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Chapter 1

Introduction

The goal of this document is to evaluate the security of the digital signature
scheme ACE Sign.

The security of ACE Sign depends on the intractability of factoring in-
tegers and on the security of the used hash functions and pseudorandom
number generator. In order to evaluate the security of ACE Sign, it is, there-
fore, necessary to evaluate the difficulty of factoring integers and the security
of the used hash functions and pseudorandom number generator. But this
is not sufficient. Even if the underlying number theoretic problem is hard
and the hash functions and random number generators are secure, ACE Sign
may still be insecure. A famous example for such a situation is the discovery
of the possibility of an attack against the RSA encryption standard PKCS
#1 (see [2]). In this standard, an insecure padding scheme was used, which
compromised the security of the whole scheme.

Because of this situation, it is desirable to find a security proof for ACE
Sign. Unfortunately, no provably hard computational problem in number
theory is known, which could serve as the basis of a secure signature scheme.
Also, no provably secure cryptographic hash function and pseudorandom
number generator are known. Therefore, given current knowledge, there are
no provably secure digital signature schemes. But it is possible to say more
about the security of a digital signature scheme than just arguing that the
underlying computational problems are intractable. Modern security proofs
for digital signature schemes reduce their security to the difficulty of basic
computational problems in mathematics. This means that the difficulty of



those basic problems is not only necessary but also sufficient for the security
of the digital signature scheme which rlies on their security.

The questions that I answer in this report are the following. Which are
the basic computational problems, on which the security of ACE Sign is
based, and to what extent can this security be reduced to the intractability
of those problems? How difficult are those basic mathematical problems and
how difficult are the instances which arise from the specific applications in
ACE Sign?

This report is organized as follows. Chapter 2 gives an overview over
ACE Sign. Chapter 3 describes the models and techniques that are used in
the security proofs of digital signature schemes and explains to what extent
the security of ACE Sign can be proved secure in those models. The security
of ACE Sign relies on the intractability of factoring integers, finding second
pre-images of hash functions and guessing the output of a pseudorandom
number generator. Chapter 4 describes the current knowledge concerning
the intractability of those basic problems. Chapter 5 describes the specific
instances of the basic computational problems on which the security of ACE
Sign is based. I conclude this report by summarizing the security of ACE
Sign in Chapter 6.



Chapter 2

Description of ACE Sign

2.1 The setup

I describe the structure of a digital signature scheme. A digital signature
scheme has three parts.

Key generation The signer generates a private key and the corresponding
public key. He keeps the private key secret and publishes the public key. The
authenticity of the public key is certified by a certification authority (CA).
The certification authority guarantees with its signature that the verifiers
obtain the valid public keys of the signers. It is also possible that the certifi-
cation authority generates the key pair and gives the secret key to the user.

Signature generation In this step the signer produces the digital signa-
ture of a document d. To generate its digital signature, the signer uses his
private key.

Signature verification The verifier uses the public key of the signer to
verify the digital signature. The signature is convincing if only the signer,
knowing his private key, is able to produce that valid signature. The existence
of that valid signature then implies that the signer must have produced it,
thereby agreeing to the content of the document.
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2.2 ACE Sign

I give a summary of ACE Sign. Technical details can be found in the sub-
mission.

2.2.1 Key generation

In the description of ACE Sign the notation B = {0,1}® is used. A security
parameter m is fixed which is an integer with 1024 < m < 16384. Then the
following numbers are determined.

1. A random |m/2]-bit prime number p such that (p—1)/2 is also a prime
number.

2. A random [m/2]-bit prime number ¢ such that (¢—1)/2 is also a prime
number.

3. The ACE modulus n = pq.

4. Arandom A’ € {1,...,n—1} with ged(h’,n) = 1 and ged(h'£1,n) = 1.
5. h=(h)"2>mod n

6. A random a € {0,...,(p—1)(¢g—1)/4—1}.

z = h* mod n.

N

A random 161-bit prime number €'.
9. A random k' € B,
10. A random s € B3,

The public key is (n, h, x, €', k', s). The private key is (p, q,a). I call the
integer n an ACE modulus.



2.2.2 Signature generation

The signer uses the private signature key from the previous section. The
document to be signed is d € B* with bit length < 2%, In the signature
algorithm, two universal one-way hash function H; and H, are used (see
[17]). They are constructed from the SHA-1 compression function {0, 1}57 —
{0,1}19 (see [16]).

