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Executive Summary

This report contains an analysis of the block cipher RC2.
No serious flaws or weaknesses have been identified in the design which could

lead to practical cryptanalytic attacks with respect to the state-of-the-art and seems
to provide reasonable security. However, RC2 is not a fast cipher.

The differential attack outlined in this report can find the secret key on input
about 260 chosen plaintexts independent of the key length. Thus, for key sizes bigger
than 64, there is an attack on RC2 which, in theory, is faster than an exhaustive
search for the key. Although this attack is of limited practical use, it illustrates
that RC2 needs the number of rounds specified by the authors. Since RC2 is not a
very fast cipher, one could be tempted to decrease the number of rounds, but this
is not recommended.

Finally we mention that this report is the result of a limited time of review.
A longer, concentrated analysis might reveal properties of RC2 which we were not
able to detect.
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1 Introduction

RC2 is a 64-bit block cipher with keys of variable lengths. It is designed by Ron
Rivest for RSA Data Security, Inc., and is used widely, most notably in the S/MIME
secure messaging standard [11]. In 1997 RC2 was published as an Internet Draft[34].

The model for cryptanalysis in this report is the standard one for block ciphers,
where it is assumed that the attacker has access to a black-box which encrypts any
chosen input or decrypts any chosen output using RC2 with a secret, randomly
chosen key.

2 Structural features and characteristics

RC2 works on 64-bit blocks which are divided into four words of each sixteen bits.
It is an iterated block cipher where the ciphertext is computed as a function of the
plaintext and the secret key in a number of rounds. There are two kinds of rounds
in RC2, the mixing rounds and the mashing rounds. There are in total 16 mixing
rounds and two mashing rounds. In each round each of the four sixteen-bit words
in an intermediate ciphertexts is updated as a function of the other words. Each of
the mixing rounds takes a 16-bit subkey. The 64 subkeys are derived from the user-
selected key which can be of length from one to 128 bytes. An additional parameter
of the algorithm is the effective key length, which will be explained below.

We note that the decryption operation does not equal the encryption operation
which may have unfortunate impacts on implementations.

Also, RC2 is not a fast cipher and an optimized version of DES and any of the
five AES [30] finalists is likely to produce higher throughputs than RC2.

2.1 Key Expansion

The key-schedule takes a user-selected key and a number representing the maximum
effective key length. The latter is a feature not seen in any other block ciphers as
far as this author is informed. Assume that the user-selected key consists of T bytes
where 1 ≤ T ≤ 128. Let L be a key buffer (an array) of 128 bytes. The T bytes are
loaded into L[0], ..., L[T −1] of the key buffer. The maximum effective key length in
bits is denoted T1. The effective key length in bytes T8 is defined as T8 = dT1/8e
and a mask TM as TM = 255 mod 28(1−T8)+T1. As a first observation we found
that the latter is equivalent to TM = 2T1 mod 8 − 1.

The key expansion consists of the following two iterations, where Π is a table
consisting of a permutation of the numbers 0, . . . , 127 derived from the expansion
of π:

1. for i = T, T + 1, ..., 127 do
L[i] = Π[L[i− 1] + L[i− T ]], where addition is modulo 256

2. L[128− T8] = Π[L[128− T8]& TM ]
3. for i = 127− T8, ..., 0 do

L[i] = Π[L[i + 1]⊕ L[i + T8]]
Finally, define the 64 subkeys, K[i] for i = 0, . . . , 63 as follows: K[i] = L[2i] +

256× L[2i + 1].
The terms T8 and TM ensure that the expanded key table is derived from

only T1 bits, such that an exhaustive search can be performed in 2T1 operations
independent of the length of the user-selected key.

2.2 Encryption and Decryption

The two kinds of rounds in RC2 are defined via the operations MIX and MASH. The
plaintext is divided into four words of each sixteen bits denoted R[0], . . . , R[3].
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The MIX operation is defined as follows, where s[0] = 1, s[1] = 2, s[2] = 3, and
s[3] = 5.

R[i] = R[i] + K[j] + (R[i− 1]& R[i− 2]) + (∼R[i− 1]& R[i− 3]);
j = j + 1;
R[i] = R[i]<<<s[i];

Here the indices of R are computed modulo 4, and j is a pointer such that K[j]
is the first key word in the expanded key which has not yet been used in a MIX
operation.

A mixing round consists of four consecutive MIX steps, such that each of the
words R[0], R[1], R[2], and R[3] are modified and in that order.

The MASH operation is defined as follows:

R[i] = R[i] + K[ R[i− 1]& 003fx ],

in other words, the least significant six bits of R[i− 1] are used to select one of the
64 subkeys.

A mashing round consists of four MASH operations such that each of the words
R[0], R[1], R[2], and R[3] are modified.

1. Let the words R[0], ..., R[3] hold the 64-bit plaintext block.

2. Perform the key expansion such that the words K[0], . . . , K[63] hold the sub-
keys.

3. Initialize j to zero.

4. Do five mixing rounds.

5. Do one mashing round.

6. Do six mixing rounds.

7. Do one mashing round.

8. Do five mixing rounds.

9. The ciphertext is defined as the resulting values of R[0], ..., R[3].

Decryption is the reverse of encryption. Clearly, it suffices to define the inverse
operations of the MIX and MASH operations. The inverses of the MIX operations are
defined as follows:

R[i] = R[i]>>>s[i];
R[i] = R[i]−K[j]− (R[i− 1]& R[i− 2])− (∼R[i− 1]& R[i− 3]);
j = j − 1;

The inverses of the MASH operations are defined as follows:

R[i] = R[i]−K[R[i− 1]& 003fx ].

