Evaluation Report on the
PSEC Cryptosystem

1 Introduction

This document is an evaluation of the PSEC Cryptosystem. Our work is based
on the analysis of documents [28, 29|, which provide both the specification and self-
evaluation of the scheme, as well as on various research paper such as [14, 15, 16, 25, 26/,
where additional security arguments can be found. The present report is organized as
follows: firstly, we briefly review the cryptosystem; next we discuss the security level
of the cryptographic primitive which underlies the scheme and analyze its relation to
the difficulty of the discrete logarithm problem on elliptic curves; finally, we evaluate
the security level of the scheme itself in the light of strong security notions such as
semantic security and security against adaptive chosen-ciphertext attacks. This is as
requested by TPA.

2 Brief description of the scheme

2.1 Specification review

PSEC is based on the hardness of the discrete logarithm problem over an elliptic curve.
The cryptosystem uses elliptic curves E' over some field F,, where ¢ is of the form qg.
Usual cases are those where ¢ is prime or a power of two, but the cryptosystem does
not exclude further cases. Once the curve E has been chosen, a base point P is chosen
on F, which generates a subgroup of prime order p.

PSEC uses as a building block an adaptation of the E1 Gamal cryptosystem (see [11])
to the context of elliptic curves. The basic function f on which PSEC is based is defined
by

f:A0,...,p—-1} — FE
r — r-P

where r - P is obtained, by means of the usual elliptic curve addition, as the sum
of r times P. Inverting f is precisely the elliptic curve discrete logarithm problem



(ECDLP). Clearly, f is one-to-one. The inverse function, denoted logp, is believed
to be hard to compute. Another function used by the scheme is the Diffie-Hellman
function and denoted by DHp, where the subscript P will be omitted when clear from

the context:
DHP - E? — F
X, Y — logp(Y) - X =logp(X) Y

Besides the curve parameters, the public key of PSEC consists of an element of the
curve of order p, say W. The secret key s is the discrete logarithm of W in base P.

Before going further, we introduce a more formal framework, that will be useful
when we later perform the security analysis. A public-key encryption scheme on a
message space M consists of three algorithms (K, €, D):

e the key generation algorithm K(1¥) outputs a random pair of secret-public keys
(sk, pk), relatively to a security parameter &

e the encryption algorithm &y (A ;) outputs a ciphertext C' corresponding to the
plaintext M € M, using random coins r

e the decryption algorithm Dg (C) outputs the plaintext M associated to the ci-
phertext C.

Thus, the key generation algorithm XC(1*) of the PSEC Cryptosystem produces, on
input k, a public key pk consisting of a curve E a base point P, its order p, which is a
prime number with £ bits and an element W of order p. In the case of elliptic curves
over a field IF, of characteristic # 2, 3, the equation of the curve can be taken as

v =24+ar+b

and the curve parameters form a tuple (F,,a,b, P,p). The public key is given by
this tuple plus the public element W. In the case of elliptic curves over a field I, of
characteristic 2, the equation of the curve can be taken as

v +ay=2a2"+ax+b

and the curve parameters form a tuple (F,, a,b, P, p). The public key is similarly given
by this tuple plus the public element W. For fields of characteristic 3, there is no such
“reduced form” for the equation, but the submission seems to implicitly discard this
case. When F, is defined as an extension field of some smaller F,,, where g is prime,
[F, is presented as a tuple (go,n, f,b), where f is an irreducible polynomial of degree
n over I, , which defines the extension field Fan, and b is a bit indicating whether a
regular basis or a normal basis is used. In all cases, the secret key sk = s is the discrete
logarithm of W in base P.



It should be added that there are additional items in the public key, consisting of
hash function identifiers, which we ignore at this point. We will bring more precision
on these elements at a later stage of our report. Similarly, there are further integers to
indicate the respective bit-lengths of various data.

The encryption function Ex(m;r) of the primitive encryption function of PSEC
first produces an ephemeral key pair (r, C;), where 7 is randomly chosen in {0, 2% —1}
and C; = r - P. Next it computes a field element z, the first coordinate of a curve
element computed as DH(W, C;) = r - W. Finally, it encrypts an /,,-bit message m as
(C1, ¢2), with co = m @ z. This requires £, < |q|.

At this point, we wish to note that we have not been too careful with notations
in the above description. For example, writing m @ z treats z as a bit string or a
byte string, whereas it is actually a field element. Document[28] provides the adequate
conversion routines. We believe that our approach is suitable for performing a high level
security analysis. This is why we use simplified notations and ignore type conversions.

Decryption Dg(C1,cz) is based on recovering z. Granted the secret key s, it is
possible to obtain the field element z as the first coordinate of DH(W,Cy) = s - C}.
Once z has been retrieved, one can compute m as ¢y @ z.

We now turn to the actual PSEC scheme. At this point, we should mention that
PSEC actually includes three different schemes.

e PSEC-1 is a public key encryption scheme
e PSEC-2 and PSEC-3 are hybrid encryption schemes

We first describe PSEC-1. PSEC-1 uses a hash function H, whose inputs are
l. + £,,-bit long and whose outputs are £,-bit long. Therefore, the public key includes
a reference to the identifier of the hash function. Document [28] requires ¢, + £, < |q|
and ¢, < |p| = k. Encryption Ex(m;r) computes Cy as t - P, with t = H(m||r).
Next, it defines a field element z, the first coordinate of a curve element computed
as DH(W,C;) = t- W. Finally, it encrypts an {,,-bit message m as (Ci,c3), with
¢y = (m|r) & 2.

Decryption Dg(C1,cy) is based on recovering z. Granted the secret key s, it is
possible to obtain the field element z as the first coordinate of DH(W,Cy) = s - C}.
Once z has been retrieved, one can compute m/||r by extracting the ¢, + £, leading
bits of ¢y @ z. Before outputting m, the decryption algorithm checks that C'; has been
properly computed from H (m||r).

PSEC-2 uses two hash functions H and G and a symmetric encryption scheme
E. Accordingly, the public key includes a reference to the identifiers for the hash
functions and encryption scheme and an indication of the length of the various inputs
and outputs. Document [28] requires ¢, < |¢|. Encryption Ex(m;r) computes C; as
t- P, with t = H(ml|r). Next, it defines a field element z, the first coordinate of a
curve element computed as DH(W,C;) = t - W and computes ¢ = r & z. From r, a

3



key k for the symmetric encryption scheme E is derived as k = G(r). Using this key,
a symmetric encryption step produces a cryptogram c3 = Ey(m). The final ciphertext
C is the triple (C1, co, c3).

Decryption Dg(C) is based on recovering k. Granted the secret key s, it is possible
to obtain the field element z as the first coordinate of DH(W, C;) = s - C;. Once z has
been retrieved, one can compute r by extracting the ¢, leading bits of ¢, ® z. From r, k
is computed and, once k has been retrieved, one can obtain the plaintext m by applying
the decryption algorithm of the symmetric encryption scheme. Before outputting m,
the decryption algorithm checks that C; has been properly computed from H (m||r).

