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Evaluation of RC4 Algorithm 
 
Executive Summary 
 
This is a report on the analysis of the stream cipher, RC4. For this algorithm 
the evaluators have 
 

(i) investigated the security of RC4 against various attacks; 
(ii) evaluated basic cryptographic properties; 
(iii) evaluated statistical properties; 
(iv) summarised previous attacks; 
(v) estimated practical security of RC4 in SSL; 
(vi) surveyed the speed. 

 
RC4 is a table based binary additive stream cipher which uses the output 
word of the keystream generator for its keystream. For most applications the 
word length is n = 8. 
 
RC4 is a unique design for a keystream generator. The large internal memory 
of RC4 and the dynamic updating of tables imply that RC4 is secure from 
conventional attacks on keystream generators. Over the past eight years RC4 
has been extensively evaluated in the open literature. Several interesting 
properties of RC4 have been discovered, and some weaknesses of the 
original initialisation process have been found. However, to date there has 
been no weakness discovered that is serious enough to conclude that RC4 is 
insecure for use as a stream cipher, provided the word size is sufficiently 
large and the initial part of the output sequence is suppressed. Our 
investigations reveal that using a word size of n = 8 and suppressing the first 
few output bytes prevents most attacks. 
 
The keystream output from RC4 was analysed using standard statistic tests. 
The only weakness that was identified was a strong bias in the second byte of 
the keystream. This bias can be used to identify the use of RC4 and is a 
leakage of information in second byte of cryptogram. This statistical weakness 
can be prevented by suppressing the first two bytes of the keystream.   
 
Previous attacks on RC4 were evaluated. The type of attack on RC4 found to 
be of most concern was the attack on RC4 in WEP. The original use of RC4 in 
WEP was demonstrated to be seriously flawed because of a “bad” re-keying 
process. To prevent such attacks on other uses of RC4 in communications 
systems requiring frequent resynchronisation a secure method to re-key RC4 
is required. The use of a hash function such as SHA to mix the key and 
initialisation vector is recommended. However, a precise re-keying process 
needs to be defined in order for its security to be properly evaluated. For 
example, if a hash function is used to mix the key and IV, these details must 
be standardised. However, we note that using a hash function adds 
implementation complexity and reduces initialisation speed, which may not be 
suitable for some applications. 
 



A second attack on RC4 which should be noted is a distinguisher attack.  The 
goal of such an attack is to distinguish output keystream of RC4 from random 
keystream.  For RC4, such distinguishers are practically impossible to avoid 
given a suitably large keystream.  However, in most application this does not 
cause any security problems since the actual use of RC4 is not intended to be 
secret.  
 
The use of RC4 in SSL appears secure provided the first two words of output 
are suppressed. 
 
RC4 is very fast in software. However, in hardware RC4 does not operate 
faster. In certain applications requiring high speed dedicated hardware this 
may cause some problems.  
 
In summary, the evaluators recommend RC4 as being suitable for most 
applications subject to the above recommendations. These recommendations 
in point form are: 
 

• The word size used should be n=8 
• The first two output words must be suppressed 
• A specific mechanism for re-keying should be standardised 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction to RC4 
 
The first known use of a dynamic permutation in stream cipher design was 
RC4, designed by Ron Rivest in 1987. The details of the algorithm remained 
proprietary until 1994 when it was posted to an Internet mailing list [Ano94]. 
The common use of this cipher in communications protocols such as SSL and 
WEP may make RC4 the world's most widely used stream cipher.   
 
The RC4 algorithm has two parts (we let n=8 be the nominal word size):  

• Initialisation mode: accepting a variable key as a sequence of bytes 
• Output mode: producing a pseudo-random byte sequence 

Both these modes update the table of 256 bytes. The complete algorithm is 
given below in Figure 1. 

Initialisation Mode: 
Input: n=8,  
          key length (in bytes) = k;  
          S[i]=i for i=0 to 255  
          Key :  K[0…(k-1)]    
 
j=0; 
For i=0 to (n-1) 
    j=j+S[i]+K[i mod  k] 
    swap(S,i,j) 
i=j=0; 
 
Output Mode:  
Repeat 
   i=i+1 
   j=j+S[i] 
  swap(S,i,j) 
  output=S[S[i]+S[j]] 
Until done 

Figure 1 - The RC4 Algorithm 

 
Let the k-word key be given in the array K[0…(k-1)]. The parameter n 
indicates the bit-width of the permutation S, which occupies n*2n bits of 
memory. For real applications, n=8 is used as it is a good trade-off between 
security and memory requirements, and it is also natural and easy to 
implement. Two extra bytes of memory, i and j, are used as pointers into the 
table. One byte pointer is incremented mod 2n and the other takes on pseudo-
random values generated by table lookups (and also by the key in 
Initialisation mode). The function swap(S,a,b) swaps the values in S[a] and 
S[b], thus updating the table while conserving the permutation property. 
These are both already in temporary variables, so the swap operation takes 2 
clock cycles. 
 



The algorithm of RC4 can be seen to have 4 stages. The essential parts of 
this cipher are: 

• A simple basic counter, modulo the table size 
• Another pointer that is updated using a table value 
• Output a value that depends on table value of both pointers 
• Update the table 

 
A simplistic model of software suggests that RC4 uses 2 operations for each 
of these stages, and so, given some system inefficiencies, should run at a 
little less than the underlying clock speed in software. This is confirmed by 
some optimised implementations of the evaluators (see Appendix D). The 
memory requirements are 256 bytes for the dynamic table and a few other 
bytes for the pointers and temporary values. This is just over ¼ Kbyte memory 
and so it is suited for small applications with restricted memory. 
 

2 Known Weaknesses 
 
Since it first appeared in the open literature in 1994, RC4 has been 
extensively examined. The published attacks on RC4 seem to follow one of 
the following approaches: 
 

• Identify weak keys [Roo95], [Wag95], or related key attack [GW00]. 
• Distinguishing RC4 output from a random sequence [Goli97], [FM00].  
• Backtracking Algorithms [MT98], [K+98], [Goli00]. 
• Attacks based on weakness in the Initialisation [MS01], [FMS01]. 

 
The first known weaknesses in RC4 were reported on the sci.crypt mailing list 
in 1995 by Roos [Roo95] and Wagner [Wag95]. They described several 
classes of keys that have specific weaknesses including predictable output or 
output that leaks key information. Later a related key attack was observed for 
long keys (2048 bits) [GW00]. 
 
Since the output an RC4 stream cipher is used to encrypt the plaintext by bit-
wise XOR, any observable bias in the output can be used as the basis for an 
attack. A correlation was detected by Golic [Goli97] between bytes at time t 
and t+2. Many stronger correlations were later reported by Fluhrer and 
McGrew [FM00]. 
 
Algorithms that attempt to guess the internal state and then check for 
consistency with known output have been studied independently by several 
researchers and the results reported in [MT98], [K+98] and [Goli00]. The 
consensus is that these attacks are infeasible for n=8 due to very large 
computational complexity. 
 
The most significant attacks on RC4 have been based on exploiting the 
simplicity of the initialisation algorithm to discover an observable bias in the 
first few bytes of the output sequence. A bias in the second output byte was 
reported in [MS01]. The value zero occurs with twice the expected probability 



for a random sequence. Some parity preserving properties of the initialisation 
process are used in [FMS01] to define a large class of weak keys. A bias in 
the first byte was recently reported in [Mir02]. This result stems from a new 
model for the analysis of RC4 style ciphers. 
 
These problems with RC4 have seriously reduced the security of wireless 
LANs due to the failure of WEP, the link-layer security protocol for 802.11 
networks, as demonstrated in [SIR01] which describes a practical attack.  
 
We now examine the results of each of these weaknesses. 
 
 
2.1 Correlations and Distinguishers 
 
These attacks can be used to distinguish output of RC4 from random output. 
It should be noted that in general many encryption algorithms suffer from such 
weakness as was shown in the recent paper [CHJ02]. In most applications the 
actual use of RC4 is not kept secret so that leakage of this information is not 
significant. 
 
It is known that RC4 output sequences are slightly biased [Jen94]. A gap 
length test has been discussed also in [MT98], where testing results on 230 
elements of RC4 keystream are reported. Define the gap at i for a sequence x 
to be the smallest integer t>0 such that S[i]=S[i-t-1], where S[] is the RC4 
table. For a random sequence in which each element takes on one of 2n 
values the probability that t=k is given by ((2n-1)/2n)k * 1/2n . The gap test 
looks at the ratio of the actual to the expected gap probability, for a range of 
word size n=2 to n=6 and gap length from zero to six. For all values of n, gaps 
of length 0 are more likely than expected, and gaps of length 1 are less likely 
than expected. It has also been observed that after a gap length of zero, the 
probability that S[i]=0 is lower than expected and the probability that S[i]=2n-1 
is higher than expected. 
 
Linear statistical weaknesses of RC4 were considered in [Goli97]. The main 
result shows that the LSB of  Zt XOR Zt+2 is correlated to 1 with coefficient 
close to 15 * 2-3n where n is the word size of RC4-n. The length of known 
keystream required to detect this weakness is around 64n/255. For n=8 it is 
realistic to collect the 240 bits required to detect this correlation. Once detected, 
this distinguished RC4 from random and can be used to find the word-size, 
were this to be kept secret.  
 
The main point of the linear sequential circuit approximation method applied 
to RC4 is that the table at time t can be approximated by the table at time t-1. 
The correlation coefficient is calculated (or estimated) using some heuristic 
arguments including modelling unknown values as random. It is reported that 
computer simulations confirm the result. 
 
The cycle structure of RC4 was examined in detail in [MT98]. Results of the 
success of some “tracking” algorithms on scaled down RC4 are provided. The 
results show that RC4 can be distinguished from random if only a fraction of a 



full period is available. However for n=8 this is still impractical. The tracking 
attack offers considerable speedup over exhaustive search. With the word 
size n=5, the state can be recovered using 242 steps where the nominal 
keyspace of the system is 2160. 
 
