Evaluation Report on the
ACE Encrypt Cryptosystem

1 Introduction

This document is an evaluation of the ACE Encrypt Cryptosystem. Our work is
based on the analysis of document [27], which provides both the specification and self-
evaluation of the scheme, as well as on the research papers [7, 25, 26], where additional
security arguments can be found. The present report is organized as follows: firstly, we
briefly review the cryptosytem; next we discuss the security level of the cryptographic
primitive which underlies the scheme and analyze its relation to the difficulty of the
discrete logarithm problem; finally, we evaluate the security level of the scheme itself
in the light of strong security notions such as semantic security and security against
adaptive chosen-ciphertext attacks. This is as requested by TPA.

2 Brief description of the scheme

2.1 Specification review

ACE Encrypt is based on the hardness of the discrete logarithm problem. It is a variant
of an hybrid encryption scheme derived from the Cramer Shoup cryptosystem, which
has appeared in [26]. The public key encryption scheme of Cramer and Shoup itself
(see [7]), is an extension of the El Gamal (see [10]) cryptosystem. To make things more
precise, we need some notation from [27]: P is a prime integer whose size in bits is m,
1024 < m < 16,384 and ¢ is an 256-bit prime number which is a divisor of P — 1. Let
G be the subgroup of Z% consisting of elements of multiplicative order g. The public
key of ACE Encrypt includes a pair of integers of the form P, ¢, and six elements of
the corresponding group G, denoted by g1, go, ¢, d, hy, hy. There are two additional
items in the public key, consisting of bit strings k1, ks, of appropriate length that are
used as keys for various hash functions. We will bring more precision on these elements
at a later stage of our report.

Before going further, we introduce a more formal framework, that will be useful
when we later perform the security analysis. A public-key encryption scheme on a
message space M consists of three algorithms (K, €, D):

e the key generation algorithm C(1™) outputs a random pair of secret-public keys
(sk, pk), relatively to a security parameter m

e the encryption algorithm & (M;r, s) outputs a ciphertext C' corresponding to
the plaintext M € M using random coins r, s

e the decryption algorithm Dg(C) outputs the plaintext m associated to the ci-
phertext C'.

Thus, the key generation algorithm K(1¥) of the ACE Cryptosystem produces, on
input m, a public key pk consisting of P, ¢ and the six elements gi, go, ¢, d, hy, ho,
as well as the additional bit strings ki, k3. The secret key sk consists of the respective
logarithms w, z, y, z1, 22 of g9, ¢, d, hy, hy in base g;. We refer to [27] for a precise
definition of the length of ki, ks in terms of the security parameter. We now turn to
encryption and decryption.

Encryption Ex(M;r, s) uses several hash functions and produces a preamble and a
cryptogram. The preamble consists of a tuple (s, uq,us,v). Its first component s is a
random 128-bit string. The next two elements u;, us are computed from a randomly
chosen r, 0 <r < q—1 by u; = g7, us = g3, where operations are performed in group
G. Finally, v is obtained by hashing the triple (s, u, u3), using a hash function keyed
by ki. Denoting this function by Hi, we have oo = H; (s, u1,us) and, finally, v = (cd®)".

At this point, we wish to note that document [27] has an extremely precise nota-
tional apparatus. For example, it would use

a = UOWhash/(ki, Ls(P), s, u1, us)

so as to emphasis the functional role of H; (a universal one-way hash funstion) and its
dependency on a hash key k; as well as upon the size in bytes, Lg(P), of parameter
P. This is perfect, at specification level, to avoid implementation errors, but cum-
bersome for performing a high level security analysis. This is why we use simplified
notations. Similarly, we ignore type conversion and consider s as a 128-bit string,
whereas document [27] treats it as four 32-bit words.

With respect to the Cramer-Shoup system proposed at Crypto’98 (see[7]), the
preamble includes the additional random element s, which is later used, as an “ini-
tialization vector” in generating the cryptogram. A 128-bit symmetric key k is derived
from s, uy, hy, ha, where hy = hY, ho = h%, and r is the random integer used to create
the preamble. This is by means of a hash function keyed by the second hash key ko,
which we denote as Hs. Thus, we write &k = Hy(s, u1, b1, hy). Note that k is uniquely
defined from the preamble. However, recovering & from (s, u,us,v) appears closely

2

connected to the discrete logarithm problem in group G. The requirement on Hy is
that it is universal in terms of the inputs hq, hy: for every pair x, y of such inputs,
T # vy, the probability (over the key ky) that Ho(x) = Ha(y) is 1/2¢, where ¢ = 256 is
the size of the outputs of H,.

Decryption Dy (C) is precisely based on recovering k: granted these secret values,
it is possible to check the correctness of the preamble through the following equalities

ug = (u1)"
v = (ug)THve
Il is also possible to derive Ay, hs by
hy = uyt
hy = u?

If all logarithms are unknown, the above computations are not possible. In order to
grasp the relationship between decryption and the discrete logarithm, it is interesting
to consider the situation where part of the secret key is disclosed, while the value of w
remains concealed. We thus introduce the following definition:

Definition. An incomplete key consists of elements x1, xa, y1, Y2, 211, 212, 221, 222
such that

c=g'gs

d=gi'gy
hy = g7 5"
hy = g5 95>

Note that it is perfectly possible to generate elements gi, ¢o, ¢, d, hy, hy of a
public key without disclosing the discrete logarithm of g, in base g; by choosing z1,
T, Y1, Y2, 211, 212, 221, Z22 at random in the interval {0,---,¢ — 1} and producing the
corresponding incomplete key. Note also that, with an incomplete secret key, it is still
possible to obtain h}, hy as

Z12

Ml

222

g

’;2 == ’u1
and to check the value of v by

V= (gl)m1+ay1 (92)m2+ay2

However, it is not possible to perform the crucial check us = (u71)Y, since w is miss-
ing. This already has interesting consequences in terms of security against a passive
adversary.

