Evaluation of the Security of ECDSA

Johannes Buchmann

January 11, 2001

Contents

1 Introduction 3
2 Description of ECDSA 5
2.1 Thesetup L)
2.2 ECDSA 6
2.2.1 Key generation oo 7

2.2.2 Signature generation 7

2.2.3 Signature verification00 8

3 Security proofs 9
3.1 Security of signature schemes 9
3.1.1 Security proofs are reductions 9

3.1.2 Security of the secret key 11

3.1.3 Existential forgery 0oL 11

3.1.4 No message attacks L. 12

3.1.5 Adaptive chosen message attacks 12

3.1.6 Random oracle model 13

3.2 ECDSA 14
3.2.1 Security of the secret key 14

3.2.2 Security reductions 15

4 Basic computational problems

4.1 Basics

4.1.1 Asymptotic complexity

4.1.2 Practical run times

4.1.3 Quantum computers

4.2 Discrete logarithms on elliptic curves

4.2.1 The problem. . .

4.2.2 Square root attacks,

4.2.3 ECDL algorithms for special curves

4.2.4 Quantum attacks

4.3 Random and pseudorandom number generation

4.4 Hash functions

5 Basic cryptographic problems in ECDSA

5.1 ECDSA-F,........
5.2 ECDSA-Fon
5.3 Hash function

5.3.1 Random numbers
6 Final evaluation
Bibliography

Subject index

16
16
16
17
17
18
18
18
19
20
20
21

23
23
24
24
24

25

27

29

Chapter 1

Introduction

The goal of this document is to evaluate the security of the digital signature
scheme ECDSA.

The security of ECDSA depends on the intractability of the discrete loga-
rithm problem in point groups of elliptic curves over finite fields (ECDL) and
on the security of the used hash function and pseudorandom number gener-
ator. In order to evaluate the security of ECDSA, it is, therefore, necessary
to evaluate the difficulty of ECDL and the security of the used hash function
and pseudorandom number generator. But this is not sufficient. Even if
the underlying number theoretic problem is hard and the hash function and
random number generator is secure, ECDSA may still be insecure. A famous
example for such a situation is the discovery of the possibility of an attack
against the RSA encryption standard PKCS #1 (see [2]). In this standard,
an insecure padding scheme was used, which compromised the security of the
whole scheme.

Because of this situation, it is desirable to find a security proof for
ECDSA. Unfortunately, no provably hard computational problem in num-
ber theory is known, which could serve as the basis of a secure signature
scheme. Also, no provably secure cryptographic hash function and pseudo-
random number generator are known. Therefore, given current knowledge,
there are no provably secure digital signature schemes. But it is possible to
say more about the security of a digital signature scheme than just arguing
that the underlying computational problems are intractable. Modern secu-
rity proofs for digital signature schemes reduce their security to the difficulty

of basic computational problems in mathematics. This means that the diffi-
culty of those basic problems is not only necessary but also sufficient for the
security of the digital signature scheme which relies on their security.

The questions that I answer in this report are the following. Which
are the basic computational problems, on which the security of ECDSA is
based, and to what extent can this security be reduced to the intractability
of those problems? How difficult are those basic mathematical problems and
how difficult are the instances which arise from the specific applications in
ECDSA?

This report is organized as follows. Chapter 2 gives an overview over
ECDSA. Chapter 3 describes the models and techniques that are used in
the security proofs of digital signature schemes and explains to what extent
the security of ECDSA can be proved secure in those models. The security
of ECDSA relies on the intractability of computing discrete logarithms in
elliptic curve point groups, finding collisions of hash functions and guess-
ing the output of pseudorandom number generators. Chapter 4 describes
the current knowledge concerning the intractability of those basic problems.
Chapter 5 describes the specific instances of the basic computational prob-
lems on which the security of ECDSA rely and their difficulty. I conclude
this report by summarizing the security of ECDSA in Chapter 6.

Chapter 2

Description of ECDSA

2.1 The setup

I describe the structure of a digital signature scheme. A digital signature
scheme has three parts.

Key generation The signer generates a private key and the corresponding
public key. He keeps the private key secret and publishes the public key. The
authenticity of the public key is certified by a certification authority (CA).
The certification authority guarantees with its signature that the verifiers
obtain the valid public keys of the signers. It is also possible that the certifi-
cation authority generates the key pair and gives the secret key to the user.

Signature generation In this step the signer produces the digital signa-
ture of a document d. The document d is a bit string of arbitrary length. To
generate its digital signature, the signer uses his private key.

