Evaluation Report on the
EPOC Cryptosystem

1 Introduction

This document is an evaluation of the EPOC Cryptosystem. Our work is based
on the analysis of documents [11, 12], which provide both the specification and self-
evaluation of the scheme, as well as on various research paper such as [28, 16, 17, 18, 26,
27], where additional security arguments can be found. The present report is organized
as follows: firstly, we briefly review the cryptosystem; next we discuss the security level
of the cryptographic primitive which underlies the scheme and analyze its relation to
the difficulty of factoring; finally, we evaluate the security level of the scheme itself
in the light of strong security notions such as semantic security and security against
adaptive chosen-ciphertext attacks. This is as requested by IPA.

2 Brief description of the scheme

2.1 Specification review

EPOC is based on the hardness of various problems related to factoring integers n
of the form n = p?q, where p and ¢ are prime numbers, approximately of the same
size. It uses as a building block the Okamoto-Uchiyama public-key scheme which has
appeared in [28]. To make things more precise, we need some notation from [11]: p
and ¢ are primes whose size in bits is k, n is p?q, g is an element of Z*, such that
gp = g*~! mod n is of order p modulo p? and h is an n-th power modulo n, built from
a randomly chosen element hg of Z} by setting h = hj mod n. The basic function f
on which EPOC is based is defined by

f{0, 1} x {0,1}¢ — Z}
(z,r) > ¢*h" modn

Thus, the public key of EPOC is a tuple (n, g, h, k,£), where n, g, h, k are as above
and / is the bit-length of the second argument to f. The latter is usually > £ but it
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is always assumed that ﬁ is bounded by a small constant. There are additional items
in the public key, consisting of hash function identifiers, which we ignore at this point.
We will bring more precision on these elements at a later stage of our report. We have
the following result from [28]:

Theorem 1 Granted the factorization of n, one can recover x from y = f(z,r) as
L(y?~! mod n)

T Wwhere L(u) is “le mod p.

Proof: Note that L(u) is defined on the subgroup of Z7 consisting of integers u
such that u = 1 mod p and that L(uv) = L(u) + L(v) mod p. Now, y*~! = 1 mod p
and similarly, g, = ¢?"' = 1 mod p. Thus both L(z) and L(g,) can be computed.
Furthermore,

Ly"™") = L(g®™ "W~ = L(g®D"hg™")

Since hgp_l)" =1 mod p?, we get

L(y*") = L(gy) = = - L(g,) mod p

hence the result.

If the factorization of n remains unknown, computing z from f(z,r) is believed to
be hard.

Before going further, we introduce a more formal framework, that will be useful
when we later perform the security analysis. A public-key encryption scheme on a
message space M consists of three algorithms (K, €, D):

e the key generation algorithm K(1¥) outputs a random pair of secret-public keys
(sk, pk), relatively to a security parameter &

e the encryption algorithm &y (M; R) outputs a ciphertext C corresponding to the
plaintext M € M, using random coins R

e the decryption algorithm Dg(C) outputs the plaintext M associated to the ci-
phertext C.

Thus, the key generation algorithm K (1%) of the EPOC Cryptosystem produces,
on input k, a public key pk consisting of an integer n of the form p2q, where p and ¢
are k-bit primes, and of two elements g, h of Z, such that g, = ¢g?* mod n is of order
p modulo p? and h is a random n-th power modulo n. Further integers £z and £,
indicate the respective bit-lengths of R and M, with ¢ + £3; < k — 1. The secret key
sk = (p, gp) provides the factorization of n and the value of g,. The latter is actually
not needed, since it can be computed from p and public parameters. It is included here
in order to make the decryption algorithm more efficient.

We now turn to encryption and decryption. At this point, we should mention that
EPOC actually includes three different schemes.
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e EPOC-1 is a public key encryption scheme
e EPOC-2 and EPOC-3 are hybrid encryption schemes

We first describe EPOC-1. EPOC-1 uses a hash function H, whose inputs are
Lr + €p-bit long and whose outputs are ¢-bit long. Therefore, the public key includes
a reference to the identifier of the hash function. Encryption Ex(M; R) computes C

as:
gMIFRAAIR) mod n = f(M||R, H(M||R))

Decryption recovers M||R, as explained in theorem 1, checks that it is of the appro-
priate bit-length ¢z + £3; < k — 1 and verifies that C comes from M and R through
the above formula.

EPOC-2 uses two hash functions H and GG and a symmetric encryption scheme
E. Accordingly, the public key includes a reference to the identifiers for the hash
functions and encryption scheme and an indication of the length of the various inputs
and outputs. Encryption Ey(M; R) computes C; as:

Oy = ¢"h M mod n = f(R, H(M||R))

From R, a key k for the symmetric encryption scheme E is derived as k = G(R). Using
this key, a symmetric encryption step produces a cryptogram Cy = Ey(M). The final
ciphertext C' is the pair (C1, Cs).

Decryption Dg(C) is based on recovering k. Granted the secret key p, one can
recover R, as explained in theorem 1 and check that it is of the appropriate bit-length
lgr < k—1. From R, k is computed and, once k has been retrieved, one can obtain the
plaintext M by applying the decryption algorithm of the symmetric encryption scheme.
Before outputting the result, one verifies that C; comes from M and R through the
above formula.

EPOC-3 is similar to EPOC-2 but produces a ciphertext C' with three components
C = (Cy,Cy,C3). Encryption uses an additional random element 7, of bit-length ¢:
Eok(M; R, ) computes C; as

C) = g"h" mod n = f(R,r)

From R, a key k for the symmetric encryption scheme E is derived as k = G(R) and a
cryptogram Cy = Ey(M) is produced. Finally, a hash value C3 = H(C4||Cs||R||M), of
bit-length £g, is computed and the ciphertext C is the triple (C4, Cy, C3).

Decryption Dg(C) is based on recovering k. Granted the secret key p, one can
compute R, as explained in theorem 1 and check that it is of the appropriate bit-length
lr < k—1. From R, k is computed and, once k has been retrieved, one can obtain
the plaintext M by applying the decryption algorithm of the symmetric encryption
scheme. Before outputting the result, one verifies that the hash value C} is correct.
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At this point, we wish to note that we have not been too careful with notations in
the above description. For example, writing the exponent of g as M||R treats M||R as a
bit string or a byte string, whereas it is actually an integer. Document [11] provides the
adequate conversion routines. We believe that our approach is suitable for performing
a high level security analysis. This is why we use simplified notations and ignore type
conversions.

2.2 Comments on the specification

Document [11] is clearly written and should actually ensure a minimal interoperability
between different implementations. The description of key generation might be found a
bit sketchy for implementors. For example, no additional constraint on p—1 is proposed,
whereas one would expect that it is not a product of small primes. Similarly, the exact
steps that generate parameter g are ignored. Additionally, there is a discrepancy
between the submission under review and the research paper [28], which might have
undesirable consequences in terms of security: in EPOC, parameter A is constructed
from a randomly chosen hy € Z7; as h = hj mod n and “can be” g" mod n, whereas
this choice is mandatory in [28]. We will return to this feature further on.