The private key from the previous section is used and the following objects
are computed.

1.
2.

3.

A hash key k € B20m+64 5 described in the submission.
The hash value m, = Hy(k, d).

A random j € {1,...,n — 1} and ' = §* mod n.

.2’ = ()¢ h™ mod n.

. A random 161-bit prime e with e # €’ with a primality certificate (d, w)

according to the ACE description.

. The hash value r = Hy(k',n, 2, /~f)

b=e'(a—r)mod (p—1)(g—1)/4.
. y=h"modn
. The signature is 0 = (d, w, y, ', l~§)

2.2.3 Signature verification

The following operations are performed to verify the signature from the pre-
vious section using the public key from Section 2.2.1.

1.

2.

If the bit length of the document d exceeds 2%* or the signature is too
short (see the ACE description), then the signature is rejected.

Verify the certified prime e using the algorithm from the ACE descrip-
tion.



. Check whether the length of k is correct using the method from the
ACE description.

. Compute the hash value m;, = H(k, d).
. Compute z' = (y')¢ A™ mod n.

. Set r = Hy(K', n, x’,/;).

. Accept if x = y°h" mod n. Otherwise, reject.



Chapter 3

Security proofs

In this chapter I explain what a security proof for a digital signature system
is and which security proofs for ACE Sign are given in the self evaluation.

3.1 Security of signature schemes

3.1.1 Security proofs are reductions

The security of all known digital signature schemes depends on the in-
tractability of certain computational problems in mathematics, specifically
in number theory. Examples are the integer factoring problem and the dis-
crete logarithm problem in an appropriate group. However, no provably hard
computational problems are known which can serve as the security basis of a
digital signature scheme. Therefore, no rigorous security proofs for signature
schemes are known and there is little hope that such proofs will be found in
the future.

Todays security proofs are reductions. The goal of such a reduction is
to show that the ability of an attacker to mount a successful attack on a
signature scheme implies his ability of solving a basic computational problem
in mathematics. This is supposed to increase the trust in the security of a
digital signature system. The idea of this approach is the following.

When analyzing the security of a signature scheme it is hard to predict
which attacks are possible since the system may be very complex and may



depend on numerous parameters. Even, if the underlying basic computa-
tional problems are intractable, some part of the signature scheme might be
implemented in such a way that an attack is possible. A famous example
for such a situation is the discovery of the possibility of an attack against
the RSA encryption standard PKCS # 1 (see [2]). In this standard, an
insecure padding scheme was used, which compromised the security of the
whole scheme, even though the RSA encryption scheme is based on the in-
tractable integer factoring problem. However, if the security of the digital
signature scheme can be reduced to the difficulty of a well defined computa-
tional problem in mathematics, then, in order to evaluate the security of the
digital signature scheme, it is sufficient to study the difficulty of the under-
lying problem. The difficulty of the underlying mathematical problem can
be studied thoroughly and, therefore, the level of security of the signature
scheme is easier to estimate.

Such a security reduction also solves another problem. It is possible that
a weakness of a digital signature scheme is discovered, for example, by a
government agency of some country. That agency may then try to keep this
weakness secret and take advantage of it. However, if the weakness of the
signature scheme implies that a basic computational problem is no longer
intractable, then keeping this weakness secret may be more difficult, since
the solution of important scientific problems can be expected to happen at
the same time in different places. Hence, reduction proofs make it less likely
that a security hole can be abused.

It is an important question what the computational problems are to which
the security of digital signature schemes should be reduced in order for the
scheme to be considered more secure. Clearly, breaking a digital signature
scheme in one of the ways explained below, can be considered to be a compu-
tational problem. In this sense, the security of any digital signature scheme
can be trivially reduced to the intractability of a computational problem,
namely to the problem of breaking itself. However, evaluating the compu-
tational difficulty of this problem is very difficult since it is very complex
and has many parameters. This is even more true since breaking a digital
signature scheme is a so called interactive problem, that is, in that problem
several parties are involved: a signer, who knows his secret key, an attacker
who does not know that key but wants to generate valid signatures of the
signer, and perhaps an honest verifier. In the process of forging signatures
the attacker can try to use the help of the signer and the verifier(see Section
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3.1.5).