Signature verification The verifier uses the public key of the signer to
verify the digital signature. The signature is convincing if only the signer,
knowing his private key, is able to produce that valid signature. The existence
of that valid signature then implies that the signer must have produced it,
thereby agreeing to the content of the document.

5

2.2 ECDSA

I give a summary of ECDSA. Technical details can be found in the submis-
sion.

ECDSA is similar to the EIGamal signature scheme (see [3]). The ECDSA
description can be found in [15]. There are two variants of ECDSA. The first
one works over finite prime fields. The second one works over finite fields of
characteristic 2.

For ECDSA over finite prime fields an n-bit prime p is chosen such that
n € {112,128,160, 192, 224, 256, 384, 521}.

Then elements a,b € F, with 4a® + 270> # 0 and a point G on the elliptic
curve
E(p,a,b) ={(z,y) €F : > = 2> + ax + b} U O

of prime order [are chosen which satisfy the following conditions.
L. $E(p,a,b) # p,
2. pP £ 1mod! for 1 < B < 20, and
3. tE(p,a,b)/l < 4.
For ECDSA over finite fields of characteristic 2 an integer
m € {113,131, 163,193, 233, 239, 283,409, 571}

is chosen. Then m is a prime number. Then elements a,b € Fon with b # 0
and a point G on the elliptic curve

E@2™ a,b) = {(z,y) € Fow 1 y* + 2y = 2> + ax® + b} UO
of prime order [are chosen which satisfy the following conditions:
1. $E(2™,a,b) # 2™,
2. 2™B £ 1 mod [for 1 < B < 20, and

3. $E(2™,a,b)/l < 4.

In ECDSA, it is possible to chose random curves with those properties.
However, for compatibility reasons with existing standards such as P1363 [9],
the choice of special curves from [16] is recommended.

In ECDSA the SHA-1 hash function A is used (see [19]) which maps
strings of at most 25! octets to 160-bit strings.

2.2.1 Key generation

A finite field, an elliptic curve over that field and a point G on that curve
of prime order [are selected as described above. Those data are the domain
parameters. The key generation consists of the following steps.

1. A random v € {1,...,] — 1} is chosen.

2. The point Y = v(G is computed.

The private key is v. The public key is Y.

2.2.2 Signature generation

The document d is signed. It is a bit string of at most 2% octets. The secret
ECDSA key from the previous section is used. The following operations are
performed.

1. Select a random k € {1,...,l —1}.

2. Compute the point (z,y) = kG on E.
3. Set r =z mod [

4. Compute the hash value h = h(d).

5. Compute s =k *(h + rv) mod [

6. The signature is (r, s).

2.2.3 Signature verification

The verification of the signature of the previous section works as follows.

1. Verify that r, s are both in {1,...,1 —1}.
2. Compute the hash value h = h(d).
3. Compute (z,y) = hs G +rs 'Y,

4. If x = r mod [accept. Otherwise, reject.

Chapter 3

Security proofs

In this chapter I explain what a security proof for a digital signature system
is and which security proofs for ECDSA are given in the self evaluation of
ECDSA.

3.1 Security of signature schemes

3.1.1 Security proofs are reductions

The security of all known digital signature schemes depends on the in-
tractability of certain computational problems in mathematics, specifically
in number theory. Examples are the integer factoring problem and the dis-
crete logarithm problem in an appropriate group. However, no provably hard
computational problems are known which can serve as the security basis of a
digital signature scheme. Therefore, no rigorous security proofs for signature
schemes are known and there is little hope that such proofs will be found in
the future.

Todays security proofs are reductions. The goal of such a reduction is
to show that the ability of an attacker to mount a successful attack on a
signature scheme implies his ability of solving a basic computational problem
in mathematics. This is supposed to increase the trust in the security of a
digital signature system. The idea of this approach is the following.

When analyzing the security of a signature scheme it is hard to predict

which attacks are possible since the system may be very complex and may
depend on numerous parameters. Even, if the underlying basic computa-
tional problems are intractable, some part of the signature scheme might be
implemented in such a way that an attack is possible. A famous example
for such a situation is the discovery of the possibility of an attack against
the RSA encryption standard PKCS # 1 (see [2]). In this standard, an
insecure padding scheme was used, which compromised the security of the
whole scheme, even though the RSA encryption scheme is based on the in-
tractable integer factoring problem. However, if the security of the digital
signature scheme can be reduced to the difficulty of a well defined computa-
tional problem in mathematics, then, in order to evaluate the security of the
digital signature scheme, it is sufficient to study the difficulty of the under-
lying problem. The difficulty of the underlying mathematical problem can
be studied thoroughly and, therefore, the level of security of the signature
scheme is easier to estimate.