Since there are three versions of EPOC, users might be a bit puzzled. No indication
is given of the respective situations where one scheme would be more appropriate than
the other. What can be observed, and clearly appears in the appendix of [12], is that
EPOC-1 and EPOC-2 include reencrypting as a part of decryption, which is a rather
undesirable feature in terms of efficiency. This is not a drawback in terms of security,
unless the check based on reencrypting is discarded. In this case, it is possible to factor
n in a chosen-ciphertext attack. We describe the attack for EPOC-1 with parameters
lyr Lr, such that £z + £y = k — 1 but the attack also applies in different contexts.
One simply submits a ciphertext C' computed as f(z, H(z)), where z is randomly
chosen and ~ 2*. Since z — p is of the appropriate size, it is parsed as M||R and the
corresponding M is returned. From there, we obtain an approximation of p, consisting
roughly of the leading £ bits of p. Since n = p?q, an approximation of ¢ follows. Now,
methods of [9], allow to factor n if these approximations are good enough.

Our final comment relates to a rather unusual feature of EPOC-3: the decryption
algorithm may accept ciphertexts that the encryption algorithm does not produce.
To see this, observe that the first component C; of a ciphertext can be replaced by
C, = Cyy" mod n. If the fourth component ¢, is modified accordingly, decryption is
similar. Now, C, does not necessarily belong to the subgroup generated by ¢ and A,
a situation that the encryption algorithm cannot produce. It does not seem that this
unexpected feature has any consequence, in terms of security.



3 Security level of the cryptographic primitive

In this section, we investigate the security of the underlying cryptographic primitive,
both in terms of complexity-theoretic reductions and with respect to the recommended
parameters.

3.1 Complexity-theoretic arguments

Documents [11, 12] relate the security of the scheme to various computational problems
related to factoring.

3.1.1 The p-subgroup assumption

The p-subgroup assumption appears in [28] and is an extension of quadratic residu-
osity and of higher residuosity. Our treatment differs from [28] in that we define the
assumption as the statement that it is hard to distinguish the distributions R, and
D,., where n is an integer of the form p?q, R, consists of the uniform distribution on
Z}, and D, of the uniform distribution on elements of Z} which are p-th powers. A
quantitative version measures the maximum advantage AdvpSG(t) of a statistical test
T that runs in time £. This means the maximum of the difference of the respective
probabilities that 7" outputs 1, when probabilities are taken over R, or D,,.

The above definition appears a bit unusual, since it is not apparent how to generate
D,: the obvious construction, based on the image of the uniform distribution by
the function £ — 2P mod n requires knowledge of p. However, one can notice that
raising to the power pq yields a permutation of the set of pth powers. This shows that
D, can also be generated as the image of the uniform distribution by the function
xr — 2" mod n.

The above shows that there is a standard self-reducibility argument: by random-
ization, it is possible to transform an arbitrary element z into an equivalent one zy™
i.e. the output is in Dy, if and only if the input is. Thus, if AdvpSG(¢) is significant,
one can use a distinguisher to decide, with probability close to one, whether an integer
is in D,,. This involves performing repeated tests with the distinguisher and deciding
whether the number of one outputs has a bias towards D, or R,. Based on the law
of large numbers, a decision with small constant error probability requires running
O(AdvpSG™?) tests. One can decrease the error probability drastically by repeating
the above computations an odd number of times and deciding based on the median of
the averages. Thus, the loss in the reduction is huge. Thus, despite its elegance, the
self-reducibility argument is a bit misleading in terms of exact security.

The variant of the p-subgroup assumption that appears in [28] is closely related
to the semantic security of the cryptosystem in a chosen plaintext scenario. It simply
asserts that, for the cryptosystem described in this paper, it is hard to distinguish



encryptions of zero from encryptions of one. Call this assumption the OU assumption,
from the initials of the authors. We show that the OU assumption and the p-subgroup
assumption are equivalent.

Theorem 2 Let A be an algorithm that breaks the semantic security of the Okamoto-
Uchiyama scheme for encryptions of 0 and 1, with advantage €, within time bound t.
There exists a machine D that is able to distinguish Dy from R, with advantage €',
within time bound t', where
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where £ is the bit-length of the random string r used to encrypt, and where the overhead
T accounts for performing computations with integers of size |n| and is bounded by

O(k3).

Proof: We turn an algorithm A that breaks the semantic security for encryptions of
0 and 1, into a distinguisher D between D,, or R,,, as follows:

1. Run the part of the key generation algorithm that produces p, g, n
2. Take the input to D as the element g of the public key (recall that A is ¢" mod n)

3. Toss a coin b and generate a random r as prescribed by the cryptosystem; if
b = 0, submit y = A" mod n as the challenge ciphertext to A; otherwise submit
y = gh” mod n

4. Let b' be the answer of A; return bit b =¥/

Notice that, if g is chosen at random in Zj, then, since Zj, is cyclic of order p(p — 1),

gP~! is of order p with overwhelming probability 1 — 1. Based on this observation, we
see that, when the input to D is from R,, the probability that D returns &’ = b as 1
is very close to 3(61 + (1 — 6p)), where 6y be the probability that algorithm A outputs
1 on inputs which are ciphertexts of 0, and #; the probability that it outputs 1 when
they are ciphertexts of 1. By very close, we mean that the difference is bounded by %.
On the other hand, we claim that, when the input to D is from D,,, the probability
that D returns &' = b as 1 is ~ 1/2. To see this, we have to study more carefully the
distributions on Z; generated by step 2 above. We use chinese remaindering and let
Yo and 5 be generators of Z;2 and Zj respectively. Let v, = 7% mod p?. A randomly
chosen element from D, corresponds to a pair (7}, 75?) and, taking logarithms, we
have to study the following two distributions

(rnu; mod (p — 1), rnus mod (¢ — 1))
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and
((rmn 4+ 1)uy mod (p — 1), (rn + 1)uz mod (¢ — 1))

Note that n is prime to (p — 1)(¢ — 1), so that one can consider the inverse a of n
modulo (p — 1)(¢ — 1). The second distribution becomes

((r + @)nuy mod (p — 1), (r + a)nuy mod (g — 1))

and differs from the first one on a set of at most 22! elements. If r ranges over a
set of size 2¢, with ¢ much larger than 2%%! we conclude that the distributions on
Z}, generated by step 2 are extremely close and that ¢’ is therefore independent of b,
except on a set of probability < 22;: =

We now turn to the converse of the theorem.

Theorem 3 Let D be a machine that is able to distinguish Dy from R, with advantage
g, within time bound t. There is an attacker A breaking the semantic security of the
Okamoto-Uchiyama scheme form [28] for encryptions of 0 and 1, with advantage €',
within time bound t', with

, 1

e > €— -
p

' < t+71

where £ 1s the bit-length of the random string r used to encrypt and where the overhead
T accounts for performing computations with integers of size |n| and is bounded by

O(k?).

The proof is straightforward, using the random self-reducibility: one simply handles
cy™ mod n, where c is the challenge ciphertext and y is a random element of Z}. It is
immediate to see that ciphertexts of 0 generate D, by randomization and ciphertexts
of 1 generate the subset of R,, consisting of elements which are not p-th powers. Since
this differs from R, by a set of probability < %, the result follows.