PSEC-3 is similar to PSEC-2 but produces a ciphertext C' with four components
C = (C1, ¢y, ¢3,¢4). Encryption uses an additional random element v from {0, 1}/ and
picks 7 in Zj. Algorithm Eok(M;r,u) computes Cy as r - P. Next, it defines a field
element z, the first coordinate of a curve element computed as DHW,C;) = r - W
and computes ¢ = u @ 2. From u, a key k for the symmetric encryption scheme
E is derived as k = G(u). Using this key, a symmetric encryption step produces a
cryptogram c3 = Ey(m). Finally, a hash value ¢y = H(C\||ca||cs||ul|m) is computed
and the ciphertext C' is the tuple (C1, g, 3, ¢4).

Decryption Dg(C) is based on recovering k. Granted the secret key s, it is possible
to obtain the field element z as the first coordinate of DH(W, C}) = s- C}. Once z has
been retrieved, one can compute u as cs @ z. From u, k is computed and, once k has
been retrieved, one can obtain the plaintext m by applying the decryption algorithm
of the symmetric encryption scheme. Before outputting m, the decryption algorithm
checks that the hash value ¢4 is correct.

2.2 Comments on the specification

Document [28] needs further editing. There are ambiguities. For example, notation p
is used in place of ¢y on page 3, lines 12 and 13; notation h appears out of context on
page 4, line 1 from bottom; similarly for notation y on page 5, line 9 and for notation
R on page 6, line 4 from bottom. Also, several parameters such as rlen do not appear
in the public key on page 5, line 3. On the contrary, rlen appears in the public key of
PSEC-3, on page 10, line 16, whereas it is not needed since r is chosen at random in
L.

The description of the key generation algorithm is vague: no indication is given
on how the elliptic curve is generated, on how point counting is achieved, on what
additional checks are done at curve generation etc. Document [28] simply refers to the
IEEE standards (see [20]).

There is no reference to the literature regarding the version of the El Gamal scheme
that is termed primitive encryption function in document [28]. This is especially wor-
rying, as it is known that El Gamal encryption has subtle flaws, when the message
space does not coincide with the subgroup in which the DH function is computed. We
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will return to this feature further on.

Since there are three versions of PSEC, users might be a bit puzzled. No indication
is given of the respective situations where one scheme would be more appropriate than
the other. What can be observed, and clearly appears in the appendix of [29], is
that PSEC-1 and PSEC-2 include reencrypting as a part of decryption, which is a
rather undesirable feature in terms of efficiency. This is not a drawback in terms of
security unless there is no check whatsoever. In this case, it is possible to find s in a
chosen-ciphertext attack. We describe the attack for PSEC-1 with curves over a prime
fields, but the attack applies in other contexts. One simply submits a ciphertext (V] ¢)
computed from a point V outside the curve and a random c¢. Such point lies on another
curve E' with equation

v =2 +ax+ b

and V can be chosen in such a way that the ECDL is easy on E’. Now, submitting
(V, ¢) allows to get the leading £,, bits of the first coordinate of sV'. This is because the
computation of s -V does not use the value of b. Similarly, submitting (2V, ¢) allows
to get an approximation of the first coordinate of 2sV. Now we can write four poly-
nomials coming from the equation of E' at sV, 2sV, and from the doubling formulas.
Eliminating the y coordinates, we are left with a polynomial relation between the x
coordinates, together with an approximation of the two unknowns. If the approxima-
tion is good enough, methods of [8], allow to recover these unknowns and therefore sV .
Using the discrete logarithm in E’, one gets s.

3 Security level of the cryptographic primitive

In this section, we investigate the security of the underlying cryptographic primitive,
both in terms of complexity-theoretic reductions and with respect to the recommended
parameters.

3.1 Complexity-theoretic arguments

Documents [28, 29| relate the security of the scheme to the discrete logarithm for elliptic
curves. There are several basic primitives that can be considered.

3.1.1 The elliptic curve decisional and computational Diffie-Hellman hy-
potheses

We keep the notations of section 2.1. Recall that the decisional Diffie-Hellman hypoth-
esis on an elliptic curve E, with a large subgroup of prime order, asserts that it is hard
to distinguish the distributions Dg and Rg, where

Ry = {(P,W,Q, R)}
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with all four elements taken at random in the large subgroup and
Dg = {(P,W,Q, R)}

with logp(Q) = logy (R). A quantitative version measures the maximum advantage
AdvDDH(?) of a statistical test 7" that runs in time t. This means the maximum of the
difference of the respective probabilities that 1" outputs 1, when probabilities are taken
over Dg or Rg.

As is well known, there is a standard self-reducibility argument: by randomization,
it is possible to transform an arbitrary tuple (P, W, @, R) such that P # W into a
random equivalent one, i.e. the output is in Dg (resp. Rg), if and only if the input
is. Thus, if AdvDDH(¢#) is significant, one can use a distinguisher to decide, with
probability close to one, whether a tuple is in Dg. This involves performing repeated
tests with the distinguisher and deciding whether the number of one outputs has a bias
towards Dg or Rg. Based on the law of large numbers, a decision with small constant
error probability requires running O(AdvDDH™?) tests. One can decrease the error
probability drastically by repeating the above computations an odd number of times
and deciding based on the median of the averages. In [24], the authors claim that one
can reach error probability 27" by repeating the test O(p(n)).AdvDDH ', where p is
a polynomial, but the proof is missing. In any case, the loss in the reduction is huge.
Thus, despite its elegance, the self-reducibility argument is a bit misleading in terms
of exact security.

Related to the above is the elliptic curve computational Diffie-Hellman assumption
(ECCDH) and the elliptic curve discrete logarithm assumption. The former states that
it is hard to compute xy- P from P, x- P and y- P, while the latter states that it is hard
to compute x from P and z - P. It is obvious that DDH is a stronger assumption than
CDH, which in turn, is stronger than the discrete logarithm assumption. However, no
other relation is known and the only way to solve the hard problems underlying DDH
or CDH is to compute discrete logarithms.

It should be mentioned that the DDH cannot hold in groups with a small subgroup.
This is why cryptographic schemes usually work with a subgroup of an elliptic curve
of large prime order and the current proposal is no exception. Even with this proviso,
there are subtle protocol attacks using invalid keys, i.e. keys that do not belong to
the prescribed large subgroup (see [23]). In the present context, such attacks are
not addressed by performing checks to verify e.g. that elements that are claimed to
belong to the subgroup generated by P, actually lie within this subgroup. Nevertheless,
PSEC-1 and PSEC-2 perform an implicit check by reencrypting the data while PSEC-3
performs an analogous check, by means of the final tag c4. The security proof that will
be provided in the present report, will help clarifying whether this is enough.



3.1.2 Security of the field element

In this section, we consider the simplified version of the primitive encryption function
that simply establishes the field element, denoted by z in the above. In this restricted
context, it appears that the security of the scheme is closely connected to the decisional
Diffie-Hellman assumption. With the notations of section 2.1, z is the first coordinate
of R = DH(Cy, W). We would like to see that z looks like a random string to a passive
adversary. However, this cannot hold in a simple-minded approach: given an elliptic
curve F, an element x of the underlying field is not necessarily the first coordinate of
a point of order p on the curve. We let X be the set of such zx.