Such a security reduction also solves another problem. It is possible that
a weakness of a digital signature scheme is discovered, for example, by a
government agency of some country. That agency may then try to keep this
weakness secret and take advantage of it. However, if the weakness of the
signature scheme implies that a basic computational problem is no longer
intractable, then keeping this weakness secret may be more difficult, since
the solution of important scientific problems can be expected to happen at
the same time in different places. Hence, reduction proofs make it less likely
that a security hole can be abused.

It is an important question what the computational problems are to which
the security of digital signature schemes should be reduced in order for the
scheme to be considered more secure. Clearly, breaking a digital signature
scheme in one of the ways explained below, can be considered to be a compu-
tational problem. In this sense, the security of any digital signature scheme
can be trivially reduced to the intractability of a computational problem,
namely to the problem of breaking itself. However, evaluating the compu-
tational difficulty of this problem is very difficult, since it is very complex
and has many parameters. This is even more true since breaking a digital
signature scheme is a so called interactive problem, that is, in that problem
several parties are involved: a signer, who knows his secret key, an attacker
who does not know that key but wants to generate valid signatures of the
signer, and perhaps an honest verifier. In the process of forging signatures

10

the attacker can try to use the help of the signer and the verifier (see Section
3.1.5).

To make the security level of a digital signature scheme easy to evaluate,
it is desirable to reduce its security to easy to specify non-interactive com-
putational problems. An example is the factoring problem for RSA-modules:
Given an integer n which is the product of two large primes p and ¢, find those
factors p and ¢. It would be optimal to reduce the security of a digital signa-
ture scheme to problems which are of mathematical interest independently
of their cryptographic applications. Then, the difficulty of those problems
would be studied also outside the crypto community and would therefore be
easier to evaluate. However, digital signature schemes whose security can be
reduced to such problems seem not to be known. In the known reductions,
the computational problems depend to a certain extent on the specific digital
signature scheme whose security is reduced to them. This is also true in our
context and I will discuss this below. In my opinion, the less the compu-
tational problems depend on the digital signature schemes the stronger the
security proof by reduction is.

3.1.2 Security of the secret key

A minimum requirement for secure digital signature schemes is the security
of the secret key. An attacker has access to the public key of the signer. In a
secure digital signature scheme, the determination of the secret key from the
public key must be infeasible. In the digital signature scheme under review
the security of the secret key can be reduced to well studied intractable
problems. This will be explained below.

3.1.3 Existential forgery

Suppose that the problem of computing the secret key from the public key is
intractable. This does not necessarily mean that the digital signature scheme
is secure. It may still be possible that an attacker is able to generate valid
signatures without the knowledge of the secret key.

In an existential forgery the attacker produces such a signature. In such
a forgery, the attacker is not required to have control over the document
which is signed. The only requirement is, that the result of an existential

11

forgery a new signature of some document which has been produced without
the knowledge of the secret key.

3.1.4 No message attacks

A no message attack or a passive attack is an existential forgery in which
the attacker only knows the public key of the signer and has no access to
further information such as valid signatures of other documents. A digital
signature scheme is considered to be secure against no message attacks, if the
possibility of such an attack implies the ability of solving a computational
problem which is considered to be intractable.

3.1.5 Adaptive chosen message attacks

I explain the strongest security notion known for digital signature schemes:
the security against existential forgery using an adaptive chosen message
attack.

In an adaptive chosen message attack the adversary knows the public
signature key of the signer and obtains valid signatures of a sequence of mes-
sages of his choice. The messages in the sequence may depend on signatures
of previous messages. The goal of the adversary is an existential forgery,
i.e. he wants to produce a new signature which has not been generated by
the legitimate signer. In particular, the signature is not in the sequence of
messages whose signatures the attacker has obtained. But the newly signed
message is not necessarily a message of the attackers choice.

One practical application of this notion is as follows. Suppose that a
signature scheme is used in a challenge response identification, for example
in the ESIGN identification. Then the verifier generates challenges which the
prover is supposed to sign, thereby proving his identity. Those challenges
can be generated as a sequence of adaptive chosen messages. If an adaptive
chosen message attack makes existential forgery possible, then the verifier is
able to forge valid signatures without knowing the secret key. The use of
signature schemes in challenge response identification is quite common.

