Evaluation Report on the
ECMQVS Cryptosystem

1 Introduction

This document is an evaluation of the ECMQVS Cryptosystem. Our work is
based on the analysis of document [9], which provides both the specification and self-
evaluation of the scheme. The present report is organized as follows: firstly, we briefly
review the cryptosystem; next we discuss the security level of the cryptographic primi-
tive which underlies the scheme and analyze its relation to the difficulty of the discrete
logarithm problem on elliptic curves; finally, we evaluate the security level of the scheme
itself in the light of strong security notions similar to semantic security and security
against adaptive chosen-ciphertext attacks. This is as requested by IPA.

2 Brief description of the scheme

2.1 Specification review

ECMQVS is based on the hardness of the discrete logarithm problem over an elliptic
curve. The cryptosystem uses elliptic curves E over some prime p, |p| = m or elliptic
curves over Fym . In the first case, possible values for m are

{112,128, 160, 192, 224, 256, 384, 521}
and, in the second case:
{113,131, 163,193, 233,283,409, 571}

Once the curve E has been chosen, a base point G is chosen on E, which generates a
subgroup of order n, such that, denoting by #(FE) the number of points in the curve
and defining the cofactor h by h = #(FE)/n, inequality h < 4 holds.

The basic function f on which ECMQVS is based is defined by

f:{0,...,n-1} — E
r — r-G

where r - GG is obtained, by means of the usual elliptic curve addition, as the sum
of r times G. Inverting f is precisely the elliptic curve discrete logarithm problem
(ECDLP). Clearly, f is one-to-one. The inverse function, denoted log, is believed
to be hard to compute. Another function related to the scheme is the Diffie-Hellman

function:
DHG E? — F
X,V — logs(Y) - X =logs(X) Y

A variant of this function is the cofactor Diffie-Hellman function:

DHy : E* — F
X, Y — h-loge(Y) - X =h-logg(X) Y

We will omit subscript G in the above when the context is clear.
A further function, which is central in the following is the Menezes-Qu-Vanstone
function:

MQVg: E* — E o B
X1, X0, Y1,Yy = h(logg(X2) + Xzlogg(X1))(logg(Ye) + Yalogs(Y1)) - G

In the above, X denotes an integer obtained from an elliptic curve point X, by the
following sequence of operations:

1. compute the first coordinate z of X
2. convert x into an integer

3. output the integer X, consisting of the trailing [logn] bits of the integer obtained
in step 2

Note that:
MQV (X1, X5, Y1, Ys) = h(logg(Xs) + Xologg (X)) - (Ya + YaY))

MQV (X1, Xy, Y1, Y5) = (logg(¥2) + Tz logg (V1) - (Xs + XoX1)

ECMQVS is a key-agreement scheme: entities U that enter the scheme use a predefined
curve F, as described above, and a base point G. For each such entity U, two key
pairs (diy, Qi) and (doy, Qo) are established, consisting of two elements Qi p,
Q2,v of E of order n together with their discrete logarithm d; y = log; Q;,y. The pair
Qu = (Q1,y,Q2,p) is the public key and (dy y, ds) is the private key.

Key agreement is achieved as follows: two entities U and V', with respective public
keys (Q1,v, Q2,v) and (Q1,v, Q2,v) can derive a shared key by applying a key derivation
function to MQV(Qu, Qv)-

At this point, it is useful to introduce a more formal framework, that will be useful
when we later perform the security analysis. A key-agreement scheme on a message
space M consists of three algorithms (K, £, D):

2

e the key generation algorithm /C(1™) outputs a random pair of secret-public keys
(sk, pk), relatively to a security parameter m

e the key agreement algorithm £ is an interactive algorithm between two entities
U, V, each endowed with a pair (sky, pk;;) (and (sky, pky/) resp.) and each using
random coins 7y, 1y €

e the key derivation algorithm Dy (D;r) outputs the common key from the data A
exchanged during the key agreement algorithm and the random coins. It should
be the case that D, (A;7y) = Dsk,, (A;7y)

The key generation algorithm IC(1™) of the ECMQVS Cryptosystem produces, on
input m, a curve E, a base point G and its order n. In the case of elliptic curves over
F,, the equation of the curve is

v =22 +ax+b

and the curve parameters form a tuple (p, a, b, G,n, h) (where h is the cofactor). In the
case of elliptic curves over Fom , the equation of the curve is

V+rzy=a>+ax+b

and the curve parameters form a tuple (m, f,a,b,G,n, h), where f is an irreducible
polynomial of degree m over Fy, which defines the extension field Fom and A is the
cofactor. In both cases, two randomly chosen elements)iy, Q2 of order n are
generated for each participant and the public key pk; consists of the above tuple
together with the pair (Q1y, Q2,0). The secret key sky = (di,v, da,r) consists of the
discrete logarithms of (1,7, (2, in base G.

The key-agreement algorithm £ is played between two entities, each having a pub-
lic/secret key pair, as explained earlier in this section. A shared field element z is pro-
duced as the first coordinate of a curve element computed by MQV(Q1.v, Q2,0, Q1,v, Q2,v)-
By “shared”, we mean that both entities U and V' are able to obtain z, as will be seen
in the sequel.

From the shared field element z, key material of appropriate length is generated.
It is obtained by means of a hash function H, which is unkeyed and applied to z and -
optionally - to publicly shared information. At this point, we wish to note that we have
not been too careful with notations in the above description. For example, document [9]
carefully explains how to treat z as a bit string or a byte string, providing the adequate
conversion routines. We believe that our approach is suitable for performing a high level
security analysis. This is why we use simplified notations and ignore type conversions.

The key derivation algorithm derives the shared field element as the first coordinate
of a point P defined by the formulas

P = h(doy + Qoudiu) - (Qov + Q2vQ1,v)

3

P = h(dyy + Qavdry) - (Qov + QeuQrv)

and retrieves the key material from z, using the key derivation function.

2.2 Comments on the specification

Document [9] is clearly written but mainly directed towards implementors. For ex-
ample, it does not supply the rationale behind the MQV function and the advan-
tage of using MQV rather than DH or DH'. Neither does it explain the role of h.
Note that the cofactor A which is bounded by 4 has an inverse modulo n, so that
DH(X,Y) = h~'-DH'(X,Y). Thus, computing DH and DH' is strictly equivalent from
a complexity theoretic viewpoint. Also,

MQV(XI: X27 }/17 }/2) = DH,(X27 }/2) + YQ) DH,(X17 }/2) + ?2) DH,(X2: }/1)
+X2}/2 . DH,(Xla }/1)
DH'(X,Y) = MQV(0,0,X,Y)

from which it follows that computing DH and MQYV is strictly equivalent from a com-
plexity theoretic viewpoint. Inclusion of the cofactor method eases the implementation.
When a key pair (dy, Qu) is used in a key agreement protocol, there is no guarantee
for the receiver that it has been correctly manufactured (unless it is directly certified
by some form of certification authority). Hence, in order to avoid subtle attacks, the
other party should check that QQy is a non unit element of the subgroup generated by
(G, which means

1. that Qy lies on the curve
2. that Qy is not O
3. that Qy is of order n

Using DH' or MQV allows to discard the last check, since multiplication by A brings
back anyway into the subgroup of order n.