To make the security level of a digital signature scheme easy to evaluate,
it is desirable to reduce its security to a easy to specify non-interactive com-
putational problems. An example is the factoring problem for RSA-modules:
Given an integer n which is the product of two large primes p and ¢, find those
factors p and ¢. It would be optimal to reduce the security of a digital signa-
ture scheme to problems which are of mathematical interest independently
of their cryptographic applications. Then, the difficulty of those problems
would be studied also outside the crypto community and would therefore be
easier to evaluate. However, digital signature schemes whose security can be
reduced to such problems seem not to be known. In the known reductions,
the computational problems depend to a certain extent on the specific digital
signature scheme whose security is reduced to them. This is also true in our
context and I will discuss this below. In my opinion, the less the compu-
tational problems depend on the digital signature schemes the stronger the
security proof by reduction is.

3.1.2 Security of the secret key

A minimum requirement for secure digital signature schemes is the security
of the secret key. An attacker has access to the public key of the signer. In a
secure digital signature scheme, the determination of the secret key from the
public key must be infeasible. In the digital signature scheme under review
the security of the secret key can be reduced to well studied intractable
problems. This will be explained below.

3.1.3 Existential forgery

Suppose that the problem of computing the secret key from the public key is
intractable. This does not necessarily mean that the digital signature scheme
is secure. It may still be possible that an attacker is able to generate valid
signatures without the knowledge of the secret key.

In an existential forgery the attacker produces such a signature. In such
a forgery, the attacker is not required to have control over the document
which is signed. The only requirement is, that the result of an existential
forgery a new signature of some document which has been produced without
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the knowledge of the secret key.

3.1.4 No message attacks

A no message attack or a passive attack is an existential forgery in which
the attacker only knows the public key of the signer and has no access to
further information such as valid signatures of other documents. A digital
signature scheme is considered to be secure against no message attacks, if the
possibility of such an attack implies the ability of solving a computational
problem which is considered to be intractable.

3.1.5 Adaptive chosen message attacks

I explain the strongest security notion known for digital signature schemes:
the security against existential forgery using an adaptive chosen message
attack.

In an adaptive chosen message attack the adversary knows the public
signature key of the signer and obtains valid signatures of a sequence of mes-
sages of his choice. The messages in the sequence may depend on signatures
of previous messages. The goal of the adversary is an existential forgery,
i.e. he wants to produce a new signature which has not been generated by
the legitimate signer. In particular, the signature is not in the sequence of
messages whose signatures the attacker has obtained. But the newly signed
message is not necessarily a message of the attackers choice.

One practical application of this notion is as follows. Suppose that a
signature scheme is used in a challenge response identification, for example
in the ESIGN identification. Then the verifier generates challenges which the
prover is supposed to sign, thereby proving his identity. Those challenges
can be generated as a sequence of adaptive chosen messages. If an adaptive
chosen message attack makes existential forgery possible, then the verifier is
able to forge valid signatures without knowing the secret key. The use of
signature schemes in challenge response identification is quite common.

I explain a method for proving security against chosen message attacks
more precisely. In a chosen message attack the attacker can generate a se-
quence of pairs (message, signature). A message in that sequence may depend
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on the previous pairs. The signature generation algorithm is probabilistic.
Therefore, the signatures are generated according to some probability distri-
bution. The signature scheme is considered secure against a chosen message
attack if it is secure against no message attacks and if without using the
secret key it is possible to generate a sequence which is algorithmically indis-
tinguishable (see [1]) from the sequence which is generated using the signature
algorithm. The idea of this concept is the following. If an existential forgery
is possible using an adaptively chosen sequence of pairs (message, signature),
then an existential forgery is possible using the algorithmically indistinguish-
able simulation of such a sequence. This latter existential forgery is a no
message attack since the signing algorithm is not used. However, the digital
signature scheme is known to be secure against no message attacks. There-
fore, an adaptive chosen message attack is impossible.

It is common belief that security against adaptive chosen message attacks
is the strongest possible security notion for digital signature schemes. In
other words, no attack against a digital signature scheme is known which
cannot be modeled as an adaptive chosen message attack. The role of this
security notion is somewhat similar to the role of the model of a Turing
machine in the theory of computation. No computing device is known which
cannot be modeled as a Turing machine. However, no proof is known that
no stronger computing model exists. Likewise, no proof is known that the
security against adaptive chosen message attacks is the strongest possible
security notion.

In my opinion, if a signature scheme is proven secure against adaptive
chosen message attacks, then it can be considered secure in the strongest
sense. However, there are no such proofs but only reductions (see Section
3.1.1).

