
Evaluation of Security Level of Cryptography

HIME-1

Dan Boneh Mihir Bellare Phillip Rogaway

January 16, 2001

Contents

1 Summary 2

2 Detailed Evaluation 3
2.1 Parameter choices . 3
2.2 Performance . 4
2.3 The proof of security . 4
2.4 Alternatives and enhancements 4
2.5 Editorial comments . 5

A Factoring Time Estimates 6

1

This document analyzes HIME-1. It is based on [1] and [2].

1 Summary

Misclassification. HIME-1 is a public-key encryption scheme. The functionality
it delivers is data confidentiality. It was correctly placed in the Asymmetric
Cryptographic Schemes category, but misclassified with regard to Security
functions of asymmetric cryptographic schemes, where key-sharing,
rather than confidentiality, was marked. Although a public-key cryptosystem
like HIME-1 is a tool that can be used in a key-sharing protocol, it does not by
itself provide key-sharing functionality.

Scheme. Let N = pdq and let k be the binary length of pq, where p, q are
primes congruent to 3 mod 4 and d > 1 is an odd integer like 3. HIME-1
encrypts a message by first applying the OAEP transform to get a point x and
then applying the trapdoor one-to-one function: x → [x2N mod N,

(
x
N

)
] where

x ∈ {0, 1}k−2.

Performance claims. The motivation behind the design of HIME-1 is to have
very fast decryption, even if at the cost of slowing encryption. It is claimed that
the decryption time of HIME-1 is less than that of any other cryptosystem of
comparable security. The instantiation used to make this claim sets the length
of p, q to each be 256 bits, and d = 3, so that the modulus is 1024 bits.

Security claims. It is claimed that HIME-1 is proven secure in the random-oracle
model assuming the hardness of the problem of factoring integers of the form
N above. The notion of security targeted is indistinguishability under adaptive
chosen-ciphertext attack (IND-CCA2).

Strengths. The proposal has the following strengths. It targets an important
primitive which has a clear and well-defined security goal, namely asymmet-
ric encryption achieving IND-CCA2. (CRYPTREC should eventually include
some primitive meeting this goal. The question is whether HIME-1 should be
it.) The proposal attempts to prove security, and on the whole is clearly and
concisely written. (Some editorial comments on the manuscript can be found
in Section 2.5 below.)

Critiques. The proposal has the following weaknesses.

1. The suggested parameters, meaning |p| = |q| = 256 and d = 3, do not
appear to offer a margin of security sufficient for a long-term encryption
standard.

2

2. It is unclear that HIME-1 offers advantages over its competitors in terms
of performance. Encryption is substantially slower than in other schemes,
and decryption does not appear to be faster than for elliptic curve schemes
of comparable security, or the Rabin scheme using the same modulus as
HIME-1.

3. There are alternatives with comparable decryption speed which do not
pay a high price in encryption speed.

4. The given proof of security inherits the recently discovered gap in the
proof of chosen-ciphertext security for OAEP [5]. The property can be
resurrected by switching to the OAEP+ embedding method of that same
paper, so this concern is ultimately less important than the ones above.

On balance, there would seem to be alternative systems that are superior to
HIME-1.

2 Detailed Evaluation

We now provide a full evaluation of the performance and security of the proposed
system.

2.1 Parameter choices

The instantiation of HIME-1 suggested in the proposal and used in the imple-
mentation has a 1024-bit modulus N = p3q with p and q being 256-bits long.
In the light of recent factoring trends, these parameters do not seem to offer a
margin of security sufficient for a long term encryption standard.

A year ago Lygeros and Mizony used the ECM factoring method to find
a 180-bit prime factor within 13 days using a single 500Mhz Dec Alpha. The
ECM method has asymptotic running time of Lp[1/2,

√
2] where p is the smallest

prime factor of N . Using the asymptotic formula we see that finding a 256-
bit factor should take approximately 48000 times the work done by Lygeros
and Mizony. This comes out to be approximately 20 times the effort it took
to factor RSA-155 (a 512 bit integer) using NFS. These numbers are only an
estimate based on the asymptotic formulas and could be off by as much as a
factor of 10. So, suppose that finding a 256-bit factor using ECM is 200 times
the effort of factoring RSA-155 using NFS. This safety margin is far smaller
than the margin provided by comparable standards. For example, factoring a
regular 1024-bit RSA modulus N = pq would take 3.1 · 106 times the work of
factoring RSA-155 (assuming no memory-space constraints). See Appendix A
for detailed calculation of factoring running times.

