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1 Summary

This document summarizes the state-of-the-art in knowledge on the security of the elliptic curve
digital signature algorithm (ECDSA). ECDSA is the elliptic curve analogue of the digital sig-
nature algorithm (DSA) and has been standardized by many standards organizations around the
world including NIST, IEEE, ANSI and ISO. The security of DSA, ECDSA and related discrete
logarithm signature schemes have been widely studied by the cryptographic community. Our
study found no new weaknesses in ECDSA.

2 Protocol specification

2.1 EC domain parameters

Elliptic Curve domain parameters are comprised of:

1. a field size q, where either q � p, an odd prime, or q � 2m;

2. an indication FR (field representation) of the representation used for the elements of
�

q;

3. (optional) a bit string �������	� of length at least 160 bits, if the elliptic curve was generated
in accordance with the method described in the submission;

4. two field elements a and b in
�

q which define the equation of the elliptic curve E over
�

q

(i.e., y2 � x3 
 ax 
 b in the case p � 3, and y2 
 xy � x3 
 ax2 
 b in the case q � 2m);

5. two field elements xG and yG in
�

q which define a finite point G �� xG � yG � of prime order
in E � � q � ;

6. the order n of the point G, with n � 2160 and n � 4 � q; and

7. the cofactor h � #E � � q ��� n.

2.2 ECDSA key pairs

An entity A’s key pair is associated with a particular set of EC domain parameters D ��� q � FR � a � b,
G � n � h � . This association can be assured cryptographically (e.g., with certificates) or by context
(e.g., all entities use the same domain parameters). The entity A must have the assurance that
the domain parameters are valid (see the submission) prior to key generation.

ECDSA KEY PAIR GENERATION. Each entity A does the following:
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1. Select a random or pseudorandom integer d in the interval
�
1 � n � 1 � .

2. Compute Q � dG.

3. A’s public key is Q; A’s private key is d.

2.3 ECDSA signature generation

To sign a message m, an entity A with domain parameters D ��� q � FR � a � b � G � n � h � and associated
key pair � d � Q � does the following:

1. Select a random or pseudorandom integer k, 1 � k � n � 1.

2. Compute kG � � x1 � y1 � and convert x1 to an integer x1.

3. Compute r � x1 mod n. If r � 0 then go to step 1.

4. Compute k � 1 mod n.

5. Compute SHA-1 � m � and convert this bit string to an integer e.

6. Compute s � k � 1 � e 
 dr � mod n. If s � 0 then go to step 1.

7. A’s signature for the message m is � r� s � .

2.4 ECDSA signature verification

To verify A’s signature � r� s � on m, B obtains an authentic copy of A’s domain parameters D �
� q � FR � a � b � G � n � h � and associated public key Q. It is recommended that B also validates D and
Q (see the submission). B then does the following:

1. Verify that r and s are integers in the interval
�
1 � n � 1 � .

2. Compute SHA-1 � m � and convert this bit string to an integer e.

3. Compute w � s � 1 mod n.

4. Compute u1
� ew mod n and u2

� rw mod n.

5. Compute X � u1G 
 u2Q.

6. If X � O, then reject the signature. Otherwise, convert the x-coordinate x1 of X to an
integer x1, and compute v � x1 mod n.

7. Accept the signature if and only if v � r.
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PROOF THAT SIGNATURE VERIFICATION WORKS. If a signature � r� s � on a message m was
indeed generated by A, then s � k � 1 � e 
 dr � mod n. Rearranging gives

k � s � 1 � e 
 dr � � s � 1e 
 s � 1rd � we 
 wrd � u1

 u2d � mod n ���

Thus u1G 
 u2Q � � u1

 u2d � G � kG, and so v � r as required.

3 Security level of cryptographic techniques

The security objective of ECDSA is to be existentially unforgeable against a chosen-message
attack. The goal of an adversary who launches such an attack against a legitimate entity A
is to obtain a valid signature on a single message m, after having obtained A’s signature on a
collection of messages (not including m) of the adversary’s choice.