3.1.6 Random oracle model

Security proofs for digital signature schemes are difficult since a digital sig-
nature scheme consists of many components and their interaction may be
complicated. An important ingredient of most signature schemes are cryp-
tographically secure hash functions. The hash functions map very long mes-
sages to short strings of fixed length. The security of hash functions is dis-
cussed in Section 4.4. There I explain that no provably secure cryptographic
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hash functions are known.

If the security of a signature scheme is analyzed in the random oracle
model (see [14], [5]), then the concrete hash function which is used in the
digital signature scheme, is replaced by a so called random oracle. A random
oracle can be viewed as a black box which contains a random function which
maps long strings to short strings of fixed length. Nothing is known about
this function, but it can be evaluated by making an explicit query. A typical
proof of security against passive attacks in the random oracle model works as
follows. If it is possible to come up with a forged signature for a document
using one random oracle then such a forgery is also possible with another
random oracle, resulting in another falsified signature (forking lemma, see
[14]). The two valid signatures of the same document can then be used to
solve an underlying mathematical problem.

Does a security proof in the random oracle imply the security of the real
digital signature scheme in which a concrete hash function is used? Such an
implication cannot be proved today. However, assuming that the concrete
hash function behaves like a random oracle, a security proof in the random
oracle model makes the security of the real scheme more plausible. On the
other hand, there exist insecure signature schemes that can be proved secure
in the random oracle model (see [5]). Those schemes look fairly artificial.
Nevertheless, their existence raises the question what security proofs in the
random oracle model really prove.

In my opinion, security proofs in the random oracle cannot prove the
security of digital signature schemes but they make their security more plau-
sible.

3.2 ACE Sign

3.2.1 Security of the secret key

I use the notation from Section 2.2.1. Computing the secret ACE key from
the public ACE key requires determining the prime factors p and ¢ of an
ACE modulus n and computing the discrete logarithm a of z to the base h
in the finite prime fields F, and F,.
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3.2.2 Security reductions

Assuming the generalized Riemann hypothesis, ACE Sign is provably se-
cure against adaptive chosen ciphertext attacks as long as the assumptions
described in this section are true (see [7] and the self evaluation).

RSA assumption The RSA assumption asserts that the RSA problem is
intractable. The RSA problem is is the following: Given an RSA-modulus
n, an exponent e, and a random z € (Z/nZ)*. Find y € (Z/nZ)* with
y¢ = z. The exponent r is drawn from a distribution specified in ACE. The
RSA assumption implies the intractability of the integer factoring problem.
The converse is not known. We also note that in the context of ACE it is
required that the RSA problem with m-bit ACE moduli, 1024 < m < 16384
is intractable.

Strong RSA assumption The strong RSA assumption asserts that the
flexible RSA problem is intractable. The flexible RSA problem is the follow-
ing. Given an RSA-modulus n and a random z € (Z/nZ)*. Find e > 1 and
y € (Z/nZ)* with y® = z. The strong RSA assumption is possibly stronger
than the assumption. The strong RSA assumption implies the intractability
of the integer factoring problem. The converse is not known. We also note
that in the context of ACE it is required that the flexible RSA problem with
m-bit ACE moduli, 1024 < m < 16384 is intractable.

Second pre-image resistance of SHA-1 SHA-1 (cf. [16]) restricted to
inputs of length 672 is a function

£ {0,117 = {0,111,

It is part of the US Digital Signature Standard DSA. The problem of finding
a second preimage of SHA-1 is the following. Given z € {0,1}%™ find
r' € {0,1}°7 with z # ' and f(z) = f(z'). The assumption that SHA-1 is
second preimage resistant asserts that finding second preimages for SHA-1 is
intractable.

MARS sum/counter mode pseudo-randomness MARS [13] is a ci-
pher with thirty-two modified Feistel rounds. It was suggested by IBM as its
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AES (advanced encryption standard) candidate. Denote by
£ {0,115 x {0,112 — {0,1}2*

the MARS block cipher [13] with key length 256 and block length 128. For
[ > 0 consider the sequences

P =(x,f(k,x)® fk,x+1),....f(k,x+20—2)® f(k,x+ 2] — 1)

and

Rl = (.T,To,’f‘l,...,?“l_l)
where z,79,...,r;—; are random 128-bit strings. Also, z + j means = + j
modulo 2'% j € Z. The MARS sum/counter mode pseudo-randomness

assumption asserts that the sequences P, and R; are computationally indis-
tinguishable (see [1] for a definition of computational indistinguishability).
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Chapter 4

Basic computational problems

In this chapter I describe the basic computational problems which, given
current knowledge, have to be solved in order for ACE Sign to be insecure
and I evaluate the difficulty of solving those problems.