Theorem 1 Based on the elliptic curve decisional Diffie-Hellman hypothesis (ECDDH),
it s hard to distinguish the distribution

(PaVV:CIaZ)

generated by the cryptosystem, from the analogous distribution with z replaced by a
random element of X. More accurately, if there is an adversary A that distinguishes the
above distributions within time bound t, with advantage €, then there exists a machine
B that solves the decisional Diffie-Hellman problem with advantage € within time bound
t + 7, where T accounts for a data manipulations and is negligible.

In the above, the advantage in distinguishing two distributions is the absolute value of
the difference of the probabilities that the algorithm outputs 1, with inputs taken from
each.

Proof. Let A be an adversary that distinguishes the two distributions defined in the
theorem. We show how to attack the ECDDH by distinguishing the distributions D
and R, where

R ={(P,W,Q,R)}
with P, W, @ and R at random in the subgroup of order p of £

D ={(P,W,Q,R)}

with R = DH(W, Q) We run the key generation algorithm and generate an elliptic
curve E together with a random element of large prime order p. We next show how to
use A to break the ECDDH: we take the base point of the cryptosystem to be the first
element of the input to A and we complete the public key by the second element .
This implicitly defines a secret key. Next we assume that a public key encryption occurs
with an ephemeral key, whose public part is ). Finally, we submit (P,W,Q, z) to A,
where z is the first coordinate of R. If the original input is from D, the last element of
the tuple is exactly as produced by the cryptosystem. On the other hand, if the input
is from R, the last coordinate is a random element of X'. Thus, we have obtained a
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distinguisher between D and R, with exactly the same advantage as A. Finally, the
advantage of any algorithm .4 that runs in time ¢ is bounded by AdvDDH(O(t)), where
O(t) =t + 7 accounts for manipulations needed to compute the data to be handled to

A.

Remarks.

1. The above proof implicitly assumes that C; is uniformly distributed in the sub-
group generated by P, when produced by the cryptosytem. Unfortunately, the
formatting of data that is adopted in [28], potentially makes the assumption
incorrect. Taking ¢, much larger than |p| = k is a sufficient condition. Such
condition does not appear in document [28] and we do not see how to otherwise
solve the matter.

2. Tt would be desirable to ensure that one gets a bit-string indistinguishable from a
random string with |g| bits, which would mean that the information z is seman-
tically secure in the sense of the seminal paper [18]. However, we do not see any
argument that would give such guarantee. It is possible to obtain such a bit-string
by applying a randomly keyed universal hash function, following the method de-
scribed in [24] and also used in [33]. Recall that, if Hy is a universal hash function,
keyed by k, with ¢-bit outputs, then, the leftover hash lemma of [21] implies that
hashing a set of 2* bit-strings produces a distribution (k, Hy(z)) whose distance
to the uniform distribution is < W Here, )\ is exactly the security parameter
k. Thus in order to get a bound at most 1/2'?® and to obtain a 128 bit encryption
key, one would need |g| > 384. In any case, this is not the path followed by the
submission.

Building on the second remark, we see that the primitive encryption function is not
semantically secure. Let mg, m; be chosen at random. Let (C1, c2) be a ciphertext of
myp. Observe that, with probability close to 1/2, m;_, @ ¢y is not in X. Since my, @ co
is, we can obtain the proper value of b. When my_; @ ¢ is in X', we simply guess at
random. We have thus built a adversary that correctly guesses b with probability 3/4.
This contradicts semantic security.

3.1.3 Inverting the primitive encryption function

In this section, we wish to relate the ability to invert the primitive encryption function
of PSEC to the ECCDH. We let g(m, r) the result of the primitive encryption algorithm
Eok(m; ). We prove the following:

Theorem 2 If a machine A is able to compute = from g(z,r), z € {0,1}m, r < 2%,
with probability €, within time bound t, there exists a machine B that is able to compute
the DH function with probability &' > %%ﬁ—;’f, within time bound t' < t + 7, where the
overhead T accounts for performing computations over F, and is bounded by O(|q|?).
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Proof: Let us consider an adversary A able to compute z from y = f(z,r) with
probability &, within time bound t:

Succ™(A) = Pr[z & {0,1}m gy flz, 1),z Aly) 1z =12] > ¢

where probabilities include r as well as the internal random tape of the probabilistic
machine A.

let P be given and let (W, Q) an input to the DH function in base P. We consider
P as a base point for the cryptosystem and W as a public key. This implicitly defines
a secret key. We also consider () as an ephemeral public key generated from a random
string r and we pick a random |g|-bit string ¢ at random. We handle (Q, ¢) to A. Now,
this is a valid ciphertext if:

o ris < 2%
e 2 @ cis at most £,,-bit long

where z is the first coordinate of DH(W, Q). The first inequality holds with probability
% and the second with probability 2;;—;7

When receiving a correct ciphertext, A returns the z coordinate of DH(W, @), with
probability . We let B return at random one of the two elliptic curve points with this

coordinate. Altogether, the probability that B correctly computes the DH function is

at least %%2;—27
From the above, we see that 57~ and 2;—2[ should not be small. These requirements

are not stated in [28], even if the results quoted in the self-evaluation report [29] duly
consider cases where they hold.

3.2 Size of the parameters

As was just observed the security of the scheme appears closely related to the ECDDH
for elliptic curves. The only method known to attack the decisional Diffie-Hellman
problem on elliptic curves is to solve the underlying discrete logarithm problem (ECDLP).
Therefore, in order to estimate whether the suggested parameters offer a wide security
margin, it is useful to review the performances of the various algorithms known for
the ECDLP. We will distinguish between exponential algorithms, whose running time
depend on the size of the group and subexponential algorithms, which apply to specific
classes of weak curves.

3.2.1 Exponential algorithms

The best algorithm known to date for solving the DLP in any given group G is the
Pollard p-method from [27] which takes computing time equivalent to about /7mn/2
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group operations. In 1993, van Oorschot and Wiener in [35], showed how the Pollard
p-method can be parallelized so that, if ¢ processors are used, then the expected number

\/ ™ /2

of steps by each processor before a discrete logarithm is obtained is ~ *———. In order
to compute the discrete logarithm of Y in base GG, each processor computes a kind of
random walk within elements of the form a - G + b - Y, selecting X;,; through one of
the three following rules

1. set Xi_|_1 =G+ Xz
2. set Xi+1 =2 X,
3. set Xz':l =Y + Xz

Decisions on which rule to apply are made through a random-looking but deterministic
computation, using e.g. hash values. “Distinguished” points X; are stored together
with their representation X; = a;- G+ b; - Y in a list that is common to all processors.
When a collision occurs in the list, the requested discrete logarithm becomes known.

In recent work (see [17, 36]), it was shown how to improve the above by a mul-
tiplicative factor /2. This takes advantage of the fact that on can simultaneously
handle a point X and its opposite —X. Slightly better improvements can be obtained
for specific curves with automorphisms.