An inverse mixing round consists of four consecutive inverse MIX steps, such that
each of the words R[3], R[2], R[1], and R[0] are modified and in that order, and
similarly for the inverse mashing rounds. Decryption can now be defined.

1. Let the words R[0], . . . , R[3] hold the 64-bit ciphertext block.
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2. Perform the key expansion such that the words K[0], . . . , K[63] hold the sub-
keys.

3. Initialize j to 63.

4. Do five inverse mixing rounds.

5. Do one inverse mashing round.

6. Do six inverse mixing rounds.

7. Do one inverse mashing round.

8. Do five inverse mixing rounds.

9. The plaintext is defined as the resulting values of R[0], . . . , R[3].

3 Differential cryptanalysis

In [21] a detailed differential analysis of RC2 was published. Since this author was
deeply involved in this work, the analysis given here is greatly inspired by the work
of [21].

In this analysis of RC2 the difference between two 16-bit words A and B is
defined to be A⊕B. For ciphers which mixes modular additions with binary oper-
ations it has proved advantageous to consider differences of low Hamming weights.
The reason for this is that characteristics involving multiple-bit exclusive-or differ-
ences over integer addition will generally hold with lower probability than single-bit
characteristics [13].

Let et denote a 16-bit word with a single one bit in position t from the right, all
other bits being set to zero. Also, let the leftmost bit of a 16-bit word be the most
significant bit. As an example, e15 denotes a 16-bit word with the only non-zero
bit being the most significant bit. The word of 16 zero bits will be denoted as 0x

where the subscript x denotes hexadecimal notation. And the Hamming weight,
that is, the number of ones in the binary expansion of some quantity x, is denoted
as Hwt(x).

For the remainder of the paper, we shall consider mixing and mashing rounds
in the following way. Instead of viewing the operation at each step as acting on a
different word we shall consider the operations to be identical, that is, at each MIX
step

R[0] = R[0] + K[j] + (R[3]& R[2]) + (∼R[3] &R[1])),

but that between steps the words are rotated cyclically, that is,

TEMP = R[0]; R[0] = R[1]; R[1] = R[2]; R[2] = R[3]; R[3] = TEMP.

Let us begin by considering characteristic for the MIX steps. Given an input
difference (et, 0x, 0x, 0x) to the first MIX step in a mixing round, the output difference
before rotation will be (et, 0x, 0x, 0x) with probability p ≥ 1/2. The rotation then
moves this single bit difference within the particular word, and the four words are
swapped cyclically. There are four basic characteristics which hold with probability
p ≥ 1/2 (when averaged over all plaintexts and key words) for a MIX step. The value
of the rotation s[i] depends on the step i in which the characteristic is applied, cf.
earlier. Note that addition within the subscript of et is to be performed modulo 16.

(et, 0x, 0x, 0x) → (0x, 0x, 0x, et+s[i]) (1)
(0x, 0x, 0x, et) → (0x, 0x, et, 0x) (2)
(0x, 0x, et, 0x) → (0x, et, 0x, 0x) (3)
(0x, et, 0x, 0x) → (et, 0x, 0x, 0x) (4)
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With t = 15 (1) holds with probability p = 1, the three other characteristics
hold with probability p = 1/2 on the average, which can easily be checked. In a
chosen plaintext attack the attacker can choose the plaintexts carefully such that
the first one-round characteristics will hold with high probability. The following
examples illustrate this point.

• In (2), if (R[2] & et) = (R[1] & et) then p = 1.

• In (3), if (R[3] & et) = 0x then p = 1.

• In (4), if (R[3] & et) = et then p = 1.

Let us next consider characteristics for the MASH steps. The basic step is

R[0] = R[0] + K[ R[3]& 003fx].

Given an input difference (0x, 0x, 0x, et) to a mashing round with (et & 003fx) = 0x

the same key word K[·] will be added to both sets of partially encrypted data. There
are four basic useful characteristics for MASH:

(et, 0x, 0x, 0x) → (0x, 0x, 0x, et) (5)
(0x, 0x, 0x, et) → (0x, 0x, et, 0x) (6)
(0x, 0x, et, 0x) → (0x, et, 0x, 0x) (7)
(0x, et, 0x, 0x) → (et, 0x, 0x, 0x) (8)

Characteristic (5) holds with probability p = 1 when t = 15 and otherwise p = 1/2,
characteristics (7) and (8) hold with probability p = 1, and characteristic (6) holds
with probability p = 1 if (et & 0x3f) = 0x. Joining these four characteristics
together to pass across a mashing round with probability p = 1 is straightforward.

Next we attempt to combine characteristics for both the mixing and the mash-
ing rounds of RC2. To facilitate an analysis it will be assumed that the subkey
words K[0], . . . , K[63] are independent. The subkey words are not independent in
RC2, but our tests (see later) reveal that this is a plausible assumption to make
for differential attacks. Also, nobody has so far been able to incorporate subkey
dependencies in differential cryptanalysis. The aim of the attacks here is to recover
the expanded key table K[·].