In terms of security arguments, document [9] is rather sketchy. We quote the
following comment, which is on a rather general level.

The elliptic curve MQV scheme is a key agreement scheme based on ECC.
It is designed to provide a variety of security goals depending on its applica-
tion — goals it can provide include unilateral implicit key authentication,
mutual implicit key authentication, known-key security, and forward se-
crecy — depending on issues whether or not public keys are exchanged in
an authentic manner, and whether or not keys pairs are ephemeral or static.

Document [9] refers to [22], where it is claimed that, when one uses ()1, as a static
key and)2,y as an ephemeral key, and when the static keys are certified, the MQVS
key-agreement scheme implicitly provides authentication.

Actually, the submission does not specifically discuss the authentication problems
surrounding the key-agreement protocols, of the Diffie-Hellman type. No indication
either is given of how to implement the above security goals. When a fresh session key
is established each time the protocol is executed, a security property usually expected
is that, even if some previous session keys have been misused or corrupted, the new
key should still be indistinguishable for the adversary. Furthermore, the property of
forward-secrecy, quoted in [9], is also often required. It means that, even if the long-
lived secret key of a participant is compromised, this should not help the attacker to
learn anything about the previous values of the agreed keys. These questions are not
further addressed in the self-evaluation report beyond the above comments.

On a more general level, one must regret that no formal security argument is offered
and that no effort is made to precisely relate the scheme with a specified hard problem
about elliptic curves.

3 Security level of the cryptographic primitive

In this section, we investigate the security of the underlying cryptographic primitive,
both in terms of complexity-theoretic reductions and with respect to the recommended
parameters.

3.1 Complexity-theoretic arguments

As previously mentioned, document [9] does not attempt to measure the security of the
scheme in terms of a hard problem related to the discrete logarithm for elliptic curves.
There are several basic primitives that can be considered.

3.1.1 The elliptic curve decisional and computational Diffie-Hellman hy-
potheses

We keep the notations of section 2.1. Recall that the decisional Diffie-Hellman hypoth-
esis on an elliptic curve E with a large subgroup of prime order, asserts that it is hard
to distinguish the distributions Dg and Rg, where

RE = {(Ga Qa Ra P)}
with all four elements taken at random in the large subgroup of E and

Dg = {(G,Q, R, P)}

with logg(R) = logg(P). A quantitative version measures the maximum advantage
AdvDDH(?) of a statistical test 7" that runs in time ¢. This means the maximum of the
difference of the respective probabilities that T outputs 1, when probabilities are taken
over Dg or Rg.

As is well known, there is a standard self-reducibility argument: by randomization,
it is possible to transform an arbitrary tuple (G,Q, R, P) such that G # @ into a
random equivalent one, i.e. the output is in Dg (resp. Rg), if and only if the input
is. Thus, if AdvDDH(¢#) is significant, one can use a distinguisher to decide, with
probability close to one, whether a tuple is in Dg. This involves performing repeated
tests with the distinguisher and deciding whether the number of one outputs has a bias
towards Dg or Rg. Based on the law of large numbers, a decision with small constant
error probability requires running O(AdvDDH™?) tests. One can decrease the error
probability drastically by repeating the above computations an odd number of times
and deciding based on the median of the averages. In [26], the authors claim that one
can reach error probability 27" by repeating the test O(p(n)).AdvDDH ', where p is
a polynomial, but the proof is missing. In any case, the loss in the reduction is huge.
Thus, despite its elegance, the self-reducibility argument is a bit misleading in terms
of exact security.

There is a straightforward analog of the ECDDH in terms of the MQV function. It
asserts that it is hard to distinguish the distributions D%/IQV and RS, where

R6 = {(G: Ql: Q27 R17 R27 P)}
with all six elements taken at random and
D%/IQV = {(G, Qla Q?a R17 RQ’ P)}

with P = MQV¢g(Q1, @2, R1, Ry). We show that any adversary A, distinguishing the
above two distributions can be turned into an attacker B against the ECDDH. To see
this, let (G, Q, R, P) be an input to B. Set Q2 = @, Ry = R and pick at random two
elements of order n, @1 = d -G, Ry = d - G. Note that

MQV(Q1, Q2, R1, Ry) = DH'(Q, R)+Q-DH'(Q1, R)+ R-DH(Q, R,) + QR-DH'(Q1, Ry)
Now, the right hand side is
DH'(Q,R) + hd@ - R+ hd'R- Q + hdd'QR - G
Thus, B can test whether (G, Q, R, P) is in Dg by handling
(G,Q1,Q.Ri,R,P+dQ-R+dR-Q+ddQR-G)

to A. The advantage of B equals the advantage of A and its running time exceeds the

running time of A by 7, where 7 accounts for a few extra elliptic curve operations and
is bounded by O(m?).

Thus, the ECDMQV assumption is weaker than the ECDDH. Any security result
based on the hardness of the former also holds granted the hardness of the latter. It is
unclear whether or not the two assumptions are equivalent.

Related to the above is the elliptic curve computational Diffie-Hellman assumption
(ECCDH) and the elliptic curve discrete logarithm assumption. The former states that
it is hard to compute xy -G from G, -G and y- G, while the latter states that it is hard
to compute x from G and z - G. It is obvious that DDH is a stronger assumption than
CDH, which in turn, is stronger than the discrete logarithm assumption. However, no
other relation is known and the only way to solve the hard problems underlying DDH
or CDH is to compute discrete logarithms.

It should be mentioned that the DDH cannot hold in groups with a small subgroup.
This is why cryptographic schemes usually work with a subgroup of an elliptic curve
of large prime order and the current proposal is no exception. Even with this proviso,
there are subtle protocol attacks using invalid keys, i.e. keys that do not belong to the
prescribed large subgroup (see [25]). In the present context, such attacks are addressed
by using the cofactor.

3.1.2 Security of the scheme

It appears that the security of the scheme is closely connected with the decisional
Diffie-Hellman assumption. With the notations of section 2.1, z is the first coordinate
of MQV(Q1,v, Q2,u, Q1,v,Q2,v) We would like to see that z looks like a random string
to a passive adversary. However, this cannot hold in a simple-minded approach: if the
equation of the elliptic curve E is

v =22 +ar+b

then, an integer x, 0 < x < p is not necessarily the first coordinate of a point of order
n on the curve. We let X be the set of such x. A similar definition applies for curves
over Form. We also let ‘H be the image of X by the key derivation function H.