The progress of such algorithms is well documented. In April 2000, the solution
to the ECC2K-108 challenge from Certicom [7] led to the computation of a discrete
logarithm in a group with 2!%° elements (see [19]). This is one of the largest effort ever
devoted to a public-key cryptography challenge. The amount of work required to solve
the ECC2K-108 challenge was about 50 times that required to solve the 512-bit RSA
cryptosystem (see [6]) and was thus close to 400000 mips-years.

It is expected that such figures will grow slowly, unless unexpected discoveries
appear in the area. From the predictions in [22], one can infer that the minimum
proposed parameters (160 bits) will presumably guarantee security for at least twenty
or twenty-five years. Although this is quite reasonable, we slightly regret that no other
figure is proposed.

3.3 Security against subexponential attacks

As is well known, there are two classes of elliptic curves for which non trivial attacks
have been found. They are

1. the supersingular curves

2. the anomalous curves
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Supersingular curves over a field I, with ¢ a power of p, are defined by the condi-
tion that the trace of the Frobenius map is zero modulo p. For such curves, Menezes,
Okamoto and Vanstone (MOV) have shown how to reduce the discrete logarithm prob-
lem to the DLP in an extension field Fy; of F,, with small j.

Anomalous curves are those which contain a p-torsion point other than O, or,
equivalently, those whose Frobenius map has trace congruent to one modulo p. For
such curves, work of Semaev ([32]), Riick ([30]), Smart ([34]) and Satoh-Araki ([31])
has shown how to solve the p-part of the DLP in polynomial time.

The MOV reduction constructs an embedding from the curve into the multiplicative
group of a suitable extension field of I, and can be applied in a more general setting
than originally envisioned by the authors. However, if the base point is an element of
order p, n is necessarily a divisor of ¢/ — 1. Recently, Balasubramanian and Koblitz
have shown in [2] that this condition was sufficient to carry the MOV reduction.

Another reduction similar to the MOV reduction has appeared in the literature.
It is due to Frey and Riick [13] (see also [12]) and can be stated in the more general
context of Jacobians on which the Tate pairing exists. Let m be an integer relatively
prime to ¢, and let p,,(F,) be the group of roots of unity in F, whose order divides m.
Assume that the Jacobian J(F,) contains a point of order m. Then there is a surjective
pairing

Om I (Fy) x J(Fg)/mJ (Fy) = pim (Fy)

which is computable in O(log g), where J,,,(F,) is the group of m-torsion points. This
pairing, the so-called Tate pairing, can be used to relate the discrete logarithm in the
group Ji,(F;) to the discrete logarithm in some extension Fy;. In the case of elliptic
curves considered in the current context, the above is applicable only if the order p of
the base point is a divisor of ¢/ — 1.

The key generation algorithm does not specifically address the question of weak
curves, which one may regret. However, one should note that, based on avoiding small
values of j that make ¢/ = 1 mod p, there are simple ways to perform checks that
eliminate such curves.

3.4 Conclusion

Document [28] does not provide a range of parameters for the cryptosystem. It sim-
ply mentions that k& should be at least 160. Although this yields a quite reasonable
“lifetime”, further parameters might be suggested. The main concern with the cryp-
tosystem is its nonstandard use of the first coordinate of a curve element as a mask.
This appears to contradict the semantic security of the primitive encryption function
on which the scheme is based.
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4 Security Analysis of PSEC-1

Document [28] only includes security statements and points to the literature, no-
tably [14] for details.

4.1 Formal framework

An asymmetric encryption scheme is semantically secure if no polynomial-time attacker
can learn any bit of information about the plaintext from the ciphertext, except its
length. More formally, an asymmetric encryption scheme is (¢, ¢)-IND where IND stand
for indistinguishable, if for any adversary A = (A;, As) with running time bounded by
t, the advantage

Advind(A) — PI’ (Ska pk) — Ic(lm)a (m()a ml{; St) — Al(pk)
vBo1y | € 5pk(mb; 7“) : Ag(c, st) =}

r+Q

—1/2

is < €, where the probability space includes the internal random coins of the adversary,
and my, m; are two equal length plaintexts chosen by the adversary in the message-
space M.

Another security notion has been defined in the literature, the so-called non-
malleability [10]. Informally is states that it is impossible to derive, from a given
ciphertext, a new ciphertext such that the plaintexts are meaningfully related. We
won’t discuss this notion any further since it has been proven equivalent to semantic
security in an extended attack model.

The above definition of semantic security covers passive adversaries. It is a chosen—
plaintext or CPA attack since the attacker can only encrypt plaintext. In the extended
model, the adaptive chosen—ciphertext or CCA attack, the adversary is given access to
a decryption oracle and can ask the oracle to decrypt any ciphertext, with the only
restriction that it should be different from the challenge ciphertext. It has been proven
in [3] that, under CCA, semantic security and non-malleability are equivalent. This is
the strongest security notion currently considered.

4.2 Chosen ciphertext security of PSEC-1

We turn to the security analysis. The self-evaluation report [29] claims that PSEC-1 is
semantically secure against CCA adversaries. It does not include any proof but makes
the following statement about the security results:

They are easily obtained from results presented in [14, 15].

This is problematic: on one hand, the specification document [28] is a bit vague on the
requirements that one should put on the bit-size of several data, and on the other hand,
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we have shown above that the primitive encryption function of [28] is not semantically
secure, contrary to what could be expected. Thus, it appears necessary to perform a
quick but complete review of the entire security analysis.

Document [28] claims that PSEC-1 is IND-CCA in the random oracle model, based
on the ECDDH. This can be based on the following exact security result.

Theorem 3 Let A be a CCA-adversary attacking (K, E, D), within time bound t, with
advantage €, making qp and qg queries to the decryption oracle and the hash function,
respectively. Then there exists an adversary B attacking the semantic security of the
primitive encryption function with advantage ' and within time bound t', where

8/

8_2‘]H_Q_D
26 p
v < t+qy-T

v

where £, is the bisize of r, and T is the time needed to execute the encryption algorithm
and is bounded by O(|q|?)

The scheme can actually be proven “plaintext—aware” [5, 3], which is claimed to
imply chosen-ciphertext security. To prove the above, we turn A into an attacker for
the primitive encryption function. This requires simulating the oracle and describing
a plaintext-extractor.