At a minimum, a 1536-bit modulus should be used so that, with d = 3,
the primes p and q are each 384 bits long. Factoring such numbers using ECM
takes approximately 106 times the work of factoring RSA-155 using NFS, so that
security becomes comparable to that offered by RSA with a 1024-bit modulus.

3

However increasing the sizes of the numbers in this manner adversely impacts
performance.

2.2 Performance

When using a 1024-bit modulus with d = 3, decryption requires two exponenti-
ations modulo a 256-bit number. Following the discussion above, we claim that
the security of this 1024-bit HIME-1 system is comparable to the security of
ECC over the field F2131 . However, ECC decryption in this field is faster than
HIME-1 decryption. In other words if HIME-1 is compared to its competitors
at the same security level, it does not have the best decryption speed.

To compare HIME-1 to ECC in the field F2163 one has to use a 1536-bit HIME
modulus. Consequently, decryption amounts to two exponentiations modulo a
384-bit number. Again, ECC-163 decryption is faster than 1536-bit HIME-1
decryption.

In addition, HIME-1 encryption is significantly slower than encryption in
competing systems. Encryption with HIME-1 takes a full exponentiation, while
encryption with either a Rabin or RSA system can be just a few multiplications,
and encryption in ECC involves multiplications (the equivalent of exponentia-
tions) of much smaller numbers.

Replacing the HIME-1 one-way function by the comparable f(x) = x2 mod
N as discussed in Section 2.4 below avoids the high encryption time, while
maintaining the claimed decryption time, but still does not seem to beat ECC.

2.3 The proof of security

The HIME-1 system uses OAEP [3] to provide chosen ciphertext security in
the random-oracle model. Recently Shoup shows that OAEP cannot apply to
all trapdoor permutations [5]. For the RSA function it was later shown by
Fujisaki et al. [4] that OAEP is valid. Unfortunately, Fujisaki et al.’s proof
does not apply to the HIME-1 system since in HIME-1 the padded message
length is much less than the size of the modulus. For example, for d = 3 the
padded message length is a quarter of the length of the modulus. Consequently,
one cannot rely on OAEP to provide chosen-ciphertext security for HIME-1.
Instead, one should use OAEP+ described by Shoup [5]. The main difference
between OAEP and OAEP+ is that the block of 0k1 in OAEP is replaced by
W (m, r) where W is a hash function outputting bit strings in {0, 1}k1 . This
change should be made but will not impact performance much, so eventually is
less important to the evaluation than the performance issues.

2.4 Alternatives and enhancements

Squaring. Inverting the HIME-1 trapdoor permutation is as hard as factoring
the modulus. However, HIME-1 seems to perform worse than other trapdoor
functions with this property. For example, let N = pdq and define fSQR(x) =
[x2 mod N,

(
x
N

)
] for x ∈ [0, N/4]. A standard argument shows that inverting

4

fSQR is as hard as factoring N . In addition, inverting fSQR takes comparable
time to inverting the HIME-1 function. Given y = x2 mod N compute the
square root of y modulo N as follows: (1) first compute the square root of y
modulo p and q to obtain xp and xq respectively (this is analogous to the HIME-
1 decryption algorithm), (2) next, use Hensel lifting on xp to compute the square
root of y modulo pd; this gives xpd , (3) finally, use the CRT to combine xq and
xpd to obtain the required square root of y modulo N . Step (2) takes little time
since each Hensel lift only requires one modular inversion, but does not require
any exponentiations. Hence, inverting f takes comparable time to inverting
the HIME-1 function. The rest of the system remains unchanged. Note that
encryption using fSQR is much faster than HIME-1. Furthermore, the message
length can be almost as long as the modulus (in HIME-1 the message length
must be much shorter than the modulus). Consequently, a system using fSQR

appears to be superior to HIME-1 in every respect.