Theorem 1 Based on the elliptic curve decisional Diffie-Hellman hypothesis (ECDDH),
it 18 hard to distinguish the distribution

(G7 Ql,Ua Q?,U7 QI,V7 Q?,Vﬂ k)

where k is the common key material generated by the cryptosystem, from the analogous
distribution with k replaced by a random elements of H. More accurately, if there is
an adversary A that distinguishes the above distributions within time bound t, with
advantage €, then there exists a machine B that solves the decisional Diffie-Hellman
problem with advantage ¢ within time bound t + 7, where T accounts for a few extra
elliptic curve operations and is bounded by O(m?).

7

In the above, the advantage in distinguishing two distributions is the absolute value of
the difference of the probabilities that the algorithm outputs 1, with inputs taken from
each.

Proof. Let A be an adversary that distinguishes the two distributions defined in the
theorem. We show how to attack the ECDMQV assumption by distinguishing the
distributions DM?V and RS, where

R% = {(G; Q1, QQ;R1,R2,P)}

with all six elements taken at random and
D%/[QV = {(G7 Qh Q27 Rla RQ: P)}

with P = MQVg(Q1, Q2, R1, Ry). We run the key generation algorithm and generate
an elliptic curve E together with a random element G of large prime order. We next
show how to use A to break the ECDMQV assumption: we take the base point of the
cryptosystem to be the first element of the input to A and we complete the scenario
by considering that the second to fifth elements of the input are the respective public
keys (Q1,0,Q2r) and (Q1,v,Q2v) of two entities U and V. This implicitly defines
four matching secret keys. Next we submit (G, @1, Q2, R1, Ro, H(z)) to A, where z
is the first coordinate of P. If the original input is from D%/IQV, the last element of
the tuple is exactly the common key material produced by the cryptosystem. On the
other hand, if the input is from RE, the last coordinate is a random element of H.
Thus, we have obtained a distinguisher between the two distributions, with exactly the
same advantage as A. Finally, the advantage of any algorithm A that runs in time ¢ is
bounded by AdvDDH(O(t)), where O(t) =t + 7 and 7 accounts for few extra elliptic
curve operations needed to compute the data to be handled to A.

Remark. It would be desirable to ensure that one gets a bit-string indistinguishable
from a random string of the appropriate length, which would mean that the information
k is semantically secure in the sense of the seminal paper [17]. However, we do not see
any argument that would give such guarantee. Of course, one can declare that the key
derivation function is a random oracle. It is also possible to obtain such a bit-string
by applying a randomly keyed universal hash function, following the method described
in [26] and also used in [33]. Recall that, if Hj is a universal hash function, keyed
by h, with ¢-bit outputs, then, the leftover hash lemma of [21] implies that hashing a
set of 2* bit strings produces a distribution (h, H,(x)) whose distance to the uniform
distribution is < W Here,)\ is a few bits below the size of the security parameter
m. Thus in order to get a bound at most 1/2'?® and to obtain - say - a 128 bit
encryption key and a 128 bit MAC key, one would need m > 512. This would only be
compatible with the largest suggested parameter for the scheme. In any case, this is
not the path followed by the submission.

3.2 Size of the parameters

As was just observed the security of a simplified version of the scheme appears closely
related to the ECDDH for the class of elliptic curves generated by the cryptosystem.
The only method known to attack the decisional Diffie-Hellman problem on elliptic
curves is to solve the underlying discrete logarithm problem (ECDLP). Therefore, in
order to estimate whether the specific restrictions on the curve and the suggested
parameters offer a wide security margin, it is useful to review the performances of the
various algorithms known for the ECDLP. We will distinguish between exponential
algorithms, whose running time depend on the size of the group and subexponential
algorithms, which apply to specific classes of weak curves.

3.2.1 Exponential algorithms

The best algorithm known to date for solving the DLP in any given group is the
Pollard p-method from [27] which takes computing time equivalent to about \/7n/2
group operations. In 1993, van Oorschot and Wiener in [34], showed how the Pollard
p-method can be parallelized so that, if ¢ processors are used, then the expected number

of steps by each processor before a discrete logarithm is obtained is ~ @ In order
to compute the discrete logarithm of Y in base GG, each processor computes a kind of
random walk within elements of the form a - G + b - Y, selecting X;,; through one of
the three following rules

1. set Xi+1 =G + AX'Z
2. set Xi—l—l =2 Xz
3.set X, =Y + X,

Decisions on which rule to apply are made through a random-looking but deterministic
computation, using e.g. hash values. “Distinguished” points X; are stored together
with their representation X; = a;- G + b; - Y in a list that is common to all processors.
When a collision occurs in the list, the requested discrete logarithm becomes known.

In recent work (see [16, 35]), it was shown how to improve the above by a mul-
tiplicative factor v/2. This takes advantage of the fact that on can simultaneously
handle a point X and its opposite —X. Slightly better improvements can be obtained
for specific curves with automorphisms.

The progress of such algorithms is well documented. In April 2000, the solution
to the ECC2K-108 challenge from Certicom [8] led to the computation of a discrete
logarithm in a group with 2% elements (see [15]). This is one of the largest effort ever
devoted to a public-key cryptography challenge. The amount of work required to solve
the ECC2K-108 challenge was about 50 times that required to solve the 512-bit RSA
cryptosystem (see [7]) and was thus close to 400000 mips-years.

9

It is expected that such figures will grow slowly, unless unexpected discoveries
appear in the area. From the predictions in [23], one can infer that the proposed range
of parameters (from 112 to 521 bits) will presumably allow for a choice that guarantees
security for the foreseeable future, at least for the next 50 years.

3.3 Security against subexponential attacks

As is well known, there are two classes of elliptic curves for which non trivial attacks
have been found. They are

1. the supersingular curves
2. the anomalous curves

Supersingular curves over a field IF,, with ¢ a power of p, are defined by the condi-
tion that the trace of the Frobenius map is zero modulo p. For such curves, Menezes,
Okamoto and Vanstone (MOV) have shown how to reduce the discrete logarithm prob-
lem to the DLP in an extension field F,x of IF,, with small £. Note that, for elliptic
curves over a prime field Z,, those curves have exactly p+1 elements and are specifically
excluded by the key generation algorithm which performs the following check

pByélmodn forany 1 < B <20

Anomalous curves are those which contain a p-torsion point other than O, or,
equivalently, those whose Frobenius map has trace congruent to one modulo p. For
such curves, work of Semaev ([31]), Riick ([28]), Smart ([30]) and Satoh-Araki ([29]) has
shown how to solve the p-part of the DLP in polynomial time. Note that, for elliptic
curves over a prime field Z,, those curves have exactly p elements and are specifically
excluded by the key generation algorithm.

The MOV reduction constructs an embedding from the curve into the multiplicative
group of a suitable extension field of F, and can be applied in a more general setting
than originally envisioned by the authors. However, if the base point is an element of
order n, n is necessarily a divisor of ¢ — 1. Recently, Balasubramanian and Koblitz
have shown in [1] that this condition was sufficient to carry the MOV reduction. The
key generation algorithm specifically addresses this question. In the case of curves over
F,, one gets that p* = 1 mod n. From this, it follows that k is at > 20, which is large
enough to turn down subexponential algorithms in the extension field. In the case of
curves over Fom , there is an analogous test

QmB;«élmodn forany 1 < B <20

with the same consequences.