4.2.1 Description of the reduction

Let A = (A, Ay) be an adversary against the semantic security of (IC,€,D). The
description of B is as follows:

1. B first runs K(1%) to obtain the public key

2. next, B runs A; on the public data, and gets a pair of messages {mg, m;} as well
as a state information st. It chooses two random strings r¢, r; of the appropriate
length, then flips a random bit b and then defines C' < vy, to be a ciphertext of

(ms]7s)

3. B runs Ay(C, st) and returns the answer b’ of Ay(C, st).

Of course, during the entire simulation, B also has to simulate answers from the random
oracle. This is done using the H-list, a dynamic data structure consisting of all queries
to the random oracle H together with the respective answers. For a fresh query A to
H_ i.e. a query not on the H-list, the oracle picks a random answer. Finally, we define
the plaintext-extractor as follows:
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1. on a query C’ to the decryption oracle, B looks at the H-list. If there is an
element on this list which is parsed as (m/||r', H(m/||r")), if it is of the appropriate
bit-length and if Ex(m';r') = C', then B outputs m' as the requested plaintext

2. Otherwise, B rejects the ciphertext

4.2.2 Probabilistic analysis

We wish to compare the behavior of several games

1. game G;, where the decryption queries are answered by an actual decryption
oracle, and the random oracle is perfect

2. game Go, which is as G; but aborts without calling the random oracle, whenever
some (my;||r;) appears as a fresh query. In this case the output &' is set at o' = 1.
The decryption queries are still answered by the actual decryption oracle.

3. game G3, where the random oracle is simulated

4. game G4, which is as G3 but where the decryption queries are answered by the
plaintext-extractor

We observe that the probability that &’ = b in game G; is exactly the advantage ¢
of A. We relate the probabilities of the same event in all games repeatedly using the
simple yet useful lemma from [33]

Lemma 1 Let E, F, and E', F' be events of two probability spaces such that both
Pr[E|-F] = Pr[E'|=F'] and Pr[F] = Pr[F'] <e.

Then,
|Pr[E] — Pr[E']| < ¢

Proof: We write
Pr[E] = Pr[E|~F]|Pr[-F| + Pr[E|F| Pr[F]

Pr[E'| = Pr[E'|=F'| Pr[=F'] + Pr[E|F']| Pr[F']

Hence
Pr[E] — Pr[E'] = Pr[E|-F](Pr[-F] — Pr[~F"]) + (Pr[E|F| Pr[F] — Pr[E|F'| Pr[F'])
The right hand side becomes Pr[E|F|Pr[F| — Pr[E|F'] Pr[F'], which is bounded by ¢.

Game G, differs from G, if it aborts. Observe that the input C is a ciphertext of
mp||rp but this leaves the choice of 71, random. Thus, r;_, can appear in a query to
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H only with probability ZL. If this does not happen, then a query of the form m;||r;
2 9H

is such that ¢+ = b. Thus the advantage of Gy exceeds € — Jf-.

The simulation in game G5 is perfect unless it conflicts with the implicit constraint
coming from the assumption that C' is a ciphertext of (myl||rp). In the find stage, 7
has not been chosen and this happens, for each oracle query, with probability < 2%
In the guess stage, this cannot happen since G, has earlier aborted. Altogether, we
discard a set of probability < ZZ. Applying the lemma, we see that the probabilities
in the resulting games differ by at most this value.

To go from G3 to G4, we have to bound the probability that the plaintext-extractor
rejects a correct ciphertext C'. Let m/||r’ be obtained through the decryption algorithm
by computing R’ = DH(C4, W) and extracting the leading bits of 2’ & ¢}, where 2’ is
the first coordinate of R'. The situation that we wish to avoid happens if the value of
H at (m/||r") is later set at a value ¢' such that C] =t - P. We get:

H(m/||r") = logp(C7) mod p

which defines a subset of probability ~ %. Altogether, we get the bound %D.
Finally, in game G,, the value of H (myl|rp) is left random. Thus G, can be viewed
as a distinguisher for the primitive encryption scheme. Its advantage is at least

Now, the heavy load in the simulation is reencryption of all candidates from the
H-list. This means gy such computations. This completes the proof.

Remark. The bound %D increases to J72, when the outputs of the hash function are
of length £, < [p|.

4.3 Summary of the security analysis

If it were possible to piece together the result in theorem 3 and the semantic security of
the primitive encryption function, based on the ECDDH, one would obtain the security
of PSEC-1 against CCA adversaries. Unfortunately, the primitive encryption function
is not semantically secure. There is a further objection: even if the primitive encryption
function was modified to meet semantic security, it would be extremely difficult to draw
any conclusion from the estimates in theorem 3. This comes from the term QQ"Tf, which
requires £, to be quite large. Allowing gy ~ 2%, as is often envisioned in such setting,
and aiming at a security level 278 means ¢, > 140, which would leave space for only
20 bits of message. In any case, the suggested size £, = 32 from [28] is clearly too low
to back the security on theorem 3. It is easily seen that there is a adversary against
semantic security, with advantage 1/2, in time 2% (just encrypt mg with all possible
choices of 7). Thus, the relevance of the conversion method from [14] to elliptic curve
cryptosystems is questionable.
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5 Security Analysis of PSEC-2

As for PSEC-1, document [29] includes only security statements and points to the
literature, notably [15] for proofs. The self-evaluation report [29] states that PSEC-2
is IND-CCA in the random oracle model, based on the elliptic curve computational
Diffie-Hellman hypothesis ECCDH.

5.1 Semantic security of key encapsulation

Before we turn to the actual security analysis, we would like to focus on what can
be called key encapsulation, a term introduced in [33], but which we use here with a
slightly improper meaning, due to the fact that, in the present context, the session
key is message dependent. This analyzes the semantic security of the symmetric ses-
sion key itself in the context of CCA-adversaries: the attacker is allowed to query a
decryption oracle by submitting a pair (C1, ¢3), where C; € E and ¢, is a |g|-bit string,
and receiving the key session key k = G(r) as the answer, where C; and ¢, are built
from r and m as prescribed by the cryptosystem. His aim is to distinguish the distri-
bution consisting of a ciphertext (Ci,¢3) and the corresponding key material k from
the analogous distribution where the key material is replaced by a random string. We
denote by Adv™®P(t,qp) the maximal advantage for any adversary in distinguishing
both distributions within time bound ¢, after ¢p queries to the decryption oracle.
We prove the following:

Theorem 4 Let A be a CCA-adversary attacking the key encapsulation scheme of
PSEC-2 within time bound t, with advantage €, making qp, qc and qy queries to
the decryption oracle and the hash functions G and H, respectively. There exists an
adversary B inverting the primitive encryption function g with advantage qH‘qu and
within time bound t', where

!

. 6/2_QG+C]H_(]_D

26r P

v

tl S t—l—qH'T

Lg is the bit-size of R, and T is the time needed to execute the encryption algorithm
and is bounded by O(|q|?)

Proof: From A, we build a machine B which attempts to invert the primitive encryp-
tion function g.

1. B receives its input, a ciphertext C' = (C1, ¢3).

2. B tosses a random coin b. If b = 0 it generates a random session key k and
submits (C,k) to the distinguisher A4; if b = 1, it manufactures a correct pair
(C', k') as prescribed by the scheme. In both cases, it handles the pair to A

16



3. when the execution of the distinguisher has ended, B outputs a tentative the
decryption of C, from the queries asked to G and H (see below)

Of course, during the entire simulation, B also has to simulate answers from the
random oracle. This is done using a H-list and a G-list. For a fresh query to H, i.e.
a query not on the H-list, the oracle picks a random answer and similarly for G. We
also define a plaintext-extractor as follows:

1. on a query C’ to the decryption oracle, B looks at the H-list. If there is an ele-
ment on this list which is parsed as (m/||r', H(m/||r')), with r' of the appropriate
length, and if g(', H(m/'||r")) = C’, then B outputs G(r') as the requested session
key, including it on the G-list, if needed.