Some progress has been made on proving the security of ECDSA, albeit in strong theoretical
models. Slight variants of DSA and ECDSA (but not ECDSA itself) have been proven to be
existentially unforgeable against chosen-message attack by Pointcheval and Stern [32] (see also
[7]) under the assumptions that the discrete logarithm problem is hard and that the hash function
employed is a random function. Specifically, their results show that any successful attack which
does not use the structure of the specific hash function in the scheme must break the Elliptic
Curve Discrete Logarithm Problem (ECDLP). ECDSA itself has been recently proven secure
by Brown [8] under the strong assumption that the underlying group is a generic group and
that the hash function employed is collision resistant. Specifically, Brown’s results show that
any successful attack which does not use the structure of the Elliptic Curve group must find
collisions in the hash function.

4 Security level of cryptographic primitive functions

4.1 Attacks on the hash function

DEFINITION. A (cryptographic) hash function H is a function that maps bit strings of arbitrary
lengths to bit strings of a fixed length t such that:

1. H can be computed efficiently;

2. (preimage resistance) For y selected uniformly at random from
�
0 � 1 � t , it is computation-

ally infeasible to find a bit string x such that H � x � � y.

3. (second preimage resistance) Given x1, it is computationally infeasible to find a different
bit string x2 such that H � x1 � � H � x2 � .
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4. (collision resistance) It is computationally infeasible to find distinct bit strings x1 and x2

such that H � x1 � � H � x2 � .

SHA-1 SECURITY REQUIREMENTS. The following gives some examples of how attacks on
ECDSA can be successfully launched if SHA-1 is not preimage resistant, second preimage
resistant, or collision resistant.

1. If SHA-1 is not preimage resistant, then an adversary E may be able to forge A’s sig-
natures as follows. E selects an arbitrary integer l, and computes r as the x-coordinate
of Q 
 lG reduced modulo n. E sets s � r and computes e � rl mod n. If E can find a
message m such that e � SHA-1 � m � , then � r� s � is a valid signature for m.

2. If SHA-1 is not collision resistant, then an entity A may be able to repudiate signatures as
follows. A first generate two messages m and m

�
such that SHA-1 � m � � SHA-1 � m � � ; such

a pair of messages is called a collision for SHA-1. She then signs m, and later claims to
have signed m

�
(note that every signature for m is also a signature for m

�
).

3. If SHA-1 is not collision resistant, then an entity B could use the birthday attack to swindle
A as follows. B prepares two versions (m1 and m2) of a contract, where m1 is favorable to
A and m2 bankrupts A. B makes several subtle changes to each document and compares
whether SHA-1 � m �

1 � � SHA-1 � m �

2 � , where m
�

1 (m
�

2) is a subtle variant of m1 (m2). When
B finds two such variants, B gets the signature � r� s � of m

�

1 from A. Then � r� s � is also a
signature of m

�

2.

4. If SHA-1 is not second preimage resistant, then an entity B may be able to forge signatures
as follows. B generates a message m, find another message m

�
such that SHA-1 � m � �

SHA-1 � m � � , and gets the signature � r� s � of m
�
from A. Then � r� s � is also a signature of m.

IDEAL SECURITY. A t-bit hash function is said to be have ideal security [26] if both: (i) given a
hash output, producing a preimage (or a second preimage) requires approximately 2t operations;
and (ii) producing a collision requires approximately 2t

�
2 operations (this is the best that can be

hoped for, in view of the birthday attacks). SHA-1 is a 160-bit hash function and is believed to
have ideal security. The fastest method known for attacking ECDSA by exploiting properties
of SHA-1 is to find collisions for SHA-1. Since this is believed to take 280 steps, attacking
ECDSA in this way is computationally infeasible. Note, however, that this attack imposes an
upper bound of 280 on the security level of ECDSA, regardless of the size of the primary security
parameter n. Of course, this is also the case with all present signature schemes with appendix
since the only hash functions that are widely accepted as being both secure and practical are
SHA-1 and RIPEMD-160 (see Dobbertin, Bosselaers and Preneel [10]), both of which are 160-
bit hash functions.