10

Another reduction similar to the MOV reduction has appeared in the literature.
It is due to Frey and Riick [14] (see also [13]) and can be stated in the more general
context of Jacobians on which the Tate pairing exists. Let m be an integer relatively
prime to ¢, and let 1, (F,) be the group of roots of unity in F, whose order divides m.
Assume that the Jacobian J(F,) contains a point of order m. Then there is a surjective
pairing

Pm : Im(Fg) x J(Fg)/mJ (Fyg) — pum (Fy)

which is computable in O(log ¢), where J,,,(IF,) is the group of m-torsion points. This
pairing, the so-called Tate pairing, can be used to relate the discrete logarithm in the
group Jp,,(IF,) to the discrete logarithm in some extension F*,. In the case of elliptic
curves considered in the current context, the above is applicable only if the order n of
the base point is a divisor of ¢¥* — 1. As a consequence, the curves produced by the key
generation algorithm are protected against the FR reduction, exactly due to the same
argument used for MOV reduction.

3.3.1 Conclusion

Based on current estimates, it appears that the range of proposed parameters for
ECMQVS allows choices that should remain secure for at least fifty years. However,
even if it offers a guarantee that the MOV and FR reductions do not apply, the key
generation algorithm leaves open the possibility to choose curves with complex mul-
tiplication or even Koblitz curves (curves over Fom with a and b in the two-element
field). This is somehow contrary to the current trend, which would recommend having
the curve generated at random and ensuring that there is a point of large prime order
by counting the number of elements of the curve by means of the SEA algorithm [24].
Considering that the appropriate warnings are given, this does not constitute a strong
objection to the proposal under review.

4 Security Analysis

Document [9] does not include a thorough security analysis, and does even not consider
the formal security notions that a key agreement scheme should satisfy. Thus, we have
found necessary to undertake our own security analysis. We first review the security
notions which have been defined in the literature. Then we consider the proposed
schemes in view of these notions.

11

4.1 Formal framework
4.1.1 Key agreement

A key agreement scheme (without TTP) involves two participants, a client A and a
server B, who want to share a secret session key in order to thereafter possess a secure
and virtually private channel. They communicate on a public channel and eventually
compute a value that they both know but which nobody else knows. Many security
models have been defined to cover this kind of schemes. Of these, the following two
models have received more attention:

e The first model was proposed by Bellare and Rogaway [5, 6], and refined in [3].
Here, the adversary can interact with all participants and aims at learning some
information about one session key. Therefore, the proper approach is to ensure
indistinguishability of the session key (from a random key) for the adversary. In
other words, any session key should be semantically secure [17].

e The second model was proposed by Bellare, Canetti and Krawczyk [2], and is
based on the multi-party simulatability technique. This means that one first
defines an idealized version of a key agreement scheme. Then, in order to prove
that the real-world scheme is secure, one shows that any adversary in the real
world has to behave like an adversary in the ideal game.

Shoup [32] has shown that the two models (with adequate refinements) are equivalent in
preventing active adversaries to break forward-secrecy. This property is by now a basic
requirement for any key agreement scheme. Forward-secrecy means that an adversary,
who sees all the public communication (and possibly has access to all session keys but
one) cannot obtain any information about that last session key, even if he later learns
the long-term secret of any party.

4.1.2 Mutual authentication

When parties have established a common secret session key, most of the key agreement
protocols, such as the Diffie-Hellman [11] key agreement scheme using public keys,
implicitly assume that each party is actually partnered (by sharing the session key)
with the party he wanted. However, it can be the case that no partnership has been
established. Indeed, if an adversary uses the public key of Alice and Bob runs the
key exchange process, then, upon completion, he thinks that the actual session key
is shared with Alice. However, there is no actual partner since the adversary cannot
extract the session key from the communication.

Accordingly, one usually wants to furthermore verify the actual partnership. Such
property of a key exchange scheme is called mutual authentication. However, as pre-
sented in [3], an implicitly authenticated key agreement scheme can be easily trans-

12

A Key Agreement Scheme B

Learn Learn
sk, sid, pid sk, sid, pid
) h(sk'|[1)
Accept h(sK'[12)
sk = h(sk'||0), sid, pid —

and terminate.
Accept

sk = h(sk’||0), sid, pid

and terminate.

Figure 1: Key Agreement + Mutual Authentication

formed, in the random oracle model [4], into a scheme that provides mutual authenti-
cation, by simply adding one more flow (see figure 1).

4.2 Security model

At the end of each execution of the protocol (see figure 1), when a party U has accepted,
it gets a session key, denoted by sky, and a session 1D, denoted by sidy which is part
of the flow of data. The session ID’s are made public, while session keys clearly remain
secret. Indeed, the session keys are the common secret shared by the two parties at the
end of the protocol. The session ID’s have a technical significance: they are used to
define partnership. The partner of a party is an entity which has a similar session ID.
Since the session ID’s are public, the partnership is also public. With such a definition
of partnership, one can remark that a party may have several partners, although it is
quite unlikely, in general.

In the model defined by Bellare and Rogaway [5, 6], with additional refinements
in order to handle forward-secrecy (c¢f. Shoup [32]), any instance of each party, A
or B, is seen as an oracle (see figure 2). Furthermore, it is assumed that the entire
communication network is managed by the adversary C, who may schedule interactions
arbitrarily, and who may inject and drop messages arbitrarily as well. Thus, the
adversary can interact, as a man-in-the-middle, with all parties, or more formally with
several instances of them (\A; for the client and B; for the server) as many times as he
wants in a concurrent way. He can ask the following queries

e Send (U, i, string) — which means that the adversary sends the message string
to the oracle U; (either a server or a client). The oracle makes the requested
computations according to the protocol and returns the answer.

13

| history |

|

A B
C

Aga By,
- 0/1

Figure 2: Security Model

e Reveal (U, i) — provided oracle U; has accepted (the tag acc has been set to True),
it returns the session key skj,. This models the misuse of a session key by the
parties once this session key has been established.

e Test (U, i) — granted that oracle U; has accepted, one tosses a coin b. If b =1
then the session key sk;; is returned, else a random string is returned. The aim
of the attack is to guess this bit b. Therefore, the following restrictions on this

query apply:
— the query is asked once;
— no Reveal-query is asked to U;;

— no Reveal-query is asked to U}, where U; is partnered with U4;.

e Execute (A, i, B, j) — in order to obtain the transcript corresponding to the com-
munication between two parties (and build a history), the adversary may ask the
parties to run the protocol. Then the transcript is returned to the adversary.
Such a transcript can also be obtained using Send-queries.

e Corrupt (/) — in order to deal with forward-secrecy, one allows the adversary to
corrupt the parties. By this we mean that it obtains the secret key (the long-term
secret key zy) of the corrupted party Y. This induces a further restriction on
the Test-query, which can only be asked to an instance of a party (or one of his
partners) who has accepted before it gets corrupted.