2. Otherwise, B rejects the ciphertext

Finally, we explain what is the final answer of B is, besides the &' bit computed
by A. When execution has ended, B looks at the G-list and the H-list and outputs
a randomly chosen element, which appears as a question 7 in the G-list or such that
(m||r) appears as a question in the H-list.

We wish to compare the behavior of several games

1. game G;, where the decryption queries are answered by an actual decryption
oracle, and the random oracle is perfect

2. game Go, where the decryption queries are answered by the plaintext-extractor
3. game G3, where the oracle is simulated

We let &’ the probability that r appears in the G-list or the H-list upon completion.

We observe that the probability that &' = b in game G; is £(6; + (1 — o)), where 6,
be the probability that algorithm A outputs 1 on inputs taken from pairs (C, k), with
random session key k and #; the probability that it outputs 1 when they are taken from
pairs constructed according to the rules of key-encapsulation. This is 1/2 + £.

To go from G; to Gy, we have to bound the probability that the plaintext-extractor
rejects a correct ciphertext C’. Let 7' be the decryption of C’' under the primitive
encryption scheme. The situation that we wish to avoid happens if the value of H at
(m/||r'") is later set at a value t' such that C] =t - P. We get:

H(m/||r") = logp(C7) mod p

which defines a subset of probability ~ %. Altogether, we get the bound %D (or - if the
output bit-length £ of H is < p - the bound QqT'jL)

The simulation in game Gj3 is perfect unless it conflicts with the implicit constraint
on H coming from the assumption that C' is a ciphertext corresponding to an unknown
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(but fixed) r. In the find stage, r has not been chosen and is involved in a G-query
or a H-query with probability < 2% In the guess stage, this can only happen when r
does appear as a possible choice for the final output of B. Altogether, we discard a set
of probability < ‘1‘;2# + ¢’. Applying the lemma, we see that the probabilities in the
resulting games differ by at most this value. Note that, once the exceptional runs have
been discarded, we are left with executions where r is not asked to G. We can freely
interpret G(r) = k and are left with a distribution of inputs independent from b. The
probability that ¥ = b in this case is therefore 1/2.

Finally, we have bounded the probability that B inverts the primitive encryption

function of PSEC by qH’qu, where ¢’ is such that

9p | 4G tqu

2<¢
e/ _e-l-p—i- 5

Now, the heavy load in the simulation is the reencryption of all candidates from
the H-list. This means ¢y such computations.

5.2 From key encapsulation to chosen ciphertext security
We prove the following.

Theorem 5 Let A be a CCA—-adversary attacking the hybrid cryptosystem, within time
bound t, with advantage €, making qp queries to the decryption oracle. Then

€

IA

AVEEP(H, gp) + AdVEL (#) + 22
p
where ' < t+ Ol(qp)

and AdvE’D(t’) denotes the security level of the symmetric encryption scheme, as defined
below.

Before going further with the proof, let us define more formally the relevant security
notion for the symmetric encryption.
5.2.1 Symmetric Encryption

A symmetric encryption scheme with key-length k, operating on messages of length /,
consists of two algorithms (E, D) which depend on a k-bit string k, called the secret
key:

e the encryption algorithm E, (m) outputs a ciphertext ¢ corresponding to the plain-
text m € {0,1}¢, in a deterministic way;

e the decryption algorithm Dy (c) recovers the plaintext m associated to the cipher-
text c.

18



A security notion similar to those used for asymmetric encryption is considered,
known as semantic security [18]: a symmetric encryption scheme is semantically secure
if no polynomial-time attacker can learn any bit of information about the plaintext
from the ciphertext, besides its length. More formally, a symmetric encryption scheme
is (t,€)-IND if, for any adversary A = (A;, Az) with running time bounded by ¢,
Advi"(A) < e, where

Advi™(A) = Rpr k[(mo’ml’ s) <= Ai(k), c + Ex(my) : As(c, 5) < b —1/2
k+{0,1}
s&40,1}

In the above, probabilities include the random coins of the adversary, and mg, m; are
two identical-length plaintexts in the message-space {0, 1}%.

We denote by AdvEP(t) the maximal advantage of any adversary, against the se-
mantic security of the scheme (E, D), within time bound t.

5.2.2 Security of PSEC-2
We define the attacker A = (A, Ay) and use this adversary as usual.

1. run the key generation algorithm for the encapsulation scheme

2. next run A; on the public data to get a pair of messages {mg, m;} as well as a
state information st. Choose a random bit b, run the key encapsulation scheme
to get (C4, cz) and the session key k and encrypt m, as c3, using the session key

3. run Ay((C1, ¢, c3), st) and get an answer b'. Finally, output bit b =¥'.
As in the proof of theorem 4, we will envision several games:

e game G;, where the decryption queries are answered by an actual decryption
oracle

e game Go, where the session key to encrypt the test message m; is replaced by
a random string and where queries whose initial part matches with (Cy, ¢cp) are
decrypted using the same random string

e game Gs, which is as Gy but where all queries whose initial part matches with
(Cy, cp) are rejected

Note that the running time of all games is ¢’ = t + O(¢p), where the second term
accounts for the symmetric decryptions. Also, observe that the probability that G,
outputs 1 (which means & = b) is exactly 1/2 + ¢. Indeed, game G; provides the
adversary operating within the real-life setting. As in the proof of theorem 4, we
bound the difference of probabilities between G; and Gjs.
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In order to bound the difference between G; and G, observe that both can be
played by calling the decryption oracle for key encapsulation rather than the actual
decryption oracle. Game G; needs as an additional input the session key correspond-
ing to (C1, ) and, similarly, game G, will need the random key material. Thus, we
have obtained a distinguisher between the distribution consisting of a ciphertext of m,
and the corresponding session key (in game G;) and the analogous distribution where
the key is replaced by a random string (in game G). This bounds the difference by
AdVSEP(H gp).

Going from game G, to game G3, we note that a difference only occurs when one
rejects a valid ciphertext (Cy, ¢, c}). Let m’ be the corresponding plaintext. Since the
queried ciphertext is different from the challenge ciphertext, m' is different from my.
However, since the first component C is similar, we have

H(myl||r)- P =H(m/||r)- P
The above yields the collision
H(my||r) = H(m'||r) mod p

Since H is a random oracle, such collision appears with probability %. As usual, one
should replace % by -, when the bit-length of the H-outputs is < k.

£y 9

To conclude, consQi(iLer the probability of that G3 outputs one. In this game, a random
string is drawn as a session key and used to encrypt a randomly chosen test message
m; under this key. The adversary outputs one if he has correctly guessed bit b. This is
exactly the situation of a semantic distinguisher as defined in section 5.2.1. Therefore,
the advantage of the adversary in this latter game Gs is bounded by Adv®P(#).
Remark. There is a slight ambiguity under the notation Adv*"?(#', gp) in the above
theorem: it actually refers to the advantage of a distinguisher for the key encapsulation
scheme, which first runs A; and next uses as message space the two test messages output
by A;. It is easily seen that theorem 4 can be applied to such distinguishers. Thus,
despite the ambiguity, we have chosen to split the security analysis, for the sake of
clarity.