Thus, we have shown that our version of the p-subgroup assumption, of a more
structural character, is essentially equivalent to the version in [28]. However, the same
is not true of the version of the p-subgroup assumption that appears in the submission.
Again, the basic statement on which security is based is that, for the cryptosystem
described in [11], it is hard to distinguish encryptions of zero from encryptions of one.
This assumption cannot hold. To see why, notice that, since n = p2q, the Jacobi
symbol indicates whether an element is a square modulo ¢ or not. Now, A is chosen
randomly and thus, is a square modulo g with probability 1/2. Similarly, g is a non
residue modulo ¢ with probability 1/2. If both events happen, then ciphertexts of 0
have Jacobi symbol 1, while ciphertexts of 1 have Jacobi symbol —1. At this point,
one may wonder whether the p-subgroup assumption has been the subject of enough
research to build a cryptosystem.



3.1.2 The computational p-subgroup assumption

Related to the above is another assumption which we call the computational p-subgroup
assumption. It states that, given y and g, it is hard to compute the unique element

z, 0 < x < p, such that ¢~ "y is a p-th power. Uniqueness follows from the trapdoor
L(y?~! mod n)
: Llgv) . : e
stronger assumption than its computational version. Furthermore, it is easily seen that

the latter is equivalent to factoring: in order to factor n using an algorithm that solves
the computational p-subgroup problem, one simply submits g*y", where z is slightly
larger than p. The algorithm returns z mod p, from which we obtain a small multiple of
p. Using arguments similar to those in theorem 2, one can see that the computational
p-subgroup assumption is essentially equivalent to inverting the Okamoto-Uchiyama
cryptosystem from [28]. We simply show how to factor, given an inversion algorithm.

computation of x as . It is obvious that the p-subgroup assumption is a

Theorem 4 If a machine A is able to compute x from f(z,r), x € {0,1}F1, with
probability €, within time bound t, there exists a machine B that is able to factor n
with probability &' > €/2(1 — 55)(1 — 22;—;1), within time bound t' < t + 7, where
the overhead T accounts for performing computations with integers of size |n| and is

bounded by O(k?).

Proof: Let us consider an adversary A able to compute z from y = f(z,r) with
probability e, within time bound t:

Succ®™(A) = Prlz & {0, 1}y « f(z,1), 2+ Aly): z2=2] > ¢

where probabilities include r as well as the internal random tape of the probabilistic
machine A.

We denote by F' the following function: for any = € Z,, F(z) < ¢* mod n. we
claim that F' essentially generates the same distribution as f. To see this, write the
order of g as pd, where d divides (p — 1)(¢ — 1) and therefore is prime to p. Elements
of the subgroup generated by g can be represented by their discrete logarithm in base
g and, using Chinese remaindering, this means a pair (u,v), with u € Z, and v € Zj.
When z ranges over Z,, then, discarding elements > p(p — 1)(¢ — 1) yields a uniform
distribution of (u,v). This leaves aside a proportion < %-ﬁ—% < 5. Now, f(z,r) yields
pairs (z, z+nr mod d) and, since n is prime to d, the second coordinate differs from the

uniform distribution by a multiplicative factor bounded from below by 1 — g—‘}, where /¢
is the bit-length of r. Thisis > 1 — 22;; " To conclude, note that a randomly chosen

element (u,v) according to the first distribution appears in the second if u < 2871 i.e.
with probability at least 1/2. If this happens, A returns x mod p, hence a multiple p
of p , which is < pg. Computing the ged of p and n allows to factor.

Observe that it is not straightforward to adapt the above proof to the cryptosystem
described in the submission.



We conclude the section by mentioning that no other way of solving either the p-
subgroup problem or the computational p-subgroup problem is known besides factoring
n.

3.2 Size of the parameters

As was just observed the security of the basic Okamoto-Uchiyama scheme on which
EPOC relies is related to the hardness of the p-subgroup problem and factoring is
the only known way of solving this problem. Thus, we have to study the hardness
of factoring integers n of the form n = p2q. It is unclear whether or not factoring is
easier for such numbers than it is in case of integers with two prime factors. In order
to state an opinion, we briefly review the performances of known factoring algorithms.
Such algorithms fall into three families, according to their sensitivity to the size of the
factors and to the existence of repeated factor.

3.2.1 Factoring techniques sensitive to the size of the smaller factor

Pollard’s p-method. The idea behind the method is to iterate a polynomial P with
integer coefficients, that is to say computing x; = P(zg), o = P(P(x0)), etc. In
time complexity O(,/p), where p is the smallest prime factor of n, one finds a collision
modulo p, i.e. two values z; and z;, ¢ # j, such that z; = z; mod p. Computing
ged(z; — xj,n) factors n.

Although there are several optimizations, the p-method can only be used to cast
out “small” factors of an integer (say 30-digit factors). As far as we know, it has not
been used to find significantly larger factors.

The p — 1 method. Let B be a positive integer. A number is B-smooth if it is a
product of prime numbers all < B. B-smooth numbers are usually used through a
table of primes < B. The p — 1 method relies on the use of Fermat’s little theorem: if
p — 1 is B-smooth, then the computing ged(n, a®) — 1) factors n, where £(B) is the
product of all prime factors < B.

The security against this factoring method is usually addressed by the requirement,
that each of p— 1, ¢ — 1 has a large prime factor. However, such requirement does not
appear in document [11].

The elliptic curve method. The ECM is a generalization of the p — 1 method,
for which the above simple countermeasure is not sufficient. Consider an elliptic curve
modn with equation

v =2 4+ar+1



If the number of points of this curve modulo p is B-smooth, then a factor of n can be
discovered along the computation of the scalar multiplication of M, = (0,1) by ¢(B),
according to the group law of the elliptic curve.

The success probability of the algorithm is as follows: Let

L(z) = exp(y/Inz Inln(z))

Then, the curve is L(p)®-smooth with probability L(p)~'/(2®+°(\)  This is minimal for
o = 1/4/2 and gives an expected running time of L(p)ﬁ“(l) group operations on the
curve.

There have been several improvements of ECM factoring, notably the FF'T exten-
sion of P. Montgomery. Furthermore, several implementations of ECM are available.
The current ECM factoring record was established in December 1999 when a prime
factor of 54 digits of a 127-digit composite number n was found with GMP-ECM,
a free implementation of the Elliptic Curve Method (see [23]). The limit used was
B = 15,000, 000.

In a recent paper [7], Richard Brent extrapolates the ECM record to be of D digits
at year about

YV =9.3+vD +1932.3

this would give records of D = 60 digits at year Y = 2004 and D = 70 at year 2010.
Such record would need B ~ 2,900, 000, 000 and require testing something like 340, 000
curves. The behavior of ECM on integers of the form p?q has not been documented
through experiments. There are indications that it is possible to slightly speed up
ECM for numbers of the form p?q (see [29]). Still, given Brent’s prediction, it is highly
unlikely that the ECM method can endanger the scheme in a foreseeable future.