I explain a method for proving security against chosen message attacks
more precisely. In a chosen message attack the attacker can generate a se-

12

quence of pairs (message, signature). A message in that sequence may depend
on the previous pairs. The signature generation algorithm is probabilistic.
Therefore, the signatures are generated according to some probability distri-
bution. The signature scheme is considered secure against a chosen message
attack if it is secure against no message attacks and if without using the
secret key it is possible to generate a sequence which is algorithmically indis-
tinguishable (see [1]) from the sequence which is generated using the signature
algorithm. The idea of this concept is the following. If an existential forgery
is possible using an adaptively chosen sequence of pairs (message, signature),
then an existential forgery is possible using the algorithmically indistinguish-
able simulation of such a sequence. This latter existential forgery is a no
message attack since the signing algorithm is not used. However, the digital
signature scheme is known to be secure against no message attacks. There-
fore, an adaptive chosen message attack is impossible.

It is common belief that security against adaptive chosen message attacks
is the strongest possible security notion for digital signature schemes. In
other words, no attack against a digital signature scheme is known which
cannot be modeled as an adaptive chosen message attack. The role of this
security notion is somewhat similar to the role of the model of a Turing
machine in the theory of computation. No computing device is known which
cannot be modeled as a Turing machine. However, no proof is known that
no stronger computing model exists. Likewise, no proof is known that the
security against adaptive chosen message attacks is the strongest possible
security notion.

In my opinion, if a signature scheme is proven secure against adaptive
chosen message attacks, then it can be considered secure in the strongest
sense. However, there are no such proofs but only reductions (see Section
3.1.1).

3.1.6 Random oracle model

Security proofs for digital signature schemes are difficult since a digital sig-
nature scheme consists of many components and their interaction may be
complicated. An important ingredient of most signature schemes are cryp-
tographically secure hash functions. The hash functions map very long mes-
sages to short strings of fixed length. The security of hash functions is dis-

13

cussed in Section 4.4. There I explain that no provably secure cryptographic
hash functions are known.

If the security of a signature scheme is analyzed in the random oracle
model (see [13], [4]), then the concrete hash function which is used in the
digital signature scheme, is replaced by a so called random oracle. A random
oracle can be viewed as a black box which contains a random function which
maps long strings to short strings of fixed length. Nothing is known about
this function, but it can be evaluated by making an explicit query. A typical
proof of security against passive attacks in the random oracle model works as
follows. If it is possible to come up with a forged signature for a document
using one random oracle then such a forgery is also possible with another
random oracle, resulting in another falsified signature (forking lemma, see
[13]). The two valid signatures of the same document can then be used to
solve an underlying mathematical problem.

Does a security proof in the random oracle imply the security of the real
digital signature scheme in which a concrete hash function is used? Such an
implication cannot be proved today. However, assuming that the concrete
hash function behaves like a random oracle, a security proof in the random
oracle model makes the security of the real scheme more plausible. On the
other hand, there exist insecure signature schemes that can be proved secure
in the random oracle model (see [4]). Those schemes look fairly artificial.
Nevertheless, their existence raises the question what security proofs in the
random oracle model really prove.

In my opinion, security proofs in the random oracle cannot prove the
security of digital signature schemes but they make their security more plau-
sible.

3.2 ECDSA

3.2.1 Security of the secret key

Computing the secret ECDSA key from the public ECDSA key is equivalent
to solving the discrete logarithm problem in the elliptic curve point group
specified in the ECDSA variants.

14

3.2.2 Security reductions

No reduction of the security of ECDSA to a basic mathematical problem
such as the discrete logarithm problem in the group of points on an elliptic
curve over a finite field is known. However, a modification as described in
[13] would allow a security proof for an ECDSA variant in the random oracle
model. Apparently, the ECDSA designers want to be compliant with current
standards. This requires the choice of the present ECDSA variant which
admits no security proofs.

15

Chapter 4

Basic computational problems

In this chapter I describe the basic computational problems which, given
current knowledge, have to be solved in order for ECDSA to be insecure and
I evaluate the difficulty of solving those problems.

4.1 Basics

In this section I explain the terminology which is used in this chapter.