Theorem 1 Based on the decisional Diffie-Hellman hypothesis (DDH), it is hard to
distinguish the distribution

(91; g2, U1, U2, v, hy, h, 51, 52)

generated by the cryptosystem, from the analogous distribution with hy, hy replaced by
random elements of G. More accurately, if there is an adversary A that distinguishes
the above distributions within time bound t, with advantage €, then there exists a ma-
chine B that solves the decisional Diffie-Hellman problem with advantage €/2 within
time bound t + T, where T accounts for a few extra modular erponentiations and s
bounded by O (m?logq).

In other words, the trapdoor information A1, ks is semantically secure in the sense of
the seminal paper [13]. In the above, the advantage in distinguishing two distributions
is the absolute value of the difference of the probabilities that the algorithm outputs
1, with inputs taken from each.

Proof. Let A be an adversary that distinguishes the two distributions defined in the
theorem. We show how to attack the DDH by distinguishing the distributions D and
R, where

R = {(91;92,U1,U2)}

with all four elements taken at random in G and

D= {(917927u1:u2)}

with log, (u1) = log,,(uz). We generate an incomplete secret key z1, T2, y1, ¥o, 211,
219, %21, %29. Next, we compute the public key from ¢, go and the incomplete secret
key and form

(91, g2, u1, Uz, v, h, ho)
as explained above, computing v as

T1+ay1 (Ta+ays

v=(g1) 92)

Then, we flip a random bit b; if b = 0, we compute

212

g

N =Y
Yo = uit.us?
whereas, if b = 1 we choose them randomly. Finally, we handle the t-uple
(91, 92, u1, u2, v, h1, ha, 71, 72)
to A. When the input (g1, go, 1, u2) is from D, the output &’ equals b with probability

1715. On the other hand, when (g1, g2, u1, u2) is from R, since 211, 212, 291, 299 are chosen

4

randomly and independently, the same distribution is handled to A, regardless of the
value of b. Thus, we have obtained a distinguisher between D and R, with advantage
£/2. Thus, using notations similar to those of [27], the advantage of any algorithm A
that runs in time ¢ is bounded by 2AdvDDH(O(t)), where O(t) = t + 7 accounts for the
few extra operations needed to compute the data to be handled to A.

We now turn to the symmetric encryption step. The cryptogram e comes from the
cleartext M. Encryption is performed by means of a stream cipher based on the IBM
AES candidate MARS. MARS is used in sum/counter mode: let f(k,z) denote the
128-bit output of MARS when encrypting a 128-bit input z under a 256-bit key k. A
bit stream is produced step by step: at the ¢-th step, 128 bits are output as:

flkys+2i)& f(k,s+2i+1)

where addition is modulo 2'2® and @ is bitwise exclusive or. The symmetric encryption
part has an extra feature. Namely, it includes a MAC for every 1024-byte block. The
bit stream output by MARS is thus used:

1. to generate a hash key k

2. to generate enough key material to mask the successive blocks and their respective
MACs

The MAC is computed from each ciphertext block enc, by means of a third hash
function Hs, keyed by k, as Hs(f,enc), where f is a flag whose value is 1 for the
last block and 0 otherwise. Hash function Hj itself is the composition of two keyed
hash function Hs; and Hsy, where Hs; is essentially similar to H; and Hjss is simply a
universal hash function in the sense of Carter and Wegman (see[8] and also [19]).

It is expected that both H; and Hj; are one-way universal (granted the intractability
hypotheses). This means that it is hard for an adversary A to win the following game:

1. A chooses a message x
2. A receives a random key K for H
3. A outputs a message y and wins if it has found a collision, i.e. y # x and

H(K,y)=H(K,z).

2.2 Comments on the specification

Document [27] is extremely well written and should actually ensure interoperability
between different implementations, as claimed. There are very few ambiguities. Our
only minor criticism is that some names are used both for “global” and “local” variables,
which might be puzzling for implementors. For example m is used in section 4.1 to

denote the bit length of P, whereas it appears in section 4.4 as the length in bytes of
the blocks for symmetric encryption.

In terms of security analysis, the picture is slightly less convincing. By this, we
do not mean that the security arguments that are offered are wrong. We will discuss
them in more detail further on in the present report and, as will be seen, they are
mathematically sound. However, they are certainly elaborate and, presumably, can be
understood by a fraction only of the research community in cryptography. As a result,
the specification lacks flexibility and can only be taken as a whole. Simple questions
on the design rationale cannot be answered without going deeply into the security
analysis. We give a few examples:

1. Why does document [27] introduce two values hy, hy whereas the research pa-
per [26] on which it builds has only one such value h?

2. What happens if one derives the symmetric encryption key k by applying SH A1
to the data s, u1, hy, ho instead of using the function proposed in the specification?

3. What happens if one substitutes another symmetric encryption scheme to the
one specifically described in the specification?

These questions may seem outside the requested security analysis. Nevertheless, we
believe that they are important: security standards have to cope with higher level
specifications and with practical constraints. Thus, the analysis should preferably
include indications of how the security level degrades if “minor” changes are performed.

3 Security level of the cryptographic primitive

In this section, we investigate the security of the underlying cryptographic primitive,
both in terms of complexity-theoretic reductions and with respect to the recommended
parameters.

3.1 Complexity-theoretic arguments

Document [27], measures the security of the scheme in terms of
1. the hardness of the decisional Diffie-Hellman hypothesis

2. the second preimage resistance of the core compression function of the hash func-
tion SH A1

3. the pseudo-randomness of the AES candidate MARS used in sum/counter mode

We comment on these basic primitives.