The above game, with the Test-query, just deals with the semantic security of the
session key, the basic security notion of a key agreement scheme, but not with (mutual)
authentication. We say that the protocol provides mutual authentication if no instance

14

accepts unless it has exactly one partner. Otherwise, it would mean that the adversary
has impersonated a party. For example, if an instance of the server accepts without a
partner, it means that the adversary has impersonated the client, and therefore broken
client-to-server authentication. Similarly, if an instance of the client accepts without
a partner, it means that the adversary has impersonated the server, and therefore
broken server-to-client authentication. A key agreement scheme guarantees mutual
authentication if, for any adversary, the probabilities of breaking the client-to-server
authentication or the server-to-client authentication are both negligible.

4.3 Analysis of the proposal
4.3.1 The basic protocol

A passive adversary does not make use of the Send (U, i, string) or Corrupt (U) fa-
cilities. It may or may not ask Reveal-queries. If it does not, then it is easily seen
that it would have to break the ECDMQV problem in order to get an advantage in
distinguishing the real session key from a “random” one (derived from a random point
on the curve), as proven in theorem 1.

In the case of a passive adversaries with Reveal-queries, the scheme is not secure,
since the session key is always the same. As soon as the adversary has asked a Reveal-
query, he can break the semantic security of any other session key (since they are the
same).

Finally, active adversaries cannot really be considered, since there are no interac-
tions in this basic scheme, where only the public keys are used. Similarly, the scheme
does not provide forward-secrecy, since the session key is completely and easily deter-
mined from the public keys, and the secret key of any participant.

4.3.2 One-time keys

We now turn to the situation where the two parties refresh their keys at each execution
of the key agreement scheme. Notice that this scenario is not explicitly envisioned in
document [9]. Still, it is needed in order to withstand active attacks. In this context,
it is necessary to authenticate the flow of data by means of a digital signature. There
are two options:

1. The two key pairs of each entity are refreshed at each execution. Thus, the
long-term key on which the protocol relies is actually a signing key.

2. One of the key pair only is refreshed at each execution and the other, say di 7, Q1,v
is static. The static public key is authentified by a certificate and the corre-
sponding static secret key is the long-term key. It is expected that this scenario
provides strong security without using digital signatures, as claimed in [22]. This
is actually the rationale for the design of the ECMQVS system.

15

When both key pairs are refreshed, the key-agreement scheme between two entities
U and V, with respective identities /Dy, I Dy, can be played as follows (as proposed
in [32].)

1. U generates two ephemeral key pairs (di v, Q1,v) and (ds,y, Q2,v) and sends Qp =
(Q1,v,Q2,v) and I Dy to V together with a signature sigy (Qu, IDy) of these data
and a certificate for his public signing key

2. V generates two ephemeral key pairs (di,v, Q1,v) and (ds,v, Q2,v) and sends Qy =
(Q1,v, Q2,v), to U together with a signature sigy (Qu, Qv,IDy) and a certificate
for his public signing key

The key material can be derived by U and V' by computing

P =MQV(Qiv,Qouv, Qrv, Q2v)

Once this is done, the key material is retrieved using the key derivation function.

When only the second key pair of each entity is refreshed, the key-agreement scheme
between two entities U and V', with respective identities I Dy, I Dy, can be played as
follows (as proposed in [22].)

1. U generates one ephemeral key pair (da 7, Q2,v) and sends Q1 y, Q27, IDy to V
together with a certificate for his public key Q1 7

2. V generates an ephemeral key pair (da v, Q2,v) and sends Q1,v, Q2,v, IDy to U
together with a certificate for his public key Q1

The key material can be derived by U and V by computing

P =MQV(Qiv, Qeu, Quv,Q2v)

Once this is done, the key material is retrieved using the key derivation function.
Before analyzing the security of the two protocols, we briefly review digital signa-
tures.

4.3.3 Digital Signature Schemes

Digital signature schemes are the electronic version of handwritten signatures for digital
documents: a user’s signature on a message M is a string which depends on M, on
the secret key of the user and —possibly— on randomly chosen data, in such a way that
anyone can check the validity of the signature by using the public key only.

16

Definitions. A signature scheme is defined by three algorithms (IC, X, V):

e The key generation algorithm K. On input 1™, where m is the security parameter,
the algorithm K produces a pair (pk,sk) of matching public and secret keys.
Algorithm K is probabilistic.

e The signing algorithm X. Given a message M and a pair of matching public and
secret keys (pk,sk), ¥ produces a signature o. The signing algorithm might be
probabilistic.

o The werification algorithm V. Given a signature o, a message M and a public
key pk, V tests whether o is a valid signature of M with respect to pk. In general,
the verification algorithm need not be probabilistic.

Security. Various security notions have been formalized by [18, 19|, based on the
goal of the adversary, and the means available to the adversary to achieve this goal.

e Disclosing the secret key of the signer. It is the most serious attack. This attack
is termed total break.

e Constructing an efficient algorithm which is able to sign messages with significant
probability of success. This is called universal forgery.

e Providing a new message-signature pair. This is called existential forgery.

In many cases the is not dangerous, because the output message is likely to be mean-
ingless. Nevertheless, a signature scheme which is not existentially unforgeable (and
thus that admits existential forgeries) does not guarantee by itself the identity of the
signer. For example, it cannot be used to certify randomly looking elements, such as
keys, which is the context considered in this report.

Two different kinds of attacks have been considered depending on the availability
of signed messages for the adversary. In a first scenario, the attacker only knows the
public key of the signer. In another, the attacker has access to a list of valid message-
signature pairs. The strongest model is the adaptively chosen-message attack, where
the attacker can ask the signer to sign any message, except the message for which
forgery is finally achieved.

A signature scheme is secure if an existential forgery is computationally impossible,
even under an adaptively chosen-message attack. We denote by Succ’c’z’v(t, q) the
maximal success probability of any adversary in performing an existential forgery after
at most ¢ queries to a signing oracle within time bound ¢.

4.3.4 Security analysis for twin one-time keys

We now analyze the security of the variant of the protocol, which uses two one-time
keys and digital signatures.

17

Passive adversaries without Reveal-queries. Again, it is easily seen that a pas-
sive adversary which does not ask any Reveal-query would have to break the ECDMQV
problem in order to get any advantage in distinguishing the real session key from a “ran-
dom” one (derived from two random points on the curves), with a proof similar to the
proof of theorem 1.

Passive adversaries with Reveal-queries. In this case, it can be shown that the
scheme is secure relative to the ECDDH problem. More accurately, we prove the
following result.