Jacobi symbol. A HIME-1 ciphertext includes both y = x2n mod N and
(

x
N

)
.

Consequently, the encryptor must compute the Jacobi symbol of x during the
encryption process. Appending

(
x
N

)
to the ciphertext is done so that the de-

cryptor could choose from among the two 2N ’th roots of y modulo N that lie
in [0, 2k]. We claim that it is unnecessary to compute the Jacobi symbol during
encryption. This is due to that fact that HIME-1 uses OAEP. Consider the
modified HIME-1 system where the ciphertext is y = x2n mod N (without the
Jacobi symbol). Then y has at most two 2n’th roots modulo pq in the range
[0, 2k]. With very high probability only one of these roots will satisfy the OAEP
test (testing that 0k1 appears in the pad). Hence, the decryptor can choose the
correct root among the two candidate roots of y. By using the OAEP test to
distinguish between the two roots of y neither the encryptor nor the decryptor
need to compute the Jacobi symbol of the ciphertext.

Primality testing. Section 3.3.3 of the specification describes the primality test
used to generate primes for the HIME-1 system. The system requires primes
satisfying p = q = 3 mod 4. Testing primality of such primes is done using a
much simpler primality test than the one described in Section 3.3.3. Given a
prime candidate p = 3 mod 4 test if it is prime as follows: (1) pick a random
g ∈ Z∗p and compute x = g

p−1
2 mod p, (2) declare p to be prime if x = ±1,

otherwise p is not prime. The primality test given in Section 3.3.3 reduces to
this test for p = 3 mod 4. There is no reason to write the more complicated test
in the proposal.

2.5 Editorial comments

Both the specification of HIME-1 and the self-evaluation report are written
clearly. Below are a few comments that might help in improving the writeup.

Section 3.4 of the self-evaluation report includes a table of running times
for various arithmetic operations. The row describing the computation of the
Jacobi symbol is incomplete. Jacobi symbol times should be given for both

5

when the factorization of N is known, and for when the factorization of N is
unknown. Both cases are used by the HIME-1 system (one for encryption the
other for decryption). Clearly computing the Jacobi symbol is much easier when
the factorization of N is given. The current writeup does not say which of the
two timing measurements is provided.

The relations given in Figure 1 are incomplete. One should show the sepa-
rations between the entries in the last row and the other entries. They are quite
easy to figure out.

Section 2.1 fails to provide a convincing argument that a scheme with im-
proved decryption time is attractive even if encryption time goes up. Email
decryption could be performed offline. And email decryption presents no signif-
icant performance issues anyway.

Section 2.2.3 lacks details on how decryption is performed in that it is not
clear what are p−1 and q−1 and how arithmetic is being done in the exponents.
This is clarified later in Section 3. A suggestion is that this double duplication is
unnecessary. Instead, just move Section 3 up to Section 2 as the only description.

Section 2.2.4 should also discuss the ECM factoring method and its impact.
There is only a brief discussion of this later in the self-evaluation report.

References

[1] Hitachi, Ltd. Specification of HIME-1 CryptoSystem. Hitachi, Ltd., 2000.

[2] Hitachi, Ltd. Self Evluation Report — HIME-1 CryptoSystem. Hitachi,
Ltd., 2000.

[3] M. Bellare and P. Rogaway. Optimal asymmetric encryption — How
to encrypt with RSA. Advances in Cryptology — Eurocrypt ’94. Lecture
Notes in Computer Science, vol. 950, 1994.

[4] E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-
OAEP is still alive! Record 00-061, IACR eprint library, http://eprint.
iacr.org.

[5] V. Shoup. OAEP reconsidered. Record 00-060, IACR eprint library,
http://eprint.iacr.org.

A Factoring Time Estimates

We present two calculations for showing that N = p3q with both p and q being
256-bit long does not provide adequate security for a long-term standard.

Direct comparison of ECM(256) and NFS(1024) Let N0 = p3q be a
1024-bit modulus with p and q 256-bits each. Let N1 = p1q1 be a 1024-bit
modulus with p1 and q1 512-bits each. We first compare the running time of
the ECM method for factoring N0 to the running time of NFS for factoring

6

N1. Our conclusion is that (ignoring leading constants) factoring N0 is easier
than factoring N1 by a factor of 1.5 ∗ 106. Since N1 is the typical value used in
standards, the conclusion is that N0 provides insufficient security.