6

3.1.1 The decisional Diffie-Hellman hypothesis

We keep the notations of section 2.1. Recall that the decisional Diffie-Hellman hypoth-
esis over a group G asserts that it is hard to distinguish the distributions D and R,
where

R= {(91;92#1,”2)}

with all four elements taken at random in G and

D = {(gla g2, U, UQ)}

with log,, (u1) = log,, (u2). A quantitative version measures the maximum advantage
AdvDDH(?) of a statistical test 7" that runs in time ¢. This means the maximum of the
difference of the respective probabilities that T outputs 1, when probabilities are taken
over D or R.

As explained in [27], there is a standard self-reducibility argument: by randomiza-
tion, it is possible to transform an arbitrary tuple (g1, g2, u1, u2) such that g; # g, into
a random equivalent one, i.e. the output is in D (resp. R), iff and only if the input is
(see [27], section 2.4.) Thus, if AdvDDH(?) is significant, one can use a distinguisher to
decide, with probability close to one, whether a tuple is in D. This involves performing
repeated tests with the distinguisher, and deciding whether the number of one outputs
has a bias towards D or R. Based on the law of large numbers, a decision with small
constant error probability requires running O(AdvDDH2) tests. One can decrease the
error probability drastically by repeating the above computations an odd number of
times and deciding based on the median of the averages. In [21], the authors claim that
one can reach error probability 2™ by repeating the test O(p(n)).AdvDDH !, where p is
a polynomial, but the proof is missing. In any case, the loss in the reduction is huge.
Thus, despite its elegance, the self-reducibility argument is a bit misleading in terms
of exact security.

Related to the above is the computational Diffie-Hellman assumption (CDH) and
the discrete logarithm assumption. The former states that it is hard to compute g*¥
from g, ¢* and ¢¥, while the latter states that it is hard to compute = from ¢ and ¢°.
It is obvious that DDH is a stronger assumption than CDH, which in turn, is stronger
than the discrete logarithm assumption. However, no other relation is known and the
only way to solve the hard problems underlying DDH or CDH is to compute discrete
logarithms. There are some indications, in other settings, that DDH might be easy, in
some cases, while the CDH remains difficult (see [12] and [11]). However, the references
just quoted do not seem to be relevant to the present context.

3.1.2 The second preimage resistance of SHA1

Here, we note that second preimage resistance is weaker than collision resistance. Fur-
thermore, contrary to finding collisions, there is no known algorithm that computes a

7

second preimage of a hash function in time O(v/S), where S is the size ot its range.
Thus, SHA1 might survive in this setting, even once it has become obsolete as a
collision-free hash function and replaced —say— by the forthcoming SHA-256.

3.1.3 Using MARS as a pseudo-random generator

We will not discuss the security of MARS. During the AES process, no significant
weakness of MARS was found.

3.2 Size of the parameters

As observed above, the only method known to attack the decisional Diffie-Hellman
problem is to solve the underlying discrete logarithm problem (DLP). In order to
estimate whether the suggested parameters of the scheme offer a wide security margin,
it is useful to review the performances of the various algorithms known for the DLP.
Considering that the scheme uses a group G which is a subgroup of some Z}, we will
distinguish between exponential algorithms, whose running time depends on the size
of the group and subexponential algorithms, where the estimate is in terms of the size
of P

3.2.1 Exponential algorithms

There is an algorithm due to Pohlig and Hellman (see [22]), which reduces the determi-
nation of the discrete logarithm modulo a prime P to the analogous problem modulo
each of the prime factors of P — 1. Such an algorithm is efficient if P — 1 is a product
of small primes but irrelevant to the present context, since ¢ is a large prime.

The best algorithm known to date for solving the DLP in any given group G is the
Pollard p-method from [23] which takes computing time equivalent to about /7wn/2
group operations. In 1993, van Oorschot and Wiener in [28], showed how the Pollard
p-method can be parallelized so that, if ¢ processors are used, then the expected number

of steps by each processor before a discrete logarithm is obtained is ~ @ In order
to compute the discrete logarithm of y in base g, each processor computes a kind of
random walk within elements of the form g%y®, selecting z;., as yz; or z? or else gz;,
according to a deterministic but randomly looking choice (say based on a hash value).
“Distinguished” points z; are stored together with their representations z; = ¢%%% in a
list that is common to all processors. When a collision occurs in the list, the requested
discrete logarithm becomes known. There is no record involving discrete logarithms in
subgroups of Z%. However, one can estimate what such a record would be, by recalling
the current record for computations in the group of points of an elliptic curve. In april
2000, the solution to the ECC2K-108 challenge from Certicom led to the computation
of a discrete logarithm in a group with 2% elements. This is one of the largest effort

ever devoted to a public-key cryptography challenge. The amount of work required
to solve the ECC2K-108 challenge was about 50 times that required to solve the 512-
bit RSA cryptosystem (see [4]) and was thus close to 400000 mips-years. Because,
the standard arithmetical operations execute faster than elliptic curve additions, an
equivalent effort in the area of subgroups of Z} would presumably reach a few bits
more. Referring to [20], we find that it would mean an extra 4 to 5 bits. Based on [20],
there is no indication that discrete logarithms of 256 bits, as suggested by the curent
scheme, can be computed in the next 50 years.

3.2.2 Subexponential algorithms

Index calculus method. The index calculus method has two steps:

1. One fixes a subset of Z%, called the factor base, and tries to write elements,
whose discrete logarithm is known, as product of elements of the factor base.
This produces linear relations between the elements of the factor base. When
enough elements have been found, the logarithms of the factor base are obtained
by linear inversion modulo P — 1.