The characteristics of greatest interest are those built from differences of low
Hamming weights, and as noted earlier there are advantages to having a single
non-zero bit in the most significant bit of a word. Because of the different rotation
amounts in the MIX steps in a mixing round this leads to some conditions on t,
the position of the single-bit difference. Another advantageous approach is to build
characteristics such that the mashing rounds are passed with probability one. If
a one-bit characteristic specifies an input difference to a mashing round of et in
any one of the words, then provided t = 15 the characteristic will pass through
the mashing round unhindered with probability p = 1. If 6 ≤ t < 15, the best
characteristic has probability p = 1/2, because of the modular addition.

The observations provided so far allow us to present in Table 1 the differentials
that are useful to us.

A more accurate assessment of the success of a differential attack can be obtained
by considering “differentials” [24] instead of characteristics. In the following the
issue of differentials is considered in more detail.

A characteristic describes one particular path of differences through the encryp-
tion rounds. From one given difference there might well be other “paths” through
the cipher to the same target difference than the one described by one particular
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plaintext difference difference after 15 rounds prob. possible values of t
(et, 0, 0, 0) (et+15, 0, 0, 0) 2−58 4
(et, 0, 0, 0) (et+15, 0, 0, 0) 2−59 1, 2, 3
(0, et, 0, 0) (0, et+14, 0, 0) 2−58 5
(0, et, 0, 0) (0, et+14, 0, 0) 2−59 1, 3
(0, et, 0, 0) (0, et+14, 0, 0) 2−60 0, 2, 4
(0, 0, et, 0) (0, 0, et+13, 0) 2−58 14
(0, 0, et, 0) (0, 0, et+13, 0) 2−59 7, . . ., 13
(0, 0, 0, et) (0, 0, 0, et+11) 2−58 6
(0, 0, 0, et) (0, 0, 0, et+11) 2−59 15, 0, . . ., 5

Table 1: 26 15-round characteristics that are useful in a differential attack on RC2
and which all pass the mashing rounds with probability p ≥ 1/2.

characteristic. The probability of the differential is given by the sum of the proba-
bilities of all the characteristics that satisfy the differential. For RC2 it turns out
that there is some “differential effect” in the characteristics we specified above.

First we will consider in abstract terms the probability that a one-bit difference
in some word a produces a one-bit difference in the word d when we define d =
a + b + c for unknown constants b and c. One approach might be to consider this
as two separate additions and to consider the intermediate word e = a + b first.
Since a one-bit difference in a produces a one-bit difference in e with probability
1/2 and a one-bit difference in e provides a one-bit difference in d = e + c with
probability 1/2 we would say that the characteristic over the two additions has
probability 1/4. However it would then be misleading to use this characteristic to
provide an approximation to the probability of the differential from a to d. Instead,
the probability of the propagation of a one-bit difference from a to d is 1/2 since
b + c is a fixed value. Consequently the probability of the differential from a to d
must also be 1/2.

Recall that the probability of the differential is given by the sum of the prob-
abilities of all the characteristics that satisfy the differential. By looking at two
successive additions in isolation we inadvertently restrict our attention to single-bit
differences in the intermediate value e. Let α, 0 ≤ α ≤ n − 1, denote the position
of the one bit difference in a. A one-bit difference in a will give a difference in e
with Hamming weight h with probability 2−h, 1 ≤ h < n−α, and with probability
2−n+α+1 for h = n − α. Since this h-bit difference was caused by a one-bit differ-
ence in the previous step1 an h-bit difference in e will be transformed to a one-bit
difference in d by the addition of c with probability 1/2. Thus we get

p = 2−1(2−n+α +
n−α∑

h=1

2−h), if α < n− 1 (9)

p = 1 if α = n− 1. (10)

One place where this has an effect is when a mixing round follows a mashing
round. Each word R[0], . . . , R[3] is modified by a MASH step in turn. At the first
subsequent MIX step R[0] is modified by means of addition. By looking at the two
additions in isolation one under-estimates the probability of the differential.

In the analysis of RC2 we need to take account of this effect since it applies to
some extent to the mixing rounds as well as during the transition between mixing

1In general it is not true that an h-bit difference goes to a one-bit difference with such a high
probability.
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and mashing rounds. Within the mixing rounds an intermediate quantity is used as
input to a multiplexor function. This reduces the probability that this particular
characteristic is followed by a factor of 2−h for each multiplexor when the Hamming
weight of the difference is h. If we denote the number of multiplexing functions
between two successive additions by k then (9) can be rewritten as follows:

p =
n−α∑

h=1

2−h · 2−hk · 2−1 + 2−(n−α) · 2−(n−α)k · 2−1 (11)

= 2−1

(
n−α∑

h=1

2−(k+1)h + 2−(k+1)(n−α)

)
(12)

= 2−1

(
1− 2−(k+1)(n−α)

1− 2−(k+1)

1
2(k+1)

)
+ 2−(k+1)(n−α) (13)

≈ 2−1

(
1

2(k+1) − 1

)
. (14)

The last approximation is reasonable for smaller α (α < n−3) but would need some
correction for larger values of α. For k = 0, 1, 2, 3, (14) gives p = 1/2, 1/6, 1/14, 1/30,
which should be compared with the respective probabilities of the characteristics
we previously derived: 1/4, 1/8, 1/16, 1/32. In the case of two consecutive mixing
rounds we have that k = 3 and so the probability of a one-bit to one-bit differential
across two mixing rounds is 1/30× 2−3 = 1/240.

