Evaluation Report on the
HIME-1 Cryptosystem

1 Introduction

This document is an evaluation of the HIME-1 Cryptosystem. Our work is based
on the analysis of documents [13, 14, 15]. The present report is organized as follows:
firstly, we briefly review the cryptosytem; next we discuss the security level of the
cryptographic primitive which underlies the scheme and analyze its relation to the
difficulty of factoring; finally, we evaluate the security level of the scheme itself in the
light of strong security notions such as semantic security and security against adaptive
chosen-ciphertext attacks. This is as requested by IPA.

2 Brief description of the scheme

2.1 Specification review

HIME-1 is based on the hardness of factoring integers n of the form p?q, where p
and ¢ are prime numbers - approximately of the same size - such that p = 3 mod 4,
g = 3 mod 4, and where d is a small odd integer > 1, typically d = 3 or 5. Let k£ be
the size in bits of integer pg and let J(x) denote the Jacobi symbol of x with respect
to n. The basic functions f, g on which HIME-1 is based are defined by

f:{0,1}*2 — 7Zx g:{0,1}F2 — 7Z* x {-1,1}
r — ™ modn z — (f(z),J(z))

We have the following:
Theorem 1 The function g is one-to-one.

Proof: Note that, since d is odd and p, ¢ are congruent to 3 modulo 4, J(—1) = 1.
Let y = f(x). We have
z?" = y mod p

Since n is prime to p— 1, this allows to compute v = n~ ! mod (p—1) = ¢ ! mod (p—1),
from which we obtain

z? = y” mod p
This equation has two square roots. As is well-known, one is computed by z, = (y”)pTJrl
and the other by —z, mod p. A similar argument, with v replaced by v = n~! mod (¢—
1) = p~?mod (¢ — 1), yields two values z, and —z, mod ¢, such that x mod ¢ is one of
these values. Using Chinese remaindering, we come out with a choice of four possible
values for x mod pq, two of them with Jacobi symbol 1 and the two other with Jacobi
symbol —1. From J(z), we can discard two values and there remain a pair +x mod pq.
Since z is < 282, we can select the correct value without any ambiguity.
Remark: Note that we had to assume that n is prime with p — 1 and ¢ — 1. This is
implicit in [13] but follows from the key generation algorithm (section 3.2.1), which
guarantees that p and ¢ have exactly the same bit length.

Before explaining how the HIME-1 cryptosystem applies the above transformation,
it is useful to introduce a more formal framework, that will be useful when we later
perform the security analysis. A public-key encryption scheme on a message space M
consists of three algorithms (K, £, D):

e the key generation algorithm K (1) outputs a random pair of secret-public keys
(sk, pk), relatively to a security parameter &

e the encryption algorithm £y (m;r) outputs a ciphertext ¢ corresponding to the
plaintext m € M, using random coins r € €2

e the decryption algorithm Dg(c) outputs the plaintext m associated to the cipher-
text c.

The key generation algorithm K(1%) of the HIME-1 Cryptosystem produces n = piq,
where p, q are two odd random primes such that p = 3 mod 4 and ¢ = 3 mod 4, |pq| = &,
and d is an odd integer > 3. The public key pk is the pair (n, k) and thus defines the
above function g. The secret key sk is the pair (p,q), which helps inverting g. The
message space is M = {0, 1}Fko~k1-2 where k¢, ki, are appropriate parameters. The
encryption algorithm &y (m;) uses two hash functions G and H:

G :{0,1}f — {0,1}F %02 and H : {0,1}F 2 — {0, 1}k

It takes m € M and a random value r & {0,1}*0, and computes a k — 2-bit integer
x = al|b, by OAEP formatting (see [3]), as follows:

a=m0" ®G(r)and b=r @ H(a)

where @ is bitwise modulo 2 addition. The ciphertext is ¢ = g(z), with z = a||b €
{0,1}%=2. The decryption algorithm Dg(c) extracts z = a||b and computes:

r=b® H(a) and M =a® G(r)

2

It checks that M is correctly formatted, with its k; trailing bits zero and returns the
k — ko — k1 — 2 leading bits. Otherwise it returns “Reject”.

We refer to [13] for a precise definition of G and H and for an accurate choice of
the parameters.

2.2 Comments on the specification

Document [13] needs further editing. There are ambiguities. For example, notation
g~! on page 7, line 11, is unclear: it should be stated that the inverse is taken modulo
p—1. Also, the key generation algorithm (section 2.2.1 of document [13]) is vague: it is
explained that prime numbers p, ¢ with 256 bits are generated but nothing guarantees
that p®q is actually 1024 bit long (it could be slightly less). There are errors. For
example, on page 10, line 9, it is stated that message m is such that 0 < m < 22,
whereas k — 2 should be replaced by k£ — ky — k1 — 2. Most ambiguities and errors can
be corrected in a straightforward manner. However, some are more serious. Exception
handlings in the decryption operation are simply not addressed. On line 7 of the
decryption pseudo-code in section 3.2.3 of document [13], values m’ such that m' >
2k=2 are replaced by pg — m'. However, if incorrect ciphertexts are submitted, it is
very possible to come out with a situation where m’ remains > 2¢=2 even after the
execution of instruction 7. Such values of m' should not be submitted to the convert™1
operation. Still, no mention of this case is made. Similarly, neither the convert™!
nor the decryption pseudo-code calling this function checks that the redundancy is
correct. It is absolutely necessary to verify that the string w in section 3.2.5 consists
of zeros. Such mistakes are particularly embarrassing as they pollute the subtle security
arguments that have to be provided in favour of the cryptosystem.