4.1 Basics

In this section I explain the terminology which is used in this chapter.

4.1.1 Asymptotic complexity

To estimate the running time and storage requirement of the algorithms that
solve the basic problems the function
Lw[u, U] _ ev(logw)“(loglogw)l_“

is used, where z, u, v are positive real numbers. I explain the meaning of this
function. We have

L,[0,v] = ¢v(logz)’(loglogz)" (log x)® (4.1)
and

Lx[l,v] — ev(logzl(loglogz)o — evlogm. (42)
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Let x be a positive integer which is the input for an algorithm. In the context
of this evaluation, x is a positive integer which is to be factored. The binary
length of z is |log, x| + 1.

If an algorithm has running time L;[0, v], then by (4.1) it is a polynomial
time algorithm. Its complexity is bounded by a polynomial in the size of
the input. The algorithm is considered efficient, although its real efficiency
depends on the degree v of the polynomial.

If the algorithm has running time L,[1,v], then by (4.2) it is exponential.
Its complexity is bounded by an exponential function in the length of the
input. The algorithm is considered inefficient.

If the algorithm has running time L,[u,v] with 0 < u < 1, then it is
suberponential. The algorithm is slower than polynomial but faster than
exponential. So the function L,[u,v] can be viewed as a linear interpolation
between polynomial time and exponential time.

4.1.2 Practical run times

As usual, the experimental run times of the algorithms are given in MIPS
Years. One MIPS Year is defined as the amount of computation that can be
performed in one year on o single DEC VAX 11/780. Using this terminology,
one year of computing on an n-MHz PC is comparable to n MIPS Years.
However, this is only a rough estimate of the computing power used, since
the computation may have space intensive parts, such as the solution of large
linear systems, which cannot be executed on a PC.

4.1.3 Quantum computers

In the early 1980s, Richard Feynman (among others) introduced the idea of a
new computing device which is based on the laws of quantum mechanics. Pe-
ter Shor [15] was able to prove that on such a quantum computer the integer
factoring problem (IFP) and the discrete logarithm problem in finite fields
have polynomial time solutions. This means that all cryptosystems under
consideration here and, more generally, all public-key cryptosystems which
are currently being used in practice, are insecure, if quantum computers be-
come practical. There are first experiments with quantum computers, for
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example at Los Alamos. However, it is unclear whether quantum computers
will ever be practical. For the time being, quantum attacks are not feasible.
However, it is necessary to watch the development in the area of quantum
computing. Also, it appears to be necessary to develop new digital signature
schemes which remain secure even if quantum computers become practical.

4.2 Integer factoring problem

The integer factoring problem (IFP) is the following: Given a positive integer
n, find its factorization as a product of prime numbers. Here, the IFP for
moduli of the form n = pg (ACE modulus) with prime numbers p and ¢ of
similar binary length is of particular interest.

4.2.1 NFS

The fastest general purpose factoring method is the general number field
sieve (NFS) (see [11]).

The running time of NF'S is subexponential. More precisely, under plau-
sible assumptions its asymptotic running time can be expected to be

L,[1/3,1.9229 + o(1)]

where the o(1) term goes to zero as n goes to infinity. The storage require-
ment of NF'S is proportional to the square root of the expected running time.

The largest published factorization using the general NF'S is that of the
512-bit number RSA 155 which is an RSA modulus of 155 decimal digits, in
August of 1999 (cf. [6]). It took less than 10* MIPS Years.

Based on this data point, the expected running time of NFS, and assumed
algorithmic progress, Lenstra and Verheul [10] predict that IFP is intractable
until 2020, if n is at least a 1881-bit number.

If n has the property that there is a polynomial of low degree (4 or 5,
in our case) with very small coefficients, which has a zero mod n, then the
special number field sieve (SNFS) can be applied. It is much faster than the
general number field sieve. Therefore, such moduli must be avoided. It is not
known how to avoid those moduli systematically. But choosing the modulus
randomly makes the probability for the SNFS to be applicable negligible.
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4.2.2 ECM

The elliptic curve factoring method [12] factors a composite positive integer
n in expected time L,[1/2, /1/2] where p is the smallest prime factor of n.
The largest prime factor found so far with ECM was a 54 decimal digit factor
in (6% —1)*2 + 1. Moduli with too small prime factors must be avoided. 1
expect 100 decimal digit minimal length factors to be secure against ECM
attacks for the next 20 years.