4.1.1 Asymptotic complexity

To estimate the running time and storage requirement of the algorithms that
solve the basic problems the function
Lw[u, U] _ ev(logw)“(loglogw)l_“

is used, where z, u, v are positive real numbers. I explain the meaning of this
function. We have

L,[0,v] = ¢v(logz)’(loglogz)" (log x)® (4.1)
and

Lx[l,v] — ev(logzl(loglogz)o — evlogw' (42)

16

Let x be a positive integer which is the input for an algorithm. In the context
of this evaluation, x is the cardinality of the finite field over which an elliptic
curve is considered. The binary length of z is |log, z| + 1.

If an algorithm has running time L;[0, v], then by (4.1) it is a polynomial
time algorithm. Its complexity is bounded by a polynomial in the size of
the input. The algorithm is considered efficient, although its real efficiency
depends on the degree v of the polynomial.

If the algorithm has running time L,[1,v], then by (4.2) it is exponential.
Its complexity is bounded by an exponential function in the length of the
input. The algorithm is considered inefficient.

If the algorithm has running time L,[u,v] with 0 < u < 1, then it is
suberponential. The algorithm is slower than polynomial but faster than
exponential. So the function L,[u, v] can be viewed as a linear interpolation
between polynomial time and exponential time.

4.1.2 Practical run times

As usual, the experimental run times of the algorithms are given in MIPS
Years. One MIPS Year is defined as the amount of computation that can be
performed in one year on a single DEC VAX 11/780. Using this terminology,
one year of computing on an n-MHz PC is comparable to n MIPS Years.
However, this is only a rough estimate of the computing power used, since
the computation may have space intensive parts, such as the solution of large
linear systems, which cannot be executed on a PC.

4.1.3 Quantum computers

In the early 1980s, Richard Feynman (among others) introduced the idea of a
new computing device which is based on the laws of quantum mechanics. Pe-
ter Shor [17] was able to prove that on such a quantum computer the integer
factoring problem (IFP) and the discrete logarithm problem in finite fields
have polynomial time solutions. This means that all cryptosystems under
consideration here and, more generally, all public-key cryptosystems which
are currently being used in practice, are insecure, if quantum computers be-
come practical. There are first experiments with quantum computers, for

17

example at Los Alamos. However, it is unclear whether quantum computers
will ever be practical. For the time being, quantum attacks are not feasible.
However, it is necessary to watch the development in the area of quantum
computing. Also, it appears to be necessary to develop new digital signature
schemes which remain secure even if quantum computers become practical.

4.2 Discrete logarithms on elliptic curves

The security of ECDSA depends on the intractability of the discrete loga-
rithm problem on elliptic curves over finite fields (ECDL) which I discuss in
this section.

4.2.1 The problem

Cryptography with elliptic curves over finite fields (used in ECDSA and My-
Ellty) uses the following setting. F' is a finite field of cardinality ¢. FE is
an elliptic curve over F'. (G is a point on E of prime order I. The domain
parameters F', E, G, and [are publicly known.

The elliptic curve discrete logarithm problem (ECDL) is the following:
Given a point Y in the subgroup generated by G, find an integer v €
{0,...,1 — 1} such that Y = vG.

By a theorem of Hasse, the order of the group of points on E over F'is
g+ 1 —t with [t| < 2,/g. The number ¢ is called the trace of the curve (see

[11]).

4.2.2 Square root attacks

The only known general purpose algorithms for ECDL are generic DL-algo-
rithms. They work in any cyclic group as long as it is known, how the group
elements are multiplied, inverted and how the equality of group elements can
be decided.

If the group order including its prime factorization is known, then the
Pohlig-Hellman algorithm reduces the DL problem in the full group in poly-
nomial time to discrete logarithm problems in groups whose orders are the

18

prime divisors of the group order (see [3]|). Since the order of the elliptic
curve point group generated by P is a prime number, the Pohlig-Hellman
algorithm gives no advantage.

The fastest generic discrete logarithm algorithm in a cyclic group of prime
order is the parallel Pollard p-algorithm (see [20], [5]). Its running time is
proportional to v/1/r = Lj[1,1/2]/r where [is the group order and r is the
number of processors used. Using this algorithm it was possible to compute
discrete logarithms in an elliptic curve point group over a finite prime field
where the group order is a 97-bit prime using 2 * 10 group operations (see
[5]). Also, it was possible to compute the discrete logarithm in an elliptic
curve point group with a 108-bit order over a finite field of characteristic 2
using 2.3 * 10 group operations (see [5]).