3 Security level of the cryptographic primitive

In this section, we investigate the security of the underlying cryptographic primitive,
both in terms of complexity-theoretic reductions and with respect to the recommended
parameters.

3.1 Complexity-theoretic arguments

On page 6 of document [13], it is claimed that

the encryption function of the basic scheme is a deterministic trapdoor
permutation.

and, in theorem 1.1 of document [14], its is stated that, if d is small enough,

the basic scheme is OW-CPA under the assumption of the difficulty of the
factoring problem.

These statements needs some clarification for reasons that we now develop.

The mathematical definition of a permutation applies to functions whose inputs and
outputs have the same range: for example the RSA permutation operates on integers
smaller than the modulus. Here, the basic function is certainly one-to-one, as shown in
section 2.1, but its output range is never specified in documents [13, 14]. In any case,
outputs are |n| bit long, whereas inputs are k bit long. Thus, the wording permutation
is improper.

Even though the word permutation is misleading, the proof of theorem 1.1 of doc-
ument [14], quoted above, is correct. It is based on the observation that it is possible
to extend the basic function, using exactly the same formula. The extended function
is not one-to-one but takes z and pg — = to the same value as shown by Lemma 1.1 of
document [13]. The proof is not complete in the submission and we include our version
here:

Lemma 1 Let n = plq with prime numbers p,q, and d < min{p,q}. Let F be a
function on Z, (the extension of f on Z,) such that F(x) = x?® mod n. Then F(z) =
F(—x + pq).

proof: We first explain the condition d < min{p, ¢}: for i < d, 3! is prime relatively to

p and ¢, whereas 2n X --- X 2n — i + 1 is divisible by n, and thus by p%q. Therefore,
(21") is divisible by n. We then get:

F(-z+pg) = Z:il (2.n) (=2)*" " (pq)'

= x;” +Z:1 (?) (—)*" " (pg)* + (pQ)dti; (2?) (—2)*""(pg)*~?

This finishes the proof.

From the lemma, we see that, applying any inversion algorithm to the image by the
extended function of an input z such that pg — 2¥~2 < x < pq, produces pg — z and
therefore factors n. This happens with significant probability > 1/4. More formally:

Theorem 2 If d is small enough (d < min{p, q}), the function g is one-way, based on
the factorization of n: if a machine A is able to invert g with probability £, within time
bound t, there exists a machine B that is able to factor n with probability &' > ¢/4,
within time bound t' < t+7, where the overhead T accounts for performing computations
with integers of size |n| and is bounded by 0((@)3).

Proof: Let us consider an adversary A able to break the one-wayness of ¢ with prob-
ability €, within time bound t:

Succ™(A) = Prjz yia {0,1}F°2 y + g(2),2 + A(y) : 2 € {0, 1} 2 A g(2) = y] > ¢

where probabilities include the internal random tape of the probabilistic machine A.
As above, we denote by G the extension of g: for any x € Z,, G(z) < (F(z), J(x)).
Observe that G(z) = G(pq — z), for any z € Z,, since J(pq — z) = J(z):

d
7 _ —r
Jpg—1) = (pq) _ <pq) " (pq)
n p q
d d
= () (0)=G) - (0)=
= [— | x|—)=|=-] x(=]=
p q p q
since both p = 3 mod 4 and ¢ = 3 mod 4, which implies (’—) = ()

We use the above adversary A to factor n, by describing ynomlal Turing
Machine B that makes calls to .A:

1. B chooses z & {0, 1}*;
2. B computes y < G(z);
3. B runs A on y, and gets z;
4. B returns (n/ ged(n,z + 2))Y/@=1,
We study the probability v that B returns factor p of n:
v =Pr[p+ B] =Prz i {0,1}*y < G(2),2 < A(y) : 2 = pq — 7]

Let us define X, = [0,2F2[and X; =|pq — 22, pg]. Both X, and X; have the
same size and are included in {0, 1}*. Furthermore

Succ®™(A) = Prjz & Xo,y < G(z), 2+ A®y) : 2 € Xo AG(2) = 9]
= Prlz & X,y < Glpg—z), 2+ A®y) : 2 € Xo A G(2) = 1]
= Prlz & X1,y Gz),2 < A[y) : 2 € Xo AG(2) = 9]

5

Therefore, with the probability distribution {x ¥i3 {0,1}*,y < 2 mod n, z + A(y)},

v > Pr[G(z) =yA(x € X1)A(z € Xo)]
> Pr[G(z) =y A (2 € Xo)|(x € X1)] x Pr[z € Xi]
> Succ®™(A) x Prz € X;]

On the other hand,
2k=2 1
PI'[CCEX]_]ZF:—
This completes the proof of the theorem.
What is crucial in the above is the ability to obtain the set of images of the ba-
sic function as a subset of the image of the open interval (0,2F) by some function g
computed by an efficient algorithm.