Theorem 2 Let A be an adversary breaking the semantic security of the key agreement
scheme, with advantage € and within time bound t, having observed g, transcripts and
asked g, Reveal-queries. Then the ECDMQV problem can be solved with advantage
greater than €/q, and within time bound t + 5q, - T, where T accounts for the cost of an
elliptic curve operation and is bounded by O(m?).

Proof. Let A be a passive adversary that guesses the bit b involved in the Test-query.
We construct a distinguisher between the distributions D%/IQV and R, where

RE = {(G,Q1,Q2, R1, Ry, P)}

with all six elements taken at random and
Dy ¥ = {(G,Q1,Qs,Ri, Ry, P)}

with P = MQVG(Ql, QQ, Rl, RQ)

We run the key generation algorithm and generate an elliptic curve with a subgroup
of order n as prescribed. We also run the key generation algorithm of the signature
scheme. We next show how to use A to break the ECDDH on E: we take the base
point of the cryptosystem to be the first coordinate G of the input to A.

The view of the adversary A can be simulated as follows:

e choose random d; 7, doy and send Q1. = d1,y- G, Q2,uv = do,v - G, with signature
and certificate

e choose at random d; v, dov and send Qv = div - G, Q2v = doy - G, with
signature and certificate

e derive the shared session key k

In order to use the adversary to distinguish the above distributions, we randomly
select one index i € {1,...,¢,} and modify the i-th execution. Instead of the above
simulation, one uses the second and third components)1, Q2 of the input to A in the

18

first message and the fourth and fifth components R;, R, for the answer. The shared
session key is obtained as k = H(z), where z is the first coordinate of P.

The Reveal-queries can easily be simulated by means of the computed shared key.
Similarly, the Test-query can be simulated, using a random coin b. Thus, provided that
the Test-query is asked at the i-th execution, we see that the advantage of A is exactly
the same as in the real game, when the input to A comes from D%/IQV. On the other
hand, when the input to A comes from RE, the advantage of A is exactly 0. Since
the choice of i is independent from the view of the adversary, the advantage of our
distinguisher is €/g,, and its running time is ¢’ = ¢ + 5¢, - 7, where 7 accounts for the
cost of the elliptic curve operation needed to compute the data to be handled to A.

Remark. As observed at the end of section 3.1.2, one cannot guarantee that the session
key k is indistinguishable from a random string of the same length (but only from a
string obtained from a random curve element.) This has the unpleasant consequence
that the session key, seen as a bit string, is not proven semantically secure, unless H
is assumed a random oracle.

Active adversaries. We now cover the case of active adversaries, allowing the use
of Send (U, i, string) but not of the Corrupt (i) facility, at this point.

Due to the signature, the scheme can be shown secure relative to the ECDMQV
problem. More accurately, we prove the following:

Theorem 3 Let A be an adversary breaking the semantic security of the key agree-
ment scheme, with advantage € and within time t, having asked g, Reveal-queries, and
interacted q times with U and V. Then

€
with t'

2 x Succ®™Y (', q) + ¢* x AdvDMQV (¢)

<
< t+5g-T

where T accounts for the cost of an elliptic curve operation and is bounded by O(m?).

Remark. In the above theorem, we assume that passive observations (the Execute-
queries) are built from interactions with U and V (using Send-queries).
Proof. Let A be an active adversary that guesses the bit b involved in the Test-query
after ¢ interactions with U and V' (g, and g, respectively), and ¢, Reveal-queries.

In order to prove the above security result, we will envision several games:

e game G, where the signatures are generated by the actual signature algorithms
(by means of the secret keys)

e game Go, where all messages to V' which involve a fresh signature (i.e. a signature
not produced by our simulation of U) are rejected

19

e game Gz, where all messages which involve a fresh signature (i.e. a signature not
produced by our simulators) are rejected

The probability that the adversary correctly guesses b in G; is exactly 1/2+¢. Indeed,
game G, provides the adversary with the real-life setting.

In the following, we bound the difference of probabilities that G; and G35 successfully
guess the query bit b, and we relate the advantage in the game Gs with the ability to
break the ECDMQYV. This uses the simple yet useful lemma from [33]

Lemma 1 Let E, F, and E', F' be events of two probability spaces such that both
Pr[E|=F] = Pr[E'|=F'] and Pr[F] = Pr[F'] <e.

Then,
|Pr[E] — Pr[E']| < ¢

Proof: We write
Pr[E] = Pr[E|~F]| Pr[~F]| + Pr[E|F] Pr[F]

Pr[E'] = Pr[E'|~F'| Pr[~F'] + Pr[E|F’| Px[F"]
Hence
Pr{E] — Pr{E"] = Pr[E|~F)(Pr[~F] — Pr{~F']) + (Pr{E|F] Px[F] — Pr[E|F'] Pr[F']
The right hand side becomes Pr[E|F]|Pr[F| — Pr[E|F'] Pr[F'], which is bounded by ¢.

Going from game G; to G, produces a difference if and only if a message produced by
the adversary involves a fresh signature, accepted under the public key pk,. In order
to estimate the probability that such event happens, we define a simulation. This
simulation runs the key generation algorithm anew and generates an elliptic curve and
a base point G of order n as prescribed. It also runs the key generation algorithm of
the signature scheme to get a public key pk, for U, and a secret key/public key pair
(sky, pk,) for V, as well as the certificates for the public keys. At this point, one can
simulate the view of the adversary A, with the help of a signing oracle for U:

e to simulate U, choose random d, 7, do,i7, compute Qv = diy-G, Qo,v = doy -G,
then ask the signing oracle the signature of sigy((Q1,v, Qi2,v),IDy). Return
Qu = (Q1,u, Q12,u), the signature and a certificate for pk,

e tosimulate V, perform similarly, using the secret signing key in place of the oracle.
More explicitly, upon receiving data produced by the simulation of U, abort if the
received signature is fresh (i.e. has not been created by the above U-simulator.)
Otherwise, choose random d; v, doy, compute Q1v = di,v - G, Qa2v = dov - G,
next, produce the requested signature. Return Qv = (Q1,v, Q2,v), the signature
and a certificate for pk,.

20

o U accepts if and only if the received signature is correct. Thus each of U, V
derives the shared session key &

This simulates the Execute-queries. The case of Reveal-queries is easily handled, using
the computed shared key. Similarly, Test-queries can be simulated, by means of a
random coin b. Now, game G, differs from game G; if a fresh signature is valid, but this
is exactly the probability that the simulation provides an existential forgery, with less
than g, queries to the signing oracle and within time bound ¢ = ¢ + 5¢ - 7. Using the
lemma, this bounds the difference between the success probabilities by Succ™>Y (', qu)-
A similar analysis bounds the difference between games Gy and Gs by Succ™*Y (¢, ¢,).