5.3 Summary of the security analysis

Piecing together the results of theorems 4, 5 and 2, we see that PSEC-2 is semantically
secure against CCA adversaries, based on the ECCDH. The sequence of reductions under
this result is not extremely good, due to the multiplicative loss qGJquH in theorem 4 and
it is unclear whether it could lead to meaningful estimates.

It can be noted that the hypotheses of the proof of theorem 2 requires that ¢, is close
to k. A few bits can be discarded with a multiplicative loss 1/2 in the probabilities,
for each bit. However, the submission only requires that ¢, < k and this leaves open
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the possibility that ¢, << k — 1, in which case the security proof collapses. The
self-evaluation document [29], sets ¢, = k — 1.

Similarly, ¢, should be close to |¢|. However, the submission only requires that
¢, < |g| and this leaves open the possibility that £, << |g|, in which case the security
proof collapses. The self-evaluation document [29], sets ¢;, = |¢| — 1.

Thus, the submission does not make completely clear the role of the various pa-
rameters: the analysis shows that

1. the bit-length ¢;, of the hash function should not be much smaller than & (the
submission only requires ¢, < k).

2. the bit-length ¢, of the random string should be close enough to |¢| (the submis-
sion only requires £, < |q|).

However, no part of the specification specifically points out these requirements, even
if the results quoted in the self-evaluation report [29] duly consider cases where they
hold.

6 Security Analysis of PSEC-3

The self-evaluation report [29] includes security statements and an appendix, which is
a preliminary version of [25, 26]. PSEC-3 is a hybrid cryptosystem which addresses
the drawback that reencryption was needed at the decryption phase of PSEC-2 (as
it was in PSEC-1). This is done by applying the conversion method from [25]. This
conversion does not include the first hash function H at key encapsulation but uses it
to as a tag once the symmetric encryption has been performed. This is along the same
lines as [1, 33]. However, the resulting scheme does not rely any more on the Diffie-
Hellman hypothesis for elliptic curves but on a version of the so-called gap-problems,
which now discuss.

6.1 Gap Diffie-Hellman Problem

In the following, we review the version of the so-called gap problems (see [26]) that is
needed in the current context. Besides the original definition, we consider a weaker
assumption. We first define oracles, that an adversary can call. Notations are straight-
forward and come from 3.1.1.

e an ECDDH oracle: on input (P,W,Q, R), it perfectly answers whether R =
DHp(W, @) or not.

e 0 3-ECDDH oracle: on any input (P, W, @, R), it answers whether R = DHp (W, Q)
or not, with some error probability §. More precisely, the advantage of this oracle
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is greater then 1 — §:

Pr[ECDDH(P,W,Q,R) =1|(P,W,Q, R) € Dg| S1_5
—Pr[ECDDH(P,W,Q,R) =1|(P,W,Q,R) € Rg| | —
The reason why we introduce the second oracle is that, as already noted in section 3.1.1,
if § is significantly smaller than 1, one can use this d-oracle (O((1 — §)~2) times) to
decide, with an error probability as small as wanted, whether an element is in Dg or
not.

We now define the elliptic curve Gap Diffie-Hellman problem, which consists in
solving the ECCDH problem having access to an ECDDH oracle. A weaker assumption
is the intractability of the §-Gap Diffie-Hellman problem, which consists in solving the
ECCDH problem, having access to a 6-ECDDH oracle.

The submission states that PSEC-3 is secure against CCA adversaries, provided the
Gap Diffie-Hellman problem is intractable and this can be extended to the formally
weaker version of the hypothesis. It can be observed that both versions of the gap
problem are polynomially equivalent (at least under a non-uniform reduction). In-
deed, let A be an adversary that computes the Diffie-Hellman function after £ queries
to an ECDDH oracle, with probability & (where k and 1/¢ are polynomially bounded).
Then, from any 6-ECDDH oracle, one can build a §’-ECDDH oracle, achieving ¢’ < ¢/2k.
Therefore, if one simulates the perfect oracle, called by A, using this ¢'-ECDDH simula-
tor, then A succeeds in solving computational Diffie-Hellman problem with probability
e — Kk x 0" > ¢/2. Still, even if both problems are polynomially equivalent, the compu-
tational cost of the above reduction may be huge, depending on the original value of
6. In the following, we denote by Succ®®H(4,¢, x) the maximal success probability of
any adversary in computing the DH function within time ¢ after less than x queries to
a 0-ECDDH oracle.

6.2 Semantic security of key encapsulation

As we did for PSEC-2, we would like to first focus on key encapsulation. This is
perfectly possible, and involves building a simulator: when receiving a query (C, cz),
the simulator should provide G(u), where u is the decryption of (C,cy) under the
primitive encryption function of PSEC. A natural option is to search in the G-list,
hoping to find the appropriate value of u, and to perform a check by calling the ECDDH
oracle. Although the approach is sound, it involves at least gp x qg oracle calls. The
full reduction yields a better count and this is why we have chosen to directly proceed
to the full security proof.
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6.3 Semantic security of PSEC-3

Theorem 6 Let A be a CCA-adversary attacking the semantic security of PSEC-3
within time bound t, with advantage €, making qp, qa and qu queries to the decryption
oracle and the hash functions G, H, respectively. There exists an adversary B inverting
the primitive encryption function of PSEC with the help of a 6-ECDDH oracle with
advantage &' and within time bound t', where
e < & +ANPE) + (;—]j + (4qm + 2q6) - 0
where t' < t+ O((4qm + 2¢¢)7)

T accounts for operations in the underlying field, whose complezity is O(|q|®) and
AdvEP (') denotes the security level of the symmetric encryption scheme.

Proof: We start from an attacker A = (A, As) and use this adversary as always.
1. run the key generation algorithm for the encapsulation scheme

2. next run A; on the public data to get a pair of messages {mg, m;} as well as a
state information st. Choose a random bit b, run public key encryption scheme
to get (C4, c2) and the session key k, encrypt my as c¢3 under the session key and
finally compute c3 = H(C||cz||cs||u||m)

3. run As(C||ea||esl|es, st) and get the output bit &'. Finally, output bit b = o'.

As usual, we will need to simulate answers from the random oracle. This is done
using a H-list and a G-list. For a fresh query to H, i.e. a query not on the H-list, the
oracle picks a random answer and similarly for G. We also define a plaintext-extractor
as follows:

1. on a query C' = (C}||d,||ck||c},) to the decryption oracle, B first looks at the
H-list. For any v’ of the proper bit-length |g| appearing in a question to H of
the form C||c||cs||u'||m’ in the list, and such that the corresponding answer is
cy, the extractor computes 2’ = ¢, @ u' and the two elliptic curve points R}, RS,
whose first coordinate is 2’ (if they exist). Next, it queries the -ECDDH oracle

2. If the answer of the oracle is positive, the extractor calls G at u’ (extending the
G-list if needed) and obtains the corresponding session key k. Once this is done,
it checks whether m’ is the decryption of ¢}

3. As soon as it has found a pair (u',m'), as described above the extractor returns
m' as the requested plaintext. If none has been found, the query is rejected.
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Note that proper bookkeeping allows to query the J-ECDDH oracle at most twice for
each H-query.