3.2 Size of the parameters

As was just observed the security of the basic scheme is essentially equivalent to the
hardness of factoring integers n of the form n = p?q, even if there is a small security
loss in terms of exact security.

Thus, the security of the basic scheme is basically equivalent to the hardness of
factoring integers n of the form n = p?g. It is unclear whether or not factoring is
easier for such numbers than it is in case of integers with two prime factors. In order
to state an opinion, we briefly review the performances of known factoring algorithms.
Such algorithms fall into three families, according to their sensitivity to the size of the
factors and to the existence of repeated factor.

Before entering into a more precise discussion, let us mention that the idea is of
having moduli of the form p?q is not new. For example, it appears in [23]. This remark
is not in terms of intellectual property but rather in terms of the novelty of the idea.

3.2.1 Factoring techniques sensitive to the size of the smaller factor

Pollard’s p-method. The idea behind the method is to iterate a polynomial P with
integer coefficients that is to say computing x; = P(zg), 22 = P(P(zo)), etc. In time
complexity O(,/p), where p is the smallest prime factor of n, one finds a collision
modulo p, i.e. two values x; and z;, ¢ # j, such that ; = z; mod p. Computing
ged(z; — xj,n) factors n.

Although there are several optimizations, the p-method can only be used to cast
out “small” factors of an integer (say 30-digit factors). As far as we know, it has not
been used to find significantly larger factors.

The p — 1 method. Let B be a positive integer. A number is B-smooth if it is of
a product of prime numbers all < B. B-smooth numbers are usually used through a
table of primes < B. The p — 1 method relies on the use of Fermat’s little theorem: if
p — 1 is B-smooth, then the computing ged(n, a?®) — 1) factors n, where £(B) is the
product of all prime factors < B.

The security against this factoring method is adequately addressed by the require-
ment that each of p — 1, ¢ — 1 has a large prime factor (document [13], page 10).

The elliptic curve method. The ECM is a generalization of the p — 1 method,
for which the above simple countermeasure is not sufficient. Consider an elliptic curve
modn with equation

v =% +ar+1

If the number of points of this curve modulo p is B-smooth, then a factor of n can be
discovered along the computation of the scalar multiplication of My = (0,1) by ¢(B),
according to the group law of the elliptic curve.

The success probability of the algorithm is as follows: Let

L(z) = exp(y/Inz Inln(z))
Then, the curve is L(p)®-smooth with probability L(p)~'/(2®+°(1) This is minimal for
a=1/ v/2 and gives an expected running time of L(p)ﬁ“(l) group operations on the
curve.

There have been several improvements of ECM factoring, notably the FF'T exten-
sion of P. Montgomery. Furthermore, several implementations of ECM are available.
The current ECM factoring record was established in december 1999, when a prime
factor with 54 digits of a 127-digit composite number n was found with GMP-ECM,
a free implementation of the Elliptic Curve Method (see [17]). The limit used was
B = 15,000, 000.

In a recent paper [5], Richard Brent extrapolates the ECM record to be of D digits

at year about

Y =9.3%vD+1932.3
this would give records of D = 60 digits at year Y = 2004 and D = 70 at year 2010.
Such record would need B ~ 2,900, 000, 000 and require testing something like 340, 000
curves. It can be noted that, if Brent’s prediction is correct, parameters of the scheme
under review will become insecure at year Y = 2014.

3.2.2 Factoring techniques which are not sensitive to the size of the smaller
factor

Quadratic sieve. The quadratic sieve method (QS) factors n by gathering many
congruences of the form

2’ = (=1)°pi Py

7

where p1, - - -, p, is a list of prime numbers < B, called the factor base. This is done by
finding B-smooth numbers of the form Q(a) = (y/n+a)*—n. It turns out that there is
a very efficient sieving process that performs the job without division, hence the name
QS. Once enough congruences have been gathered, one obtains another congruence of
the same type with all exponents e; even: this is done by Gaussian elimination mod?2.
Thus one gets a relation 22 = y? mod n and, with significant probability, computing
ged(z —y, n) factors n. The time complexity of QS is O(L(n)'T°™M) but, as it uses very
simple operations, it is usually more efficient than ECM for numbers whose smallest
prime factor exceeds n'/3.

Many improvements of the basic method have been found, notably the multiple
polynomial variation (MPQS) and the large prime variation. This has led to very effi-
cient implementation and, until the mid-nineties, was used to set up factoring records.
The largest number factored by MPQS is the 129-digit number from the “RSA Chal-
lenge” (see [21]). It was factored in april 1994 and took approximately 5000 mips-years

(see [1]).