3.2.2 Factoring techniques which are not sensitive to the size of the smaller
factor

Quadratic sieve. The quadratic sieve method (QS) factors n by gathering many
congruences of the form
2’ = (=1)%p" - pi

where p1, - - -, pm, is a list of prime numbers < B, called the factor base. This is done by
finding B-smooth numbers of the form Q(a) = (y/n+a)?—n. It turns out that there is
a very efficient sieving process that performs the job without division, hence the name
QS. Once enough congruences have been gathered, one obtains another congruence of
the same type with all exponents e; even: this is done by Gaussian elimination mod?2.
Thus we get some relation z? = ¢ mod n and, with significant probability, computing
ged(z —y,n) factors n. The time complexity of QS is O(L(n)'T°M) but, as it uses very
simple operations, it is usually more efficient than ECM for numbers whose smallest
prime factor exceeds n'/3.
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Many improvements of the basic method have been found, notably the multiple
polynomial variation (MPQS) and the large prime variation. This has led to very effi-
cient implementation and, until the mid-nineties, was used to set up factoring records.
The largest number factored by MPQS is the 129-digit number from the “RSA Chal-
lenge” (see [31]). It was factored in April 1994 and took approximately 5000 mips-years
(see [2]).

Number field sieve. The number field sieve (NFS) is somehow similar to the QS
but it searches for congruences in some number field (algebraic extension of the rational
numbers). The method uses two polynomials with a common root m modulo n. These

polynomials should have as many smooth values as possible. The time complexity of

NFS is
O(e(lnn)l/s(ln lnn)2/3(C’+o(1)))

for a small constant C' (about (64/9)'/% ~ 1.923). This is asymptotically considerably
better than QS. In practical terms, NFS beats QS for numbers of more than about 110
digits (see [10]). The number field sieve was used to factor the 130-digit RSA challenge
number in April 1996, with an amount of computer time which was only a fraction
of what was spent on the old 129-digit QS-record. It was later used to factor RSA-
140 in February 1999 with an amount of computer time about 2000 Mips-years. In
August 1999, the factorization of RSA-155 from the RSA list was obtained ([8]). The
amount of computer time spent on this new factoring world record is equivalent to 8000
mips-years, whereas extrapolation based on RSA-140 and the asymptotic complexity
formula for NFS predicted approximately 14000 mips-years. The gain was caused by
an improved polynomial search method. The final linear algebra part took 224 CPU
hours and 2 Gbytes of central memory on a Cray C916.

The main obstacle to a fully scalable implementation of NF'S is actually the linear
algebra, although progress has been made (see [24]). In [8], the authors derive the
following formula

Y =13.24D"® + 1928.6

for predicting the calendar year for factoring D-digit number by NFS. The same formula
appears in [7] and produces Y = 2016 for D = 289, i.e. for a 960 bit modulus, proposed
as a minimum choice in EPOC.

3.2.3 Specific factoring techniques for numbers of the form plq

In recent work (see [6]), a new factoring method that applies to integers of the form
p?q has been found. The method is based on an earlier result of Coppersmith (see[9]),
showing that an RSA modulus n = pq, with p, g of the same size, can be factored given
half the most significant bits of p. It turns out that, for numbers of the form n = piq,
with p, ¢ of the same size, fewer bits are needed.
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Note that disclosing the leading bits of p provides a rough approximation P of p.
What remains to be found is the difference x = p — P. The new method is based on
finding polynomials with short enough integer coefficients, which vanish at z modulo
some power p®™ of p. Such polynomials are actually zero at z. Thus, factoring is
achieved by finding the appropriate root. The polynomial itself is computed by the
LLL lattice reduction algorithm from [21]. LLL is run on lattices of dimension d? with
basis vectors of size O(dlogn). Let v be the corresponding computing time. Taking
into account the workfactor tied with guessing the approximation of p, the total running
time is

2§ii.logp. ~y

where c is such that ¢ ~ p°.

Comparing the above estimate with the running time for ECM, one can see that
the new method beats ECM for d larger than, approximately v/logp. In the case of
EPOC, where d = 2, the algorithm is certainly impractical.

3.3 Conclusion

Document [11] does not provide a range of parameters for the cryptosystem. It simply
mentions that k should be at least 320. This yields a bit-size 960 for n, which is
289 digits. Based on current estimates, such minimal parameters appear secure for
only fifteen years or so. Although predictions should be taken with great care, this
means a rather short “lifetime”. Of course, one can increase the size of the parameters.
However, parts of the basic security arguments rely on having the size of r larger than
2k. Since the suggestion for this bit-size is 832, larger values of k£ make some of the
security claims invalid. The main concern with the cryptosystem is whether the p-
subgroup assumption has been the subject of enough research to build a cryptosystem.
The incorrect version of the assumption included in the submission tends to indicate
that the answer is no.

4 Security Analysis of EPOC-1

Document [11] includes several security statements and points to the literature, no-
tably [16] for details.

4.1 Formal framework

An asymmetric encryption scheme is semantically secure if no polynomial-time attacker
can learn any bit of information about the plaintext from the ciphertext, except its
length. More formally, an asymmetric encryption scheme is (¢, ¢)-IND where IND stand
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for indistinguishable, if for any adversary A = (A;, A2) with running time bounded by
t, the advantage

Advind (A) — Pr (Sk’ pk) — ,C(lm)’ (MOa Mla ‘zt) — Al(pk)
v&10,1} C + gpk(Mb; ’I") : A2(C, St) =)

r—Q

~1/2

is < €, where the probability space includes the internal random coins of the adversary,
and My, M, are two equal length plaintexts chosen by the adversary in the message-
space M.

Another security notion has been defined in the literature, the so-called non-
malleability [14]. Informally is states that it is impossible to derive, from a given
ciphertext, a new ciphertext such that the plaintexts are meaningfully related. We
won’t discuss this notion any further since it has been proven equivalent to semantic
security in an extended attack model.

The above definition of semantic security covers passive adversaries. It is a chosen—
plaintext or CPA attack since the attacker can only encrypt plaintext. In the extended
model, the adaptive chosen—ciphertext or CCA attack, the adversary is given access to
a decryption oracle and can ask the oracle to decrypt any ciphertext, with the only
restriction that it should be different from the challenge ciphertext. It has been proven
in [3] that, under CCA, semantic security and non-malleability are equivalent. This is
the strongest security notion currently considered.

4.2 Chosen ciphertext security of EPOC-1

We turn to the security analysis. A first observation is that the p-subgroup assumption
implies the semantic security of the basic Okamoto-Uchiyama scheme from [28], in
the CPA scenario. Indeed, a CPA attacker A = (A;, Ay) can be converted into a
distinguisher for encryptions of zero and one: one simply handles A, the modified
challenge g™°c™ ™0g™ where my and m; are the output test messages of A; and
c is the queried {0, 1}-encryption. The additional term ¢"™ is for randomization and
ensures, provided 2211? is small, that one gets a uniformly distributed ciphertext of
mo - (1 —b) +b-my. The arguments are similar to those of theorems 2 and 4. The
advantage decreases by a minute term =~ 2215

We now want to prove that EPOC-1 is IND-CCA in the random oracle model, based
on the assumption that the p-subgroup assumption holds. More precisely, we wish to

establish the following exact security result.

Theorem 5 Let A be a CCA-adversary attacking (K, E, D), within time bound t, with
advantage €, making qp and qg queries to the decryption oracle and the hash function,
respectively. Then there exists an adversary B attacking the semantic security of the
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basic Okamoto-Uchiyama scheme with advantage €' and within time bound t', where

! 2qu  qp
19

v
|
|
|
|

< t+qg- T

where Lg is the bisize of R, d the order of h and 7 s the time needed to execute the
encryption algorithm and is bounded by O(k?)