The effect we are using here can be extended to a series of additions whereby the
intermediate values of interest have differences with a variety of Hamming weights
even though the starting and ending difference have weight one. Consider three
consecutive mixing rounds. Let a be a one-bit difference in the leftmost words of
two inputs and let α be the position of that bit, where 0 ≤ α ≤ n− 1. Let d be the
difference in the leftmost words after three mixing rounds and suppose that h1 and
h2 denote the Hamming weights of the leftmost words after one, respectively two,
mixing rounds. Then the probability that d is a one-bit difference can be estimated
as follows, where k = 3 and where for simplicity we have eliminated the term for
h = n− α.

p '
n−α∑

h1=1

n−α∑

h2=1

2−h1 · 2−h1k · 2−h2 · 2−h2k · 2−1 (15)

= 2−1

(
n−α∑

h1=1

2−(k+1)h1 ·
n−α∑

h2=1

2−(k+1)h2

)
(16)

≈ 2−1

(
1

2(k+1) − 1

)(
1

2(k+1) − 1

)
. (17)

Again the final approximation requires that α is small. For k = 3 p is 2−1(1/15)2.
We can now estimate the probability of the differential over three mixing rounds
by 2−1(1/15)2 × 1/8 ' 1/3600. This extends easily to more rounds and in general
the probability of a differential over r mixing rounds is (1/15)r−1×1/16. Note that
the mashing rounds can be passed with probability one. Table 2 gives experimental
evidence that the expressions derived are reasonable to use. The number of rounds
in the table refers to the number of mixing rounds used. After five mixing rounds
an additional mashing round is inserted as occurs when encrypting with RC2. The
final column is derived as an average over at least five sets of experiments for each
row.

Table 3 lists the probabilities of the differentials with the same input and out-
put differences as the corresponding characteristics of Table 1, computed using the
approximations of probabilities of differentials derived above.
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# rounds # pairs/test prob. # right pairs exp. # right pairs obtained
3 219 2−11.8 146 146
4 222 2−15.7 78 79
6 229 2−23.5 44 47
7 231 2−27.4 12 13

Table 2: Results of experiments with differentials.

plaintext difference difference after 15 rounds prob. possible values of t
(et, 0, 0, 0) (et+15, 0, 0, 0) 2−56.7 4
(et, 0, 0, 0) (et+15, 0, 0, 0) 2−57.7 1, 2, 3
(0, et, 0, 0) (0, et+14, 0, 0) 2−56.7 5
(0, et, 0, 0) (0, et+14, 0, 0) 2−57.7 1, 3
(0, et, 0, 0) (0, et+14, 0, 0) 2−58.7 0, 2, 4
(0, 0, et, 0) (0, 0, et+13, 0) 2−56.7 14
(0, 0, et, 0) (0, 0, et+13, 0) 2−57.7 7, . . ., 13
(0, 0, 0, et) (0, 0, 0, et+11) 2−56.7 6
(0, 0, 0, et) (0, 0, 0, et+11) 2−57.7 15, 0, . . ., 5

Table 3: 26 15-round differentials that are useful in a differential attack on RC2,
which all pass the mashing rounds with probability p ≥ 1/2.

In a differential cryptanalytic attack the attacker typically chooses a differential
for (r − 1) rounds of an r-round block cipher. The attacker then tries to deduce
key information from the last round of the cipher [3]. For RC2 the most effective
attack seems to be to try and recover the bits of K[0] used in the first mixing round
and subsequently proceed to other rounds. In [21] a detailed analysis shows how to
recover the subkey K[0], however we shall not repeat the details here.

The most important factor in differential cryptanalysis is the probabilities of
the differentials used in the attack. The complexity of a differential attack is ap-
proximately c · 1/p, where p is the probability of the best differential and c a small
constant.

Note that structures [3] can be useful in reducing the plaintext requirements for
a differential attack when more than one differential is useful. With n useful differ-
entials we can ask for a structure of 2n plaintexts with specifically chosen differences.
From these we derive 2n−1 plaintext pairs for each of the n characteristics.

In an attack on RC2 with 16 mixing rounds one would use several 15-round dif-
ferentials, the probability of the best one we have detected is 2−56.7. We conjecture
that no less than 259 pairs are required to successfully extract the first-step key
K[0] and that in total a differential attack on RC2 will require at least 260 chosen
plaintexts.

4 Linear Cryptanalysis

The aim of a linear attack is to establish a linear relation between bits of the
plaintext, bits of the corresponding ciphertext and bits of the key, a relation which
holds with some probability p. Such an approximation can generally be used to
provide an estimate for one bit of the key and more advanced techniques are available
to extract more key information [26]. If an approximation holds with probability p
then the important quantity for the cryptanalyst is the absolute value of the bias
of the approximation b = |p − 1/2|. Typically the data required to use such an
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approximation is given by c× b−2 known plaintexts for some small constant c [26].
The MIX step in RC2 is

R[0] = R[0] + K[j] + (R[3]& R[2]) + (∼R[3]& R[1]).