We are thus led to study the advantage that the adversary can get in game Gs.
We relate this advantage to a distinguisher between the two distributions D%’IQV and
RS, that we now describe. We run the key generation algorithm and generate an
elliptic curve and a base point of order n as prescribed. We also run the key generation
algorithm of the signature scheme to get the signing and verification keys, as well as
the certificates. We next show how to use A, on input (G, Q1, @2, R1, Rs, P), to break
the ECDMQV. We take the base point of the cryptosystem to be the first coordinate
G of the input to A. We then simulate the view of the adversary A, as follows:

e to simulate U, choose random d; i, do v and send Q1. = di,y -G, Qv = doy - G,
with signature and certificate

e to simulate V, choose random d; v, doy and send Qv = di v -G, Qov = dav -G,
with signature and certificate

e then each of U and V derives the shared session key &.

In above simulations of U and V, they only accept signatures generated by the simula-
tor. In order to use the adversary to distinguish the above distributions, we randomly
choose two indices 7,5 € {1,...,q}. The i-th simulation of U is modified, using the
second and third components @)y, Q2 of the input to A to define @Qy;. Similarly, the
j-th simulation of V', provided it answers a message involving ()1, 2, uses the fourth
and fifth components R;, R, of the input to A to define Qy,. The shared session key
is obtained as k = H(z), where z is the x coordinate of P.

The Reveal-queries are simulated by answering the computed shared key. Similarly,
the Test-query are simulated, by means of a random coin b. Thus, provided that the
Test-query is asked at a point where)1,Q2 and R;, Ry are involved, we see that the
advantage of A is exactly the same as in the real game, when the input to A comes
from D%/IQV. On the other hand, when the input to A comes from R, the advantage
is exactly 0. Since the choice of ¢ and j is independent from the view of the adversary,
the advantage of our distinguisher is £/¢?, and its running time is ¢ = ¢ + 5¢ - 7. This
finishes the proof.

21

Forward-secrecy. The above result can be extended to the case where A is allowed
to use the Corrupt (i) facility. However, as pointed out in [32], its use should not be
too liberal: one sees that the above proof collapses if the adversary corrupts V' right
after a Test-query. The proper restriction can be expressed in terms of the session ID,
as follows:

e a session ID is established only after two parties U and)V have interacted to share
this ID

e if a Test-query is asked to a party U, no Reveal-query can be issued with the
session ID involved in the Test-query

e if a Test-query is asked to a party ¢ which later gets corrupted, the corrup-
tion cannot take place before the session ID involved in the Test-query has been
established.

As shown by Shoup [32], in order to get the most general version of forward security,
it is necessary to add at least one key confirmation flow.

Mutual Authentication As already studied (see figure 1), by simply adding the
key confirmation flows (only one, or both), one gets the explicit unilateral or mutual
authentication. Without such a key confirmation, the users may accept without having
any actual partner.

4.3.5 Security analysis for single one-time keys

We now analyze the security of the variant of the protocol, which uses a single one-time
key for each execution.

Passive adversaries without Reveal-queries. Again, it is easily seen that a pas-
sive adversary which does not ask any Reveal-query would have to break the ECDMQV
problem in order to get any advantage in distinguishing the real session key from a “ran-
dom” one (derived from two random points on the curves), with a proof similar to the
proof of theorem 1.

Passive adversaries with Reveal-queries. In this case, it can be shown that the
scheme is secure relative to the ECDDH problem. More accurately, we prove the
following result.

Theorem 4 Let A be an adversary breaking the semantic security of the key agreement
scheme, with advantage € and within time bound t, having observed g, transcripts and
asked q, Reveal-queries. Then the ECDDH problem can be solved with advantage greater

22

than €/q, and within time bound t + 3q, - T, where T accounts for the cost of an elliptic
curve operation and is bounded by O(m?).

Proof. Let A be a passive adversary that guesses the bit b involved in the Test-query.
We construct a distinguisher between the distributions Dg and Rg, where

RE = {(Ga Qa Ra P)}
with all four elements taken at random and
DE == {(Ga Q: Ra P)}

with log;(R) = logg(P).

We run the key generation algorithm and generate an elliptic curve with a subgroup
of order n as prescribed, together with long-term key pairs (di v, Q1,v) and (dy,v, Q1,v)
for U and V respectively. We next show how to use A to break the ECDDH on E: we
take the base point of the cryptosystem to be the first coordinate G of the input to A.

The view of the adversary A can be simulated as follows:

e choose a random dy iy and send Qo = doy - G
e choose a random dyy and send Qyy =doyv - G
e derive the shared session key k

In order to use the adversary to distinguish the above distributions, we randomly
choose one index ¢ € {1,...,¢,} and modify the i-th execution. Instead of the above
simulation, one lets the second component) of the input to A stand for (), in the
first message and the third component R replace (2 for the answer. The shared
session key is obtained as k = H(z), where z is the first coordinate of

WP+ diyQ-R+divR-Q+dyydivQR-G)

It is easily seen that, if P is DHg(Q, R) then MQVg(Q1v, @, @1,v, R) is exactly com-
puted by the above formula.

The Reveal-queries can easily be simulated by means of the computed shared key.
Similarly, the Test-query can be simulated, using a random coin b. Thus, provided that
the Test-query is asked at the i-th execution, we see that the advantage of A is exactly
the same as in the real game, when the input to A comes from Dg. On the other hand,
when the input to A comes from Rg, the advantage of A is exactly 0. Since the choice
of 7 is independent from the view of the adversary, the advantage of our distinguisher
is €/qp, and its running time is t' = ¢ + 3¢, - 7, where 7 accounts for the cost of the
elliptic curve operation needed to compute the data to be handled to A.

Using an improved reduction, similar to [10], one can state

23

Theorem 5 Let A be an adversary breaking the semantic security of the key agreement
scheme, with advantage € and within time bound t, having observed g, transcripts and
asked g, Reveal-queries, then the ECDDH problem can be solved with advantage greater
than e™! - /q, and within time bound t + 6q, - T, where T accounts for the cost of the
elliptic curve operation and is bounded by O(m?).

Proof. The proof is similar to the above, but the simulation of the view of the
adversary A is slightly different. With probability 1 — 7, one performs the standard
simulation, having knowledge of the discrete logarithms in use, and with probability 7
the simulation uses inputs derived from (@, R, P) using random self-reducibility (their
discrete logarithms are unknown). A similar analysis can be performed, provided that
all the Reveal-queries have been asked to correctly simulated transcript, and that the
Test-query has been asked on a transcript involving a key derived from (@, R, P). This
occurs with probability (1 — 7)%w. If we define 7 ~ 1/¢,, the above probability is
approximately equal to e !/g,, which concludes the proof.

Remark. As observed at the end of section 3.1.2, one cannot guarantee that the session
key k is indistinguishable from a random string of the same length (but only from a
string obtained from a random curve element.) This has the unpleasant consequence
that the session key, seen as a bit string, is not proven semantically secure, unless H
is assumed a random oracle.

Active adversaries. We have been unable to prove anything about the security of
the scheme against active attacks. Even if we have not found any attack either, we
believe that one cannot claim any security result.