VARIABLE OUTPUT LENGTH HASH FUNCTIONS. It is expected that SHA-1 will soon be
replaced by a family of hash functions Hl , where Hl is an l-bit hash function having ideal
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security. If one uses ECDSA with parameter n, then one would use Hl , where l � �
log2 n � , as

the hash function. In this case, attacking ECDSA by solving the ECDLP and attacking ECDSA
by finding collisions for Hl , both take approximately the same amount of time. The new family
will have output lengths of 256, 384 and 512 bits [29].

VAUDENAY’S ATTACKS. Vaudenay [43] demonstrated a theoretical weakness in DSA based on
his insight that the actual hash function used in the DSA is SHA-1 modulo q, not just SHA-1,
where q is a 160-bit prime. (Since SHA-1 is a 160-bit hash function, some of its outputs, when
converted to integers, are larger than q. Hence, in general, SHA-1 � m ���� � SHA-1 � m � mod q).)
This weakness allows the selective forgery of one message if the adversary can select the domain
parameters. This weakness is not present in ECDSA because of the requirement that n (the
analogous quantity to q in the DSA) be greater than 2160.

5 Security level of cryptographic primitive problem: the el-
liptic curve discrete logarithm problem

One way in which an adversary can succeed is to compute A’s private key d from A’s domain
parameters � q � FR � a � b � G � n � h � and public key Q. Then the adversary could subsequently forge
A’s signature on any message of its choice.

PROBLEM DEFINITION. The elliptic curve discrete logarithm problem (ECDLP) is the follow-
ing: given an elliptic curve E defined over a finite field

�
q, a point P � E � � q � of order n, and a

point Q � lP where 0 � l � n � 1, determine l.

5.1 Known attacks

This subsection overviews the algorithms known for solving the ECDLP and discusses how
they can be avoided in practice.

1. NAIVE EXHAUSTIVE SEARCH. In this method, one simply computes successive multi-
ples of P: P, 2P, 3P, 4P������� until Q is obtained. This method can take up to n steps in the
worst case.

2. POHLIG-HELLMAN ALGORITHM. This algorithm, due to Pohlig and Hellman [31], ex-
ploits the factorization of n, the order of the point P. The algorithm reduces the problem
of recovering l to the problem of recovering l modulo each of the prime factors of n; the
desired number l can then be recovered by using the Chinese Remainder Theorem.

The implications of this algorithm are the following. To construct the most difficult in-
stance of the ECDLP, one must select an elliptic curve whose order is divisible by a large
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prime n. Preferably, this order should be a prime or almost a prime (i.e. a large prime n
times a small integer h). For the remainder of this section, we shall assume that the order
n of P is prime.

3. BABY-STEP GIANT-STEP ALGORITHM. This algorithm is a time-memory trade-off of
the method of exhaustive search. It requires storage for about � n points, and its running
time is roughly � n steps in the worst case.

4. POLLARD’S RHO ALGORITHM. This algorithm, due to Pollard [33], is a randomized
version of the baby-step giant-step algorithm. It has roughly the same expected running
time (

�
πn � 2 steps) as the baby-step giant-step algorithm, but is superior in that it requires

a negligible amount of storage.

Gallant, Lambert and Vanstone [16], and Wiener and Zuccherato [44] showed how Pol-
lard’s rho algorithm can be sped up by a factor of � 2. Thus the expected running time of
Pollard’s rho method with this speedup is � � πn � � 2 steps.

5. PARALLELIZED POLLARD’S RHO ALGORITHM. Van Oorschot and Wiener [30] showed
how Pollard’s rho algorithm can be parallelized so that when the algorithm is run in par-
allel on r processors, the expected running time of the algorithm is roughly � � πn � � � 2r �
steps. That is, using r processors results in an r-fold speed-up.