Using those data points and the complexity of the parallel Pollard p-
algorithm, Lenstra and Verheul |12] estimate that for the next 20 years ECDL
is intractable in an elliptic curve point group of prime order [> 2. If
algorithmic progress is taken into account then [> 288 is recommended.

4.2.3 ECDL algorithms for special curves

There are a number of algorithms which solve ECDL for specific classes of
curves.

Frey-Riick attack From [7] we obtain the following: Let
k =min{i € Zsy: ¢ = 1 mod [}. (4.3)

where [,q are as in Section 4.2.1. In other words, k£ is the order of ¢ in
the group F;. Then there is a polynomial time reduction of the discrete
logarithm problem on the elliptic curve to the discrete logarithm problem
in the multiplicative group of the finite field Fx. For fixed k£ the discrete
logarithm problem in F,« can be solved in time L [1/3, ¢| for some constant
¢ (see [14]). For small k this subexponential attack is much faster than all
known general purpose ECDL-algorithms (see Section 4.2.2). To prevent the
Frey-Riick attack, it is necessary to choose k at least [2000/log,(q)]. This
condition is based on the assumption that the discrete logarithm problem in
a finite field, whose cardinality is a 2000-bit number, is intractable. For a

19

160-bit prime p this means that £ > 13. I remark that the German Informa-
tion Security Agency requires k£ > 10* since some researchers feal that more
efficient attacks are possible. But no such attacks are known.

Anomalous curve attack If the trace of the curve F is 1, then ECDL
can be reduced to a discrete logarithm problem in the additive group Z/qZ
(see [18]) which can be solved by the extended euclidean algorithm in poly-
nomial time. Therefore, curves of trace 1 must be avoided in cryptographic
applications.

Weil descent attacks If ¢ = 2" with small n such as n = 4 then ECDL
can be reduced to a DL problem on a hyperelliptic curve which by an algo-
rithm of Gaudry can be solved faster then the general ECDL problem (see
[8]). Therefore, those field sizes must be avoided.

4.2.4 Quantum attacks

Using the methods from [17] it is possible to show that ECDL can be solved
in polynomial time on a quantum computer. It is not yet clear whether

quantum computers become ever practical. Currently, quantum attacks do
not threaten ECDL.

4.3 Random and pseudorandom number gen-
eration

The key and signature generation in ECDSA require the generation of ran-
dom numbers, specifically random primes. They are generated as sequences
of random bits.

Such a sequence is generated as follows. A random bit generator (RBG)
is used to generate a short sequence of true random bits. Since a RBG is too
inefficient, the short true random sequence is expanded by a pseudorandom
bit generator (PRBG) into a sequence of the necessary length.

The RBGs used by the scheme under review are not described in the

20

submission. I can therefore not discuss their security here. However, in real
applications it is necessary that a cryptographically secure RBG is used.

A PRBG receives as input a random bit sequence and outputs a longer
pseudorandom bit sequence. A PRBG is cryptographically secure if an at-
tacker is not able to distinguish its output from a true random sequence in
polynomial time.

No provably secure PRBG is known. Several PRBGs are known whose
security can be reduced to the intractability of certain number theoretic
problems such as the discrete logarithm problem in finite fields (see [3]).
However, those PRBGs are not sufficiently efficient.

The PRBG used in practice survive a broad class of statistical tests spec-
ified, for example, in [6].

4.4 Hash functions

In signature schemes, hash functions are used to map long documents to
shorzt bit strings of a fixed length, which are actually signed. A collision
of a hash function is a pair of different documents which are mapped to the
same hash value. A hash function is called collision resistant if finding a
collision of that hash function is intractable.

In signature schemes, which sign hash values, the used hash functions
must be collision resistant. Otherwise, if a collision (d, d') is found then the
two documents d and d' have the same signature. If an attacker is able to
obtain a valid signature of d, then he has also a signature for d’. For example,
if the signer signs d in a challenge-response authentication, then he has also
signed the other document d’, possibly without knowing it. Collision resistant
hash function are one way functions. This means, that computing an inverse
image for a given image is intractable. Therefore, in many cases, the use of
collision resistant hash functions prevents existential forgeries since even if it
is possible to generate a valid signature for a hash value it is impossible to
find a document with that hash value.

Using the birthday paradox (see [3]) a collision for a hash function whose
image has n elements can be found with probability > 1/2 by computing
approximately y/n hash values. Therefore, the image of the hash function

21

should at least contain 2'%° elements.