A distinguisher requiring much less known keystream was reported in [FM00]. 
This paper focuses upon the calculation of digraph probabilities, where a 
digraph is considered to be a consecutive pair of n-bit output words. Given the 
assumption that all initial states have equal probability, the digraph 
probabilities are calculated by counting the number of internal states that are 
consistent with each digraph. This counting is feasible since only 4 words of 
the RC4 state influence the current output.   
 
The full digraph probabilities for n=3,4,5 were counted in [FM00] with about 
240 operations and found to be consistently non-uniform. The largest bias 
found was that the (0,0) digraph occurs with probability 1+2-n+1 times greater 
than would be expected for a random sequence. There are ten other digraph 
types that have bias 1+2-n. These anomalies are studied in [FM00] where 
some examples are shown to explain how they occur. Many future directions 
of this line of research are briefly mentioned in [FM00]. These include trigraph 
counting and lagged digraphs.  
 
The length of known keystreams required to detect these anomalies are 
estimated in [FM00] using some theoretical arguments. They estimate that 
230.6 bytes of output are required for RC4 with n=8. It is interesting to note that, 
using the same methods, they estimate the keystream required to detect the 
bias reported in [Goli97] at 244.7, which is a bit more than the estimate of 240 
that appeared in [Goli97] following different heuristics. The evaluators are of 
the opinion that it may be difficult to know the exact complexity of some 
algorithms until they are much more closely examined. Another complication 
is the (often implicit or unstated) choice of probabilities for false positives and 
false negatives in hypothesis based statistical testing. 
 
Mantin and Shamir discovered a major statistical weakness [MS01] in the 
probability distribution of the second output byte of a RC4 keystream. The 
value zero occurs with twice the expected probability for a random sequence. 
This bias results in an efficient distinguisher between RC4 and random. 
Experiments show that only 200 different output streams are required to 
detect that they are generated by RC4. The bias is demonstrated to be 
caused by the PRNG starting with j=0. The weakness only occurs at the start 
since j has that value. Later in the keystream j takes on uniformly random 
value so the bias towards zero vanishes. 
 
The authors of [MS01] discuss specific structures for RC4 states that give rise 
to a class of “predictive states”  that lead to distinguishers and they describe 
attack algorithms that are more efficient for a special subset called “fortuitous” 
states. (It is fortuitous for the attacker) 
 
Recently, a statistical weakness in the first byte of RC4 output was claimed in 
[Mir02]. It is estimated that 1700 first bytes are required to detect this bias and 



hence distinguish RC4 from random. The evaluators further evaluate this 
weakness in Section 3.3. The results presented in this section do not agree 
with the previous results in [Mir02] and do not show any bias in the first byte. 
 
 
2.2 Weak Keys and Related Key Attacks 
 
In 1995, A. Roos [Roo95] described a class of weak keys for which the initial 
byte of the keystream is highly correlated with the first few key bytes. The 
weak keys have the first two n-bit words sum to zero mod 2n. The reduction in 
search effort from this attack is 25.1, but if linearly related keys are used, the 
reduction increases to 218. This weakness can be avoided by discarding the 
first few output keystream bytes. 
 
A related key weakness of RC4 was discussed in [GW00]. It is observed that 
when RC4 is initialised with a single 2048 bit key, then there exist related keys 
(that differ only in two consecutive bytes), which produce output streams that 
are initially well correlated.  
 
Let K and K’ be the two RC4 keys of length 2048 bits, and let them differ only 
in two consecutive bytes. This change is called a “twiddle” by [GW00], and it 
is parameterised by two values: t and d. We have K’(t)=K(t)+d and 
K’(t+1)=K(t+1)-d, where K’=K for all other bytes. It follows from the 
initialisation process that j’=j+d at time t and also j’ is likely to be the same as j 
at time t+1. The two changes of +d and –d in consecutive key bytes cancels 
each others effect, except that a different swap for K’ than for K will occur 
during iteration t. This results in a different table at the end of the initialisation 
process. When the PRNG mode begins the outputs will be the mostly the 
same until the table differences affect the j pointer. At that iteration the two 
versions of the algorithm have “derailed” in the terminology of [GW00]. The 
time until this event is called the derailment time and the probability 
distribution of this time is discussed in detail in [GW00]. Good ‘twiddles’ cause 
less change to the initial table and so have longer derailment time. 
 
This attack is not applicable to the usual mode of initialising RC4 with a 128 
bit key that is repeated eight times to provide the required 2048-bit value, as 
any single change to the key causes eight changes to the table, thus greatly 
reducing the expected derailment time. Another way to avoid the correlated 
output segment is to suppress the first 256 output bytes. 
 
A property called the “Invariance Weakness” has been investigated in 
[FMS01] and more fully explained in a recent masters thesis by Mantin 
[Man01]. The Invariance Weakness, (defined below), identifies a large class 
of weak keys in which a small part of the secret key determines a large 
number of bits in the RC4 table at the end of the initialisation process. These 
patterns are translated into the initial part of the output keystream. Thus RC4 
has the undesirable property that for these weak keys its initial outputs are 
greatly affected by a small number of key bits.  
 



We now present the details of the Invariance Weakness. Let a permutation S[] 
of {0,…,N-1} have the property that  S[t]= t (mod b) then the permutation S[] is 
said to b-conserve t. The permutation S[] is said to be b-conserving if all N 
elements are b-conserved. The permutation is defined as almost b-conserving 
if the number of b-conserved elements is not less than N-2.  
 
 
Let a key, K, have w words of n-bits each, where w is a multiple of some 
integer b. Then K is called a b-exact key for any index r that satisfies  

K[r mod w]=1-r  (mod b). 
In the case K[0]=1 and MSB(K[1])=1 then K is called a special b-exact key. 
 
 
In [FMS01] the properties of a slightly modified version of the initialisation 
process of RC4 is considered. The only change made is the sequence of 
operations. It is shown that moving the increment of the basic modular 
counter index i to the beginning of the loop (rather than the end as in standard 
RC4), causes the invariance weakness to occur with greater effect than for 
standard RC4. Theorem 1 of [FMS01] states that, (for the modified version) all 
b-exact keys produce initial tables that are b-conserving. A modified proof of 
how the weakness occurs about half the time in real RC4 appears in [Man01]. 
The fraction of determined permutation bits is proportional to the fraction of 
fixed key bits. It states in [FMS01] that for modified RC4 with n=8 and w=6, it 
is so that 6 of the 48 key bits completely determine 252 of the 1684 
permutation bits. 
 
When some key bits are known, a related key attack is possible using the 
invariance weakness. Section 8.1 of [FMS01] discussed this attack for RC4 
with n=8 and a 32 byte key. They state the attack has complexity of only 240, 
compared with exhaustive search complexity 2256! Note that a special pattern 
of known key bits is required to initiate this attack, which supposes also that 
the attacker has adaptive “chosen key difference” access to the encryption 
device. In most applications this is not practical so that the invariance 
weakness is mainly of theoretical interest. 
 
 
2.3 Backtracking Attacks 
 
Several algorithms are given in [K+98] for the initial state reconstruction of 
RC4 from short sequences of output. The attacks are independent of the 
initialisation process as they recover the initial table itself.  
 
The importance of the swapping operation in RC4 is examined by a detailed 
series of experimental attacks on modified versions of RC4 where the 
swapping is done less frequently, for example once every x iterations. The 
results of the heuristic algorithms used show that the security of the RC4 
variants increased as the swapping was done more often. The attacks involve 
guessing some values in the table and using the known output sequence to 
check for contradictions. The number of initial correct guesses (required to 



allow the table to be recovered successfully with 50% probability) increases 
from 40 to 240 as the frequency of swapping increases from 1/128 to 1/2.   
 
To attack the real RC4, the guesses are made not at the start but as needed. 
The actual heuristics used are not revealed in [K+98], however they do state 
that their best attack consistently has complexity less than searching through 
the square root of the initial state space. They have also identified that output 
sequences that have some bytes the same yield more quickly to this attack. 
Another attack is presented using probability distributions, but it works only if 
a certain number of table entries are already known. For n=8 about 160 
entries are needed. The time complexity is 26n steps each consisting of 
computing the product of appropriate probabilities. 
 
These attacks are infeasible for n>=5, so the usual instance of n=8 is secure 
from this method. 
 
Iterative Probabilistic Cryptanalysis of RC4 was considered in [Goli00]. This 
method uses a short segment of keystream and a probabilistic model that 
improves upon the one from [K+98]. Both forward and backward recursive 
expressions for state value probabilities are developed under two versions of 
the independence assumption.  The basic iterative algorithm is composed of a 
number of rounds, where each round uses a forward recursion and a 
backward recursion. These two recursions take as input the others previous 
output. The initial probability distribution for each of the state values is uniform. 
The recursions calculate state value probabilities given the known output 
sequence.  
 
The paper [Goli00] gives results of computer experiments on these iterative 
algorithms for RC4 with n=3 and n=4. It turns out that a number of table 
entries have to be guessed correctly before this algorithm can be successful. 
It is interesting to note that the algorithm using the simplified independence 
assumption is more efficient than those using the more theoretically accurate 
independence assumption.  The total number of computational steps remains 
the same, but the complexity of most is reduced when using the simplified 
assumption. The success of the algorithm does not seem to be affected by 
the inaccuracy in the independence assumption!  Although more effective 
than [K+98], (they require fewer table entries to be guessed beforehand) the 
attacks of [Goli00] are still expected to remain infeasible for RC4 used with 
word size n=8.  
 
 
2.4 Weaknesses in the Key Initialisation 
 
Several weaknesses in the key initialisation process of RC4 were described in 
[FMS01]. They identify a large class of weak keys, that lack diffusion in the 
key to state/output mappings, This means that some state and initial output 
bits depend on a reduced subset of the secret key bits. These weak keys lead 
to distinguishers for RC4 and allow related key attacks with practical 
complexity. Also, the “public IV” mode of operation used in the WEP (part of 
the 802.11 standard) is shown to be insecure for RC4. In [FMS01] they show 



a new passive ciphertext only attack that recovers an arbitrarily long key in 
time that grows only linearly with its size. 
 