Number field sieve. The number field sieve (NFS) is somehow similar to the QS
but it searches for congruences in some number field (algebraic extension of the rational
numbers). The method uses two polynomials with a common root m modulo n. These

polynomials should have as many smooth values as possible. The time complexity of

NFS is
O(e(lnn)1/3(ln lnn)2/3(C’+o(1)))

for a small constant C' (about (64/9)!/3 ~ 1.923). This is asymptotically considerably
better than QS. In practical terms, NFS beats QS for numbers of more than about
110 digits (see [11]). The number field sieve was used to factor the 130-digit RSA
challenge number in april 1996, with an amount of computer time which was only a
fraction of what was spent on the old 129-digit QS-record. It was later used to factor
RSA-140 in february 1999 with an amount of computer time about 2000 Mips-years.
In august 1999, the factorization of RSA-155 from the RSA list was obtained ([7]). The
amount of computer time spent on this new factoring world record is equivalent to 8000
mips-years, whereas extrapolation based on RSA-140 and the asymptotic complexity
formula for NFS predicted approximately 14000 mips-years. The gain was caused by
an improved polynomial search method. The final linear algebra part took 224 CPU
hours and 2 Gbytes of central memory on a Cray C916.

The main obstacle to a fully scalable implementation of NF'S is actually the linear
algebra, although progress has been made (see [18]). In [7], the authors derive the
following formula

Y =13.24D"? +1928.6

for predicting the calendar year for factoring D-digit number by NF'S. The same formula
appears in [5] and produces Y = 2018 for D = 309, i.e. for a 1024 bit modulus, as

8

proposed in HIME-1.

3.2.3 Specific factoring techniques for numbers of the form plq

In recent work (see [4]), a new factoring method that applies to integers of the form
p?q has been found. The method is based on an earlier result of Coppersmith (see[9]),
showing that an RSA modulus n = pg, with p, g of the same size, can be factored given
half the most significant bits of p. It turns out that, for numbers of the form n = pq,
with p, g of the same size, fewer bits are needed.

Note that disclosing the leading bits of p provides a rough approximation P of p.
What remains to be found is the difference x = p — P. The new method is based on
finding polynomials with short enough integer coefficients, which vanish at modulo
some power p?™ of p. Such polynomials are actually zero at z. Thus, factoring is
achieved by finding the appropriate root. The polynomial itself is computed by the
LLL lattice reduction algorithm from [16]. LLL is run on lattices of dimension d? with
basis vectors of size O(dlogn). Let v be the corresponding computing time. Taking
into account the workfactor tied with guessing the approximation of p, the total running
time is

92 Cﬂ'_i .log P v

where c is such that ¢ ~ p°.

Comparing the above estimate with the running time for ECM, one can see that
the new method beats ECM for d larger than, approximately /logp. For the suggested
parameters of HIME-1, which set d = 3, the algorithm is certainly impractical.

3.2.4 Conclusion

Based on current estimates, it appears that the proposed parameters for HIME-1 should
remain secure for at least thirteen years. Surprisingly, the use of moduli with smaller
factors makes ECM factoring the main threat to the cryptosystem. Although predic-
tions should be taken with great care, it seems that this shortens the “lifetime” of the
proposed parameters by something like four years. One might even argue for a larger
estimate since, contrary to NFS, ECM factoring does not face the bottleneck of linear
algebra and, accordingly, predictions might be more accurate. Furthermore, we believe
that the behavior of ECM on integers of the form p®q has not been documented through
experiments. There are indications that it is possible to slightly speed up ECM for
numbers of the form p2q (see [19]). Even though the improvement does not apply to
n = pq, with odd d, it is good cryptographic practice to avoid introducing additional
structure and non generic objects. Thus, having p appearing three times in the prime
decomposition of n is questionable.

4 Security Analysis

The self-evaluation report [14] does not includes a serious security analysis. It simply
refers to [3]. However, as observed in section 3.1, it improperly claims that the basic
function ¢ is a permutation, a property that is required to apply results from [3].
Thus, we have found necessary to undertake our own security analysis. This appears
absolutely needed in view of the recent flaw discovered in the analysis of OAEP (see [22,
12]). We have to check whether or not the security analysis can be performed for
HIME-1.

4.1 Formal framework

An asymmetric encryption scheme is semantically secure if no polynomial-time attacker
can learn any bit of information about the plaintext from the ciphertext, except its
length. More formally, an asymmetric encryption scheme is (¢,)-IND where IND stand
for indistinguishable, if for any adversary A = (A;, As) with running time bounded by
t, the advantage

. k, pk K(1* A (pk
Adv'"d(A):2>< Pr (S » P) — ()7(m07m1?,8)<_ 1(P)
w0y | €4 Epk(mp;)t As(c,s) =b

T+Q

-1

is < €, where the probability space includes the internal random coins of the adversary,
and mg, m; are two equal length plaintexts chosen by the adversary in the message-
space M.

Another security notion has been defined in the literature, called non-malleability [10].
Informally is states that it is impossible to derive, from a given ciphertext, a new cipher-
text such that the plaintexts are meaningfully related. We won’t discuss this notion
any further since it has been proven equivalent to semantic security in an extended
attack model.

The above definition of semantic security covers passive adversaries. It is a chosen—
plaintext or CPA attack since the attacker can only encrypt plaintext. In the extended
model, the adaptive chosen—ciphertext or CCA attack, the adversary is given access to
a decryption oracle and can ask the oracle to decrypt any ciphertext, with the only
restriction that it should be different from the challenge ciphertext. It has been proven
in [2] that, under CCA, semantic security and non-malleability are equivalent. This is
the strongest security notion currently considered.