2. To compute the logarithm of y, one tries enough g%y until the result factors over
the factor base.

This method has been extended in [6], working with an imaginary quadratic number
field. The extension has been termed Gaussian Integer Method. Its time complexity is
L(P)Y?°() with

L(z) = exp(y/Inz Inln(z))

It has been used until 1998 to establish records:
e 85 digits in 1996 (see [29])
e 90 digits in 1998 (see [17])

Number field sieve. The Gaussian Integer Method has been generalized to arbitrary
fields in [14, 24]. The new method NFS uses two polynomials with a common root m
modulo n. These polynomials should have as many smooth values as possible. It has
four steps:

1. finding “good” polynomials
2. sieving
3. inverting the linear system

4. computing specific logarithms

The time complexity of NFS is

O(e(lnn)l/s(ln lnn)2/3(C’+o(1)))

for a small constant C (about (64/9)'/% ~ 1.923). This is similar to the NFS factoring
method, although the records are tens of digits behind. The current record is 100 digits
(see [18]). It used the equivalent of one year of computing time of a 450 MHz Pentium.

Practical experience with the NF'S method for the discrete logarithm appears more
limited than what it is for factoring. In [20], the authors state that

It is generally accepted that, for any b in the current range of interest,
factoring b-bit integers takes about the same amount of time as computing
the discrete logarithm in b — x-bit field, where z is a small constant around
20.

In [4], the authors derive the following formula
Y =13.24D'/3 4+ 1928.6

for predicting the calendar year for factoring D-digit number by NFS. Together with
the above estimate, this yields

Y = 13.24(D + 6)'/® + 1928.6

for predicting the calendar year for the discrete logarithm. Applying the formula with
D = 309, i.e. for a 1024 bit modulus, produces Y = 2019. Similarly, one gets Y = 2042
for 2048-bit integers and Y = 2070 for 4096-bit. Since the scheme under review allows
moduli up to 16, 384 bits, there is a really wide margin of security.

3.2.3 Conclusion

Based on current estimates, it appears that the proposed parameters for ACE-Encrypt
remain secure for the foreseeable future, at least for the next 50 years. Progress in
subexponential algorithm such as NFS is the main threat to the cryptosystem. Ac-
cordingly, the size of the modulus will have to grow in time within the proposed range,
taking this progress into account.

4 Security Analysis

Document [27] includes a nicely written security analysis. However, it occasionnally
refers for details to the arguments proposed in connection with earlier versions of the
cryptosystem (in [7, 26]). As observed in section 2.2, there are differences between the
schemes of [7, 26] and the current version. Since the arguments are a bit subtle, we
have found necessary to review the security analysis.

10

4.1 Formal framework

An asymmetric encryption scheme is semantically secure if no polynomial-time attacker
can learn any bit of information about the plaintext from the ciphertext, except its
length. More formally, an asymmetric encryption scheme is (¢, ¢)-IND where IND stand
for indistinguishable, if for any adversary A = (A;, A2) with running time bounded by
t, the advantage

(Sk7 pk) — ’C(lm)’ (M07 M17 St) — Al(pk)
oy | € Ep(Mp;1,s) @ As(c, st) Zp

T,S(EQ

Adv™(A) = —1/2

is < €, where the probability space includes the internal random coins of the adversary,
and M,, M; are two equal length plaintexts chosen by the adversary in the message-
space M.

Another security notion has been defined in the literature, called non-malleability [9].
Informally is states that it is impossible to derive, from a given ciphertext, a new cipher-
text such that the plaintexts are meaningfully related. We won'’t dicuss this notion any
further since it has been proven equivalent to semantic security in an extended attack
model.

The above definition of semantic security covers passive adversaries. It is a chosen—
plaintext or CPA attack since the attacker can only encrypt plaintext. In the extended
model, the adaptive chosen—ciphertext or CCA attack, the adversary is given access to
a decryption oracle and can ask the oracle to decrypt any ciphertext, with the only
restriction that it should be different from the challenge ciphertext. It has been proven
in [1] that, under CCA, semantic security and non-malleability are equivalent. This is
the strongest security notion currently considered.

4.2 Security of key encapsulation

We turn to the security analysis. We want to prove that the ACE scheme is IND-CCA
in the standard model of computation based on the assumption that DDH is hard and
on precise statements related to the security of SHAl and MARS. Following [26],
we want to first focus on the key encapsulation, a term which we use with a slightly
different meaning from [27]. This requires extending theorem 1 to the context of CCA-
adversaries. Here the attacker A receives an input taken from two distributions as
follows

1. either, it is taken from the distribution
DO = (87 Uy, U2, v, h17 h2)

generated by the cryptosystem

11

2. or else from the analogous distribution D; where ﬁl, hy are replaced by random
elements vy, v2 of G.

The attacker A is allowed to query a decryption oracle by submitting the preamble of
a ciphertext and receiving the corresponding pair (hl, hg) as the answer. We establish
the following exact security result where the advantage of A is the difference of the
probabilities that A outputs 1.

Theorem 2 Let A be a CCA-adversary A as above with running time < t, with ad-
vantage €, making k queries to the decryption oracle. There exist adversaries Bppm,
By, operating within time bound t' and such that Bppg is attacking the DDH with
advantage e ppg and By 1s playing the OWU game for H, with success probability g,
where

e 2k+1
€ppH +tE€H =2 < —
2 q
t < t+7

and T accounts for a few extra modular exponentiations and is bounded by O (m?logq).
Proof: We use essentially the same adversary B as in the proof of theorem 1.

1. B receives its input (g1, g2, v}, u5); (we use dashed variables as in [27])

2. B generates an incomplete secret key x1, 2, Y1, Yo, 211, 212, 201, 222

3. B generates a random s', a random key ki, and a random bit b and forms

(S,’ ulla UIQa ,Ula Y1, 72)
where v’ is computed by means of the relations

= ()7 (g

with o = H;(s',u}, uy) and where the definition of 71, 7o depends on the value
of the random coin b. If b = 1, 4, 7o are chosen at random in G, whereas, if
b = 0, one sets:

,)/1 — uazll ul2zl2

,)/2 — ullz2l ul2222

4. finally, B and runs A on the tuple obtained at step 3.