When the RC4 key is a secret part concatenated with a public IV part, and the 
same key is used with numerous IVs, then a related key attack can use 
knowledge of the first output word from these different streams to reconstruct 
the secret key! The success probability, effort required and number of IV 
streams required depends on the order of the concatenation, the size of the IV 
and sometimes on the value of the key. Many details of these attacks are 
examined in [FMS01]. Although these attacks are applicable to some 
deployed encryptions systems, it is not effective against SSL as hash 
functions are used to securely combine the key and IV before encryption. 
 
[FMS01] makes some other security relevant observations.  

• They point out that the LSB biases combine in a natural way with the 
ASCII bias in the LSB of English texts. This results in ciphertext only 
distinguisher using only the knowledge that the plaintext is in English.  

• The security measure introduced in [BSW00] called sampling 
resistance is low for RC4 due to the many known biases. This results in 
improved efficiency for time/memory/data trade-off attacks. 

 
2.4.1 Practical Attacks on WEP 
The attacks of [FMS01] are applicable to WEP (the link layer security protocol 
in the wireless 802.11 standard) since the first byte of each plaintext payload 
is a known constant, so the first byte of keystream is always known. WEP 
uses a 3 byte IV and uses the concatenation of the IV and Key, expressed as 
IV|Key, as the RC4 key. Then it transmits the IV and the ciphertext together. 
By examining enough packets the secret key can be recovered. With 60 
different IV streams, the attacker can re-derive the key bytes in order one at a 
time. The attack recovers each byte separately with the same effort, so the 
increase in security is linear for increasing the key length.  
 
Consideration of practical issues led to the estimate in [FMS01] of a few 
million packets being required to break WEP by this method. Soon afterwards 
real network traffic was used in experiments to recover 128-bit WEP keys in 
[SIR01]. They report that capturing the WEP encrypted packets off the 
wireless network proved to be the most time consuming part of the attack. 
They also report that hand decrypting packets after the initial attack failed 
showed that an additional 802.2 encapsulation header is added for both 
ARPO and IP traffic (this is due to RFC1042). This made the attack even 
easier as all IP and ARP packets would now have the same first plaintext byte. 
 
They find in [SIR01] that 5 or 6 million intercepted packets was enough data 
to recover the entire 128-bit WEP key. It took a few hours to collect this 
amount of data on their partially loaded network. Improvements to the 
algorithm from [FMS01] lead to a reduction in the number of required texts 
down to around 1,000,000.  
 



As software tools for these attacks have now appeared on the internet under 
names such as Airsnort and WEPcracker, is seems clear that 802.11 based 
wireless networks are practically insecure.  
  
 
2.5 Summary 
 
In this section we summarise previous attacks on RC4 and describe methods 
to prevent such attacks where applicable. 
 
2.5.1 Correlations and Distinguishers 
 
These attacks are used to distinguish the use of RC4 from a random 
keystream. There are two different types of distinguishers.  
 

• Single key output distinguisher 
 
In a single key distinguisher the attacker knows a single output keystream.  
The length of the keystream required to distinguish RC4 from a random 
keystream is 240 using methods from [Goli97] and 233.6 using methods from 
[FM00].  
 
There is no simple method to avoid the single key output distinguisher 
weakness in RC4. However in most applications this is not considered to 
be a serious weakness. So far these distinguishers have only been used 
to identify the use of RC4 not as a method to recover the key. In most 
applications the interoperability requirements ensure the fact that RC4 is 
being used can be considered as already publicly known.  
   
• Multiple key distinguisher 
 
In a multiple key distinguisher the attacker knows the byte in a fixed 
position from multiple keys. For first byte position [Mir02] claims 1700 first 
bytes are sufficient to distinguish RC4 random. The evaluators show that 
this claim is incorrect in Section 3.3. For second byte position [MS01] 
claim that only 200 different second bytes are required to distinguish RC4. 
The results in Section 3.3 agree with this claim.  
 
The multiple key distinguisher can be avoided by suppressing the first two 
bytes of the keystream. The evaluators strongly recommend that this 
method be used since the bias in the second byte provides leakage of 
information about the corresponding ciphertext byte.   

  
2.5.2 Weak Keys and Related Key Attacks 
 
The probability of having a weak key as described in [Roo95] is small, 2-16. As 
well such a weakness can be avoided by discarding the first few bytes. 
 



The related key attacks in Section 2.2 are in general not practical and only of 
theoretical interest. These attacks pose no threat to RC4 as used in practical 
applications. 
 
2.5.3 Backtracking Attacks 
 
The backtracking attacks reviewed in Section 2.3 are only practical for RC4 
when the word size n is small. For RC4 with n = 8 which is used in most 
applications such attacks are not feasible. 
 
2.5.4 Weakness in the Key Initialisation 
 
The practical attacks on the use of RC4 in WEP, reviewed in Section 2.4, are 
caused by a bad rekeying process. Methods to prevent such attacks are 
presented in Section 4.2. 
 

3 Keystream Properties  
 
For keystream sequences to be used in stream ciphers that provide 
cryptographic security, the keystream must possess certain basic properties. 
These include a large period, large linear complexity and white-noise statistics. 
 
Experimental results, which are included below for linear complexity and 
statistical analysis, were obtained by the evaluators using the CRYPT-X 
package. This is a statistical package, which was designed previously by the 
evaluators for analysing encryption algorithms. The relevant pages from the 
CRYPT-X manual have been included as Appendix C. 
 
 
3.1 Period 
 
The period of RC4 was analysed in [M98].  We provide a summary of this 
research below highlighting any significant results. 
 
It was shown that for all keys the period T of RC4 is (2n)(z) for some integer z 
where n denotes the word length.  To gain a better understanding of the 
expected period all possible keys for n = 2 and 3 were tried. It was shown that 
for these lengths that RC4 does resemble a random permutation, but a 
slightly larger number than expected of elements are in shorter cycles than 
expected. For n = 4, experimental attempts at determining the cycle length 
were unsuccessful, indicating that short periods are very rare.  
 
In summary the research in [M98] indicates that, with high probability, the 
period of RC4 should be sufficiently large especially for the recommended 
word length of n = 8. 
 
 
3.2 Linear Complexity 



 
The linear complexity checks for the minimum amount of knowledge required 
to reconstruct the whole stream using a linear feed back shift register. It is 
difficult to determine the linear complexity of a sequence from RC4. In order to 
obtain empirical evidence for the linear complexity and linear complexity 
profile the tests from the CRYPT-X package were applied. 
 
Linear complexity tests from CRYPT-X package were applied to 100 RC4 
keystreams of length 105 bits, and the results showed linear complexity values 
close to that expected for random data (i.e. half the bit-stream length). The 
linear complexity test was also applied to five RC4 keystreams of length 
819,200 bits (the number limited by time constraints of the test) and the 
results support those obtained for the shorter keystreams. For more detailed 
results see Appendix C. The results for the linear complexity profile indicate 
that, as the bit-stream increases in length, the changes in linear complexity 
maintain the expected value of half the stream length.  These results support 
the randomness of the keystream output from RC4, based on linear 
complexity, such that the whole bit-stream is required to re-construct the 
stream itself, thus giving an attacker no advantage in being able to create the 
bit-stream with a smaller number of output bits. 
 
 
3.3 Statistical Analysis    
 
Statistical analysis was conducted by the evaluators on RC4 in three areas. 
 
3.3.1 Gaps Test 

 
As was mentioned in Section 2.1 [Jen94] noted that for n = 2 to 6 more gaps 
of length zero than were expected between words were found. The evaluators 
examined keystreams of RC4 for word size of n = 4 to verify [Jen94] results 
and 8 to see if similar behaviour exists. 
 
The number of gaps of length zero, for each different word pattern, in words of 
size n = 8 were investigated on 100 different RC4 keystreams of 1 Mb (220 
words), and for n=4 on 100 different RC4 keystreams of 500,000 bytes (106  
words). For n = 4 there are 24 = 16 possible patterns, and for n = 8 there are 
28 = 256 possible patterns. The expected number of gaps of length zero for 
each pattern is 106/24 - 1 = 62,499  (for n = 4), and 220/28 - 1 = 4095 (for n = 8).   
 
A goodness-of-fit test to a uniform distribution, with expected count as given 
above, was applied to the 100 results. Refer to Appendix A for a line graph 
illustrating the count of the number of gaps of length zero for each RC4 
keystream.   
 
The results for n = 4 show a bias towards a higher count than expected, 
confirming results from [Jen94]. The results for n = 8 show no apparent 
deviation from randomness. These results further support the use of word size 
of n = 8. 
 



3.3.2 Byte Bias 
 

As was mentioned in Section 2.1, [MS01] demonstrated a major statistical 
weakness in the second output byte of a RC4 keystream since the value zero 
occurs with twice the expected probability for a random sequence. This allows 
leakage of information about the second byte of any cryptogram formed with 
RC4 and allows the use of RC4 algorithm to be easily identified. Section 2.1 
also mentioned that in a recent paper, [Mir02], it is claimed that a statistical 
bias also occurs in the first byte of RC4 where it is estimated that 1700 first 
bytes are required to detect this bias and distinguish RC4 from random. 
 
In order to examine further the possible bias in the output bytes of RC4 a 
frequency test was applied to the first ten byte positions in the output stream 
of 100,000 different RC4 keystreams.  Table 1 summarises the statistic (chi-
square with 255 degrees of freedom) and p-value for each byte position. 
 

Uniformity Test on Byte Position 
Position Statistic p-value 

1 217 0.9589 
2 644 0.0000 
3 216 0.9628 
4 304 0.0179 
5 288 0.0780 
6 300 0.0283 
7 287 0.0834 
8 274 0.1997 
9 235 0.8075 
10 251 0.5615 

Table 1 
 
These results support a non-uniformity of the byte patterns in byte position 2. 
It should be noted that the figure of 0.0000 for the p-value of byte position 2 
indicates the extreme low probability for this distribution that the output was 
from a random file. 
 