We turn to the security analysis. We want to prove that the HIME-1 scheme is
IND-CCA in the random oracle model, based on the assumption that factoring is hard.
More precisely, we wish to turn a CCA adversary A into a machine inverting g and
apply theorem 2. Unfortunately, as shown in [22], this is hopeless. In place, we will
turn A into a machine that partially inverts g. By this, we mean that it outputs a list

10

of bit-strings, including, with significant probability, the & — ky — 2 leading bits of the
targeted preimage. We thus establish the following exact security result.

Theorem 3 Let A be a CCA-adversary A attacking (K,E,D), within time bound t,
with advantage €, making qp, qg and qg queries to the decryption oracle and the hash
functions G and H, respectively. There exists an adversary B partially inverting g,
with success probability €' and within time bound t' where

8I

v

(1 lile} qu) da 4o (2¢¢+1)-qp

€
2 A\ oko Qk—ko-2) 9k-3 Qki—1 9ko
t < t+qequ-T

where T is the time needed to execute the encryption algorithm and is bounded by
3
(d+1)k
o)

To prove the above, we follow [3]: we first show the semantic security against chosen-
plaintext attacks (IND-CPA), and next we prove the existence of a plaintext-extractor.

4.2 Semantic security
4.2.1 Description of the simulator

We describe a simulator B which tentatively provides the adversary with the same view
as in a real attack. Let A = (A, Ay) be an adversary against the semantic security
of (K,&,D), under a chosen-plaintext attack. Within time bound ¢, A asks ¢g and
qu queries to the hash functions G and H respectively, and distinguishes the correct
plaintext with an advantage greater than . Let us describe the simulator B:

1. B first runs K(1%) to obtain the function g, defined from the public key

2. then Bis given y < g(z), for = £ {0,1}*-2, for which it wants to find a preimage;
since g is one-to-one, the preimage is z, which we split as = = a|8

3. next, B runs A; on the public data, and gets a pair of messages {mg, m;} as well
as a state information s. It chooses a random bit b, and then defines C + y, to
be a ciphertext of my

4. B runs Ay(C,s) and finally gets an answer &'. Finally, B outputs a preimage of
y, if one has been found from the queries asked to G and H (see below), or Fail

Of course, during the entire simulation, B also has to simulate answers from the random
oracle. This is done as follows:

11

e For a fresh query 7 to G, build z = §||(y® Hj) for all previously asked queries 6 to
H with answer Hy, and check whether y = g(z). If for some § this relation holds,
then g has been inverted, and one can still correctly simulate G, by answering
G, = §®mp0F1. This is indeed a uniformly distributed value: since g is a one-to-
one, we get z = x and thus § = «, which is uniformly distributed, by definition
of . Otherwise, output a random value G,.

e For a fresh query ¢ to H, output a random value Hs. Additionally, for any query
7 previously asked to G with answer G, build z = §||(y® H;), and check whether
y = g(z). If for some ~ this relation holds, then g has been inverted.

Once a preimage of y has been found, one could simply output it and stop the game.
But for the analysis, we assume the game goes on and that B only outputs the answer
(or Fail, if no preimage has been found) after A, has answered ¥'.

The simulation is perfect from the random oracle point of view, since, as was seen,
a new uniformly distributed value is returned for each new query. Still, it may be
imperfect, due to the implicit constraint coming from the assumption that C' is a
ciphertext of my; the corresponding random tape r is such that:

r < H(a)® B and G(r) < a @ m,0"

Since H () is randomly defined, 7 can be seen as a random variable. Let us denote
by AskG the event that the query r has been asked to G, and by AskH the event that
query « has been asked to H, and by FAskH the event that query « has been asked to
H during the find-stage (by A;). Let us also denote

e by FBad the event that r has been queried to G in the find-stage (by A;), but
answered by a value different from a @ my0** or oo @ m,0*

e and by GBad the event that query r has been asked to G in the guess-stage (by
Ay), but answered by a value different from « & my0** or oo @ m,0%. Note that,
if this happens, H(a) has not been asked previously since the control during the
G-simulation would entail G, < 6§ @ my0¥ = a & m,0*!

One may observe that each event, FBad or GBad, implies AskG. As explained above,
FBad and GBad are the only events which make the simulation imperfect. we set:

Bad = FBad v GBad

4.2.2 Probabilistic analysis

We denote by Pr[-] the probabilities in the real attack, and by pr[-] the probabilities in
the simulated game.

12

Note that the adversary cannot gain any advantage, in the real game, without
having asked r to GG. Indeed the simulation is otherwise perfect, since =AskG implies
—(FBad V GBad), and it is clearly independent of b. Thus the probability of correctly
guessing b not having asked r is exactly one half. From this, we bound Adv"™(A) by:

e = 2xPr[A=0b|AskG A AskH] x Pr[AskG A AskH]

42 x Pr[A = b| AskG A —AskH] x Pr[AskG A —AskH]

42 x Pr[A = b| ~AskG] x Pr[-AskG] — 1

2 x Pr[AskG A AskH] + 2 x Pr[AskG A —AskH] + (2 x Pr[A = b| ~AskG] — 1)
2 x Pr[AskG A AskH] + 2 x Pr[AskG A =AskH] + 0.