The best linear approximations across modular additions involve the least significant
bits of each quantity only, and will hold with probability one. For the multiplexor
function

x = (R[3]& R[2]) + (∼R[3]& R[1])

there are linear approximations of varying qualities. The absolute value of the
highest non-trivial bias is 1/4 when averaged over all inputs. It is standard notation
to consider a 16-bit word x as a vector in Z216 and to use the 16-bit quantity α to
indicate the bits of x that are to be used in a linear approximation. This is most
often described by means of the scalar product of two vectors. Thus the {0, 1}-vector
α will be used to denote the specific bits of x to be used in an approximation and α·x
is the value of these bits combined using exclusive-or. Useful linear approximations
across the multiplexor are of the form

α · x = α ·R[1] α · x = α ·R[1]⊕ α ·R[3]
α · x = α ·R[2] α · x = α ·R[2]⊕ α ·R[3]

where Hwt(α) = 1.
The following approximation to the first MIX step (which includes the cyclic

swap of the R[·] words) is useful

e1 · (R[3]new) = e0 · (R[0]old) ⊕ e0 · (K[j])⊕ e0 ·R[2]old.

This has a bias of absolute value 1/4. The following steps require no approximation
and there appears to be no better non-trivial linear approximations for a complete
mixing round. This approximation is illustrated as follows:

step R[0] R[1] R[2] R[3] round 1
e0 − e0 − start

1 − − − e1 |b| = 1/4
2 − − e1 − |b| = 1/2
3 − e1 − − |b| = 1/2
4 e1 − − − |b| = 1/2

In continuing this approximation into the next mixing round would require us to
approximate the bit e1&R[0]. One integer addition involves the subkey word K[4]
and depending on this value the bias of the approximation will vary.

The second integer addition involves the output from the multiplexor function.
By the conditions given above this approximation must involve e1&R[1] or e1&R[2]
and we can construct the following approximations for the second and third mixing
rounds. Here we assume that the bias of the approximation across the multiplexor
function is at most 1/4. Similarly, we assume that the bias of the approximation
across the integer addition is at most 1/4. This occurs in approximating steps 1
and 3 and the value of |b| is given for those steps individually.

step R[0] R[1] R[2] R[3] round 2
e1 − − − start

1 − e1 − e2 |b| ≤ 1/8
2 e1 − e2 − |b| = 1/2
3 − e1 ⊕ e2 − e4 |b| ≤ 1/8
4 e1 ⊕ e2 − e4 − |b| = 1/2
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r plaintext mask mask after r rounds Pul bias Found bias # texts
1 (e0, 0, e0, 0) (e1, 0, 0, 0) 2−2 2−2.0 214

2 (e0, 0, e0, 0) (e1 ⊕ e2, 0, e4, 0) 2−6 2−5.4 219

2.5 (e0, 0, e0, 0) (e1 ⊕ e2 ⊕ e4, 0, e2 ⊕ e3, 0) 2−9 2−8.4 219

3 (e0, 0, e0, 0) (e1 ⊕ e3 ⊕ e4, 0, e4 ⊕ e5 ⊕ e7, 0) 2−15 2−10.3 225

Table 4: Biases for linear characteristics for reduced-round versions of RC2. “Pul
bias” is the bias as computed with the piling-up lemma. “Found bias” is the bias
found as an average in 100 using “# texts” in every test.

The typical way to measure the effectiveness of linear cryptanalysis is to appeal
to the so-called piling-up lemma [25]. By doing this, we are lead to estimate a bias
of ≤ 2−2 × 2−3 × 2−3 × 22 = 2−6 for our approximation to the first two mixing
rounds of RC2. In the case of RC2, however, routine use of the piling-up lemma
can lead to misleading results.

As an illustration consider Table 4. The linear approximation for one round is
the one given above. In 100 tests, each with a fresh randomly chosen key, the bias
of the approximation was recorded using 214 texts in each test. The approximation
for two rounds is the concatenation of the two characteristics reported above. As
seen, using the piling-up lemma the bias is computed to 2−6 whereas extensive
experiments indicate a bias of about 2−5.4.

Let us next consider what happens in one would try to extend the two-round
approximations one additional round. This would lead to an approximation on the
form:

step R[0] R[1] R[2] R[3] round 3
e1 ⊕ e2 − e4 − start

1 − e1 ⊕ e2 ⊕ e4 − e2 ⊕ e3 |b| ≤ 1/16
2 e1 ⊕ e2 ⊕ e4 − e2 ⊕ e3 − |b| = 1/2
3 − e1 ⊕ e3 ⊕ e4 − e4 ⊕ e5 ⊕ e7 |b| ≤ 1/128
4 e1 ⊕ e3 ⊕ e4 − e4 ⊕ e5 ⊕ e7 − |b| = 1/2

Using the piling-up lemma over all three rounds one obtaines a bias of 2−15.
From the last row of Table 4 it follows that the extensive experiments we performed
suggest a much lower bias of about 2−10.3. To analyse the reason for this difference,
the third round approximation was stopped half-way and an approximation over 2.5
rounds was tested. This approximation has a bias of 2−9 when computed using the
piling-up lemma and about 2−8.4 in our experiments, which is shown in the second-
last row in the table. Hence it appears that there is something unexpected going on
the last two MIX steps of the third mixing round. These unexpected things probably
stem from the facts that a) consecutive rounds in RC2 are not independent and b)
the subkeys are not independent. This leads to complex interactions between the
individual bits in the various steps of RC2 and tests provide unintuitive results.