Finally, we explain why the simulation is related to inverting the primitive encryp-
tion function of PSEC. We define a machine B which is as above but receives an input
(C4, ) and a session key to encrypt my. This machine performs an additional step
when execution has ended. Parsing the questions in the G-list and the H-list, B looks
for a string u of the appropriate length |g|, appearing in either list. For each such
string, B computes z = ¢, @ u and the two elliptic curve points R;, Ry, whose first
coordinate is z (if they exist). Next, it queries the §-ECDDH oracle at (P, W, C1, R;).
As soon as it finds an element such that the answer of the oracle is positive, B returns
the corresponding value u. Note that the running time ¢’ of B, when it is executed
with the help of the plaintext extractor is the running time t of A plus an additional
term O(4qy + 2q¢)7 to process the data on the lists and call the oracles.

We compare the behavior of several games

1. game G;, where the decryption queries are answered by an actual decryption
oracle, and the random oracle is perfect

2. game Gy, where the decryption queries are answered by the plaintext-extractor
using a perfect ECDDH oracle until B is able to output an answer u. Oracles are
still assumed perfect and further decryption queries are answered by an actual
decryption oracle.

3. game G3, which is as G, but where the oracle is simulated until B is able to output
an answer u.

4. game G, which is played as Gz but stops (before asking the G or H oracle) as
soon as B is able to output an answer u.

5. game G5, where the session key is not derived as prescribed by the cryptosystem
but is randomly chosen

6. game Gg, where a §-ECDDH oracle is used

We observe that the probability that &’ = b in game G; is exactly 1/2 + ¢. Indeed,
game G, provides the adversary with the real-life setting. As usual, we bound the
difference of probabilities between G; and Gg.

To go from G; to Go, we have to bound the probability that there is a mismatch
between the plaintext-extractor and the decryption oracle. First notice that the de-
cryption algorithm should definitely check that the first component of the ciphertext
duly belongs to the curve and is an element of order p. Otherwise, there is a risk that
the extractor rejects a ciphertext, while it is correctly decrypted. Granted this, we
only have to consider the probability that the extractor rejects a correct ciphertext
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C' = (C],d,, s, c)). There are two cases, depending on whether (C7,c,) and (C, ¢g)
encrypt the same value or not. We first cover the second case. Let u' be the decryption
of C] under the primitive PSEC scheme. The situation that we wish to avoid can be
described as follows

1. the value of G at v’ is set at k'

2. let m' = Dw/(c}); the value of H at (C]||ch||ch||u'||m’) is later set at c}.

The conditional probability of the second item, once the first happens, is bounded by
1
—.
a We turn to the first case, where the decryption of (C],c,) under the primitive
PSEC scheme equals the decryption u of (Cy, ¢5). Here, the value of G(u) is implicitly
constrained by the assumption that C' is a ciphertext of the test message m;. Fortu-
nately, B has already found the decryption of (Cy, c2) in this case and, therefore, the
plaintext-extractor is not called.

Altogether, we have bounded the probability that the plaintext-extractor is wrong
by JP-. Discarding the corresponding executions of games G; and G, leads to perfect
simulation. Thus the probabilities that G; and G, output one differ by at most ;%.

The simulation in game Gz is perfect since it cannot conflict with the implicit
constraint coming from the assumption that C' is a ciphertext of the test message my.
Indeed, u cannot be part of a question to the simulated versions of G or H, where u is,
as defined above, the decryption of (C1, ¢o) under the primitive PSEC scheme. This is
because B has earlier found the decryption of (Cy, ¢3).

To go from Gz to Gy, we just have to exclude the event of probability &’ = Succ®™ (B)
that B has correctly decrypted (Ci,c2) before it stops. This bounds the difference of
the probabilities that each game outputs one.

The simulation in game G5 is perfect unless it conflicts with the implicit constraint
on GG coming from the assumption that C' is a ciphertext of a test message m;. Let u
be the decryption of C'; under the primitive PSEC scheme. The conflict can only occur
if u is queried to G. Since Gz has aborted beforehand, this cannot happen.

To go from G5 to Gg, one just needs to estimate the probability that the -ECDDH-
oracle returns a wrong answer. Since it is queried (4qy + 2¢g) times, this is bounded
by (49w + 296) - 6

Finally, we have bounded the difference between the respective probabilities that

G: and Gg output one by:
6'+§72+(4qy+2qg)-5
To conclude, consider the probability that G outputs one. In this game, a random
string is drawn as a session key and used to encrypt a randomly chosen test message
m; under this key. The adversary outputs one if he has correctly guessed bit b. This is
exactly the situation of a semantic distinguisher as defined in section 5.2.1. Therefore,

the advantage of the adversary in this latter game Gg is bounded by Adv®P(#).
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6.4 Summary of the security analysis

Piecing together the results of theorems 6 and 2, we see that PSEC-3 is semantically
secure against CCA adversaries, based on the hardness of the Gap Diffie Hellman prob-
lem for elliptic curves. The sequence of reductions under this result can be made tight
by an appropriate choice of the parameters

Again, the submission does not make completely clear the role of the various pa-
rameters: contrary to the case of PSEC-1 and PSEC-2, there is no bit-size indication
for u and r: u is randomly chosen in {0, 1}/% and r in Z,. However, the reason for such
difference is not explained and implementors might make mistakes.

Also, the submission does not clearly state whether the decryption algorithm checks
that the first component of a ciphertext is an element of the curve of order p. We believe
that this check is needed.

7 Conclusions

Based on our analysis, we think that the cryptosystem PSEC-1 is not semantically
secure, as proposed. Thus, we would not recommend the scheme as it is. We believe
that PSEC-2, PSEC-3 are secure, with the proposed parameters. However, based on
the submission, we have the following restrictions:

e The specification [28] contains notational ambiguities and omits additional re-
quirements on the parameters that appear necessary to complete the various se-
curity proofs. These requirements are correctly instantiated in the self-evaluation
report [29] but the correct choices are not further documented.

e Although there is a proof that PSEC-2 and PSEC-3 enjoy semantic security
against adaptive chosen-ciphertext attacks (with proper requirements on the bit-
size of parameters), it is questionable whether this proof gives conclusive evidence
for PSEC-2, when interpreted with the proposed parameters.

e The submission does not clearly state whether the decryption algorithm should
check that the first component of a ciphertext is an element of order p of the
elliptic curve. This seems needed for PSEC-3.

e The Gap Diffie Hellman assumption for elliptic curves, on which PSEC-3 is based,
appears to have been introduced too recently to form the basis of a cryptosytem.
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