12

We have to explain how B simulates the decryption oracle: from the preamble of
the queried ciphertext, (s,u1,uz,v), using the incomplete secret key, it is still possible
to obtain hq, ho as

A 2%
hl—ul .

" 221 %22
ho = u?' uj

212
Ug

and to check the value of v by

z1+ay1(T2+ay2

v=(g1) 92)

with @ = H;(s,uy,u2). From there, one can decrypt. However, it is not possible to
perform the crucial check us = (u;)", since w is missing. Thus, there is a risk that B
fails to reject an invalid ciphertext such that uy # (uq)®.

At the end of the simulation, B returns a triple (s, uq, us) # (8', u}, ub) such that
Hi(s,u1,u9) = Hyi(s',ul, u}) if one has been queried and next returns the output o' of

A

We wish to compare the behaviour of several games

1. game Gy, where (g1, g2, u}, ub) is from D and the decryption queries are answered
by an actual decryption oracle

2. game G,, where (g1, go, u}, u}) is from D and the decryption queries are answered
by the simulator B

3. game G3, which is as G, but stops as soon as it has found a collision
4. game G4, which is as G3 but where (g1, go,), u5) is from R

We observe that the probability that b’ = b in game G is $(61 + (1 — 6,)), where 6,
be the probability that algorithm A outputs 1 on inputs taken from D, and 6; the
probability that it outputs 1 when they are taken from D;. This is 1/2 + 5. We
check that the probabilities of the same event in all games are very close to each other

repeatedly using the simple yet useful lemma from [27]
Lemma 1 Let E, F, and E', F' be events of two probability spaces such that both
Pr[E|-F] = Pr[E'|=F'] and Pr[F| =Pr[F'] <e.

Then,
|Pr[E] — Pr[E']| < ¢

13

Proof: We write
Pr[E| = Pr[E|-F|Pr[-F| + Pr[E|F| Pr[F]|

Pr[E'] = Pr[E'|~F"] Pr[~F"] + Pt[E|F'] Pt[F"]
Hence
Pr(E] — Pr{’] = Pr{E|~F|(Px[~F] — Px{~F"]) + (Px[E|F| Pr[F| - Px([E|F'| Pr[F")
The right hand side becomes Pr[E|F|Pr[F| — Pr[E|F'] Pr[F'], which is bounded by ¢.

We see that G, perfectly simulates A unless an invalid ciphertext is queried and not
rejected. Let us interpret the event in terms of the secret parameters z1, x2, y1, ¥Yo-
These parameters are in a two-dimensional plane P defined in terms of the unknown
logarithm w of go in base g; by equations:

loge =x1 + wzo
logd = y1 +wys
An invalid ciphertext with preamble (s, u1, us,v) gets accepted if
logv = r(z1 + ayr) + wr'(ze + ays)

with r = loguy, 7' = log,, up, r # r'. This additional equation is not a linear com-
bination of the above two. Thus, it defines a line within P. Since k ciphertexts are
queried, we can collect the exceptional lines as a subset of probability < g. Applying
the lemma we see that G; and G, output a correct guess with probabilities that differ
by at most g

To go from Gy to Gs, we just have to exclude the event of probability ey that a
collision is output. This bounds the difference of the probabilities that each game
outputs one.

To go from G5 to G4, we consider the event that either

e log, uy = log,, u,
e or some invalid ciphertext with (s, uy,us) # (s, u}, ub) is accepted

Let us interpret these events in terms of the secret parameters xi, x2, y1, yo. If
log, u} # log,, us these parameters are further constrained by equation

logv = r(z1 + 'y1) + wri(z2 + ayo)

with r = logu,, r] = log,, uz, 1 # r{. This defines a line £. Now an invalid ciphertext
with preamble (s, uq,ug,v) gets accepted if

logv = r(x1 + ayr) + wr'(ze + ays)

14

with r = log, u, 7" = log,, uz, v # r'. Since no collision has been found by B,
a # o and this additional equation is not a linear combination of the above three.
Thus, it defines a point within £. Since k ciphertexts are queried, we can collect the
exceptional points as a subset of probability < g. We add the probability 1/¢ that
log,, uj = log,, us. We consider a similar event for G4, which we also discard. Applying
the lemma we see that G; and G, output a correct guess with probabilities which differ
by at most "‘T“

To conclude, observe that, when (g1, g2, u}, u}) is from R, the pair 71, 7y is indepen-
dent of (g1, g2, v}, u)) and thus the distribution of inputs for game G, is independent of
b. Accordingly, the probability that the algorithm outputs b is 1/2. Summing up, we
get that £ <eppy +en + %. This finishes the proof of the theorem.