However, even an unexpected high bias of 2−10 for every three rounds would
not lead to a practical attack on 16-round RC2. First of all, using the bias 2−10 per
every 3 rounds leads to a bias over 15 mixing rounds (not even considering mashing
rounds) of 2−46. This alone is sufficient to conclude that a linear attack is not likely
over all 16 rounds of RC2. In addition, in this estimate we have ignored the mashing
rounds, which will complicate things even further. And finally, it is unlikely that
one can find a linear approximation over 15 rounds with a bias of 2−10 for every
three rounds. Extending the three-round approximation used above to four rounds
will involve even more bits and the bias will decrease rapidly.
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5 Other cryptanalysis

In this section we consider other attacks. First of all, there are trivial attacks which
apply to all block ciphers. An exhaustive key search will take 2k operations to
succeed, where k is the key size. Also, the “matching ciphertext attack” applies
in ECB and CBC mode and requires about 2n/2 ciphertext blocks to succeed with
good probability, where n is the block size. With n = 64 as in RC2, 232 ciphertext
blocks are required after which an attacker would be able to deduce information
about the plaintext blocks.

Higher order differentials. This attack applies to ciphers which uses nonlinear
components of a low algebraic degree. All components in the mixing rounds of RC2
are of (relatively) low algebraic degree but the rotations together with the modular
additions is likely to make the degree after 15 mixing rounds high enough to prevent
these attacks. In addition the S-box in the mashing rounds will help complicate
higher order differential attacks. It is computationally infeasible to compute the
exact algebraic degrees of all ciphertext bits for RC2 with more than two rounds.
However, one can compute a lower bound which will give an indication of the mag-
nitude of the exact algebraic degree. We implemented a series of tests to estimate
how the algebraic degree grows in RC2. We fixed the rightmost three words of
the plaintexts and ran through all other bits. In that way we can generate 216

plaintexts. Then we computed the algebraic degree of all 64 ciphertext bits after
r = 1, . . . rounds of encryption as a function of the bits in the leftmost 16-bit plain-
text word. Our tests show that after 3 (mixing) rounds of encryption the algebraic
degree of about half of the 64 ciphertext bits is the maximum 16, which is what to
expect from a randomly chosen function. Similar results were obtained after three
rounds, where the 16 varying bits in the plaintexts were in the second, third and
fourth words. This illustrates that the algebraic degrees of the ciphertext bits grow
fast in RC2, which makes higher order differential attacks very unlikely to succeed.

The slide attacks do not apply to RC2 because of the high complexity of the
key-schedule.

The non-surjective attacks and the “mod n” attacks are not likely to be appli-
cable, since the structure and components of RC2 do not seem to facilitate these
attacks.

Because of the multiplexor function the integral attacks are not efficient when
applied to RC2. In addition, integral attacks are usually not applicable to very
many rounds.

The interpolation attacks apply to ciphers which use simple mathematical func-
tions only. The S-box used in RC2 is generated from the number π [34]. This
together with rotations, the use of boolean operations and modular additions, make
the interpolation attacks very unlikely to be applicable.

The key-schedule of RC2 does not seem to allow for related-key attacks. The
schedule is rather complex and involves S-box evaluations, fixed constants, rotations
and both exclusive-ors and additions modulo 256. Therefore, there does not appear
to be any obvious weak keys for RC2.

6 Survey of previous results on RC2

The only results we are aware of on RC2 are the results from [21], which have been
included and extended above.
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7 RC2 in SSL

In SSL v2 there are two options for data encryption with RC2, one using a 40-bit
key and one using a 128-bit key. One option in SSL v3 for data encryption is RC2
with a 40-bit key. As far as we are informed, in all theses implementations RC2 is
used for data encryption using the standard CBC mode.

The only potential problem with the above implementations is the use of the
40-bit keys, which give only very little security. It has been demonstrated that with
special-purpose hardware a 56-bit DES keys can be found by exhaustive search in a
matter of days. Moreover, a 40-bit key can be found quickly using general-purpose
machines.

8 Final assessment and considerations

Of the cryptanalytic attacks considered in this report a traditional differential attack
seems to be the most effective attack on RC2. The complexity of the attack is quite
high and requires almost the encryptions of all possible plaintext blocks which makes
the attack completely infeasible in practice.

A Block Ciphers in General

In the following we give a compressed overview of the state-of-the-art of block cipher
cryptanalysis, and outline the following known attacks.

1. Exhaustive Key Search

2. Matching Ciphertext Attacks

3. Differential Cryptanalysis

4. Truncated Differential Attacks

5. Higher-order Differential Attacks

6. Linear Cryptanalysis

7. Related-key Attacks

8. Non-surjective Attacks

9. Interpolation Attacks

10. Mod-n Attacks

11. Slide Attacks

12. Integral Attacks

A.1 Exhaustive key search

This attack needs only a few known plaintext-ciphertext pairs. An attacker simply
tries all keys, one by one, and checks whether the given plaintext encrypts to the
given ciphertext. For a block cipher with a k-bit key and n-bit blocks the number
of pairs of texts needed to determine the key uniquely is approximately dk/ne.
Also, if the plaintext space is redundant, e.g., consists of English or Japanese text,
the attack will work if only some ciphertext blocks is available. The number of
ciphertext blocks needed depends on the redundancy of the language.
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A.2 The matching ciphertext attack

The matching ciphertext attack is based on the fact that for block ciphers of m
bits used in the modes of operations for the DES [32] after the encryption of 2m/2

blocks, equal ciphertext blocks can be expected and information is leaked about the
plaintexts [6, 17, 29].