No hash function is known for which the birthday attack is provably the
only possible attack. In the past, hash functions such as MD4 have been
shown not to be collision resistant. Today, the hash functions SHA-1 [19]
and RipeMD-160 [10] are used in practice. Given current knowledge, they
are collision resistant.

The birthday attack can be prevented if a keyed hash function is used.
This is a function which maps a bit string and a key from a predefined key
space to a hash value of fixed length. In the signature process, a random key
is generated. The signature algorithm signs the hash value of a document
that is generated by the hash function which is parameterized by the chosen
key. The key is part of the signature. It is also used in the verification process.
In order for digital signature algorithm to be secure, the keyed hash function
must be a universal one-way hash function (UOWF). This means that given
a hash value and a key it is intractable to find a document such that the value
of the hash function parameterized by the given key is the given hash value.
No provably universal one-way hash function is known. However, there are
constructions that use compression functions such as SHA-1 (see [19]) and
are assumed to have the universal one-way property.

22

Chapter 5

Basic cryptographic problems in
ECDSA

In this chapter I discuss the hardness of the non-interactive computational
problems which are the basis of the security of ECDSA.

5.1 ECDSA-F,

I use the notation from Section 2.2.

If ECDL can be solved in the subgroup generated by G then ECDSA
is insecure because the secret ECDSA key can be obtained from the public
ECDSA key.

The choice of the parameters in ECDSA-F,, prevents the use of the Frey-
Riick attack and the anomalous curve attack. In fact, the integer £ from (4.3)
is at least 20 and I have explained in Section 4.2.3 that k£ > 13 is sufficient.
The Weil descent attack does not work over prime fields. For n > 160 square
root attacks are infeasible for the next 20 years (see Section 4.2.2 and [12]).
Therefore, given the current algorithmic knowledge, ECDL in the subgroup
generated by G will remain intractable for the next 20 years. This is also
true for the special curves which for compatibility reasons are suggested in
[16]) since no attacks are known which take advantage of the special form of
the curves.

23

5.2 ECDSA-Fon

If ECDL can be solved in the subgroup generated by G then ECDSA is
insecure because the secret ECDSA key can be obtained from the public
ECDSA key.

The choice of the parameters in ECDSA-Fs» prevents the use of the Frey-
Riick attack and the anomalous curve attack. In fact, the integer & from (4.3)
is at least 20 and I have explained in Section 4.2.3 that k£ > 13 is sufficient.
The Weil descent attack does not work over fields of characteristic 2™ where
m is a prime number. For m > 160 square root attacks are infeasible for
the next 20 years (see Section 4.2.2 and [12]). Therefore, given the current
algorithmic knowledge, ECDL in the subgroup generated by G will remain
intractable for the next 20 years. This is also true for the special curves
which for compatibility reasons are suggested in [16]) since no attacks are
known which take advantage of the special form of the curves.

5.3 Hash function

The hash function used in ECDSA is SHA-1 (see [19]). Given the current
algorithmic knowledge, SHA-1 will be collision resistant for the next 20 years.

5.3.1 Random numbers

No specific random number or pseudorandom number generator is suggested.

24

Chapter 6

Final evaluation

No security reductions are given for ECDSA. But ECDSA is a well studied
standard which has been reviewed by many cryptanalysts.

With respect to the underlying number theoretic problem, ECDSA using
random curves (see Sections 5.1 and 5.2) appears to be a very strong system.
The fastest algorithm for the general ECDL, on which is the security of
ECDSA is based, is of exponential complexity (see Section 4.2.2). Also, if
the curves are randomly chosen, then special attacks are very unlikely to be
successful.

In practice, ECDSA with the specific curves from the standards is used
(see [16]) since those curves have an easy encoding and are compatible with
existing and implemented standards. Given present knowledge, the curves
from the standards are as secure as random curves. They are constructed in
such a way that the known attacks are impossible.

The hash function used in ECDSA is plain SHA-1. The only known
attack for that hash function is the birthday attack which is expected to be
infeasible for the next 20 years (see Section 4.4).

Nothing is said in ECDSA submission about the generation of random
numbers or pseudorandom numbers. If the corresponding standards are used
then the random number generation in ECDSA can be considered secure.

In my opinion, ECDSA with the parameters recommended in this eval-
uation, is a secure digital signature scheme, although nor formal security
proofs exist. I recommend that a future version of ECDSA should be one

25

which admits a security reduction.

I feal that unexpected mathematical breakthroughs in all areas are the
most serious threat for ECDSA. It is therefore crucial, that ECDSA is im-
plemented in such a way that it can be easily replaced if it turns out to be
insecure.