4.3 Adaptive chosen-ciphertext security

We prove the following:

Theorem 3 Let A be a CCA-adversary A attacking (K,E,D), within time bound t,
with advantage €, making k queries to the decryption oracle and using two test messages
with ¢ bytes. There exists machines Bppu, Bu, By and Bl operating within time
bound t', such that Bppy attacks the DDH with advantage eppy, By plays the UWO
game for Hy with success probability ey, By attacks the pseudorandomness of MARS
in sum/counter mode when used to output the number of blocks requested to encrypt
(-byte messages, with advantage €yr, By plays the UWO game for Hsy, with advantage
ey, and

2k +1 2 K
9128 ' 9128

eppu teu+2m+ [—]ey

¢ 1024

v

t < t+T
proof: We define the following CCA-attacker B.
1. B is given its input (g1, go, u}, uj)
2. B generates an incomplete secret key x1, 2, Y1, Yo, 211, 212, 221, 222

3. B generates a random s', a random key k1, and forms
(SI’ ulla U'IQ, UI: Y1, '72)
where v is computed by means of the relations

v = (gl)w1+a’y1 (92)1624—0/,1/2

Y1, Yo are defined by

212

M oud

1= Up

—_ 221 222
Yo = U Uy

15

4. next B generates ky and runs A; on the public data to get a pair of messages
{My, M,} as well as a state information st. It chooses a random bit b, and then
defines C' < y, to be a ciphertext of M, with preamble (s, u, ul, v'), computing
the session key k' as k' = Ho(s', ul, 71, 72)

5. B runs Ay(C, st) and finally gets an answer ¢'. Finally, B outputs bit b = ¥'.
As in the proof of theorem 2, we will envision several games:

e game Gy, where (g1, g2, 1}, u}) is from D and the decryption queries are answered
by an actual decryption oracle

e game Gy, where (g1, g2, 1}, u}) is from D and the decryption queries are answered
by the simulator used in the proof of theorem 2

e game G3, which is as G, but stops as soon as it has found a collision for H;

e game G4, which is as G3 but where (g1, go, u}, uy) is from R. As already observed,
this makes the pair 7, v, random

e game G5, which plays G, but uses a randomly chosen key k' in place of k' =
Hy(s',ul,v1,72) to compute the challenge ciphertext. Also, when a ciphertext is
queried with preamble (s, u], ub, v'), the same key k' is used to decrypt.

e game Gg, which plays G5 but rejects when a ciphertext with preamble (s', v}, u), v')
is submitted

e game G, which is as Gg but replaces the output of the MARS pseudo-random
generator produced from preamble (s, u}, ub, v') by a random string of the length
appropriate for decrypting the challenge ciphertext.

We observe that the probability that G; outputs 1 is exactly 1/2 + e. As in the
proof of theorem 2, we bound the difference of probabilities between G; and G, by
eppE + € + 2EL. Clearly, the output of G; is independent of b. Thus, we only have
to upperbound the difference that the output is 1 in games G, and G;.

We first study how one goes from G4 to Gs. We use the fact that Hs is universal
in terms of the inputs hq, hy: for every pair z, y of such inputs, z # y, the probability
(over the key ko) that Hy(z) = Ha(y) is 1/2, where £ = 256 is the size of the outputs
of Hy. When this holds, the leftover hash lemma of [16] implies that, hashing a set
of 2* bit strings produces a distribution (ko, Ho(z)), whose distance to the uniform
distribution is < m Here, A > 2 x 255 and therefore the distance is at most
2/2'28 This bounds the difference between the respective probabilities that G4 and Gs
output 1.

16

We next bound the difference of probabilities from G5 to Gg. We have to consider
the probability that Gs does not reject a ciphertext with preamble (s', u}, u), v'). We
distinguish between

e ciphertexts queried by A;

e ciphertexts queried by As, (which are different from the challenge ciphertext)

Game Gs perfectly simulates G, unless a queried ciphertext with preamble (s, v}, u), v")
is correctly MACed. In this case

e ciphertexts queried by A; have their first block correctly MACed

e ciphertexts queried by A,, have the first block on which they differ from the
challenge ciphertext correctly MACed

We let Y be the union of these events. In order to bound the probability of Y, we modify
game Gs by replacing the output of the MARS pseudo-random generator produced
from preamble (', u}, uj, v') (more accurately from key £') by a random string, whose
length is exactly what is needed for decrypting the challenge ciphertext (if additional
random data is needed, we simply let MARS output these data). We let £y, be the
distinguishing probability (with respect to testing whether Y happens) between Gs
and gé”. Note that these are two versions of the same machine B,;;, one with inputs
produced by MARS and the other with random inputs. Similarly, we replace gé” by
QéQ), which is alike but stops whenever the various computations of Hs; needed to
check the MACs of the queried ciphextexts, produce a second preimage of some hash
value previously obtained when computing the challenge ciphertext. The resulting
game g§2> behaves as gél) (with respect to testing whether Y happens), except on a
set of probability bounded by ey, where ey is the probability that gg") has won one of
[10%1 UOW games for Hs;. This comes from the fact that By = Q§2) stops earlier if

this happens. Now, in game g§2), all inputs submitted to the universal hash function
Hjy are distinct from those submitted while encrypting the challenge ciphertext. By
standard results (see [19]), each is correct with probability < . This shows that
PrlY] < em + [15;1€ + 3555-

To complete the proof of the theorem, we simply note that Gg and G; are two
versions of the same machine Bj;9, one with inputs produced by MARS and the other
with random inputs. We let £,; be the distinguishing probability of the machine defined

by running Bjy;; and By at random, we see that:

, 2k+1 2 K
102151 T g Tgms t g
2k + 1 2 K

2128 2128

€ > eppgteEg+eEm+eEm+ [
/¢
1024

e > epputem+2m+]| e +

This concludes the proof.

17

4.4 Construction of the basic primitives

From the security analysis that was just performed, one sees that it is necessary to
ensure that the hash functions have the required properties.

4.4.1 Construction of H; and Hj;

Both functions use the construction in [25]. This construction allows to use a fixed-size
compression function which compresses a + b bits to b bits in order to hash messages
with La blocks. It has the following properties

1. if the original compression function is second preimage resistant, then, the re-
sulting function is OWU (one-way universal)

2. the key to the composed function consists of a a-bit string K, together with ¢+ 1
b-bit masks m;, where ¢ = [log L]

Recall that a hash function H is OWU, if it is hard for an adversary A to win the
following game:

1. A chooses a message x
2. A receives a random key K for H

3. A outputs a message y and wins if it has found a collision, i.e. y # x and
H(K,y) = H(K,z).

As usual, one can define the advantage of A as its probability of success.