6. POLLARD’S LAMBDA METHOD. This is another randomized algorithm due to Pollard
[33]. Like Pollard’s rho method, the lambda method can also be parallelized with a linear
speedup. The parallelized lambda-method is slightly slower than the parallelized rho-
method [30]. The lambda-method is, however, faster in situations when the logarithm
being sought is known to lie in a subinterval

�
0 � b � of

�
0 � n � 1 � , where b � 0 � 39n [30].

7. MULTIPLE LOGARITHMS. R. Silverman and Stapleton [37] observed that if a single
instance of the ECDLP (for a given elliptic curve E and base point P) is solved using
(parallelized) Pollard’s rho method, then the work done in solving this instance can be
used to speed up the solution of other instances of the ECDLP (for the same curve E and
base point P). More precisely, if the first instance takes expected time t, then the second
instance takes expected time � � 2 � 1 � t � 0 � 41t. Having solved these two instances, the
third instance takes expected time � � 3 � � 2 � t � 0 � 32t. Having solved these three in-
stances, the fourth instance takes expected time � � 4 � � 3 � t � 0 � 27t. And so on. Thus
subsequent instances of the ECDLP for a particular elliptic curve become progressively
easier. Another way of looking at this is that solving k instances of the ECDLP (for the
same curve E and base point P) takes only � k as much work as it does to solve one
instance of the ECDLP. This analysis does not take into account storage requirements.

Concerns that successive logarithms become easier can be addressed by ensuring that the
elliptic parameters are chosen so that the first instance is infeasible to solve.
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8. SUPERSINGULAR ELLIPTIC CURVES. Menezes, Okamoto and Vanstone [25, 24] and
Frey and Rück [14] showed how, under mild assumptions, the ECDLP in an elliptic curve
E defined over a finite field

�
q can be reduced to the ordinary DLP in the multiplicative

group of some extension field
�

qk for some k
�

1, where the number field sieve algorithm
applies. The reduction algorithm is only practical if k is small — this is not the case for
most elliptic curves, as shown by Balasubramanian and Koblitz [4]. To ensure that the
reduction algorithm does not apply to a particular curve, one only needs to check that n,
the order of the point P, does not divide qk � 1 for all small k for which the DLP in

�
qk is

tractable — in practice, when n � 2160 then 1 � k � 20 suffices [2].

An elliptic curve E over
�

q is said to be supersingular if the trace t of E is divisible by
the characteristic p of

�
q. For this very special class of elliptic curves, it is known that

k � 6. It follows that the reduction algorithm yields a subexponential-time algorithm for
the ECDLP in supersingular curves. For this reason, supersingular curves are explicitly
excluded from use in the ECDSA by the above divisibility check.

More generally, the divisibility check rules out all elliptic curves for which the ECDLP
can be efficiently reduced to the DLP in some small extension of

�
q. These include the

supersingular elliptic curves and elliptic curves of trace 2 (elliptic curves E over
�

q for
which #E � � q � � q � 1).

9. PRIME-FIELD ANOMALOUS CURVES. An elliptic curve E over
�

p is said to be prime-
field-anomalous if #E � � p � � p. Semaev [35], Smart [39], and Satoh and Araki [34]
showed how to efficiently solve the ECDLP for these curves. The attack does not extend
to any other classes of elliptic curves. Consequently, by verifying that the number of
points on an elliptic curve is not equal to the cardinality of the underlying field, one can
easily ensure that the Semaev-Smart-Satoh-Araki attack does not apply.

10. CURVES DEFINED OVER A SMALL FIELD. Suppose that E is an elliptic curve defined
over the finite field

�
2e. Gallant, Lambert and Vanstone [16], and Wiener and Zuccher-

ato [44] showed how Pollard’s rho algorithm for computing elliptic curve logarithms in
E � � 2ed � can be further sped up by a factor of � d — thus the expected running time of
Pollard’s rho method for these curves is � �

πn � d ��� 2 steps. For example, if E is a Koblitz
curve (see the submission), then Pollard’s rho algorithm for computing elliptic curve log-
arithms in E � � 2m � can be sped up by a factor of � m. This speedup should be considered
when doing a security analysis of elliptic curves whose coefficients lie in a small subfield.