IN A

In the following, we are interested into the probabilities for the simulated game,
which is perfect unless FBad or GBad happens. This yields:

e <2 x (pr[(AskG A AskH) | =Bad] + pr[(AskG A —AskH) | =Bad]) .
Remark that
(AskG A —AskH) A —Bad = (AskG A —AskH) A =(FBad A GBad)

is exactly the conjunction of the events that r has been asked to GG, that a has not
been previously asked to H and (coming from —(FBad A GBad)), that the answer has
been either o @ my0** or o @ m,0%. This probability is less than

9 - 2*1(}0 % 9. 27k—|—k0—|—2 — 2QG’ . 27k+2 =qc - 27k—|—3

Therefore,
pr[(AskG A AskH) | ~Bad] > £/2 — q¢ - 273 /pr[-Bad]
and thus,
pr[AskG A AskH] pr[(AskG A AskH) A =Bad] > pr[(AskG A AskH) | =Bad] x pr[—Bad]

>
> ¢/2 x pr[-Bad] — g - 27F*®

To conclude, we just have to evaluate the probability pr[Bad] = pr[FBad v GBad]:

pr[Bad] = pr[Bad|—FAskH] x pr[-FAskH] + pr[Bad | FAskH] x pr[FAskH]
< pr[FBad v GBad | ~FAskH] + pr[FAskH]
Firstly, the randomness of «, which is uniformly distributed in {0, 1}*7%=2 im-

plies that it is asked to H in the first stage with probability less than gz /2F=*0=2:
pr[FAskH] < g - 27Fthkot2,

13

Secondly, one observes that the conditional events FBad or GBad, knowing that
—FAskH holds, correspond to a situation where A asks r to G without having asked
o to H yet. When queried, the random variable r is undefined. Thus FBad or GBad
become true if, later, H(«) is set to a value v such that v @ 8 has been asked to G:
pr[FBad v GBad | =FAskH] < g5 - 27%0. Thus,

pr[Bad] < gg - 277 + gy - 27RO
Finally, the probability that B outputs z is greater than

£/2x (1 —qg-27%0 — g - 27 FFkot2) _ g 943

4.3 Plaintext—Extractor.

If one wants to consider A as a chosen-ciphertext adversary, B has to be able to
simulate the decryption oracle: on a query ¢ to the decryption oracle, B looks at
the query/answer list (v, G,) obtained from G and at the query/answer list (0, Hy)
obtained from H. Then, for each pair of elements coming from both lists, it defines

a=06b=y®H;, M=G,®35

and checks whether
¢ = g(al|b) and [M], = 0

where [M]g, denotes the ki trailing bits of M. If this happens, then B outputs the
k — ko — k1 — 2 leading bits of M, [M]F~ko=k1=2 a5 the requested plaintext. Otherwise,
“Reject” is returned.

Before performing our analysis, let us check that this simulation uniquely defines
a possible plaintext. This comes form the fact that g is one-to-one: the value of a
is uniquely defined, and thus, the same is true of § and Hs. Similarly, b is uniquely
defined, and also v and G,. We conclude that at most one M may be selected, for
which either [M];, = 0% or not.

Given a ciphertext ¢’ = g(a'||b'), we let ' = H(a') ® b’ and we denote by AskG’
the event that query 7’ has been asked to G, and by AskH' the event that query o' has
been asked to H'. The simulation may only fail by rejecting a valid ciphertext. Let us
denote by Fail this event:

pr[Fail] = pr[Fail A —=AskG'] + pr[Fail A AskG' A —=AskH'] + pr[Fail A AskG' A AskH’|
= pr[Fail A =AskG'] + pr[Fail A AskG' A =AskH']
< pr[Fail | =AskG'] + pr[AskG’ A —AskH']

Following [3], we would wish to argue that, if 7 has not been asked to G, the
probability that [a'®G(1')]r, = 0% is less than 27%1. On the other hand, the probability

14

to have asked G(r'), without having asked H (a') which should leave r' random, is less
than gg - 27%. Granted this, one could conclude that

Pr[Fail] < 275 4 ¢4 - 2750,

Unfortunately, the above argument is not correct [22], when the decryption oracle
interacts with the adversary. This is because, as noticed in the previous section, there
is an implicit constraint coming from the assumption that C' is a ciphertext of m;; the
corresponding random tape p is such that:

p + H(a) ® B and G(p) < a @ my0"

Now, if it turns out that ' = p, then one cannot claim anything on the probability
that [a @ G(r')]x, = 0¥, even if 7' has not been asked from G. Denote by RBad the
event that ' = p. Similarly, let ABad be the event that o’ = .