Let TECM (n) and TNFS (n) denote the times taken by the ECM and NFS
methods, respectively, to factor n = pdq. Then

ln(TECM (n)) = ln(CECM) +
√

2 · (ln(p))1/2 · (ln ln(p))1/2

ln(TNFS (n)) = ln(CNFS) + 1.9 · (ln(n))1/3 · (ln ln(n))2/3 .

Here CECM and CNFS are, respectively, the constants in the big-oh factors in
the two algorithms. We want to compare these two times. Let s = d + 1. Then
|n| = s · |p|. We want to know the ratio of the running times. With this in mind
we take the logarithm of the ratio of the running times:

ln
TECM (n)

TNFS (n)

= ln(TECM (n))− ln(TNFS (n))

= ln(CECM) +
√

2 · (ln(p))1/2 · (ln ln(p))1/2 − ln(CNFS)−
1.9 · (ln(n))1/3 · (ln ln(n))2/3

= ln
CECM

CNFS
+
√

2 · (ln(p))1/2 · (ln ln(p))1/2 − 1.9 · (ln(n))1/3 · (ln ln(n))2/3

≈ ln
CECM

CNFS
+
√

2 · (ln(2k/2))1/2 · (ln ln(2k/2))1/2 −

1.9 · (ln(2sk/2))1/3 · (ln ln(2sk/2))2/3

= ln
CECM

CNFS
+

√
k ln(2) · (ln ln(2k/2))1/2 − 1.9 ·

(
sk ln(2)

2

)1/3

· (ln ln(2sk/2))2/3 .

Now we plug in k = 512 and s = 4, meaning d = 3 and |p| = |q| = 256. We get

ln
TECM (n)

TNFS (n)

≈ ln
CECM

CNFS
+

√
512 ln(2) · (ln ln(2256))1/2 − 1.9 · (1024 ln(2))1/3 · (ln ln(21024))2/3

≈ ln
CECM

CNFS
− 16.55 .

For simplicity let’s assume that the ratio of the constants is one. In that case
we are saying that the ECM method will be e16.5 ≈ 1.5 ∗ 106, ie. 1.5 million,
times faster than the NFS. In other words, factoring numbers of the form used
by HIME-1 with the choices k = 512 and d = 3 is less secure than 1024-bit RSA
by about this factor.

Comparison based on the time to factor RSA-155 Our second estimate
is based on current records for factoring using ECM and NFS. A year ago
Lygeros and Mizony used the ECM factoring method to find a 180-bit prime
factor within 13 days using a single 500MhZ Dec Alpha. We use the asymptotic

7

running time of ECM to estimate the time it takes to find a 256-bit prime factor.
The direct ratio of running times is:

L1/2,
√

2(2
256)

L1/2,
√

2(2180)
= 3371

However, one must also take into account that arithmetic modulo a 1024 bit
number takes longer than arithmetic modulo a 421-bit number (the size of the
modulus used by Lygeros and Mizony). Assuming all arithmetic operations
takes cubic time, we need to add a factor of (1024/421)3 = 14.4 to the estimate.
This implies that finding a 256-bit factor of a 1024-bit modulus should take
approximately 48000 times the work of finding a 180-bit factor of a 421-bit
modulus. Hence, factoring N0 = p3q should take approximately 1727 years on
a single 500MhZ Dec Alpha.

We compare the effort of factoring N0 using ECM to the effort of factoring
RSA-155 which took 3.7 months using 300 machines. We see that factoring
N0 using ECM takes about 20 times the work of factoring RSA-155 using NFS.
These numbers are only an estimate based on the asymptotic formulas and could
be off by as much as a factor of 10. So, suppose that finding a 256-bit factor
using ECM is 200 times the effort of factoring RSA-155 using NFS. This safety
margin is far smaller than the margin provided by comparable standards. For
example, factoring a regular 1024-bit RSA modulus N = pq would take 3.1 ·106

times the work of factoring RSA-155 (assuming no memory-space constraints).

8