11. CURVES DEFINED OVER
�

2m , m COMPOSITE. Galbraith and Smart [15], expanding
on earlier work of Frey [12, 13], discuss how the Weil descent might be used to solve
the ECDLP for elliptic curves defined over

�
2m where m is composite (such fields are

sometimes called composite fields). More recently, Gaudry, Hess and Smart [17] refined
these ideas to provide some evidence that when m has a small divisor l, e.g. l � 4, the
ECDLP for elliptic curves defined over

�
2m can be solved faster than with Pollard’s rho
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algorithm. See also Menezes and Qu [27] for an analysis of the Weil descent attack. In
light of these results, it seems prudent to not use elliptic curves over composite fields.

It should be noted that some ECC standards, including the draft ANSI X9.63 [3], explic-
itly exclude the use of elliptic curves over composite fields. The ANSI X9F1 committee
also agreed in January 1999 to exclude the use of such curves in a forthcoming revision
of ANSI X9.62.

12. NON-APPLICABILITY OF INDEX-CALCULUS METHODS. Whether or not there exists a
general subexponential-time algorithm for the ECDLP is an important unsettled question,
and one of great relevance to the security of ECDSA. It is extremely unlikely that anyone
will ever be able to prove that no subexponential-time algorithm exists for the ECDLP.
However, much work has been done on the DLP over the past 24 years, and more specif-
ically on the ECDLP over the past 16 years, and no subexponential-time algorithm has
been discovered for the ECDLP. Miller [28] and J. Silverman and Suzuki [38] have given
convincing arguments for why the most natural way in which the index-calculus algo-
rithms can be applied to the ECDLP is most likely to fail.

13. XEDNI-CALCULUS ATTACKS. A very interesting line of attack on the ECDLP, called the
xedni-calculus attack was recently proposed by J. Silverman [36]. One intriguing aspect
of the xedni-calculus is that it can be adapted to solve both the ordinary discrete logarithm
and the integer factorization problems. However, it was subsequently shown by a team
of researchers including J. Silverman (see Jacobson et al. [19]) that the attack is virtually
certain to fail in practice.

14. HYPERELLIPTIC CURVES. Hyperelliptic curves are a family of algebraic curves of arbi-
trary genus that includes elliptic curves. Hence, an elliptic curve can be viewed as a hyper-
elliptic curve of genus 1. Adleman, DeMarrais and Huang [1] (see also Stein, Müller and
Thiel [41]) presented a subexponential-time algorithm for the discrete logarithm problem
in the jacobian of a large genus hyperelliptic curve over a finite field. However, in the
case of elliptic curves, the algorithm is worse than naive exhaustive search.

15. EQUIVALENCE TO OTHER DISCRETE LOGARITHM PROBLEMS. Stein [40] and Zuc-
cherato [45] showed that the discrete logarithm problem in real quadratic congruence
function fields of genus 1 is equivalent to the ECDLP. Since no subexponential-time algo-
rithm is known for the former problem, this may provide further evidence for the hardness
of the ECDLP.

5.2 Experimental results

The best general-purpose algorithm known for the ECDLP is the parallelized version of Pol-
lard’s rho algorithm which has an expected running time of � � πn � � � 2r � steps, where n is the
(prime) order of the base point P, and r is the number of processors utilized.
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CERTICOM’S ECC CHALLENGE. Certicom initiated an ECC challenge [9] in November 1997
in order to encourage and stimulate research on the ECDLP. Their challenges consist of in-
stances of the ECDLP on a selection of elliptic curves. The challenge curves are divided into
three categories listed below. In the following, ECCp-k denotes a random curve over a field

�
p,

ECC2-k denotes a random curve over a field
�

2m , and ECC2K-k denotes a Koblitz curve (see
the submission) over

�
2m; k is the bitlength of n. In all cases, the bitsize of the order of the

underlying finite field is equal or slightly greater than k (so curves have either prime order or
almost prime order).

1. Randomly generated curves over
�

p, where p is prime: ECCp-79, ECCp-89, ECCp-97,
ECCp-109, ECCp-131, ECCp-163, ECCp-191, ECCp-239, and ECCp-359.