We will show that, without AskH, both events are rare (see [12]). Then we argue
that, discarding them, makes the failure probability small.

pr[Fail A (RBad v ABad) | ~AskH]
= pr[Fail A ABad | —AskH] + pr[Fail A RBad A =ABad | =AskH]
< pr[Fail | ABad A —=AskH] + pr[RBad | ~ABad A —AskH]

Within the formula, the second event is interpreted as ' = p, provided that o’ # a and
H(«) is unknown, and thus unpredictable. Event 7' = p reads as H(a) = H(a')®b &S,
which cannot occur with probability greater than 27%¢. The first event in the formula
can be analyzed, by means of AskG':

pr[Fail | ABad A =AskH] = pr[Fail A AskG' | ABad A —AskH]
+pr[Fail A —AskG' | ABad A —AskH]
pr[AskG' | ABad A —AskH]

+pr|Fail | ~AskG' A ABad A —AskH]

IN

Once again, the former means that ' is asked to G, whereas ' = o and H (o) remains
unpredictable, and thus H(a’) and 7’ as well. Then, the probability that 7’ has been
asked is less than qg/2%0. The latter means that the redundancy holds, whereas H (a')
and G(r') have not been asked. Observe that ¢’ = a implies ' # p since g is one-to-one,
and thus G(r') is unpredictable. Hence, the redundancy cannot hold with probability
greater than 2-%1. Finally,

pr[Fail A (RBad V ABad) | —=AskH] < 271 + (¢g + 1) - 2750

15

Using the same argument as in [3], we get:

pr[Fail A —(RBad vV ABad) A —(AskG' A AskH') | =AskH]
pr[Fail A =(RBad V ABad) A —(AskG' A AskH')] < 27+ 4 g - 27F0

It is clear that, granted —(AskG’' A AskH'), the above simulator cannot fail. This yields:
pr[Fail A =(RBad V ABad) A (AskG' A AskH')] = 0

Accordingly,
pr[Fail | —AskH] < 2275 4 (2¢5 + 1) - 27

Therefore, unless « has been asked to H, all decryption queries are correctly simulated
with probability greater than

(L= 274 = (2qg 4+ 1) - 2750)% > 1 — g - 2741 — gy - (2q6 + 1) - 2759

Thus, having given the simulator B access to the plaintext-extractor, we have either
inverted g or else found the bit-string «, consisting of the k — ky — 2 leading bits of the
targeted preimage of g, in the list of queries to H, with probability greater than

Adv™(A)/2x (1 = g - 27 — qg - 27F00F2) —gg-27H — - 27MHT — (2 +1)-gp-27"

This concludes the proof.

4.4 Complexity of the Reduction.

Let us now consider the time complexity of this “reduction”, which is the running time
of the simulator B. Both the simulator B and the plaintext-extractor have to look at
the query/answer list (v, G,) obtained from G and at the query/answer list (4, Hy)
obtained from H, and compute for each pair ((y, G,), (0, Hy)),

a=0b=yvy®H;, M =G, DI

as well as g(a||b). Proper bookkeeping allows to do this only once for each pair. Each
operation is linear in k, excepted for g(al|b), whose complexity is denoted by 7, the
cost of a modular exponentiation.

Finally, the time complexity of the overall reduction is

t+qc-qu - (1+0O(k)), witht=0 ((@))

16

4.5 Equivalence with factorization

Combining with the results in section 3.1, we get, in the random oracle model:

Theorem 4 Let A be a CCA-adversary attacking (IC,E, D), within time bound t, with
advantage €, making qp, qg and qm queries to the decryption oracle and the hash
functions G' and H, respectively. Then, there exists an algorithm B able to extract
a prime factor of any integer n = pq produced by the key generation algorithm of
HIME-1, with success probability €' and within time bound t' where

€ da qu dec , 4p 1 29 + 1
g~ (1 T ok zk—ko—2> - <2k—1 Ty <2k1—1 T ok))

t < t+ (e -qu+1)-T+qu X7

6J

Y4

where 7 is the running time of Coppersmith root finding algorithm from [8].

Combining the reductions in the proofs of theorems 2 and 3, one obtains, from the
simulation on y = 22" mod n, the leading bits a of 2 = pg—z in a list with ¢z elements,
with probability greater than

€ les qH qda 1 2qG+ 1 1
(5 < (1= ok 2k—ko—2) Toks T I X (le—l T ok)) 1

da qu) da 4o ><< 1 QQG+1>

3

Skl 4
This means that we have candidate approximations A = a+x = pg—u for the unknown
value pq, where a comes from the list and where u < 2%, Raising to the d-th power,
we obtain a polynomial of degree d, vanishing at A 4+ u, modulo n. Coppersmith
algorithm [8] can find root u and therefore the factorization of n, provided |u| < Na ~
94", When d = 3, this means at most 2k/3 bits and is achieved with the proposed
parameters.

ko 9k—ko—2 4 9k1—1 9ko

4.6 Practical security estimates

We try to understand whether the figures shown above are meaningful for practical
parameters, considering the time an adversary could spend on breaking semantic secu-
rity. We set, as in the specification, kg = 128 and k; = 126, d = 3 and try to obtain a
lower bound on k£ > 512. Taking, as many authors, the usual values for ¢g, gy and ¢p:

qc ~ qm ~ 2% and qp ~ 2°°

we obtain that an adversary could be used for factoring with success probability &',

within a time bound ¢t where

e > % % (1 _ 968 _ 2—322) _ (2—451 4+ 928 (2—125 + 2—67)) ~ 8 9—39

t < t+8x (2" +1)-%*

oo

17

Therefore, an adversary able to learn one bit with advantage greater than 1/2, within
time less than 2'1¢k3 can be used to factor n within less than 2!23k3.