The scheme can actually be proven “plaintext—aware” [5, 3], which is claimed to
imply chosen-ciphertext security. To prove the above, we turn A into an attacker for the
OU scheme. This requires simulating the oracle and describing a plaintext-extractor.

4.2.1 Description of the reduction

Let A = (A, Ay) be an adversary against the semantic security of (IC,€,D). The
description of B is as follows:

1. B first runs K(1*) to obtain the public key

2. next, B runs A; on the public data, and gets a pair of messages { My, M1} as well
as a state information s. It chooses two random strings Ry, R; of the appropriate
length, then flips a random bit b and then defines C < y, to be a ciphertext of
(M| Ro)

3. B runs Ay(C,s) and returns the answer o' of A,(C, s).

Of course, during the entire simulation, B also has to simulate answers from the random
oracle. This is done using the H-list, a dynamic data structure consisting of all queries
to the random oracle H together with the respective answers. For a fresh query A to
H, i.e. a query not on the H-list, the oracle picks a random answer. Finally, we define
the plaintext-extractor as follows:

1. on a query C’ to the decryption oracle, B looks at the H-list. If there is an ele-
ment on this list which is parsed as (M'||R', H(M'||R")), if it is of the appropriate
bit-length and if f(M'||R', H(M'||R')) = C’, then B outputs M’ as the requested
plaintext

2. Otherwise, B rejects the ciphertext

4.2.2 Probabilistic analysis

We wish to compare the behavior of several games
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1. game G;, where the decryption queries are answered by an actual decryption
oracle, and the random oracle is perfect

2. game Go, which is as G; but aborts without calling the random oracle, whenever
some (M;||R;) appears as a fresh query. In this case the output &' is set at o' = 1.
The decryption queries are still answered by the actual decryption oracle.

3. game G3, where the random oracle is simulated

4. game G4, which is as G3 but where the decryption queries are answered by the
plaintext-extractor

We observe that the probability that &’ = b in game G; is exactly the advantage ¢
of A. We relate the probabilities of the same event in all games repeatedly using the
simple yet useful lemma from [32]

Lemma 1 Let E, F, and E', F' be events of two probability spaces such that both
Pr[E|-F] = Pr[E'|=F'] and Pr[F] = Pr[F'] <e.

Then,
|Pr[E] — Pr[E']| < ¢

Proof: We write
Pr[E] = Pr[E|-F|Pr[-F| + Pr[E|F| Pr[F]|

Pr[E']| = Pr[E'|=F'| Pt[~F'] + Pr[E|F']| Pr[F']

Hence
Pr[E] — Pr[E'] = Pr[E|-F](Pr[~F] — Pr[~F"]) + (Pr[E|F] Pr[F] — Pr[E|F']| Pr[F"])
The right hand side becomes Pr[E|F|Pr[F| — Pr[E|F'] Pr[F'], which is bounded by ¢.

Game G, differs from G if it aborts. Observe that the input C' is a ciphertext of
M, || Ry, but this leaves the choice of R;_, random. Thus, R;_, can appear in a query to
H only with probability J/Z. If this does not happen, then a query of the form M;||R;

is such that ¢ = b. Thus the advantage of Gy exceeds ¢ — 2%'

The simulation in game G5 is perfect unless it conflicts with the implicit constraint
coming from the assumption that C is a ciphertext of (M;||Rp). In the find stage, Ry
has not been chosen and this happens, for each oracle query, with probability < Q%R
In the guess stage, this cannot happen since G, has earlier aborted. Altogether, we
discard a set of probability < 2‘%. Applying the lemma, we see that the probabilities
in the resulting games differ by at most this value.
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To go from G3 to G4, we have to bound the probability that the plaintext-extractor
rejects a correct ciphertext C'. Let M'||R' be the decryption of C' under the OU
scheme. The situation that we wish to avoid happens if the value of H at (M'||R') is
later set at a value 7’ such that C' = f(M'||R',r'). Let d be the order of h in Z%. We
get

=g MIE) mod n

which defines a subset of probability 5. Altogether, we get the bound <2.
Finally, in game G4, the value of H(M,||Rp) is left random. Thus G, can be viewed
as a distinguisher for the OU scheme. Its advantage is at least

Now, the heavy load in the simulation is reencryption of all candidates from the
H-list. This means gy such computations. This completes the proof.

4.3 Summary of the security analysis

Piecing together the results of theorems 5 and 3, we see that EPOC-1 is semantically
secure against CCA adversaries, based on the p-subgroup assumption, provided that it
is derived from the version of the Okamoto-Uchiyama cryptosystem described in [28].
We also note that the sequence of reductions under this result can be made tight by
an appropriate choice of the parameters.

Since the version of the p-subgroup assumption given in the submission does not
appear correct, we do not see how to extend the security proof in this case. Also, the
submission does not make completely clear the role of the various parameters: from
the analysis in section 5, we see that

1. the bit-length ¢ of the hash function should be much larger than 2k.
2. the order of h should be large

No part of the submission specifically points out these requirements.

5 Security Analysis of EPOC-2

Document [11] includes several security statements and points to the literature, no-
tably [17] for details.
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5.1 Semantic security of key encapsulation

Before we turn to the actual security analysis, we would like to focus on what can
be called key encapsulation, a term introduced in [32], but which we use here with a
slightly improper meaning, due to the fact that, in the present context, the session key
is message dependent. This analyzes the semantic security of the symmetric session key
itself in the context of CCA-adversaries: the attacker is allowed to query a decryption
oracle by submitting an element C of Z* and receiving the key session key k = G(R)
as the answer, where C; is f(R, H(M||R)) as prescribed by the cryptosystem. His aim
is to distinguish the distribution consisting of a ciphertext C; and the corresponding
key material k from the analogous distribution where the key material is replaced
by a random string. We denote by Adv™*?(t,qp) the maximal advantage for any
adversary in distinguishing both distributions within time bound ¢, after q¢p queries to
the decryption oracle.
We prove the following:

Theorem 6 Let A be a CCA-adversary attacking the key encapsulation scheme of
EPOC-2 within time bound t, with advantage €, making qp, qg and qg queries to
the decryption oracle and the hash functions G and H, respectively. There exists an
adversary B inverting the Okamoto-Uchiyama scheme with advantage quqG and within
time bound t', where

!

+
e 8/2—QG QH_Q_D

2tr d
t < t4+qg-T

Vv

LR 1s the bit-size of R, d the order of h and T is the time needed to execute the encryption
algorithm and is bounded by O(k?)

Proof: From A, we build a machine B which attempts to invert the OU scheme.
1. B receives its input, an OU ciphertext C

2. B tosses a random coin b. If b = 0 it generates a random session key k and
submits the pair (C, k) to the distinguisher A; if b = 1, it manufatures a correct
pair (C’, k') as prescribed by the scheme. In both cases, it handles the pair to A

3. when the execution of the distinguisher has ended, B outputs a tentative the
decryption of C, from the queries asked to G and H (see below)

Of course, during the entire simulation, B also has to simulate answers from the
random oracle. This is done using a H-list and a G-list. For a fresh query h to H,
i.e. a query not on the H-list, the oracle picks a random answer and similarly for G.
We also define a plaintext-extractor as follows:
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1. on a query C’ to the decryption oracle, B looks at the H-list. If there is an
element on this list which is parsed as (M'||R', H(M'||R')), with R’ of the ap-
propriate length, and if f(R', H(M'||R)) = C', then B outputs G(R') as the
requested session key, including it on the G-list, if needed.