Since there are 100,000 keystreams and 256 possible byte patterns, then the 
expected number of each byte pattern is 1000,000/256 = 390.625 ( ≈ 391).  
Refer to Appendix B for a line graph illustrating the count of each byte pattern 
(expressed as its equivalent decimal value 0 - 255) around the expected 
count.   For all but Byte 2 the counts appear to fluctuate close to a horizontal 
line through 391.  The count for the pattern equivalent to the decimal number 
"0" is just over double the expected count. 
 
These results do not support the results in [Mir02] on the claim of a statistical 
bias in the first byte of RC4. All byte positions except position 2 appear 
random. 



 
3.3.3 CRYPT-X Statistical Tests  

 
The statistical analysis applied to RC4 are the tests explained in the CRYPT-
X package (see Appendix C), namely the frequency, binary derivative, change 
point, subblock, runs distribution, sequence complexity and linear complexity 
tests.  The tests are based on the hypothesis that the measure obtained from 
the output stream supports randomness.  The p-values obtained from the 
tests represent the probability that such sample result (or a less random one) 
would be obtained if the algorithm produces a random stream.  Very small p-
values would support non-randomness. 
 
The first five tests were applied to one hundred different RC4 keystreams of 
length 1 Megabyte (223 bits) each, and the two complexity tests were applied 
to the first 105 bits of these keystreams (due to the amount of time required for 
these tests). 
 
The subblock test was applied to the RC4 keystreams by dividing the bit-
stream into non-overlapping subblocks of length 4, 8, 16 and 30 bits.  The 
maximum subblock length of 30 was determined by the length of the 
keystream and the limitations of the test applied. 
 
The frequency test was also applied to bit positions 1 to 64 in non-overlapping 
subblocks of 64 bits on the one hundred RC4 keystreams.  The number of bits 
in each test was 223/26 = 131,072 bits. 
 
Results of Statistical Analysis  
 
The results of the tests applied give 31 of the resulting p-values from the 
2,015 tests falling below 0.01.  This is sufficiently close to the expected value 
of 0.01, and satisfies the requirements for randomness.  There are no strong 
indications of statistical weaknesses in the RC4 keystreams resulting from the 
CRYPT-X tests applied.  For more details on these results see Appendix C. 
 
The sequence complexity test provides an effective method of detecting 
periodicity or periodic patterns in the bit-stream.  In the bit-streams tested all 
sequence complexity values exceeded both the threshold value for 
randomness, and the average sequence complexity for bit-streams of length 
105 bits.  These results supported that the period of the keystreams exceeded 
the length of the stream tested, and that there was no detection of patterns in 
the RC4 keystreams. 
 
 
4 Cryptanalytic Techniques 
 
RC4 is a different type of stream cipher than the standard linear feedback shift 
register (LFSR) based stream cipher. RC4 is a table based stream cipher with 
a very large internal memory.  The tables are being updated dynamically 
during each encryption.   
 



The standard divide and conquer attacks on stream ciphers require a known 
division. The dynamic updating of Tables in RC4 prevent such attacks. If a 
less dynamic updating occurs then attacks are possible against RC4 as 
discussed in Section 2.3. 
 
The fast correlation attacks which have been extensively applied to LFSR 
based stream ciphers generally require parity checks based on the feedback 
function from the LFSR.  There is no parallel concept for table based stream 
ciphers such as RC4, especially as in the case of word size n = 8 which 
defines a very large internal memory state. 
 
The analysis of RC4 required the design of novel methods for attacking the 
algorithm.  Section 2 reviewed various methods proposed over the last eight 
years.  In Section 2.5 the significance of these possible attacks is summarised.  
 

5 Application of RC4 
 
There are several issues related to applying RC4 for encryption on actual 
communication systems that are discussed in this section.  
 

• Use in SSL 
  
RC4 is one of the recommended encryption algorithms for SSL protocol. 
 
• Rekeying 
 
For many applications of RC4 it is important to have secure and efficient 
rekeying mechanisms. 

 
• Efficient Implementation 
 
Many applications of RC4 require efficient speed in either software or 
hardware. 

 
 
5.1 SSL 
 
SSL (Secure Sockets Layer) [Net96] is an application-layer protocol that 
provides security on top of reliable transport layers such as TCP. SSL 
abstracts from Berkeley-type sockets using a client-server model. The 
security services that it offers include confidentiality, privacy and optionally 
authentication of the server and client. SSL uses RC4, along with other 
symmetric ciphers, as a primitive for ensuring confidentiality. 
 
SSL contains two sub-protocols: the handshake protocol, which the client and 
server use to negotiate security services, and the record protocol, which 
provides a secure channel between the two parties.  



 
 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 2 - Simple SSLv3 Handshake 

Finished 

ClientHello 

ClientKeyExchange 
Finished 

[Hello Request] 

ServerClient 

ServerHello 
ServerHelloDone 

 

Figure 2 shows the steps in a run of the SSLv3 Handshake protocol. The 
server starts the session with an optional HelloRequest message. The client 
and server negotiate parameters through the ClientHello and ServerHello 
messages, including the symmetric key algorithm used to provide 
confidentiality. The client generates a “pre-master secret” using a public-key 
algorithm and provides it (encrypted) to the server through the 
ClientKeyExchange message. The last stage of a successful run is the 
exchange of Finished messages, following which the client and server adopt 
the negotiated cipher suites to secure their channel.  
 
Keying material for RC4 is derived from 32-byte random values passed in the 
clear in ClientHello and ServerHello messages, and from the client’s pre-
master secret. To create its 32-byte random value, the client generates 28 
bytes from a secure PRNG and concatenates it with a four-byte timestamp. 
The server does the same. The client generates the 48-byte pre-master 
secret by encrypting random bytes under the server’s RSA or Fortezza key, or 
by performing the Diffie-Hellman key exchange algorithm, using values 
supplied by the server. 
 
Both parties generate the master secret from the pre-master secret using 
MD5 and SHA-1 HMACS – refer to Figure 3. 
 
 

master_secret = 
  MD5(pre_master_secret + SHA('A' + pre_master_secret + 
           ClientHello.random + ServerHello.random)) + 
  MD5(pre_master_secret + SHA('BB' + pre_master_secret + 
           ClientHello.random + ServerHello.random)) + 
  MD5(pre_master_secret + SHA('CCC' + pre_master_secret + 
           ClientHello.random + ServerHello.random)); 
 

Figure 3 - Generating the SSLv3 master secret [Net96] 



 
The master secret generates the key material, again using MD5 and SHA-1, 
iterated until the sufficient material is available.   Refer to Figure 4. 

 
key_block = 
    MD5(master_secret + SHA(`A' + master_secret + 

             ServerHello.random + ClientHello.random)) + 
    MD5(master_secret + SHA(`BB' + master_secret + 

             ServerHello.random + ClientHello.random)) + 
    MD5(master_secret + SHA(`CCC' + master_secret + 

                      ServerHello.random + ClientHello.random)); 
 

Figure 4 - Generating the SSLv3 key material [Net96] 

 

SSL partitions this material for use by MAC keys, cipher keys and IVs. The 
cipher algorithm negotiated in the handshake protocol uses the cipher key 
material. SSL offers a number of block ciphers (DES, Triple-DES, IDEA, etc), 
but its only stream cipher selection is RC4. While RC4 is parameterised, SSL 
uses RC4 only with a word-size of 8 bits and a key size of 16 bytes (128 bits) 
or, less frequently, 5 bytes (40 bits) to cater for now-defunct U.S. export laws. 
  
Since RC4 does not require a synchronization vector, the 128 bits of cipher 
key material is used directly as key K in the initialisation phase of Figure 1 
(with n = 8, k = 16).  
 
SSL does not provide a re-keying algorithm for RC4. Because SSL always 
operates on top of a reliable channel, entities are guaranteed that they will 
receive all packets in correct order. The state of RC4 following the processing 
of one packet is used for the processing of the next. 
 
The server can explicitly attempt re-keying by requesting that the session is 
restarted for example in the case of loss of synchronisation. It does this by 
sending a HelloRequest message to the client. The client can choose to 
ignore this message, following which the server may abort the session. If the 
client agrees to re-start the session, both parties generate new keys using the 
same master-secret, but new client and server random material passed in the 
Hello messages. The overheads involved in this process are very high and 
equate to encrypting many blocks using RC4.  This process is not practical if 
frequent rekeying is required. 
 
The SSL procedure outlined above in Figures 2, 3 and 4 defines a method to 
create a key for input into the RC4 algorithm. This method is secure from the 
attacks on the keys described in Section 2.4.1 on the application of RC4 to 
WEP. The key information, which is the premaster secret and the known 
random information is mixed in a secure manner, using one-way hash 
functions MD5 and SHA-1. This procedure prevents leakage of any 
information about the premaster secret. 
 



However the use of RC4 in SSL should be amended to include a 
recommendation to suppress the first few output bytes of the keystream, 
otherwise the statistical weakness in the second byte position described in 
Section 3.3.2 will still be present in the keystream. 
 
 
5.2 Rekeying 
 
Many communication systems require frequent resynchronisation. For a 
message encrypted on such a network using a stream cipher such as RC4 
each resynchronisation requires rekeying the algorithm.  In many cases for 
efficiency this rekeying is conducted with a base key and an initialisation 
vector which is sent in the clear. The base key and initialisation vector are 
used to form a session key to encrypt part of the message until 
resynchronisation is required. 
 
Two session keys should be unrelated, otherwise attacks such as that on RC4 
in WEP outlined in Section 2.4 may be possible. There are numerous 
methods that can be used. Methods for RC4 are described in [Riv01] where it 
is stated “RSA Security has discouraged such key derivation methods, 
recommending instead that users consider strengthening the key scheduling 
algorithm by pre-processing the base key and any counter or initialisation 
vector by passing them through a hash function such as MD5. Alternatively, 
weaknesses in the key scheduling algorithm can be prevented by discarding 
the first 256 output bytes of the pseudo-random generator before beginning 
encryption. Either or both of these techniques suffice to defeat the new 
attacks on WEP and WEP2”.   
 