The construction of [25] hashes z, a message with L blocks z;, by computing h;,
where hg is an arbitrary string and h; = C(hi—y ® m,(),%; ® K). The v function
computes the exponent v(z) of 2 in the prime decomposition of i.

We do not review the analysis from [25] but mention that the existence of an
adversary A that wins the OWU game with advantage ¢, within time ¢, implies the
existence of an adversary B which computes preimages with probability &' and time ¢/,
where t' ~ ¢ and &' ~ %.

The cryptosystem under review uses the above construction, taking as a compres-
sion function the core function of SHA1. This means a = 512 and b = 160. We do
not discuss the necessary padding rules. The requested key material comes from the
output of MARS. This defines what is denoted by UOW Hash in [27] and Hj; in our
analysis. What we call H; (UOW H Fhash' in [27]) applies H3; to a specific formatting
of the data s, uy, us.

18

4.4.2 Construction of H,

Hash function Hj is the entropy smoothing hash function that produces a random key
k for MARS. It consists of two components that are xored together:

1. a 256-bit string obtained by applying a universal hash fonction to formatted data
coming from the pair (hi, hy). This uses a standard construction of a universal

hash function ,
> kom
i=1

where ¢ is an appropriate parameter, k; comes form the key and m,; are the
message blocks. The operations are performed in the finite field GF(2%59).

2. a 256-bit string obtained by applying (twice) a simplified SH A function to suit-
ably formatted data coming from s, uy, hy, ho

Note that the first component should be enough. The role of the second component
will be explained later.

4.4.3 Construction of H;

As explained earlier in our report, Hj is the composition of Hz; (UOW Hash' of [27]),
which produces a 160-bit output, followed by a universal hash function in the sense of
Carter and Wegman (see [8] and also [19]). The latter uses the formula ¢;d; + cads to
hash ¢;, ¢, with key di, do, where computations are in the field GF(2'?8). As usual, the
key comes from the material produced by the output of the MARS generator.

4.5 Hash functions as a hedge

In the random oracle model [2], one can prove that the scheme achieves IND-CCA
security relative to the CDH problem. More accurately, one can use a version of
the random oracle model which assumes that the core compression function of SH A1
behaves like a random function. Looking at the construction of the entropy-smoothing
hash function H,, one sees that, due to its second component, it also behaves like a
random function. Therefore, one can simply see Hy as a random oracle.

We will not review in detail the proof in [26]. We mention that it uses a reduction
where one is given access to a DDH distinguisher B, whose advantage is 1 — §, with ¢
negligible. From an adversary A = (A;, As) against the semantic security of (K, &, D),
one gets another machine & which solves the CDH, as follows:

1. S is given a CDH instance, (g, A, B) in Z} with g of order ¢, and has to find the
CDH answer C. It first simulates K(1™) by choosing random w, z,y, 22 € Z,,

19

random keys ki, ko, and defining

g1 g,h1 < A, go < ¢¥ mod P, hy + ¢*> mod P, c + ¢°* mod P,d < ¢¥ mod P.

2. S runs A; on the public data, and gets a pair of messages { My, M;} as well as a
state information st. It chooses a random bit b, and then defines, for a random
128-bit string ',

w z+a
uh < B,uy <+ u'Y mod P,/ = Hy(s',u},uy), v = u'7"*Y mod P.

Then it chooses a random 256-bit key k', and encrypts the message M, into €',
using key &'. It produces the ciphertext C' = (s', u}, uj, v', ¢'). (The dash is used
for denoting the target ciphertext.)

3. S runs Ay(C’, st) and finally gets an answer &’. Then S outputs the solution to
the CDH instance found during the simulation as explained below, or Fail.

In order to simulate, the random oracle, S can make random choices unless it meets data
(s',ul, b, hY) corresponding to the challenge ciphertext. Even though A/ is unknown,
this can be checked, with low error probability by calling the DDH distinguisher. One
can show that it happens with significant probability and produces the requested CDH
result.

To consider A as a chosen-ciphertext adversary, S has also to be able to simulate the
decryption oracle. In order to find the actual symmetric key & that is needed to decrypt
C = (s,u1,us,v,€), S looks at the list of queries to Hy and checks whether it finds one
of the form (s, uy,z,hy). Note that hy can be computed from the preamble and z.
The correctness of x is checked by running the DDH distinguisher on (g1, b1, u1, x).

One can see that the reduction calls B as many times as there are queries to the
random oracle Hy. Now, one can substitute to B the machine that is obtained through
the reduction which comes from an adversary against the security of the scheme in
the standard model. However, as observed in section 3.1.1, it is necessary to run
O(AdvDDH ?) tests to get a negligible error probability. Thus, the concrete estimates
that may be derived from the proof in the random oracle model are not very conclusive.

4.6 Understanding the rationale for the construction

As pointed out in section 2.2, the security proof is intricate and the rationale for each
construction is only apparent to cryptography experts, who have mastered the entire
sequence of arguments. To support this opinion, we answer the three questions raised
in section 2.2.

1. Document [27] introduces two values hi, hy whereas the research paper [26] on
which it builds has only one such value h to guarantee that enough randomness

20

is given to Hy so that 256 bits are obtained by entropy smoothing. With a single
h, the current security proof collapses.

2. If one derives the symmetric encryption key k£ by applying SH Al to the data s,
uq, hi, ho instead of using the function proposed in the specification, there is no
guarantee that the session key is random enough. The current security proof, in
the standard model, collapses at the point where one goes from from G, to G5 in
the proof of theorem 3.