2. Otherwise, B rejects the ciphertext

Finally, we explain what is the final answer of B is, besides the b’ bit computed by
A. When execution has ended, B looks at the G-list and the H-list and outputs a
randomly chosen element, which appears as a question R in the G-list or such that
(M||R) appears as a question in the H-list.

We wish to compare the behavior of several games

1. game G;, where the decryption queries are answered by an actual decryption
oracle, and the random oracle is perfect

2. game Go, where the decryption queries are answered by the plaintext-extractor
3. game @3, where the oracle is simulated

We let R be the decryption of C' under the OU scheme and we denote by &’ the
probability that R appears in the G-list or the H-list upon completion.

We observe that the probability that " = b in game G; is (61 + (1 — 6y)), where 6,
be the probability that algorithm A outputs 1 on inputs taken from pairs (C, k), with
random session key k and 6, the probability that it outputs 1 when they are taken from
pairs constructed according to the rules of key-encapsulation. This is 1/2 + £.

To go from G; to Gowe have to bound the probability that the plaintext-extractor
rejects a correct ciphertext C'. Let R’ be the decryption of C' under the OU scheme.
The situation that we wish to avoid happens if the value of H at (M’||R’) is later set
at a value 7’ such that C' = f(R',r'). Let d be the order of h in Z}. We get

=g MIE) mod n

which defines a subset of probability 5. Altogether, we get the bound 2.

The simulation in game G5 is perfect unless it conflicts with the implicit constraint
on H coming from the assumption that C is a ciphertext corresponding to an unknown
(but fixed) R. In the find stage, R has not been chosen and is involved in a G-query
or a H-query with probability < ZZLR In the guess stage, this can only happen when
R does appear as a possible choice for the final output of B. Altogether, we discard a
set of probability < 967 + ¢/, Applying the lemma, we see that the probabilities in
the resulting games differ by at most this value. Note that, once the exceptional runs
have been discarded, we are left with executions where R is not asked to G. We can
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freely interpret G(R) = k and are left with a distribution of inputs independent from
b. The probability that ¥’ = b in this case is therefore 1/2.
Finally, we have bounded the probability that B inverts the OU cryptosystem by

£ where &' is such that

9H +49G

Q_D+QG+QH

!
/2 <&+ g ot

Now, the heavy load in the simulation is the reencryption of all candidates from
the H-list. This means ¢y such computations.

5.2 From key encapsulation to chosen ciphertext security

We prove the following.

Theorem 7 Let A be a CCA—adversary attacking the hybrid cryptosystem, within time
bound t, with advantage €, making qp queries to the decryption oracle. Then

e < Ade’g’D(t’,qD)+AdvE’D(t’)—i—%j

where t' < t+ O(qp)

d the order of h, and AdvE’D(t’) denotes the security level of the symmetric encryption
scheme, as defined below.

Before going further with the proof, let us define more formally the relevant security
notion for the symmetric encryption.

5.2.1 Symmetric Encryption

A symmetric encryption scheme with key-length k, operating on messages of length 2,
consists of two algorithms (E, D) which depends on a k-bit string k, called the secret
key:

e the encryption algorithm E, (m) outputs a ciphertext ¢ corresponding to the plain-
text m € {0,1}%, in a deterministic way;

e the decryption algorithm Dy (c) recovers the plaintext m associated to the cipher-
text c.

A security notion similar to those used for asymmetric encryption is considered,
known as semantic security [19]: a symmetric encryption scheme is semantically secure
if no polynomial-time attacker can learn any bit of information about the plaintext
from the ciphertext, besides its length. More formally, a symmetric encryption scheme
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is (¢,¢)-IND if, for any adversary A = (A;, A) with running time bounded by ¢,
Adv™(A) < &, where

AV (A) = Pr (Mo, Mi,s) = Av(k), ¢ < Eu(M) : As(c,5) =1 -1/2,
k+—{0,1}
v& 0,1}

In the above, probabilities include the random coins of the adversary, and M,, M; are
two identical-length plaintexts in the message-space {0, 1}*.

We denote by AdvEP(t) the maximal advantage of any adversary, against the se-
mantic security of the scheme (E, D), within time bound t.

5.2.2 Security of EPOC-2
We define the attacker A = (A1, Ay) and use this adversary as usual.

1. run the key generation algorithm for the encapsulation scheme

2. next run A; on the public data to get a pair of messages { My, M;} as well as a
state information st. Choose a random bit b, run the key encapsulation scheme
to get C; and the session key k, and encrypt M, as Cs, using the session key

3. run Ay((C1, Cy), st) and get an answer b'. Finally, output bit b =¥'.
As in the proof of theorem 6, we will envision several games:

e game G;, where the decryption queries are answered by an actual decryption
oracle

e game (o, where the session key to encrypt the test message M, is replaced by a
random string and where queries whose initial part matches with C'; are decrypted
using the same random string

e game G3, which is as G, but where all queries whose initial part matches with C}
are rejected

Note that the running time of all games is ¢ = ¢t + O(gp), where the second term
accounts for the symmetric decryptions. Also, observe that the probability that G;
outputs 1 (which means 0 = b) is exactly 1/2 + €. Indeed, game G; provides the
adversary operating within the real-life setting. As in the proof of theorem 6, we
bound the difference of probabilities between G; and Gj.

In order to bound the difference between G; and G5, observe that both can be played
by calling the decryption oracle for key encapsulation rather than the actual decryption
oracle. Game G; needs as an additional input the session key corresponding to C'; and,
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similarly, game G, will need the random key material. Thus, we have obtained a distin-
guisher between the distribution consisting of a ciphertext of M, and the corresponding
session key (in game G;) and the analogous distribution where the key is replaced by
a random string (in game G,). This bounds the difference by Adv*P (¢, ¢p).

Going from game G, to game Gs, we note that a difference only occurs when one
rejects a valid ciphertext (Cy,CY%). Let M’ be the corresponding plaintext. Since the
queried ciphertext is different from the challenge ciphertext, M’ is different from M.
However, since the first component C; is similar, we have

f(R,H(MI||R)) = f(R, H(M'||R))

where R denotes the random string used to generate C;. The above yields the collision

RHOM||R) _ pHOM|[R)

Since H is a random oracle, such collision appears with probability 5, where d is the
order of h.

To conclude, consider the probability of that Gs outputs one. In this game, a random
string is drawn as a session key and used to encrypt a randomly chosen test message
M, under this key. The adversary outputs one if he has correctly guessed bit b. This is
exactly the situation of a semantic distinguisher as defined in section 5.2.1. Therefore,
the advantage of the adversary in this latter game Gs is bounded by Adv®P(¢').
Remark. There is a slight ambiguity under the notation Adv*"?(#', ¢p) in the above
theorem: it actually refers to the advantage of a distinguisher for the key encapsulation
scheme, which first runs A; and next uses as message space the two test messages output
by A;. It is easily seen that theorem 6 can be applied to such distinguishers. Thus,
despite the ambiguity, we have chosen to split the security analysis, for the sake of
clarity.