The evaluators agree with RSA Security that the use of MD5 may prevent the 
attacks on WEP and WEP 2. However a more precise description for this 
process is required in order to determine its effect in preventing attacks.  The 
evaluators strongly disagree with the alternative method described by RSA to 
only discard the first 256 output bytes. This will still leave session keys 
exposed to the attacks from [FMS01] and [SIR01] on WEP and WEP2.   
 
Both methods recommended by RSA should be used. The use of MD5 to 
form session keys will prevent related key attacks. MD5 is a specialized hash-
function that runs approximately 60% faster than RC4 on a standard Intel 
platform [Dai00]. The use of MD5 should not present too great a decrease in 
efficiency for the increase in security. Discarding some output bytes is needed 
to prevent the leakage of information in the first few output bytes. At a 
minimum the evaluators strongly recommend suppressing the first two output 
bytes, no matter how the key and IV are combined before initialisation.     
 
The evaluators recommend that the re-keying algorithm be included in any 
stream cipher standardisation process, otherwise ad-hoc solutions can 
introduce new insecurities. Note that the New European Schemes for 
Signatures, Integrity and Encryption (NESSIE) has included a call for their 
stream cipher submissions to have the re-keying process clearly defined and 
this is included as part of the overall algorithm evaluation. The evaluators 



recommend all aspects of a cipher, including the intended context, should be 
included in the standardisation process for RC4. 
 
 
5.3 Implementation 
 
RC4 is an unusual symmetric cipher in that it is inherently serial and does not 
lend itself to parallel application in hardware. For this reason, RC4 does not 
run faster in dedicated hardware than in software. 
 
There are a number of dedicated hardware implementations of ARC4 
(Alleged-RC4) that produces the same keystream as RC4 when given the 
same inputs. Motorola claims that its MPC190 coprocessor produces a bulk 
encryption throughput using ARC4, of 630 Mbits/second (compared to DES at 
1139 Mbits/second) [Mot02].  
 
In software, RC4 appears to be one of the fastest mainstream ciphers on a 
single processor. Appendix D contains the implementation of RC4 in the C 
language on a linux 2.4 kernel. The test machine was a 1 Gigahertz Intel 
Pentium 3 with 32Kb L1 cache. For a gcc implementation requiring 1 kilobyte 
of memory, the peak throughput was 963 Mbits/second. Implementation in 
assembly language is expected to yield slightly higher results, in the order of 
25%. A smaller implementation, requiring around 260 bytes of memory runs at 
approximately 330 Mbits/second. 
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Appendix A 
 
Gaps test 
 
Gaps of length zero for RC4 keystreams of word length = 4: 
 
100 RC4 keystreams of length 500,000 bytes (1,000,000 4-bit words) were 
generated using 100 different keys. 
 
For random output, the expected number of gaps of length zero is 
1,000,000/16 - 1 = 62,499.  This is shown as a horizontal blue line in the 
graph below).  The majority of the 100 keystreams have a count above this 
expected value, thus supporting a bias towards a higher count of gaps of 
length zero (i.e. pairs of 4-bit words in the keystream). 
 
The average number of gaps obtained from the 100 keystreams was 
62,688.89 (shown as a horizontal red line in the graph below.  A test of 
goodness-of-fit to a uniform distribution gives a test statistic of 81.5.  This is 
compared to a chi-square distribution with 99 degrees of freedom and gives a 
p-value of 0.8986.  This large p-value supports uniformity of the number of 
gaps - about a mean (62,688.89) that is higher than that expected for 
randomness.   

 
 
 



Gaps of length zero for RC4 keystreams of word length = 8 bits. 
 
100 RC4 keystreams of length 220 bytes (1,048,576 8-bit words) were 
generated using 100 different keys. 
 
For random output, the expected number of gaps of length zero is 220/28 - 1 = 
4,095.  This is shown as a horizontal blue line in the graph below).  The 100 
keystream counts appear to vary randomly about this horizontal, indicating 
randomness for the number of gaps of length zero (i.e. pairs of 8-bit words in 
the keystream). 
 
The average number of gaps obtained from the 100 keystreams was 4,097.66, 
which is close to the expected mean of 4,095.  A test of goodness-of-fit to a 
uniform distribution gives a test statistic of 111.95.  This is compared to a chi-
square distribution with 99 degrees of freedom and gives a p-value of 0.1762.  
This p-value supports randomness in the number of gaps of length zero 
between words of length 8 bits  (i.e. randomness in the occurrence of  byte 
pairs.). 



Appendix B 
 
Byte Bias 
 
Line graphs of the number of different byte pattern in bytes 1 to 10 over 
100,000 files.  Number of different byte patterns = 256. 
Horizontal axis shows decimal representation of byte pattern from 0 to 255. 
The expected number of each byte pattern = 390.625, and this is highlighted 
by a horizontal blue line. 

 
Byte 1 shows no strong deviation from the expected count. 
 

 
 
Byte 2 shows a large deviation from the expected count for pattern '0'. 



The number of occurrences of '0' is more than double that expected. 

 
 
Byte 3 shows no strong deviation from the expected count. 

 
 
 
 
 

 
 
Byte 4 shows no strong deviation from the expected count. 
 
 
 



 

 
 
Byte 5 shows no strong deviation from the expected count. 
 
 
 
 
 

 
 
 
Byte 6 shows no strong deviation from the expected count. 
 
 



 

 
 
Byte 7 shows no strong deviation from the expected count. 
 
 
 
 
 

 
 
Byte 8 shows no strong deviation from the expected count. 
 
 
 
 



 

 
 
Byte 9 shows no strong deviation from the expected count. 
 
 
 
 
 
 

 
 
Byte 10 shows no strong deviation from the expected count. 
 
 





 
Appendix C 
 
CRYPT-X Statistical Tests 
 
This appendix gives a mathematical description of the statistical tests used 
from the CRYPT-X statistical package. In each case an example is given to 
illustrate a particular test. The first five tests examine the hypothesis that the 
bit stream was based on Bernoulli trials where the proportion of ones and 
zeros is 2

1 . The two complexity tests examine the knowledge that a small 
subsection of the bit stream can be used to produce the remainder of the 
stream. If this is possible the string would not be considered to be random, 
especially in relation to its use in a stream cipher. 
The recommended size of a sample stream to test depends on the size of the 
average message which is being encrypted using the keystream. i.e. if an 
average cryptogram has size five million bits then one should use test 
samples of this length. It should be noted that not all of the tests can be 
applied to a string of this length due to computational limitations.  For example, 
in the linear complexity test one would need to examine a smaller substring of 
the keystream.  It is recommended that strings of length at least 100000 bits 
be used for testing. 
C.1.1 Frequency Test 
The frequency test checks that there is an equal proportion of ones and zeros 
in the bit stream. For randomness the proportion of ones and zeros in the bit 
stream should be approximately equal, since any substantial deviation from 
equality could result in a successful cryptanalytic attack on the cipher. For 
example, assume that a cryptanalyst attacking the stream cipher knows the 
type of plaintext being used, e.g. standard English text coded in 8-bit ASCII, 
and the keystream has 4

3 of the bits zero. Under this assumption the 
cryptanalyst knows the frequency distribution of the plaintext in terms of single 
bits, digraphs and trigraphs. With this knowledge the cryptanalyst could 
recover a substantial amount of the plaintext, using ciphertext alone. 
The number of ones in a random binary sequence follows a binomial 
distribution, with mean 2

n and variance 4
n .  This may be approximated using a 

normal distribution.  The following notation is used: 
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The aim of the frequency test is to determine how the proportion of ones, , 
in the sample stream of length n bits, fits into the hypothesised distribution 
where the proportion of ones, and the variance, 

p̂

5.0=π n4
12 =σ . This is a two-

tailed test [BHAT 77].  The standardised normal test statistic is: 
)5.0ˆ(2 −= pnz .  The significance probability value, p, of the normal 

distribution is calculated for this statistic. This measures the probability of 



obtaining a number of ones equal to or further from the mean of 2
n  than this 

sample gives for the hypothesised (where and 5.0=π n4
12 =σ

100000>

). 
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A small significance probability indicates a significant result (i.e., the stream is 
considered to be non-random). For large values of n ( n ) a highly 
significant result (significance probability < 0.001) indicates a possible 
weakness in the cipher and it is recommended that no further tests be carried 
out on this sample as the imbalance of ones and zeros may effect their results.  
It should be noted that passing the frequency test does not mean the stream 
is not patterned. The following highly patterned streams, where the number of 
ones and zeros are equal, will pass the frequency test: 
11111111..........00000000......... 
10101010101010..................... 
Hence further testing is required to obtain knowledge of any patterns in the 
stream. 
Example: 
Test stream: 
10100010000101110001011000111010101010101010000001 
Calculations and results:  

   
504
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×=σ
=

 

   
n

 
42.0ˆ

211

=
=

p
   )5.042.0(50 −=−=z  
   p  2579.0=
Interpretation: 

25.79 % of bit streams of length 50 will have a number of ones equal to or further 
from the mean of 25, for the hypothesised distribution, than this sample.  This sample 
satisfies the frequency test. 

C.1.2 Binary Derivative Test 
The binary derivative is a new stream formed by the exclusive-or operation on 
successive bits in the stream. Successive binary derivative streams may be 
obtained from each new binary derivative, each one being of length one less 
than its predecessor [CARR 88]. 
The proportion of ones in the i-th binary derivative gives the proportion of 
overlapping (i+1)-tuples from the original stream in one of two known 
groupings of these (i+1)-tuples.  This will be explained for i  and . 1= 2=i
When  (first binary derivative) we are looking at the overlapping 
two-tuples: 00, 01, 10, 11 (in the original stream). 

1=i

The proportion of ones in the first binary derivative, , gives the proportion 
of the total number of 01 and 10 patterns in the original stream. 