26

Bibliography

[1]

2]

3]

4]

5]

[6]

7]

8]

19]

BELLARE, M., AND GOLDWASSER, S. Lecture notes on cryptography.
www-cse.ucsd.edu/usres/mihir.

BLEICHENBACHER, D. Chosen ciphertext attacks against protocols

based on the rsa encryption standard pkcs # 1. In Advances in Cryp-
tology - Crypto 98 (1998), pp. 1-12.

BucHMANN, J. Introduction to Cryptography. Springer-Verlag, New
York, 2000.

CANETTI, R., GOLDREICH, O., AND HALEVI, S. The random oracle
methodology revisited. In 30th ACM Symp. on Theory of Computing
(STOC) (1998), pp. 209-218.

EscorT, A. E., SAGER, J. C., AND SELKIRK, A. P. L. Attack-
ing elliptic curve cryptosystems using the parallel pollard rho method.
Cryptobytes 4 (1999), 15-19.

FIPS 140-1, security requirements for cryptographic modules. Federal
Information Processind Standards Publication 140-1, U.S. Department
of Commerce/N.I.S.T., National Technical Information Service, Spring-
field, Virginia, 1994.

FrREY, G., AND RUCK, H. A remark concerning m-divisibility and the

discrete logarithm in the divisor class group of curves. Math. Comp. 62
(1991), 865—874.

GAUDRY, P., HEss, F., AND SMART, N. Constructive and destructive
facets of weil decent on elliptic curves. J. Cryptology (to appear).

IEEE P1363 Draft. http://grouper.ieee.org/groups/1363/P1363/.

27

[10] ISO/IEC 10118-3, information technology - security techniques - hash-
functions - part 3: Dedicated hash-functions. draft (CD), 1996.

[11] KoBLiTZ, N. A Course in Number Theory and Cryptography. Springer-
Verlag, 1994.

[12] LENSTRA, A., AND E.R.VERHEUL. Selecting cryptographic key sizes,
October 1999.

[13] POINTCHEVAL, D., AND STERN, J. Security arguments for digital
signatures and blind signatures. J. Cryptology 13 (2000), 361-396.

[14] SCHIROKAUER, O., WEBER, D., AND DENNY, T. Discrete logarithms:
the effectiveness of the index calculus method. In ANTS II (Berlin,
1996), H. Cohen, Ed., vol. 1122 of Lecture Notes in Computer Science,
Springer-Verlag.

[15] SEC 1 : ELLIPTIC CURVE CRYPTOGRAPHY. Certicom Research,
September 20 2000.

[16] SEC 2 : ELLIPTIC CURVE CRYPTOGRAPHY. Certicom Research,
September 20 2000.

[17] SHOR, P. W. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM J. Computing 26
(1997), 1484-1509.

|18] SMART, N. The discrete logarithm on elliptic curves of trace one. J.
Cryptology 12 (1999), 193-196.

[19] STANDARD, S. H. National Institute of Standars and Technology
(NIST), FIPS Publication 180-1, April 1995.

[20] VAN OORSCHOT, P., AND WIENER, M. Parallel collision search with
cryptanalytic applications. J. Cryptology 12 (1999), 1-28.

28

Index

L,[u,v], 16

adaptive chosen message attack, 12

anomalous curve attack, 20

CA5

certification authority, 5
challenge response, 12
collision, 21

collision resistant, 21
complexity, 16

digital signature scheme, 5
discrete logarithm, 18
domain parameter, 7, 18

ECDL, 18
ECDSA
key, 7
signature, 7
verification, 8
with random curves, 7
with special curves, 23, 24
existential forgery, 12

Frey-Riick attack, 19
generic DL-algorithm, 18
hash function, 21
interactive problem, 10

keyed hash function, 22

29

MIPS Year, 17

no message attack, 12
non-interactive problem, 11

passive attack, 12
Pohlig-Hellman algorithm, 19
Pollard p-algorithm, 19

PRBG, 20

pseudorandom bit generator, 20

quantum attack, 20
quantum computer, 17

random bit generator, 20

random oracle, 14

RBG, 20

reduction, 9

run time
exponential, 17
polynomial, 17
subexponential, 17

security proof, 9
security reduction, 9
signature
verification, 5
generation, 5
key generation, 5
simulation, 13
Square root attack, 18

trace, 18

universal one-way hash function, 22

Weil descent attack, 20

30