5.3 Summary of the security analysis

Piecing together the results of theorems 6, 7 and 4, we see that EPOC-2 is semantically
secure against CCA adversaries, based on the hardness of factoring, if it is derived from
the version of the Okamoto-Uchiyama cryptosystem described in [28]. The sequence of
reductions under this result is not as good as in the case of EPOC-1, due to the multi-
plicative loss chquH in theorem 6 and it is unclear whether it could lead to meaningful
estimates.

There are technical difficulties to cover the general case, where h and ¢g” do not
necessarily lie in the same subgroup. This comes from theorem 4, whose proof uses
the fact that ¢g® mod n essentially generates the same distribution as the cryptosytem.
This is not true in general: for suitable choices of g and h, the quadratic residues
modulo n appear with probability 1/2 in the first case and 1/4 in the second. One
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could use ¢g*h" mod n in place of ¢* mod n but the analysis remains more subtle than
expected: we see how to extend of theorem 4 when p%l, q;—l, are mutually prime, with
an extra multiplicative loss 1/2 in the probabilities, but have not attempted to cover
the general case.

It can be noted that the hypotheses of the proof of theorem 4 requires that £ is
k — 1. A few bits can be discarded with a multiplicative loss 1/2 in the probabilities,
for each bit. However, the submission only requires that £z < k — 1 and this leaves
open the possibility that /g << k — 1, in which case the security proof collapses. The
self-evaluation document [12], sets £ = k — 1.

Similarly, ¢ should be larger than 2k. However, the submission does not include
such requirement and this leaves open the possibility that ¢ << 2k, in which case the
security proof collapses. The self-evaluation document [12], sets £ = (2 + ¢o)k.

Finally, the order d of h should be large. This is only implicit in the submission
and the self-evaluation report.

Thus, as for EPOC-1, the submission does not make completely clear the role of
the various parameters: again, the analysis shows that

1. the bit-length ¢ of the random string should be close enough to k£ — 1 (the
submission only requires fg < k — 1)

2. the bit-length £ of the hash function should be larger than 2k
3. the order of h should be large

However, no part of the specification specifically points out these requirements, even
if the results quoted in the self-evaluation report [12] duly consider cases where they
hold.

6 Security Analysis of EPOC-3

Document [11] includes several security statements and an appendix, which is a pre-
liminary version of [26, 27]. EPOC-3 is a hybrid cryptosystem which addresses the
drawback that reencryption was needed at the decryption phase of EPOC-2 (as it was
in EPOC-1). This is done by applying the conversion method from [26]. This conver-
sion does not include the first hash function H at key encapsulation but uses it to as a
tag, once the symmetric encryption has been performed. This is along the same lines
as [1, 32]. However, the resulting scheme does not rely any more on factoring but on
a version of the so-called gap-problems, which now discuss.
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6.1 Gap higher residuosity

In the following, we review the version of the so-called gap problems (see [27]) that is
needed in the current context. Besides the original definition, we consider a weaker
assumption. We first define oracles, that an adversary can call. Notations are straight-
forward and come from 3.1.1.

e a p-subgroup oracle: on any input z from Z}, it perfectly answers whether x
comes from D, or not.

® a -p-subgroup oracle: on any input z from Z7, it answers whether £ comes from
D,, or not, with some error probability 6. More precisely, the advantage of this
oracle is greater then 1 — §:

Prioracle(z) = 1|z € Dy]

>1-6.

— Prjoracle(z) = 0|z € Ry

The reason why we introduce the second oracle is that, as already noted in section 3.1.1,

if ¢ is significantly smaller than 1, one can use this d-oracle (O((1 — §)~?) times) to

decide, with an error probability as small as wanted, whether an element is in D, or
not.

We now define the Gap higher residuosity problem, which consists in factoring a
number of the form n = p?q, having access to a p-subgroup oracle. A weaker assumption
is the intractability of the 0-Gap higher residuosity problem, which consists in factoring
a number of the form n = p?q, having access to a §-p-subgroup oracle.

The submission states that EPOC-3 is secure against CCA adversaries, provided
the Gap higher residuosity problem is intractable and this can be extended to the
formally weaker version of the hypothesis. It can be observed that both versions of
the gap problem are polynomially equivalent (at least under a non-uniform reduction).
Indeed, let A be an adversary that factors after ¢ queries to a p-subgroup oracle,
with probability ¢ (where ¢ and 1/e are polynomially bounded). Then, from any 6-p-
subgroup oracle, one can build a §’-p-subgroup oracle, achieving §' < £/2q. Therefore,
if one simulates the perfect oracle, called by A, using this ¢’-p- subgroup simulator, then
A succeeds in solving the computational p-subgroup problem with probability & — g X
§" > ¢/2. Still, even if both problems are polynomially equivalent, the computational
cost of the above reduction may be huge, depending on the original value of §. In
the following, we denote by Succ®R(6,t,¢) the maximal success probability of any
adversary in factoring n within time t after less than ¢ queries to a d-p-subgroup
oracle.
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6.2 Semantic security of key encapsulation

As we did for EPOC-2, we would like to first focus on key encapsulation. However,
this does not appear possible by lack of a correct simulator: when receiving a query
C4, the simulator should provide G(R), where R is the decryption of C; under the
Okamoto-Uchiyama scheme. A natural option is to search in the G-list, hoping to
find the appropriate value of R, and to perform a check by calling the p-subgroup
oracle. Although the approach is sound, the difficulty is to decide what to output
when such R is not found: if the bit-length of R does not exceed /g, one could output
a random value and reject otherwise. Unfortunately, the bit-length is unknown and
there is no way to make a choice. Thus, we have to directly proceed to the full security
proof.

6.3 Semantic security of EPOC-3

Theorem 8 Let A be a CCA-adversary attacking the semantic security of EPOC-3
within time bound t, with advantage €, making qp, qg and qu queries to the decryption
oracle and the hash functions G, H, respectively. There exists an adversary B inverting
the Okamoto-Uchiyama scheme with the help of a 6-p-subgroup oracle, with advantage
g' and within time bound t', where
! E,D/ dp
e < € +Adv™ (t)+27H+(2qH+qG)-5
where t' < t+ O2qx + qc),

and AdvE’D(t') denotes the security level of the symmetric encryption scheme.

Proof: We start from an attacker A = (A;, As) and use this adversary as always.
1. run the key generation algorithm for the encapsulation scheme

2. next run A; on the public data to get a pair of messages { My, M} as well as a
state information st. Choose a random bit b, run public key encryption scheme
to get C and the session key material, encrypt M, as C5 under the session key
and finally compute C3 = H(C4||Cy||R|| M)

3. run Ay(C1||Cy||Cs, st) and get the output bit 4. Finally, output bit b = ¥'.

As usual, we will need to simulate answers from the random oracle. This is done
using a H-list and a G-list. For a fresh query i to H,i.e. a query not on the H-list, the
oracle picks a random answer and similarly for G. We also define a plaintext-extractor
as follows:
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1. on a query C" = (C1||C4||CY) to the decryption oracle, B first looks at the H-
list. For any R' of the proper bit-length £ appearing in a question to H of the
form C7||C)||R'||M" in the list, and such that the corresponding answer is Cj,
the extractor queries the integer g_RIC{ mod n to the §-p-subgroup oracle.