)1(p̂

)1(p̂ > ½ means there is a larger proportion of the group of 01 and 10 two-
tuples (in the original stream). 

)1(p̂ < ½ means there is a larger proportion of the group of 00 and 11 two-
tuples (in the original stream). 
A combination of the frequency test on the original stream and its first binary 
derivative is equivalent to testing that there is an equal number of these four 



overlapping two-tuples in the original stream. This replaces the well-known 
Serial Test [DAWS 91]. 
When  (second binary derivative) we are looking at overlapping 
three-tuples: 000, 001, 010, 011, 100, 101, 110, 111 (in the original stream).  
The proportion of ones in the second binary derivative, , gives the 
proportion of the total number of 001, 011, 100, 110 patterns in the original 
stream. 

2=i

)2(p̂

)2(p̂  > ½ means there is a larger proportion of the group of 001, 100, 110, 
and 011 three-tuples. 

)2(p̂  < ½ means there is a larger proportion of the group of 000, 010, 101, 
and 111 three-tuples. 
A combination of the frequency test on the original stream and a similar test 
on the first and second binary derivatives, tests that there is an equal number 
of the eight overlapping three-tuples in the original stream, for practically all 
cases. If a cipher gives a satisfactory result to these tests AND also the 
change point test, then it can be considered to generate equal numbers of the 
overlapping three-tuples. 
Notation: 

 
derivative th-  thein ones of proportion)()(ˆ

derivative th-  thein ones ofnumber )(

1

1

i
in

inip

iin

=
−

=

=
 

The frequency test is applied to each stream and the standardised normal 
variable is found for the proportion of ones in each of the first two binary 
derivatives: )5.0)(ˆ(2)( −−= ipiniz , for i .   2,1=
The significance probability value, , of the normal distribution is calculated 
for each statistic.  A small significance probability indicates a significant result.  
For large n ( ) a highly significant result (significance probability < 
0.001) indicates a possible weakness in the cipher. 

ip

100000>n

Example: 
Test stream: 
 10100010000101110001011000111010101010101010000001 
Calculations and results: 
D1 : 1110011000111001001110100100111111111111111000001 
D2 : 001010100100101101001110110100000000000000100001 
 
Frequency test on first binary derivative (D1) : 
   n  30)1(1 =
   5.242

1n =−  
   61224.0)1(ˆ 150

30
1
)1(1 === −−n

np  
   57143.1)5.061224.0(492)1( =−=z  
    1161.01 =p
Interpretation: 

11.61 % of bit streams of length 49 will have a number of ones equal to or further 
from the mean of 24.5, for the hypothesised distribution, than this sample.  This 
sample satisfies the frequency test on the first binary derivative. 



Since the frequency test is satisfied for the original stream and the first binary 
derivative then the cipher can be regarded as producing an equal number of 
overlapping two-tuples. 
Frequency test on second binary derivative (D2) : 
   n  16)2(1 =
   242

2n =−  
   333.0)2(ˆ 250

16
2
)2(1 === −−n

np  
   3094.2)5.0333.0(482)2( −=−=z  
    0209.02 =p
Interpretation: 

2.09 % of bit streams of length 48 will have a number of ones equal to or further 
from the mean of 24, for the hypothesised distribution, than this sample. This 
sample satisfies the frequency test on the second binary derivative. 

Even though the frequency tests on the original stream and the first and 
second binary derivatives were all satisfied, the cipher will still have to satisfy 
the change point test before regarding it as producing an equal number of 
overlapping three-tuples. 
C.1.3 Change Point Test 
At each bit position, t, in the stream the proportion of ones to that point is 
compared to the proportion of ones in the remaining stream. 
The difference or change in these proportions is compared for all positions in 
the bit stream. The bit where the maximum change occurs is called the 
change point.  The test applied determines whether this change is significant 
for a binomial distribution where the proportion of ones in the stream is 
expected to be 0.5. 
This test is very useful for detecting patterned streams which have passed the 
frequency test on the stream and the first two binary derivatives. Even if 

2
1=π and the stream has passed the frequency test it could be, for n = 106, 

that 4
1=π  for the first 500000 bits and 4

3=π  for the second 500000 bits.  This 
is not considered to be a good pseudorandom sequence to be used as a 
keystream, and the change point test would detect such cases. 
This test is also useful for checking that there is an equal number of 
overlapping three-tuples for streams which have passed the frequency test on 
the original stream and also on the first two binary derivatives. 
The hypothesis to be tested is that there is no change in the proportion of 
ones throughout the whole stream. The statistic [PETT 79] used is 
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The maximum absolute value of this statistic is found: 
  nttU K1for  ,])[(ABS of MaximumMax ==
The significance probability, p, associated with this statistic is approximated 
by:  
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For small values of p the actual significance probability is smaller than that 
calculated. The smaller the value of p then the more significant the result.  For 
large streams  a highly significant result, p < 0.001, indicates a possible 
weakness in the algorithm. 
Example: 
Test stream: 
 s = 10100010000101110001011000111010101010101010000001 
Calculations and results: 
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Interpretation: 

The actual significance probability of the change in the proportion of ones is less 
than 53.9%.   This result indicates there is no significant change in the proportion of 
ones  in the bit stream.  This sample satisfies the change point test. 

C.1.4 Subblock Test 
The stream is divided into S non-overlapping subblocks, each of length b.  
Any fractional subblocks remaining are ignored.  For a stream of length n, the 
number of subblocks is the integral part of  b

n , i.e. S =  b
n . 

For  a subblock size of b ≤ 16 a test of uniformity is applied – i.e., there should 
be an equal number of each b bit pattern.  The test compares the observed 
number of each b bit pattern with bS 2 . 

The test statistic used is ∑
−

=

−=χ
12

0i

2
i

b
2

b

Sf
S
2   [BEKE 82], where fi is the frequency 

of subblock pattern whose equivalent decimal value is i.  This statistic is 
compared with a chi-square distribution with degrees of freedom equal to 

.  For values of b > 6 the normal distribution may be used to 
approximate the chi-square distribution.  Limitations:  The minimum length 
required for the stream to test for randomness using b-bit subblocks is  

bits. 

12b −

b2b5 ×
For  a subblock size of b > 16 the repetition test [GUST 96],  is applied.  The 
repetition test measures the number of repeated patterns in a sample of S 
subblocks, each containing b bits. Given the binary stream is divided into S b-
bit subblocks then, for a random stream, each of the  possible binary b-
bit patterns is equally likely to occur.  As the block length increases and 

bN 2=

∞→N , with a sample of size S where ∞→ 0N
S → , then the distribution of the 

number of subblock repetitions in the sample approaches a Poisson 

distribution with a mean of )1 N
S

e
−

−=λ (NS − .  When N8=S the mean 



converges to 32, for large values of b (say b > 16).  The Poisson distribution is 
well approximated by the normal distribution for  λ .   32=

:

The test requires a count of the number of subblock repetitions, r. (Note that if 
a particular pattern occurs three times, then this would add two to the number 
of repetitions).  
The number of b-bit subblocks required for the test is N8=S , and gives 

. 32≈λ
The procedure is to sort the subblocks and then determine the number of 
repetitions, r. 

The test statistic is 
λ
λ−= rz (standard normal statistic for a Poisson 

distribution with a mean equal to λ ), and is compared with the standard 
normal distribution.  A two-tailed test applies since both too few or too many 
repetitions may indicate non-randomness of the stream.   
The required stream length to apply the repetition test using b-bit subblocks is 

32
b

2b +× bits.  This is considerably less than the length of stream required to 
apply the uniformity test for subblocks of the same size.  Since the stream 
lengths required are very large, no sample stream will be shown.  Instead, the 
following data will be used to illustrate a test calculation for the uniformity test: 
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Interpretation: 
40.42% of all possible streams of length 100000 will have a distribution 
of 8-bit subblocks less uniform than this sample shows.  This sample 
satisfies the subblock test for subblocks of length 8. 

The following data is used to illustrate a test calculation for the repetition test: 
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Interpretation: 
14.44% of all possible streams of length 36864 will have a 18-bit 
subblock repetition count further from the mean (32) than this sample 
shows.  This sample satisfies the subblock test for subblocks of length 
18. 

C.1.5 Runs Test 
The runs distribution test compares the distribution of the number of runs of 
ones (blocks) and zeros (gaps) with that expected under randomness. For a 
random binary stream where 2

1)0Pr()1Pr( == there should be an equal 
number of  number of blocks and gaps of the same length. Based on 
Golomb's postulates, the expected number of runs of length i for a random 
binary stream should be i2

1 of the number of runs, and for each length there 
should be an equal number of runs of ones and zeros, i.e. 1i2

s
i1i0 )r(E)r(E +== Run , 

where Runs indicates the number of runs in the binary stream.  The 
hypothesis to be tested is that the distribution of runs in the stream fits a 
binomial population for which 2

1)0Pr()1Pr( == .  The test applied is adapted 
from [MOOD40]. 
The long runs are added together to form new variables s0k and s1k 
corresponding to the number of gaps and blocks of length k or more, where 

 and  is the number of zeros in the stream. ∑
=

=
0n

ki
i0k0 rs 0n

By adding the long runs together a certain amount of information will be lost. 
In order to minimise the amount of information lost, it is recommended here 
that  1logk 5

1n
2 −= + . 