4.2.3 Quantum attacks

In [15] Peter Shor shows that IFP can be solved in polynomial time on a
quantum computer. It is not yet clear whether quantum computers become
ever practical. Currently, quantum attacks do not threaten IFP.

4.3 Random and pseudorandom number gen-
eration

The key and signature generation in ACE Sign require the generation of ran-
dom numbers, specifically random primes. They are generated as sequences
of random bits.

Such a sequence is generated as follows. A random bit generator (RBG)
is used to generate a short sequence of true random bits. Since a RBG is too
inefficient, the short true random sequence is expanded by a pseudorandom
bit generator (PRBG) into a sequence of the necessary length.

The RBGs used by the scheme under review are not described in the
submission. I can therefore not discuss their security here. However, in real
applications it is necessary that a cryptographically secure RBG is used.

A PRBG receives as input a random bit sequence and outputs a longer
pseudorandom bit sequence. A PRBG is cryptographically secure if an at-
tacker is not able to distinguish its output from a true random sequence in
polynomial time.

No provably secure PRBG is known. Several PRBGs are known whose
security can be reduced to the intractability of certain number theoretic
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problems such as the discrete logarithm problem in finite fields (see [4]).
However, those PRBGs are not sufficiently efficient.

The PRBG used in practice survive a broad class of statistical tests spec-
ified, for example, in [8].

4.4 Hash functions

In signature schemes, hash functions are used to map long documents to
short bit strings of a fixed length, which are actually signed. A collision of a
hash function is a pair of different documents which are mapped to the same
hash value. A hash function is called collision resistant if finding a collision
of that hash function is intractable.

In signature schemes, which sign hash values, the used hash functions
must be collision resistant. Otherwise, if a collision (d, d') is found then the
two documents d and d' have the same signature. If an attacker is able to
obtain a valid signature of d, then he has also a signature for d’. For example,
if the signer signs d in a challenge-response authentication, then he has also
signed the other document d’, possibly without knowing it. Collision resistant
hash function are one way functions. This means, that computing an inverse
image for a given image is intractable. Therefore, in many cases, the use of
collision resistant hash functions prevents existential forgeries since even if it
is possible to generate a valid signature for a hash value it is impossible to
find a document with that hash value.

Using the birthday paradox (see [4]) a collision for a hash function whose
image has n elements can be found with probability > 1/2 by computing
approximately \/n hash values. Therefore, the image of the hash function
should at least contain 2'%° elements.

No hash function is known for which the birthday attack is provably the
only possible attack. In the past, hash functions such as MD4 have been
shown not to be collision resistant. Today, the hash functions SHA-1 [16]
and RipeMD-160 [9] are used in practice. Given current knowledge, they are
collision resistant.

The birthday attack can be prevented if a keyed hash function is used.
This is a function which maps a bit string and a key from a predefined key
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space to a hash value of fixed length. In the signature process, a random key
is generated. The signature algorithm signs the hash value of a document
that is generated by the hash function which is parameterized by the chosen
key. The key is part of the signature. It is also used in the verification process.
In order for digital signature algorithm to be secure, the keyed hash function
must be a universal one-way hash function (UOWF). This means that given
a hash value and a key it is intractable to find a document such that the value
of the hash function parameterized by the given key is the given hash value.
No provably universal one-way hash function is known. However, there are
constructions that use compression functions such as SHA-1 (see [16]) and
are assumed to have the universal one-way property.
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Chapter 5

Basic cryptographic problems in
ACE

In this chapter I discuss the hardness of the non-interactive computational
problems which are the basis of the security of ACE

Here I discuss the difficulty of the computational problems to which the
security of ACE sign can be reduced. For the explanation of the problems
see Section 3.2

5.1 Security of the secret key

In order to find the secret ACE key it is necessary to factor the ACE modulus
n. Given todays knowledge, a modulus size of 1024 bits makes factoring the
ACE modulus intractable for the next two years and a modulus size of 1881
bits makes factoring the ACE modulus intractable until 2020 (see Section
4.2). However, unexpected mathematical discoveries may shorten those times
considerably. Also, the special choice of the prime factors of the ((p — 1)/2
and (¢—1)/2 are prime numbers) may make special purpose attacks possible.
However, such attacks are not known.
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5.2 RSA problem