3. If one substitutes another symmetric encryption scheme to the one specifically
described in the specification, the security proof may or may not collapse. Re-
placing MARS by the AES is acceptable but discarding the MACs is not, since
the current security proof collapses at the point where one goes from from G5 to
Gg in the proof of theorem 3

5 Conclusion

Based on our analysis, we believe that the cryptosystem ACE is provably secure against
adaptive chosen-ciphertext attacks. The proposed parameters appear to offer a margin
of security of at least fifty years. We therefore recommend the scheme.

Our main concern is the lack of flexibility of the scheme. As explained in our report,
it is extremely difficult to “reengineer” any part of the scheme, due to the intricate
security arguments.

Another warning that we give is that the scheme relies on the hardness of the Diffie-
Hellman decisional hypothesis DDH. Thus, the comparison with other schemes based
—say— on the computational Diffie-Hellman hypothesis is a bit unfair.

To end up, we would like to emphasis that the achievement of [27], providing
a complete quantitative security analysis from standard hypotheses (the only such
example, as far as we know) is a real masterpiece.

References

[1] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions
of Security for Public-Key Encryption Schemes. In Crypto 98, LNCS 1462, pages
26-45. Springer-Verlag, Berlin, 1998.

[2] M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for
Designing Efficient Protocols. In Proc. of the 1st CCS, pages 62-73. ACM Press,
New York, 1993.

21

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

M. Bellare and P. Rogaway. Optimal Asymmetric Encryption — How to Encrypt
with RSA. In FEurocrypt ’94, LNCS 950, pages 92-111. Springer-Verlag, Berlin,
1995.

S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy,
H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. C. Leyland, J. Marchand,
F. Morain, A. Muffett, C. Putnam, C. Putnam, P. Zimmermann, Factorization
of a 512-Bit RSA Modulus. Eurocrypt’2000, Lecture Notes in Computer Science
1807,(2000), 1-18.

Certicom, Information on the Certicom ECC challenge,
http://www.certicom.com/research/ecc_challenge.html

D. Coppersmith, A.M. Odlyzko and R.Schroeppel, Discrete Logarithms in GF(p),
Algorithmica 1(1986), 1-15

R. Cramer and V. Shoup, A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. Crypto’98, Lecture Notes in Computer
Science 1462, (1998), 13-25.

J.L. Carter and M.N. Wegman, Universal classes of hash functions, Journal of
Computer and System Sciences, 18, (1979), 143-154.

D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. In Proc. of the
23rd STOC. ACM Press, New York, 1991.

T. El Gamal, A public key crtyptosystem and signature scheme based on discrete
logarithms, IEEE Trans. on Inform. theory, 31 (1985), 469-472.

G. Frey, M. Miiller, and H. G. Riick. The Tate-Pairing and the Discrete Logarithm
Applied to Elliptic Curve Cryptosystems. IEEE Transactions on Information
Theory, 45:1717-1719, 1999.

G. Frey and H. G. Riick. A Remark Concerning m-Divisibility and the Discrete

Logarithm in the Divisor Class Group of Curves. Mathematics of Computation,
62:865-874, 1994.

S. Goldwasser and S. Micali, Probabilistic encryption, Journal of Computer and
System Science 28, (1984), 270-299.

Dan Gordon, Discrete Logarithms in GF(p) using the Number Field Sieve, SIAM
J. Discrete Math., 6, (1993), 124-138.

22

[15] R. Harley, D. Doligez, D. de Rauglaudre, X. Leroy, Elliptic Curve Discrete Loga-
rithms: ECC2K-108,
http://cristal.inria.fr/ harley/ecdl7/

[16] R. Impagliazzo and D. Zuckermann, How to rectcle random bits, 30th annual
symposium on foundations of computer science, (1989), 248-253.

[17] A. Joux and R. Lercier, Computing a discrete logarithm in GF(p), p a 90 digit
prime,
http://www.medicis.polytechnique.fr/ lercier/english/dlog.html

[18] A. Joux and R. Lercier, Computing a discrete logarithm in GF(p), p a 100 digit
prime,
http://www.medicis.polytechnique.fr/ lercier/english/dlog.html

[19] H. Krawczyk, LFSR-based hashing and authentication, Crypto’94, Lecture Notes
in Computer Science 839, (1995), 129-139.

[20] A.K. Lenstra and E. Verheul, Selecting cryptographic key sizes, PKC’2000, Lecture
Notes in Computer Science 1751,(2000), 446-465.

[21] M. Naor, O. Reingold, Number-theoretic Constructions of Efficient Pseudo-
random Functions, 38-th annual symposium on foundations of computer science,
(1997), 458-467.

[22] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance, IEEE Transactions on Information The-
ory, 24, (1978),106-110.

[23] J. Pollard, Monte Carlo methods for index computation mod p, Mathematics of
Computation, 32, (1978), 918-924.

[24] Oliver Schirokauer, Discrete Logarithms and Local Units, Phil. Trans. R. Soc.
Lond. A 345, (1993), 409-423.

[25] V. Shoup, A composition theorem for universal one-way hash functions, Euro-
crypt’2000, Lecture Notes in Computer Science 1807, (2000), 275-288.

[26] V. Shoup, Using hash functions as a hedge against chosen ciphertext attack, Eu-
rocrypt’2000, Lecture Notes in Computer Science 1807, (2000), 445-452.

[27] V. Shoup and T. Schweinberger, ACE Encrypt: The Advanced Cryptographic
Engine’ public key encryption scheme, Manuscript, March 2000. Revised, August
14, 2000.

23

[28] P.C. van Oorschot and M. J. Wiener, Parallel collision search with cryptanalytic
applications, J. Cryptology, 12, (1999), 1-28.

[29] D. Weber, T. F. Denny and J. Zayer,
http://felix.unife.it/Root/d-Mathematics/d-Number-theory
/t-Weber-discrete-logarithm-record-960925

24