For a stream of length n = 106 this would give a maximum value of k = 16, and 
hence the number of gaps of length 16 or more would be added together to 
give s0,16 and the number of blocks of length 16 or more would be added 
together to give s1,16. 
Explanation of terms: 
  = number of bits in stream n
 = number of ones in the bit stream 1n
 = number of runs of 0 of length i i0r
 = number of runs of 0 of length i for i < k i0s



 = number of runs of 0 for lengths ≥ k k0s
 = number of runs of 1 of length i i1r
 = number of runs of 1 of length i for i < k i1s
 = number of runs of 1 for lengths ≥ k k1s
The variables: 
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are asymptotically normally distributed with zero means and variances and 
covariances: 
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Test procedure: 
1. Determine k.   
2. Take a sample stream of n bits from a stream cipher.  Determine the 

number of runs of each length to gives ands for .   i1 i0 k,...,1i =
3. Calculate foru using above formulae.  k2,...,1jj =

3. Determine  [S = which is a ]ijσ k2k2 matrix.  Calculate  ×

[ ] [ ] 1
ij

ij1S −− σ=σ= .  
This will require obtaining the inverse of a matrix of up 
to32 elements for bits.  Calculate 

which follows a χ distribution (chi-squared 
distribution with 2k degrees of freedom). There are terms in this 
sum. 
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The significance probability value, p, of the chi-squared distribution is 
calculated for this statistic. A small value of p indicates a significant result. For 



large streams a highly significant result, , indicates a possible 
weakness in the algorithm. 

%1.0p <

The runs test can be used to support results from the previous tests. Failure 
of the runs test indicates that there is a bad distribution of run lengths or that 
there are no runs recorded above a certain length that are expected to occur 
for streams of the sample size. The zero frequencies recorded will result in a 
higher chi-squared statistic thus giving a smaller significance probability. 
Example: 
 Test stream: 
  10100010000101110001011000111010101010101010000001 
Calculations and results: 
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Elements of the inverse matrix, S-1 : 
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Q = 8.4733.. follows a  distribution. 4χ
p = 0.076 
Interpretation:   

7.6% of bit streams of length 50 will have a distribution of run lengths further from 
the expected distribution than this sample gives.  This sample satisfies the runs 
distribution test. 



The length of the longest run was also recorded. 

Given a bit stream of length N, the expected number of runs = 
2

1N + . 

Hence, for a bit stream of length 2n, the expected number of runs ≈ 2n-1. 

Applying Golomb's Postulates, it is expected that i2
1  of the runs have length i 

in an infinite random binary stream. So in a random bit stream of length 2n, the 
expected number of runs of length k ≈ 2n - k - 1. 
 
C.1.6 Sequence Complexity Test 
The sequence complexity, c(s), is the number of different substrings 
encountered as the stream, s, is viewed from beginning to end [LEMP 76]. 
Example  (n = 16)  : 
     s = 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 
Marking in different substrings : 
     s = 1/0/0 1/1 1 1 0/1 1 0 0/0 0 1 0/ 
Here the sequence complexity c(s) = 6 
A threshold value of sequence complexity is used to measure the 
randomness of a sequence.  This threshold value is nlog

n
2

where n is the total 
bits in the stream. A stream with a sequence complexity measure below this 
threshold value would be considered to be patterned, ie not random. For the 
example given, the threshold value 44

16 == . Hence the stream is not 
considered patterned. 
An expected value for the sequence complexity of a random stream of the 
same length is calculated using the following algorithm [GUST 96]: 
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It is expected that a good pseudo-random number sequence has a sequence 
complexity which is close to this value. It should be noted that the expected 
value of sequence complexity is always greater than the threshold value. 
However, a bit stream will only be considered to not satisfy the sequence 
complexity test if the value of c(s) is less than the threshold value. 
The sequence complexity is used to replace the autocorrelation test which is 
commonly used to determine any periodicity in the pseudorandom number 
generator. Periodicity would greatly reduce the number of "different" 
substrings encountered. Hence c(s) would be low and fall below the threshold 
value.  [DAWS 91]  
Example 
Test stream: 



 10100010000101110001011000111010101010101010000001 
Calculations and results: 
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Interpretation: 
This sample stream is considered random based on the sequence 
complexity test. 

C.1.7   Linear Complexity Test 
C.1.7.1   Linear Complexity 
The linear complexity test checks for the minimum amount of knowledge (bits) 
needed to reconstruct the whole stream.  Every finite stream, s, can be 
produced by a linear feedback shift register (LFSR).  The length of the 
shortest LFSR which will produce the stream is said to be the linear 
complexity of the stream, which will be denoted by L(s). 
If the value of L(s) is L then 2L consecutive terms can be used to reconstruct 
the whole sequence using the Berlekamp Massey algorithm.  [MASS 69]  
Hence, in order to avoid stream reconstruction, the value of L should be large. 
Example: 
 01011001010100100111100000110111001100011101011111101101 
This shortest recurrence relation which will create this sequence is: 
  )()1()4()5()6( tututututu ⊕+⊕+⊕+=+
where ⊕  is addition mod 2, and the first bit is u(0). 
For example: 

 If 0=t  then  . 
01100

)0()1()4()5()6(
⊕⊕⊕=

⊕⊕⊕= uuuuu

 If 1=t  then  . 
10001

)1()2()5()6()7(
⊕⊕⊕=

⊕⊕⊕= uuuuu

 If 2=t  then  . 
01010

)2()3()6()7()8(
⊕⊕⊕=

⊕⊕⊕= uuuuu

This means that the linear complexity, L(s), of this sequence is six.  If any 
twelve consecutive bits are known then the whole sequence can be 
reconstructed. [MASS 69] 
It should be noted that some keystreams can pass all the previous tests yet 
possess a very small linear complexity. An example of this is an m-sequence 
(see [RUEP 84]). An m-sequence has a period of length and a linear 
complexity of L.  An m-sequence has the best possible distribution of zeros 
and ones for a sequence of period 2 . In this fashion an m-sequence 
appears to be statistically random in terms of tests C.1.1 to C.1.6. In fact m-
sequences are commonly used as white noise generators. However, in terms 
of their use in a stream cipher an m-sequence offers very low security. 
Knowledge of only 2L consecutive bits of the keystream is needed to derive 
the defining LFSR and hence determine the whole keystream.   

12L −

1L −

For large n, L(s) is approximately normally distributed with 81
862

2
n , =σ=µ  

[RUEP 84], [KREY 81].  Using the standardised normal statistic 



))(( 286
81 nsLz −=  the significance probability value, p, of the normal distribution 

is calculated.  
Since only low values of L(s) signify a possible weakness to the cipher, only a 
one-tailed test (lower tail) need apply. A small value of p indicates a significant 
result. For large streams a highly significant result ( ) indicates a 
possible weakness in the algorithm. 

%1.0p <

The linear complexity test by itself can classify as random, streams which may 
be highly patterned, or contain large substrings which are highly patterned. 
Some of the previous test results should support this. e.g. a stream of 12

n −  
zeros followed by a one, and then followed by a repetition of these 2

n  terms, 
has a linear complexity of 2

n . This stream would be classified as being random 
using the linear complexity test. Clearly, such a stream is highly patterned and 
would not satisfy the previous tests. However, it is possible to construct a 
stream of length n which would pass all the previous statistical tests, and have 
a linear complexity of approximately 2

n  yet would contain a large highly 
patterned substring.  Hence the following linear complexity profile tests are 
carried out. 
C.1.7.2   Linear Complexity Profile 
Since some highly patterned streams can give a linear complexity measure 
close to 2

n a second test measures the change in the linear complexity profile 
of the stream as each bit is added. Let s(i) be the substring formed by taking 
the first i bits of s.  If L(s(i)) for i = 1,...,n  denotes the linear complexity of s(i) 
then the values of s(i) are defined to be the linear complexity profile of s and 
should follow approximately the 2

i line [MASS 69].  A failure in this test would 
highlight any large deviations from the 2

i line, which would appear for strings 
passing the linear complexity test and containing any large highly patterned 
substrings. A change in linear complexity signifies a jump.  
There are two tests relating to the Linear Complexity Profile: 
C.1.7.3   Linear Complexity Profile – Number of Jumps 
Let the total number of jumps be F.  For large n, F is approximately normally 
distributed with 4

n=µ  and 8
n2 =σ  [CART 87].  The standardised statistic for 

the number of jumps is )( 4
8 n
n Fz −=

p <

.  The significance probability, p, for this 
standardised statistic is calculated.  Since a small number of jumps would 
indicate a sequence within which patterns may exist, a one-tailed test (lower 
tail) is applied.  A small value of p ( ) indicates that the number of 
jumps in linear complexity is low, and there may be patterns in the stream 
which would indicate a possible weakness in the cipher. 

%1.0

C.1.7.4   Linear Complexity Profile – Jump Size 
If a stream passes the test on the number of jumps in linear complexity, then 
the distribution of jump heights may be investigated.  The height of a jump is 
the difference in linear complexity when a change occurs. Let the total number 
of jumps in linear complexity be F, where is the number of jumps of height i. 
For a random string based on Bernoulli trials where the probability of a one on 
each trial is one half, the probability, that a given jump has height i is given 
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The chi-squared statistic used is ∑
=

−=χ
m

1i i

2
ii2

e
)ef(  [CART 87].  The maximum 

value of i  is determined from the condition for the chi-squared test, 
that .  The number of degrees of freedom, m , is determined from the 
sample taken. 

1−

The significance probability value, p, of the chi-squared distribution is 
calculated for this statistic. A small significance probability indicates a 
significant result – i.e., the stream is considered to be non-random. For large 
samples a highly significant result, p , indicates a possible weakness in 
the algorithm.   

%1.0<

Example 
Test stream: 
 10100010000101110001011000111010101010101010000001 
Calculations and results: 
Linear Complexity Test 

 

81
86

 

  

Interpretation: 
50 % of bit streams of length 50 will have a linear complexity less than this sample.  
This sample satisfies the linear complexity test. 

Hence bits (the whole stream) is needed to reconstruct the stream 
using the Berlekamp-Massey algorithm. 
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Linear Complexity Profile - Number of jumps 
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Interpretation: 
84.13% of streams of length 50 will have a number of jumps in linear complexity 
less than this sample.  This sample satisfies the test on the number of jumps in 
linear complexity. 

Linear Complexity Profile – Jumps size 
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Interpretation: 
Approximately 7.07% of bit streams of length 50 will have a sump size distribution 
further from the expected distribution than this sample gives.  The sample satisfies 
the test on the distribution of the linear complexity jump size. 