2. If the answer of the oracle is positive, the extractor calls G at R' (extending the
G-list if needed) and obtains the corresponding session key k. Once this is done,
it checks whether M’ is the decryption of C)

3. As soon as it has found a pair (R', M"), as described above the extractor returns
M'" as the requested plaintext. If none has been found, the query is rejected.

Note that proper bookkeeping allows to query the J-p-subgroup oracle at most once
for each H-query.

Finally, we explain why the simulation is related to inverting the OU scheme. We
define a machine B which is as above, but receives an input C; and a session key to
encrypt M,. This machine performs an additional step when execution has ended.
Parsing the questions in the G-list and the H-list, B looks for a string R of the
appropriate length /g, appearing in either list. For each such string, B queries the
integer ¢~ ®C; mod n to the §-p-subgroup oracle. As soon as it finds an element such
that the answer of the oracle is positive, B returns R. Note that the running time ¢’
of B, when it is executed with the help of the plaintext extractor is the running time ¢
of A plus an additional term O(2¢gy + g¢) to process the data on the lists and call the
oracles.

We compare the behavior of several games

1. game G;, where the decryption queries are answered by an actual decryption
oracle, and the random oracle is perfect

2. game Gy, where the decryption queries are answered by the plaintext-extractor
using a perfect p-subgroup oracle until B is able to output an answer K. Oracles
are still assumed perfect and further decryption queries are answered by an actual
decryption oracle.

3. game G3, which is as G but where the random oracles are simulated until B is
able to output an answer R.

4. game G, which is played as Gz but stops (before asking the G or H oracle) as
soon as B is able to output an answer R.

5. game G5, where the session key is not derived as prescribed by the cryptosystem
but is randomly chosen

6. game Gg, where a d-p-subgroup oracle is used
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We observe that the probability that &’ = b in game G; is exactly 1/2 + ¢. Indeed,
game G, provides the adversary with the real-life setting. As usual, we bound the
difference of probabilities between G; and Gg.

To go from G; to G5, we have to bound the probability that the plaintext-extractor
rejects a correct ciphertext C' = (C},C4,Cj). There are two cases, depending on
whether C] and C encrypt the same value or not. We first cover the second case. Let
R’ be the decryption of Cf under the OU scheme. The situation that we wish to avoid
can be described as follows

1. the value of G at R' is set at k'’
2. let M' = Dy/(C%); the value of H at (C}||C4||R'||M') is later set at Cj.

The conditional probability of the second item, once the first happens, is bounded by
1
—.
o We turn to the first case, where the decryption of C] under the OU scheme equals
the decryption R of C;. Here, the value of G(R) is implicitly constrained by the
assumption that C is a ciphertext of the test message M,. Fortunately, B has already
found the OU decryption of C'; in this case and, therefore, the plaintext-extractor is
not called.

Altogether, we have bounded the probability that the plaintext-extractor is wrong
by 2. Discarding the corresponding executions of games G; and G, leads to perfect
simulation. Thus the probabilities that G; and G, output one differ by at most 2‘%

The simulation in game Gz is perfect since it cannot conflict with the implicit
constraint coming from the assumption that C' is a ciphertext of the test message M,.
Indeed, R cannot be part of a question to the simulated versions of G or H, where R
is, as defined above, the decryption of C; under the OU scheme. This is because B has
earlier found the OU decryption of C}.

To go from Gz to G4, we just have to exclude the event of probability ¢’ = Succ®™ (B)
that B has correctly decrypted C; before it stops. This bounds the difference of the
probabilities that each game outputs one.

The simulation in game G5 is perfect unless it conflicts with the implicit constraint
on GG coming from the assumption that C' is a ciphertext of a test message M,. Let R
be the decryption of C; under the OU scheme. The conflict can only occur if R is of
the appropriate length /g and is queried to GG. Since G3 has aborted beforehand, this
cannot happen.

To go from G5 to Gg, one just needs to estimate the probability that the J-p-oracle
returns a wrong answer. Since it is queried (2¢g + ¢¢) times, this is bounded by
(2qm +qc) - 6

Finally, we have bounded the difference between the respective probabilities that

G: and Gg output one by:
dpD
e+ o + (29u +qc) - 6

26



To conclude, consider the probability that Gg outputs one. In this game, a random
string is drawn as a session key and used to encrypt a randomly chosen test message
M, under this key. The adversary outputs one if it has correctly guessed bit b. This is
exactly the situation of a semantic distinguisher as defined in section 5.2.1. Therefore,
the advantage of the adversary in game Gg is bounded by AdvE’D(t’ ).

6.4 Summary of the security analysis

Piecing together the results of theorems 8 and 4, we see that EPOC-3 is semantically
secure against CCA adversaries, based on the hardness of factoring, if it is derived from
the version of the Okamoto-Uchiyama cryptosystem described in [28]. The sequence
of reductions under this result can be made tight by an appropriate choice of the
parameters

There are technical difficulties to cover the general case, where h and ¢g” do not
necessarily lie in the same subgroup. This comes from the proof of theorem 4, whose
proof uses the fact that ¢g* mod n essentially generates the same distribution as the
cryptosytem. This is not true in general: for suitable choices of g and h, the quadratic
residues modulo n appear with probability 1/2 in the first case and 1/4 in the second.
One could use g*h" mod n in place of ¢g* mod n but the analysis remains more subtle
than expected: we see how to extend of theorem 4 when ’%1 and % are mutually prime,
with an extra multiplicative loss 1/2 in the probabilities, but have not attempted to
cover the general case.

Similarly, the hypotheses of the proof theorem 4 requires that fp is k — 1. A
few bits can be discarded with a multiplicative loss 1/2 in the probabilities, for each
bit. However, the submission only requires that /g < k — 1 and this leaves open the
possibility that /g << k — 1, in which case the security proof collapses.

Similarly, ¢ should be larger than 2k. However, the submission does not include
such requirement and this leaves open the possibility that £ << 2k, in which case the
security proof collapses.

Finally, the order d of h should be large.

Thus, as for EPOC-1 and EPOC-2, the submission does not make completely clear
the role of the various parameters: again, the analysis shows that

1. the bit-length /g of the random string should be close enough to k£ — 1 (the
submission only requires £ < k — 1)

2. the bit-length ¢ of the random string r should be larger than 2k
3. the order of h should be large

However, no part of the submission specifically points out these requirements.

27



7

Conclusions

Based on our analysis, we think that the version of the p-subgroup assumption, which
appears in the submission, is not correct. Since it relies on the assumption, we would

not
the

recommend EPOC-1 as it is. We believe that EPOC-2, EPOC-3 are secure, with
proposed parameters. However, based on the submission, we have the following

restrictions:

e The specification contains ambiguities and omits additional requirements on the
parameters that appear necessary to complete the various security proofs.

e The lower choice of suggested parameters guarantees security for a foreseeable
period of time which is rather limited. There are no indications of how to increase
the various parameters consistently.

e Although additional requirements on the parameters allow to prove the security
of both schemes against adaptive chosen-ciphertext attacks, we note that such
proof would not give any conclusive evidence for EPOC-2, when interpreted with
the proposed parameters.

e The Gap higher residuosity problem on which EPOC-3 is based appears to have
been introduced too recently to form the basis of a cryptosystem.
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