A.3 Differential cryptanalysis

The most well-known and general method of analysing conventional cryptosystems
today is differential cryptanalysis, published by Biham and Shamir in 1990. Dif-
ferential cryptanalysis is universal in the sense that it can be used against any
cryptographic mapping which is constructed from iterating a fixed round function.
One defines a difference between two bit strings, X and X ′ of equal length as

∆X = X ⊗ (X ′)−1, (18)

where ⊗ is the group operation on the group of bit strings used to combine the key
with the text input in the round function and where (X)−1 is the inverse element of
X with respect to ⊗. The idea behind this is, that the differences between the texts
before and after the key is combined are equal, i.e., the difference is independent of
the key. To see this, note that

(X ⊗K)⊗ (X ′ ⊗K)−1 = X ⊗K ⊗K−1 ⊗X ′−1 = X ⊗ (X ′)−1 = ∆X.

In a differential attack one exploits that for certain input differences the distribution
of output differences of the non-linear components is non-uniform.

Definition 1 An s-round characteristic is a series of differences defined as an s+1-
tuple {α0, α1, . . . , αs}, where ∆P = α0, ∆Ci = αi for 1 ≤ i ≤ s.

Here ∆P is the difference in the plaintexts and ∆Ci is the difference in the cipher-
texts after i rounds of encryption. Thus, the characteristics are lists of expected
differences in the intermediate ciphertexts for an encryption of a pair of plaintexts.
In essence one specifies a characteristic for a number of rounds and searches for
the correct key in the remaining few rounds. In some attacks it is not necessary
to predict the values α1, . . . , αs−1 in a characteristic. The pair (α0, αs) is called a
differential. The complexity of a differential attack is approximately the inverse of
the probability of the characteristic or differential used in the attack.

A.4 Truncated differentials

For some ciphers it is possible and advantageous to predict only the values of parts of
the differences after each round of the cipher. The notion of truncated differentials
was introduced by Knudsen [19]:

Definition 2 A differential that predicts only parts of an n-bit value is called a
truncated differential. More formally, let (a, b) be an i-round differential. If a′ is
a subsequence of a and b′ is a subsequence of b, then (a′, b′) is called an i-round
truncated differential.

A truncated differential can be seen as a collection of differentials. As an exam-
ple, consider an n-bit block cipher and the truncated differential (a′, b), where a′

specifies the least n′ < n significant bits of the plaintext difference and b specifies
the ciphertext difference of length n. This differential is a collection of all 2n−n′

differentials (a, b), where a is any value, which truncated to the n′ least significant
bits is a′.
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A.5 Impossible differentials

A special type of differentials are those of probability zero. The attack was first
applied to the cipher DEAL [20] and later to Skipjack [2]. The main idea is to
specify a differential of probability zero over some number of rounds in the attacked
cipher. Then by guessing some keys in the rounds not covered by the differential
one can discard a wrong value of the key if it would enable the cipher to take on
the differences given in the differential.

A.6 Higher-order differentials

An sth-order differential is defined recursively as a (conventional) differential of the
function specifying an (s − 1)st order differential. In order words, an sth order
differential consists of a collection of 2s texts of certain pairwise, predetermined
differences. We refer to [23, 19] for a more precise definition of higher order differ-
entials.

In most cases one considers differences induced by the exclusive-or operation and
the field of characteristic 2. The nonlinear order of a function f : GF (2n) → GF (2n)
is defined as follows. Let the output bits yj be expressed as multivariate polynomials
qj(x) ∈ GF (2)[x1, . . . , xn], where x1, . . . , xn are the input bits. The nonlinear order
of f is then defined to be the minimum total degree of any linear combination of
these polynomials. The higher order differential attacks exploit the following result.

Corollary 1 Let f : GF (2n) → GF (2n) be a function of nonlinear order d. Then
any dth order differential is a constant. Consequently, any (d+1)st order differential
is zero.

The boomerang attack [35] can be seen as a special type of a second-order differential
attack. This variant applies particularly well to ciphers for which one particular
(first-order) differential applies well to one half of the cipher, and where another
particular (first-order) differential applies well to the other half of the cipher.

A.7 Linear cryptanalysis

Linear cryptanalysis was proposed by Matsui in 1993 [25]. A preliminary version
of the attack on FEAL was described in 1992 [28]. Linear cryptanalysis [25] is a
known plaintext attack in which the attacker exploits linear approximations of some
bits of the plaintext, some bits of the ciphertext and some bits of the secret key. In
the attack on the DES (or on DES-like iterated ciphers) the linear approximations
are obtained by combining approximations for each round under the assumption of
independent round keys. The attacker hopes in this way to find an expression

(P · α)⊕ (C · β) = (K · γ) (19)

which holds with probability pL 6= 1
2 over all keys [25], such that |pL − 1

2 |, called
the bias, is maximal. In (19) P, C, α, β, γ are m-bit strings and ‘·’ denotes the dot
product. The bit strings α, β, γ are called masks.

Definition 3 An s-round linear characteristic is a series of masks defined as an
(s + 1)-tuple {α0, α1, . . . , αs}, where α0 is the mask of the plaintexts and αi is the
mask of the ciphertexts after i rounds of encryption for 1 ≤ i ≤ s.