Forward-secrecy. Without mutual authentication, the scheme definitely cannot achieve
forward secrecy. To see this, assume that an attacker A randomly chooses dy 7, com-
putes and sends the related (2, together with the long-term public key @,y of U.
Then V sends back (Q1,v,Q2,v). Assume further that A makes a Test-query to this

V instance and finally corrupts U. It is easily seen that, using di y, A can guess the
query bit, since he can actually compute the session key accepted by V.

Mutual Authentication As already studied (see figure 1), by simply adding the
key confirmation flows (only one, or both), one gets the explicit unilateral or mutual
authentication. Without such a key confirmation, the users may accept without having
any actual partner. We have not been able to prove that adding key confirmation makes
the protocol forward-secure. We have found no attack either but we believe one cannot
claim provable security.

24

5

Conclusion

Based on our analysis, we believe that ECMQVS is presumably secure, with the pro-
posed parameters, for the foreseeable future. However, based on the submission, we
have the following restrictions:

We

e The specification does not include any formal discussion of security. With static
keys, the scheme is only secure in the weakest formal security model. With a
single ephemeral key, the scheme can be proven secure against a wider range of
attacks. Still, a proof of security against active attacks does not appear at hand.

e The scheme does not, by itself, provide forward secrecy.

wish to note additionally that we have been able to show that the scheme could

be used securely and provide forward secrecy, in conjunction with digital signatures.
Nevertheless, no indication on how to use such setting is included in the specification.

References

1]

2]

3]

[4]

[5]

[6]

[7]

R. Balasubramanian and N. Koblitz. The improbability than an elliptic curve
has subexponential discrete log problem under the Menezes-Okamoto-Vanstone
algorithm, J. Cryptology, 111, (1998), 141-145.

M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design
and Analysis of Authentication and Key Exchange Protocols. In Proc. of the 30th
STOC. ACM Press, New York, 1998.

M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. In FEurocrypt ’2000, LNCS 1807, pages 139-155.
Springer-Verlag, Berlin, 2000.

M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for
Designing Efficient Protocols. In Proc. of the 1st CCS, pages 62-73. ACM Press,
New York, 1993.

M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In
Crypto 93, LNCS 773, pages 232-249. Springer-Verlag, Berlin, 1994.

M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: the Three
Party Case. In Proc. of the 27th STOC. ACM Press, New York, 1995.

S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy,
H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. C. Leyland, J. Marchand,

25

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

F. Morain, A. Muffett, C. Putnam, C. Putnam, P. Zimmermann. Factorization
of a 512-Bit RSA Modulus. Eurocrypt’2000, Lecture Notes in Computer Science
1807,(2000), 1-18

Certicom, Information on the Certicom ECC challenge,
http://www.certicom.com/research/ecc_challenge.html

Certicom, Standards for efficient cryptography, SEC1: elliptic curve cryptography,
sept, 20, 2000.

J.-S. Coron. On the Exact Security of Full-Domain-Hash. In Crypto 2000, LNCS
1880, pages 229-235. Springer-Verlag, Berlin, 2000.

W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, 1T-22(6):644-654, November 1976.

D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In Proc. of the
23rd STOC. ACM Press, New York, 1991.

G. Frey, M. Miiller, and H. G. Riick. The Tate-Pairing and the Discrete Logarithm
Applied to Elliptic Curve Cryptosystems. IEEE Transactions on Information
Theory, 45:1717-1719, 1999.

G. Frey and H. G. Riick. A Remark Concerning m-Divisibility and the Discrete
Logarithm in the Divisor Class Group of Curves. Mathematics of Computation,
62:865-874, 1994.

R. Harley, D. Doligez, D. de Rauglaudre, X. Leroy. Elliptic Curve Discrete Loga-
rithms: ECC2K-108,
http://cristal.inria.fr/~“harley/ecdl7/

R. Gallant, R. Lambert and S.A. Vanstone. Improving the parallelized Pollard
lambda search on binary anomalous elliptic curves, Mathematics of Computation,
69, (2000), 1699-1705.

S. Goldwasser and S. Micali. Probabilistic encryption, Journal of Computer and
System Science 28, (1984), 270-299.

S. Goldwasser, S. Micali, and R. Rivest. A “Paradoxical” Solution to the Signature
Problem. In Proc. of the 25th FOCS, pages 441-448. IEEE, New York, 1984.

S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure
Against Adaptative Chosen-Message Attacks. SIAM Journal of Computing,
17(2):281-308, April 1988.

26

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

IEEE standard specifications for public-key cryptography. IEEE Computer Society
(2000).

R. Impagliazzo and D. Zuckermann, How to rectcle random bits, 30th annual
symposium on foundations of computer science, (1989), 248-253.

L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone. An efficient protocol
for authenticated key agreement. technical report CORR 98-05, Department of
Combinatorics and Optimization, University of Waterloo, march 1998.

A K. Lenstra and E. Verheul. Selecting cryptographic key sizes, PKC’2000, Lecture
Notes in Computer Science 1751,(2000), 446-465.

R. Lercier and F. Morain, Counting the number of points on elliptic curves over fi-

nite fields: strategies and perormances, Eurocrypt’ 95, Lecture Notes in Computer
Science 921, (1995), 79-94.

C.H Lim and P.J. Lee. A key recovery attack on discrete log based schemes using
a prime order subgroup, Crypto ’97, Lecture Notes in Computer Science 1294,
(1997), 249-263.

M. Naor and O. Reingold, Number-theoretic Constructions of Efficient Pseudo-
random Functions, 38-th annual symposium on foundations of computer science,
(1997), 458-467.

J. Pollard, Monte Carlo methods for index computation mod p, Mathematics of
Computation, 32, (1978), 918-924.

H.G. Riick. On the discrete logarithm in the divisor class group of curves. Preprint
(1997).

T. Satoh, K. Araki. Fermat quotients and the polynomial time discrete log algo-
rithm for anomalous elliptic curves (1997), to appear in Commentarii Math. Univ.
St Pauli.

N.P. Smart. The discrete logarithm problem on elliptic curves of trace one. J.
Cryptology, 12, (1999), 141-151.

[LA. Semaev. Evaluation of discrete logarithms in a group of p-torsion points of
an elliptic curve of characteristic p. Math. Comp., 67 (1998), 353-356.

V. Shoup. On Formal Models for Secure Key Exchange. Technical Report RZ
3120, IBM Research, April 1999.

27

[33] V. Shoup and T. Schweinberger, ACE Encrypt: The Advanced Cryptographic

Engine’ public key encryption scheme, Manuscript, March 2000. Revised, August
14, 2000.

[34] P.C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications, J. Cryptology, 12, (1999), 1-28.

[35] M. J. Wiener and R.J. Zuccherato. Fast attacks on elliptic curve cryptosystems,
SAC’98, Lecture Notes in Computer Science 1556, (1999), 190-200.

28