Results of CRYPT-X Tests 
 
The p-value obtained from a test represents the probability of obtaining a 
result further than the test statistic lies from that expected, if the algorithm 
produces a random stream. Very small p-values would support non-
randomness for the given measure. 
 
Length of each RC4 keystream = 220 bytes (8,388,608 bits). 
Length of each RC4 keystream  (Complexity tests) = 100,000 bits.  
Number of keystreams for each test = 100 
 
The table below gives the number of p-values falling below 0.1, 0.05 and 0.01 
from the 100 RC4 keystreams tested.  In a sample of 100 keystreams, the 
expected count for the number of p-values less than 0.1 is 10, for 0.05 is 5, 
and for 0.01 is 1. 
 
 Number of p-values less than: 
Test .10 .05 .01 
Frequency 6 4 3 
Binary Derivative (1) 8 6 2 
Binary Derivative (2) 11 7 1 
Change Point 24 13 5 
Subblock (b = 4) 9 3 0 
Subblock (b = 8) 9 6 1 
Subblock (b = 16) 13 5 1 
Subblock (b = 30) 9 4 0 
 
Runs Distribution 5 3 2 
Longest Run Max = 33 Next = 28 
 
Linear Complexity 5 5 1 
LC profile - Jumps 12 8 0 
LC Profile - Jump Size 20 13 3 
 
Sequence Complexity Max = 6143       Min = 6110 
 
Further analysis was applied to the results when more than k of the p-values 

were greater than k(.01)%.  An upper 99% limit for the count when k = 10 is 

calculated using: 

( ).1 1 .1
100 0.1 2.326

100

 −
 +
 
 

 = 17 

The corresponding values for k = 5 and k = 1 are: 10 and 3. 
Counts falling above these values would be classified as significant. 
 
The results for the Change Point test and the Linear Complexity Jumps Size 
test are the only ones that show this significance.   



 
Length of Longest Run 
 
For a random bit stream of length 220, the expected number of runs of length 
33 ≈ 220 - 33 - 1 = 2-14. This implies that it is highly unlikely that a run of length 33 
will appear in a bit stream of this length. 
 
The expected number of runs of length 22 ≈ 220 - 22 - 1 = 2-3 ≈ 0.125, which 
supports that this is a more likely occurrence for the length of the longest run. 
 
It would appear that the length of the longest run exceeds what would be 
expected in bit streams of this length.  It should be noted that the length of the 
longest run may not exceed 33 for much longer streams.  Hence we cannot 
conclude that this result shows any weakness in the RC4 algorithm.  
 
 
 
Results of  Linear Complexity Tests on Longer RC4 Keystreams 
 
Length of output stream = 819,200 bits.  
Number of streams = 5 
Expected linear complexity for randomness = 409,600 
 
Test Key 1 Key 2 Key 3 Key 4 Key 5 
Linear Complexity 409,599 409,598 409,600 409,600 409,600 
LC p-value 0.1659 0.0261 0.5 0.5 0.5 
Linear Complexity Profile: 
Jumps p-value 0.8517 0.6691 0.4938 0.7035 0.4751 
Jump Size p-value 0.4088 0.5908 0.8016 0.1619 0.5926 
 
 
 
Sequence Complexity  
 
For  streams of length 105 bits the sequence complexity threshold value = 
6,021 and the expected value for randomness = 6,056. 
Both the minimum and maximum values obtained are above these values, 
and hence there is no indication on non-randomness based on the sequence 
complexity test. 
 
 



Results of Frequency Test Applied to Bit Positions in 8-bit Subblocks 
 
Length of each RC4 keystream = 220 bytes (8,388,608 bits). 
Number of 8-bit subblocks =  223/23 = 220 bits (1,048,576 bits) 
Number of keystreams for each test = 100 
 
The table below gives the number of p-values falling below 0.1, 0.05 and 0.01 
from the 100 RC4 keystreams tested.  In a sample of 100 keystreams, the 
expected count for the number of p-values less than 0.1 is 10, for 0.05 is 5, 
and for 0.01 is 1. 
 

Number of p-values less than: Bit Position in 8-bit 
Subblocks 0.1 0.05 0.01 
Position = 1 6 4 2 
Position = 2 6 3 2 
Position = 3 10 5 2 
Position = 4 12 4 0 
Position = 5 10 4 1 
Position = 6 12 6 3 
Position = 7 10 8 0 
Position = 8 13 8 2 
 
Further analysis was applied to the results when more than k of the p-values 

were greater than k(.01)%.  An upper 99% limit for the count when k = 10 is  

17, and the corresponding values for k = 5 and k = 1 are: 10 and 3. 

Counts falling above these values would be classified as significant. 
 
The results of the frequency test on bit positions in 8-bit subblocks show that 
no bit positions give significant results.   
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Appendix D – An Implementation of RC4 in ANSI C 
 
This appendix contains code for the implementation of RC4 that is described 
in section 4.3 
 
D.1 The RC4.h header file 
 
/** 
 * @file rc4.h 
 * Contains definitions for the RC4 stream cipher 
 */ 
#ifndef _RC4_H_ 
#define _RC4_H_ 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "defs.h" 
 
/* Status codes */ 
#define RC4_OK 0 
 
#define STATE_SIZE 256 
 
#ifdef _OPT_ 
#define WORD word32 
#else 
#define WORD word8 
#endif 
 
typedef struct  
{ 
    WORD state[STATE_SIZE]; 
    WORD i, j; 
 
} RC4; 
 
/** 
 * Initialize RC4 keystream generator 
 * @param  rc4   [In/Out]  RC4 keystream generator 
 * @param  k     [In]      variable length key - byte 0 denotes size 
in bytes 
 * @returns RC4_OK 
 */ 
int init_ks(RC4* rc4, const word8* key); 
 
/** 
 * Extract another word from the initialized RC4 keystream generator 
 * @param  rc4  [In/Out]  RC4 keystream generator 
 * @returns next word in key stream 
 */ 
word8 update(RC4 *rc4); 
 



/** 
 * Encrypt text with the output of the RC4 keystream generator 
 * @param  rc4    [In/Out]  RC4 keystream generator 
 * @param  text   [In/Out]  plaintext/ciphertext 
 * @param  length [In]      number of eight-byte blocks to encrypt 
 * @returns RC4_OK 
 * @note To encrypt texts of length not divisble by eight, pad 
 * text buffer and discard unwanted texts 
 */ 
int encrypt(RC4 *rc4, word8 *text, const int length); 
 
#ifdef __cplusplus 
} 
#endif 
#endif 
 

D.2 The RC4.c Source File 
 
/** 
 * @file rc4.c 
 * Contains implementation of the RC4 stream cipher 
 */ 
 
#include "rc4.h" 
 
#define SWAP(a, d, t) t = *a;  *a = *(a+d); *(a+d) = t; 
 
/** 
 * Initialize RC4 keystream generator 
 * @param  rc4   [In/Out]  RC4 keystream generator 
 * @param  k     [In]      variable length key - byte 0 denotes size 
in bytes 
 * @returns RC4_OK 
 */ 
int init_ks(RC4* rc4, const word8* k) 
{ 
    word8 key_size = k[0]; 
    word8 *key     = k+1; 
    word8 t; 
 
    word32 i, j = 0; 
    
    for (i = 0; i < STATE_SIZE; i++) { 
        rc4->state[i] =i; 
    } 
    for (i = 0; i < STATE_SIZE; i++) { 
        j = (j + rc4->state[i] + key[(i % key_size)]) % 256; 
        SWAP(&rc4->state[i], j-i,t ); 
    } 
    rc4->i = rc4->j = 0; 
    return RC4_OK; 
} 
 



#define UPDATE(state, state_i, state_j, val_i, val_j, result) \ 
     result ^= (state_i=(state_i+1) & 0xFF, \  
                val_i=state[state_i], \ 
                state_j=(state_j+val_i) & 0xFF, \ 
                state[state_i]=val_j=state[state_j], \ 
                state[state_j] =val_i, \ 
                state[(val_i+val_j)&0xFF]); 
 
/** 
 * Extract another word from the initialized RC4 keystream generator 
 * @param  rc4  [In/Out]  RC4 keystream generator 
 * @returns next word in key stream  
 */ 
word8 update(RC4 *rc4) 
{ 
    word32 state_i, state_j; 
    word8 result = 0; 
    UPDATE(rc4->state, rc4->i, rc4->j, state_i, state_j, result); 
    return result; 
} 
 
/** 
 * Encrypt text with the output of the RC4 keystream generator 
 * @param  rc4    [In/Out]  RC4 keystream generator 
 * @param  text   [In/Out]  plaintext/ciphertext 
 * @param  length [In]      number of eight-byte blocks to encrypt 
 * @returns RC4_OK 
 * @note To encrypt texts of length not divisble by eight, pad 
 * text buffer and discard unwanted texts 
 * @note Can get further optimization by passing 32 bit parameters... 
 */ 
int encrypt(RC4          *rc4,  
            word8        *text,  
            const int    length) 
{ 
    /* large speedup by proxying variables */ 
    word32 *state  = rc4->state; 
    word32 state_i = rc4->i; 
    word32 state_j = rc4->j; 
 
    word32 val_i, val_j; 
    word32 idx; 
 
    word8 *t = text; 
 
    /* Unrolling trick means user discards unwanted ciphertext */ 
    for (idx = 0; idx < length; idx++) { 
        UPDATE(state, state_i, state_j, val_i, val_j, t[0]) 
        UPDATE(state, state_i, state_j, val_i, val_j, t[1]) 
        UPDATE(state, state_i, state_j, val_i, val_j, t[2]) 
        UPDATE(state, state_i, state_j, val_i, val_j, t[3]) 
        UPDATE(state, state_i, state_j, val_i, val_j, t[4]) 
        UPDATE(state, state_i, state_j, val_i, val_j, t[5]) 
        UPDATE(state, state_i, state_j, val_i, val_j, t[6]) 
        UPDATE(state, state_i, state_j, val_i, val_j, t[7]) 
        t += 8; 
    } 
    return RC4_OK; 
} 
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