The fastest method known to solve the RSA-problem is to factor the modulus
n, to find the inverse d of e mod ¢(n) = (p—1)(¢—1) (for example by means
of the extended euclidean algorithm) and to compute y = z%. The hard part
is to factor n. The difficulty of factoring n is discussed in Section 4.2. If
d happens to be not larger than n%??, then an LLL attack is possible (see
[3]). This is prevented by the choice of r in ACE. Given todays knowledge, a
modulus size of 1024 bits makes the RSA problem intractable for the next two
years and a modulus size of 1881 bits makes the the RSA problem intractable
for the next 20 years. However, unexpected mathematical discoveries may
shorten those times considerably. Also, the special choice of the prime factors
of the ((p—1)/2 and (¢ —1)/2 are prime numbers) may make special purpose
attacks possible. However, such attacks are not known.

5.3 Flexible RSA problem

The fastest method known to solve the flexible RSA-problem is to factor the
modulus n, to pick some e which is invertible mod ¢(n), to find the inverse
d of e mod ¢(n) = (p — 1)(¢ — 1) (for example by means of the extended
euclidean algorithm) and to compute y = z%. The hard part is to factor
n. The difficulty of factoring n is discussed in Section 4.2. Given todays
knowledge, a modulus size of 1024 bits makes the flexible RSA problem
intractable for the next two years and a modulus size of 1881 bits makes
the the flexible RSA problem intractable for the next 20 years. However,
unexpected mathematical discoveries may shorten those times considerably.
Also, the special choice of the prime factors of the ((p — 1)/2 and (¢ — 1)/2
are prime numbers) may make special purpose attacks possible. However,
such attacks are not known.

5.4 Second preimage resistance of SHA-1

Finding second preimages for SHA-1 (see Section 3.2.2) appears to be harder
than finding a collision for SHA-1 (see Section 4.4). The only known algo-
rithm for computing second preimages of SHA-1 is exhaustive search. Ex-

24



haustive search requires the computation of approximately 2!%° images of

SHA-1. However, there is no proof that the problem of finding second preim-
ages for SHA-1 is hard.

5.5 MARS sum/counter mode pseudorandom-
ness

No algorithm for distinguishing a pseudorandom sequence generated using

MARS in sum/counter mode from a real random sequence is known which is

better than guessing. However, no proof of the indistinguishability is known,
either.
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Chapter 6

Final evaluation

The security against adaptive chosen message attacks of ACE Sign can be
reduced to four precisely specified non-interactive problems (see Section 3.2).
They are of a somewhat special nature and have not been of mathematical
interest before their appearance in cryptography. I feal that they should be
studied more closely. However, the result of such s study will affect most
other digital signature systems since they all use similar hash functions and
random number generators. Only the underlying number theoretic problems
are different.

Given current knowledge, solving the RSA problem and the flexible RSA
problem (see Section 3.2), which are the security basis of ACE, requires fac-
toring the ACE modulus. If the size of this modulus is chosen appropriately,
then the integer factoring problem is intractable. ACE Sign uses moduli
n = pq where p and ¢ are primes such that (p — 1)/2 and (¢ — 1)/2 are also
primes. However, no factoring algorithm is known which takes advantage of
either of those properties. It is my opinion that with with the right choice
of parameters as described in Chapter 4, the flexible RSA problem and the
RSA problem are intractable.

In ACE Sign the SHA-1 hash function is used. Finding a second preimage
for a given SHA-1 image allows breaking ACE Sign. Finding a collision seems
not to be sufficient. Therefore, with respect to the used hash function, ACE
Sign can be considered secure.

A specific pseudorandom number generator is used in ACE Sign. It is
based on the MARS cipher and the security evaluation gives arguments for
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its unpredictability which look convincing to me.

With the appropriate parameters which are described in this evaluation,
ACE Sign is a secure digital signature scheme which is of particular interest
if provable security reductions are a major concern. However, ACE Sign is
a rather complicated system which makes a correct and verifiable implemen-
tation more difficult.

I feal that unexpected mathematical breakthroughs in all areas are the
most serious threat for ACE Sign. It is therefore crucial, that ACE is im-
plemented in such a way that it can be easily replaced if it turns out to be
insecure.
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