2. Randomly generated curves over
�

2m , where m is prime: ECC2-79, ECC2-89, ECC2-97,
ECC2-109, ECC2-131, ECC2-163, ECC2-191, ECC2-238, and ECC2-353.

3. Koblitz curves over
�

2m , where m is prime: ECC2K-95, ECC2-108, ECC2-130, ECC2-
163, ECC2-238, and ECC2-358.

RESULTS OF THE CHALLENGE. Escott et al. [11] report on their 1998 implementation of the
parallelized Pollard’s rho algorithm which incorporates some improvements of Teske [42]. The
hardest instance of the ECDLP they solved was the Certicom ECCp-97 challenge. For this task
they utilized over 1200 machines from at least 16 countries, and found the answer in 53 days.
The total number of steps executed was about 2 � 1014 elliptic curve additions which is close
to the expected time (( � πn ��� 2 � 3 � 5 � 1014, where n � 297). Escott et al. [11] conclude that
the running time of Pollard’s rho algorithm in practice fits well with the theoretical predictions.
They estimate that the ECCp-109 challenge could be solved by a network of 50,000 Pentium
Pro 200MHz machines in about 3 months.

5.3 Hardware attacks

Van Oorschot and Wiener [30] examined the feasibility of implementing parallelized Pollard’s
rho algorithm using special-purpose hardware. They estimated that if n � 1036 � 2120, then
a machine with r � 330 � 000 processors could be built for about US $10 million that could
compute a single elliptic curve discrete logarithm in about 32 days. Since ANSI X9.62 mandates
that the parameter n should satisfy n � 2160, such hardware attacks appear to be infeasible with
today’s technology.
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6 Other attacks

IMPLEMENTATION ATTACKS. The existing ECDSA standards do not address attacks that could
be launched against implementations of ECDSA such as timing attacks (Kocher [21]), differen-
tial fault analysis (Boneh, DeMillo and Lipton [6]), differential power analysis (Kocher, Jaffe
and Jun [22]), and attacks which exploit weak pseudorandom number generators (Kelsey et al.
[20]).

SECURITY REQUIREMENTS FOR PER-MESSAGE SECRETS. The per-message secrets k in
ECDSA signature generation have the same security requirements as the private key d. This
is because if an adversary E learns a single per-message secret k which was used by A to
generate a signature � r� s � on some message m, then E can recover A’s private key since d �
r � 1 � ks � e � mod n where e � SHA-1 � m � (see step 6 of ECDSA signature generation). Hence
per-message secrets must be securely generated, securely stored, and securely destroyed after
they have been used.

REPEATED USE OF PER-MESSAGE SECRETS. The per-message secrets k used to sign two or
more messages should be generated independently of each other. In particular, a different per-
message secret k should be generated for each different message signed; otherwise, the private
key d can be recovered. Note that if a secure random or pseudorandom number generator is
used, then the chance of generating a repeated k value is negligible. To see how private keys
can be recovered if per-message secrets are repeated, suppose that the same per-message secret k
was used to generate ECDSA signatures � r� s1 � and � r� s2 � on two different messages m1 and m2.
Then s1

� k � 1 � e1

 dr � � mod n � and s2

� k � 1 � e2

 dr � � mod n � , where e1

� SHA-1 � m1 � and
e2
� SHA-1 � m2 � . Then ks1

� e1

 dr � mod n � and ks2

� e2

 dr � mod n � . Subtraction gives

k � s1 � s2 � � e1 � e2
� mod n � . If s1 �� s2

� mod n � , which occurs with overwhelming probability,
then k � � s1 � s2 � � 1 � e1 � e2 � � mod n � . Thus, an adversary can determine k, and then use this
to recover d, as described above.

ATTACK USING KNOWN RELATIONS ON PER-MESSAGE SECRETS. There should also be no
obvious relations between the per-message secrets. For example, suppose that there is a relation
k2
� ak1


 b for some fixed a and b. Since k1s1
� e1


 dr1 and k2s2
� e2


 dr2, we can get two
equations k1s1

� e1

 dr1 and � ak1


 b � s2
� e2


 dr2 in two unknows k1 and d. Hence one can
solve the equations and obtain the value of d.