As for differential cryptanalysis one specifies a linear characteristics for a number
of rounds and searches for the keys in the remaining rounds, we refer to [25] for
more details. A linear attack needs approximately about b−2 known plaintexts to
succeed, where b is the bias of the linear characteristic used.
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Also, the concepts of linear hulls, the analogue to differentials as opposed to
characteristics in differentials cryptanalysis, has been defined in [31].

Finally, in [27] it has been shown that if one defines the quantity q = (2p− 1)2

where p is the probability of a linear characteristic or hull, then when combining
several linear characteristics one can multiply their q values to get the q-value of
the combination. Sometimes the q values are referred to as the “linear probability”,
which is somewhat misleading, but nevertheless seems to be widely used.

A.8 Mod n cryptanalysis

In [15] a generalisation of the linear attacks is considered. This attack is applicable
to ciphers for which some words (in some intermediate ciphertext) are biased modulo
n, where n typically is a small integer. It has been shown that ciphers which uses
only bitwise rotations and additions modulo 232 are vulnerable to these kinds of
attacks.

A.9 Related-key attacks

There are several variants of this attack depending on how powerful the attacker is
assumed to be.

1. Attacker gets encryptions under one key.

2. Attacker gets encryptions under several keys.

(a) Known relation between keys.

(b) Chosen relation between keys.

Knudsen used the methods of 1 by giving a chosen plaintext attack of the first
kind on LOKI’91 [16], reducing an exhaustive key search by almost a factor of
four. The concept “related-key attack” was introduced by Biham [1], who also
introduced the attack scenarios of 2, where the encryptions under several keys are
requested. Knudsen later described a related key attack on SAFER K [18] and
Kelsey, Schneier, and Wagner [14] applied the related key attacks to a wide range
of block ciphers. It may be argued that the attacks with a chosen relation between
the keys are unrealistic. The attacker need to get encryptions under several keys, in
some attacks even with chosen plaintexts. However there exist realistic settings, in
which an attacker may succeed to obtain such encryptions. Also, there exists quite
efficient methods to preclude the related key attacks [14, 10].

A.10 Interpolation attack

In [12] Jakobsen and Knudsen introduced the interpolation attack on block ciphers.
The attack is based on the following well-known formula. Let R be a field. Given
2n elements x1, . . . , xn, y1, . . . , yn ∈ R, where the xis are distinct. Define

f(x) =
n∑

i=1

yi

∏

1≤j≤n,j 6=i

x− xj

xi − xj
. (20)

f(x) is the only polynomial over R of degree at most n − 1 such that f(xi) = yi

for i = 1, . . . , n. Equation (20) is known as the Lagrange interpolation formula (see
e.g.,[5, page 185]). In the interpolation attack an attacker constructs polynomials
using pairs of plaintexts and ciphertexts. This is particularly easy if the components
in the cipher can be expressed as easily described mathematical functions. The idea
of the attack is, that if the constructed polynomials have a small degree, only few
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plaintexts and their corresponding ciphertexts are necessary to solve for the (key-
dependent) coefficients of the polynomial, e.g., using Lagrange’s interpolation. To
recover key bits one expresses the ciphertext before the last round as a polynomial
of the plaintext.

A.11 Non-surjective attack

In [33] Rijmen-Preneel-De Win described the non-surjective attack on iterated ci-
phers. It is applicable to Feistel ciphers where the round function is not surjective
and therefore statistical attacks become possible. In a Feistel cipher one can com-
pute the exclusive-or of all outputs of the round functions from the plaintexts and
the corresponding ciphertexts. Thus, if the round functions are not surjective this
gives information about intermediate values in the encryptions, which can be used
to get information about the secret keys.

A.12 Slide attacks

In [4] the “slide attacks” were introduced, based on earlier work in [1, 16]. In
particular it was shown that iterated ciphers with identical round functions, that is,
equal structures plus equal subkeys in the rounds, are susceptible to slide attacks.
Let Fr ◦Fr−1 ◦· · ·◦F1 denote an r-round iterated cipher, where all Fis are identical.
The attacker tries to find pairs of plaintext P, P ∗ and their corresponding ciphertexts
C, C∗, such that F1(P ) = P ∗ and Fr(C) = C∗. Subsequently, an attacker has twice
both the inputs and outputs of one round of the cipher. If the round function is
simple enough, this can lead to very efficient attacks. To find such pairs of texts,
one can in the worst case apply the birthday paradox, such that one such pair is
expected from a collection of 2n/2 texts, where n is the block size.

A.13 Integral Attacks

These attacks are sometimes referred to as the “Square attack”, since it was first
applied to the block cipher Square [7, 8]. The attack on Square slightly modified
also applies to the block ciphers Crypton and Rijndael [9].

In [22] these attacks are generalised under the name of “integral cryptanalysis”.
In differential attacks one considers differences of texts, in integral cryptanalysis one
considers sums of texts. In ciphers where all nonlinear functions are bijective, it is
sometimes possible to predict a sum of texts, even in the cases where differential
attacks are not applicable. The main observations are that in a collection of texts
which in a particular word take all values exactly equally many times, the value
of the words after a bijective function also take all values exactly equally many
times. Also, assume that s words have this property and that in the cipher a linear
combination of the s words are computed (with respect to the group operation
considered). Then it is possible to determine also the sum of all linear combinations
in a collection of texts. This attack is still today the best attack reported on Rijndael
which has been the selected for the Advanced Encryption Standard.
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