In the table below, we compare the factoring time of the reduction with those coming
from the estimates for the complexity of ECM and NFS, Crcun (k) and Cypg(k), as
reported in section 3.2.

k IOgCECM(k)]OgCNps(k) 123 + 3logk
512 62 87 150
1024 93 117 153
2048 139 156 156

2560 158 178 156
3072 175 189 159
4096 207 208 159

Thus, if one believes that ECM or NF'S are best possible, the reduction suggests to set
parameter k£ to something above 2048. Accordingly, n is a at least a 4096-bit modulus.
This shows that the reduction only provides a qualitative assurance that the scheme is
secure and that it cannot be interpreted with the suggested parameters.

5 Conclusion

Based on our analysis, we believe that the cryptosystem HIME-1 is presumably se-
cure, with the proposed parameters. However, based on the submission, we would not
recommend the scheme as it is for the following reasons:

e The specification contains ambiguities and mistakes.

e The range of suggested parameters only guarantees security for a foreseeable
period of time which is rather limited.

e The submission does not include an appropriate security analysis. Although we
have been able to offer a proof of the security of the scheme against adaptive
chosen-ciphertext attacks, it rests on very recent research and it appears a bit
fresh to form the basis of a cryptosystem.

e The estimates following the proof just mentioned would not give any conclusive
evidence, when interpreted with the proposed parameters.

References

[1] D. Atkins, M. Graff, A. K. Lenstra and P. Leyland, The magic words are squeeming
ossifrage, Asiacrypt’94, Lecture Notes in Computer Science 917, (1995), 263-277.

18

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions
of Security for Public-Key Encryption Schemes. In Crypto 98, LNCS 1462, pages
26-45. Springer-Verlag, Berlin, 1998.

M. Bellare and P. Rogaway, Optimal asymmetric encryption - How to encrypt
with RSA, Eurocrypt’94, Lecture Notes in Computer Science 950, (1995), 92-111.

D. Boneh, G. Durfee, and N. Howgrave-Graham, Factoring N = p"q for large r,
Crypto’99, Lecture Notes in Computer Science 1666, (1999), 326-337.

R. P. Brent, Some Parallel Algorithms for Integer Factorisation, Euro-Par 99,
Lecture Notes in Computer Science 1685, (1999), 1-22.

S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery,
B. Murphy, H. te Riele, and P. Zimmermann, Factorization of RSA-140 using

the Number Field Sieve, Asiacrypt '99, Lecture Notes in Computer Science 1716
(1999), 195-207.

S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy,
H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. C. Leyland, J. Marchand,
F. Morain, A. Muffett, C. Putnam, C. Putnam, P. Zimmermann, Factorization
of a 512-Bit RSA Modulus. Eurocrypt’2000, Lecture Notes in Computer Science
1807,(2000), 1-18

D. Coppersmith, Finding a Small Root of a Univariate Modular Equation; Euro-
crypt’96, Lecture Notes in Computer Science 1070, (1996), 178-189.

D. Coppersmith, Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known, Eurocrypt’96, Lecture Notes in Computer Science 1070,
(1996), 178-189.

D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In Proc. of the
23rd STOC. ACM Press, New York, 1991.

R.-M. Elkenbracht-Huizing, An implementation of the number field sieve, it Exp.
Math. 5, (1996), 231-253.

E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Still Alive.
Cryptology ePrint Archive 2000/061, http://eprint.iacr.org/.

Specification of HIME-1 Cryptosystem, Hitachi Ltd,
http://www.sdl.hitachi.co.jp/crypto/hime/index.html

Self Evaluation Report, HIME-1 Cryptosystem, Hitachi Ltd,
http://www.sdl.hitachi.co.jp/crypto/hime/index.html

19

[15] Test Data, HIME-1 Cryptosystem,
http://www.sdl.hitachi.co.jp/crypto/hime/index.html

[16] A. K. Lenstra, H. W. Lenstra and L. Lovész, Factoring polynomials with rational
coefficients, Mathematische Ann., 261, (1982), 513-534.

[17] N. Lygeros, M. Mizony, P. Zimmermann, A new ECM record with 54 digits,
http://www.desargues.univ-lyonl.fr/home/lygeros/Mensa/ecm54.html

[18] P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2),
Eurocrypt’95, Lecture Notes in Computer Science 921, (1995) 106-120.

[19] R. Peralta and E. Okamoto, Faster Factoring of Integers of a Special Form , IEICE
Transactions on Fundamentals of Electronics, Communications, and Computer
Sciences, v. E79-A, n.4 (1996), 489-493.

[20] R. L. Rivest, A. Shamir, L. M. Adleman, Cryptographic Communications System
and Method, US patent 4 405 829, September 20, 1983 (filed 14/12/1977).

[21] RSA Laboratories, Information on the RSA challenge,
http://www.rsa.com/rsalabs/html/challenges/html

[22] V. Shoup. = OAEP Reconsidered. Cryptology ePrint Archive 2000/060,
http://eprint.iacr.org/.

[23] T. Takagi, Fast RSA-Type Cryptosystem Modulo p*q, Crypto’98, Lecture Notes
in Computer Science 1462, (1998), 318-326.

20