PARTIAL INFORMATION ON PER-MESSAGE SECRETS. In [18], Howgrave-Graham and Smart
use lattice reduction techniques to show that partial information of DSA per-message secrets
can lead to the complete exposure of the private key. For example, the attack is practical if a
contiguous block of 5% of the bits in 20 per-message secrets is known, for p a 160 bit prime.
Their results could easily be extended to ECDSA.

To avoid similar attacks where partial information about the per-message secrets may be leaked,
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it is imperative that the per-message secrets be generated uniformly at random (or pseudoran-
com) from the interval

�
1 � n � 1 � , and securely destroyed after usage.

DUPLICATE-SIGNATURE KEY SELECTION. A signature scheme S is said to have the duplicate-
signature key selection (DSKS) property if given A’s public key PA and given A’s signature sA

on a message M, an adversary E is able to select a valid key pair � PE � SE � for S such that sA is
also E’s signature on M. Note that this definition requires that SE is known to E . Blake-Wilson
and Menezes [5] showed how this property can be exploited to attack a key agreement protocol
which employs a signature scheme. They also demonstrated that if entities are permitted to
select their own domain parameters, then ECDSA possesses the DSKS property. To see this,
suppose that A’s domain parameters are DA

�� q � FR � a � b � G � n � h � , A’s key pair is � QA � dA � , and� r� s � is A’s signature on M. The adversary E selects an arbitrary integer c, 1 � c � n � 1, such
that t : � � � s � 1e 
 s � 1rc � mod n � �� 0, computes X � s � 1eG 
 s � 1rQ (where e � SHA-1 � M ���
and G � � t � 1 mod n � X . E then forms DE

� � q � FR � a � b � G � n � h � and QE
� cG. Then it is easily

verified that DE and QE are valid, and that � r� s � is also E’s signature on M.

If one mandates that the generating point G be selected verifiably at random (that is, verify that
G is a valid point on the curve and it has the correct order) during domain parameter generation,
then it appears that ECDSA no longer possesses the DSKS property. It must be emphasized that
possession of the DSKS property does not constitute a weakness of the signature scheme — the
goal of a signature scheme is to be existentially unforgeable against a chosen-message attack.
Rather, it demonstrates the importance of auditing domain parameter and public key generation.

7 Recommended parameters

In Table 1, the security levels of the ECDSA with the parameters recommended in the sub-
mission are compared with other submitted schemes, with RSA, and with symmetric schemes
(e.g., the Advanced Encryption Standard–AES). Some of the comparisons among symmetric
key cryptography, RSA security, and ECDSA security are adapted from Lenstra and Verheul
[23].

8 Performance comparison

Table 1 presented comparable key lengths of several schemes. Generally, the ESIGN signature
scheme is faster than both ECDSA and RSA signature schemes with comparable key lengths.
ACE, RSA, and ESIGN have roughly the same public key size for comparable security level.
ACE and RSA have roughly the same private key size for comparable security level. ESIGN’s
private key size is roughly 2 � 3 of the ACE (or RSA) private key size for comparable security
level. ECDSA and MY-ELLTY have significantly smaller key size for comparable security
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Table 1: Rough Comparison of Security Levels

Symmetric
Key Size

RSA
Modulus

Size

ESIGN
Modulus

Size

ACE
Modulus

Size

ECDSA
Key Size

MY-ELLTY
Key Size

40 160
48 192
76 960 960 960 152
80

(SKIPJACK)
1024 1024 1024 160

112
(Triple-DES)

2048 2048 2048 224

128
(128-bit AES)

3072 3072 3072 256

192
(192-bit AES)

7680 7680 7680 384

256
(256-bit AES)

15360 15360 15360 512

level. However, the hash function used in MY-ELLTY is not collision resistant, thus it is not
secure against attacks on the hash function.
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