-value
of the combination. Sometimes the q values are referred to as the “linear prob-
ability”, which is somewhat misleading, but nevertheless seems to be widely
used.

A.8 Mod n cryptanalysis

In [14] a generalisation of the linear attacks is considered. This attack is applica-
ble to ciphers for which some words (in some intermediate ciphertext) are biased
modulo n, where n typically is a small integer. It has been shown that ciphers
which uses only bitwise rotations and additions modulo 232 are vulnerable to
these kinds of attacks.

A.9 Related-key attacks

There are several variants of this attack depending on how powerful the attacker
is assumed to be.

1. Attacker gets encryptions under one key.

2. Attacker gets encryptions under several keys.

(a) Known relation between keys.

(b) Chosen relation between keys.

Knudsen used the methods of 1 by giving a chosen plaintext attack of the first
kind on LOKI’91 [15], reducing an exhaustive key search by almost a factor of
four. The concept “related-key attack” was introduced by Biham [3], who also
introduced the attack scenarios of 2, where the encryptions under several keys
are requested. Knudsen later described a related key attack on SAFER K [17]
and Kelsey, Schneier, and Wagner [13] applied the related key attacks to a wide
range of block ciphers. It may be argued that the attacks with a chosen relation
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between the keys are unrealistic. The attacker need to get encryptions under
several keys, in some attacks even with chosen plaintexts. However there exist
realistic settings, in which an attacker may succeed to obtain such encryptions.
Also, there exists quite efficient methods to preclude the related key attacks
[13, 11].

A.10 Interpolation attack

In [12] Jakobsen and Knudsen introduced the interpolation attack on block
ciphers. The attack is based on the following well-known formula. Let R be a
field. Given 2n elements x1, . . . , xn, y1, . . . , yn ∈ R, where the xis are distinct.
Define

f(x) =
n∑

i=1

yi

∏

1≤j≤n,j 6=i

x− xj

xi − xj
. (37)

f(x) is the only polynomial over R of degree at most n− 1 such that f(xi) = yi

for i = 1, . . . , n. Equation (37) is known as the Lagrange interpolation formula
(see e.g.,[6, page 185]). In the interpolation attack an attacker constructs poly-
nomials using pairs of plaintexts and ciphertexts. This is particularly easy if
the components in the cipher can be expressed as easily described mathemat-
ical functions. The idea of the attack is, that if the constructed polynomials
have a small degree, only few plaintexts and their corresponding ciphertexts are
necessary to solve for the (key-dependent) coefficients of the polynomial, e.g.,
using Lagrange’s interpolation. To recover key bits one expresses the ciphertext
before the last round as a polynomial of the plaintext.

A.11 Non-surjective attack

In [30] Rijmen-Preneel-De Win described the non-surjective attack on iterated
ciphers. It is applicable to Feistel ciphers where the round function is not surjec-
tive and therefore statistical attacks become possible. In a Feistel cipher one can
compute the exclusive-or of all outputs of the round functions from the plain-
texts and the corresponding ciphertexts. Thus, if the round functions are not
surjective this gives information about intermediate values in the encryptions,
which can be used to get information about the secret keys.

A.12 Slide attacks

In [5] the “slide attacks” were introduced, based on earlier work in [3, 15]. In
particular it was shown that iterated ciphers with identical round functions,
that is, equal structures plus equal subkeys in the rounds, are susceptible to
slide attacks. Let Fr ◦ Fr−1 ◦ · · · ◦ F1 denote an r-round iterated cipher, where
all Fis are identical. The attacker tries to find pairs of plaintext P, P ∗ and
their corresponding ciphertexts C, C∗, such that F1(P ) = P ∗ and Fr(C) = C∗.
Subsequently, an attacker has twice both the inputs and outputs of one round
of the cipher. If the round function is simple enough, this can lead to very
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efficient attacks. To find such pairs of texts, one can in the worst case apply the
birthday paradox, such that one such pair is expected from a collection of 2n/2

texts, where n is the block size.

A.13 Integral Attacks

These attacks are sometimes referred to as the “Square attack”, since it was
first applied to the block cipher Square [9, 8]. The attack on Square slightly
modified also applies to the block ciphers Crypton and Rijndael [10].

In [20] these attacks are generalised under the name of “integral cryptanal-
ysis”. In differential attacks one considers differences of texts, in integral crypt-
analysis one considers sums of texts. In ciphers where all nonlinear functions
are bijective, it is sometimes possible to predict a sum of texts, even in the cases
where differential attacks are not applicable. The main observations are that in
a collection of texts which in a particular word take all values exactly equally
many times, the value of the words after a bijective function also take all values
exactly equally many times. Also, assume that s words have this property and
that in the cipher a linear combination of the s words are computed (with re-
spect to the group operation considered). Then it is possible to determine also
the sum of all linear combinations in a collection of texts. This attack is still
today the best attack reported on Rijndael which has been the selected for the
Advanced Encryption Standard.
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