A Cryptographic Review of
CIPHERUNICORN-A

M.J.B. Robshaw
16d Stowe Rd.
London
W12 8BN
mrobshaw@supanet.com

December 14, 2001

Executive summary

This report describes a brief cryptographic review of CIPHERUNICORN-A. While
a broad range of cryptanalytic attacks were considered during this work, our
attention was particularly focused on the differential and linear cryptanalysis of
the cipher as requested. CIPHERUNICORN-A is a complicated cipher which hin-
ders accurate analysis. This should be contrasted with other ciphers that permit
a reasonably close assessment. However we draw the following conclusions.

The techniques of the designers used to estimate the effectiveness of differ-
ential and linear cryptanalysis appear to be reasonable given the complexity
of the cipher. There remain some open questions with regards to this analysis
and it is unknown how closely it might compare to actuality. However, there
is currently little evidence to believe that existing analysis is unreasonable in
predicting the general resistance of the cipher to advanced cryptanalytic attack.

Whiile slight improvements to bounds on the probability of a linear approx-
imation for CIPHERUNICORN-A can be made, with our current understand-
ing practical differential and linear cryptanalytic attacks on CIPHERUNICORN-
A seem unlikely. There is a certificational weakness in the key schedule of
CIPHERUNICORN-A. However any practical impact on security was not imme-
diately clear.

This review took place over a limited time and with limited resources. It
should be anticipated that additional analysis may well yield improved results
for the cryptanalysis of this cipher and provide a greater understanding of the
true security offered.



1 Introduction

In this report we present the results of a brief cryptographic review of the block
cipher CIPHERUNICORN-A. This cipher has been submitted to the Cryptrec
Evaluation process and has already received considerable study by the design-
ers of the algorithm. CIPHERUNICORN-A is a companion to CIPHERUNICORN-E
and they share some functional components. However the specific details of the
ciphers are sufficiently different that surprisingly little of the analysis from one
cipher is of immediate relevance to the other.

While some effort was been made to consider a broad range of attacks on
the cipher, most effort was concentrated on considering the effectiveness of dif-
ferential and linear cryptanalysis. The materials provided for this evaluation
were

e Cryptographic techniques specifications: CIPHERUNICORN-A, FY 2000
submission, NEC Corporation. (Undated.)

e Notice of updates to the above report. NEC Corporation. (Undated.)

e Cryptographic techniques specifications: CIPHERUNICORN-A, Version 2,
NEC Corporation [17].

e Self Evaluation Report: CIPHERUNICORN-A, Version 2, F'Y 2000 submis-
sion, NEC Corporation. (Undated.)

e Notice of updates to the above report. NEC Corporation. (Undated.)

e Self Evaluation Report: CIPHERUNICORN-A, Version 3, NEC Corporation
[18].

e Copy of overhead slides: “128-bit Block Cipher CIPHERUNICORN-A (UNI-
A)? NEC Corporation. (Undated.)

e An independent cryptographic review of CIPHERUNICORN-A [1].

2 Terminology, definitions, and notation

Throughout this report we assume that the reader is familiar with many differ-
ent aspects of block cipher design and analysis, particularly differential [2] and
linear [13] cryptanalysis.

When we consider differential cryptanalysis, we will use a notion of difference
given by bitwise exclusive-or. While other notions of difference might be con-
sidered, the design of CIPHERUNICORN-A is such that this particular measure
is likely to be the most useful. General differences will be denoted by A. For
linear cryptanalysis we will require the use of so-called parity masks denoted by



I'. When explicit values to either differences or parity masks are required they
will be represented in hexadecimal notation prefixed with 0x.

CIPHERUNICORN-A relies on several structural components. These include
integer addition modulo 232 which we will denote by + and the bitwise exclusive-
or of 8, 32, and 64-bit data units which we will denote by @. CIPHERUNICORN-A
requires integer multiplication modulo 232 represented by x and we will refer
to the four different 8-bit to &8-bit substitution boxes Sy—S3 as S-boxes. The
cipher requires the use of a bitwise rotate to the left as well as the bitwise and
of words. The rotation of a to the left by r bit positions will be denoted by
a<r while the bitwise and of a and b will be denoted by a A b. The Hamming
weight of a word a is defined as the number of ones in the binary representation
of the word.

3 Existing analysis of CIPHERUNICORN-A

The designers of CIPHERUNICORN-A have provided the results of their own eval-
uation of the cipher [18]. The bulk of this analysis appears to be concentrated
on the results of extensive statistical testing. While this approach is not en-
tirely without some merit, it is very unlikely that such testing, no matter how
extensive, will uncover problems with the cipher. While a cipher must certainly
pass such tests, a cipher that passes is not necessarily secure. The designers
also consider the resistance of the cipher to a wide-range of sophisticated crypt-
analytic attacks. In particular, bounds on the effectiveness of differential and
linear cryptanalysis have been derived.

In addition to the self-evaluation report [18] an independent cryptographic
review [1] of CIPHERUNICORN-A has observed several interesting structural fea-
tures in the cipher. With regards to differential and linear cryptanalysis, this
report concluded that practical attacks were unlikely.

4 Description of CIPHERUNICORN-A

CIPHERUNICORN-A has a Feistel-like structure and uses pre-whitening, and
post-whitening of the encryption routine with key dependent material. The
round function takes as input two 32-bit words and provides two 32-bit words
as output. Given the block size of 128 bits and the allowed key lengths of
128, 192, and 256 bits, CIPHERUNICORN-A might well be intended as a drop-in
replacement to the AES [5, 16].

4.1 The round function

The round function for CIPHERUNICORN-A is complicated. There are two par-
allel computations that take place which we will refer to as Computation I and
Computation II (see Figure 1).



Figure 1: The round function for CIPHERUNICORN-A.
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Computation I is the heavier computation and involves a Feistel-like struc-
ture on two 32-bit words with ten mini-rounds. Each round takes as input
one of the four bytes from one of the 32-bit strands. Each byte of the 32-bit
target strand is then exclusive-ored with the output from the four S-boxes for
which the same source byte was used. The input bytes are taken in a regular
and natural order, and after eight mini-rounds have been completed two more
mini-rounds are computed. The source bytes for these last two mini-rounds is
determined as a result of Computation II. In Figure 1 this is indicated with a
dashed box and S-boxes without a source byte. As well as providing one of six-
teen possible combinations for the final two mini-rounds, Computation II also
provides a 32-bit quantity that is exclusive-ored with both 32-bit outputs from
the round function.

Key material is combined with the input to both Computation I and Com-
putation II using integer addition. Within Computation I and Computation II,
integer multiplication by a fixed constant is used immediately prior to the use
of the most significant byte as a source byte for a mini-round.

4.2 The function A3

The A3 function is used within Computation I. It seems intended to provide
improved mixing within the round function. Two 32-bit words are input to
A3 which provides two 32-bit words as output. We will write A3(a,b) = (z,y)
where

(z[ly) = (allb) & ((al|b)<<23) ® ((a]|b) <41).

The role and effectiveness of this function will be explored in Section 5.

4.3 The S-boxes

There are four different S-boxes Sp—S3 used in CIPHERUNICORN-A. They are
designed along similar principles to those used in the design of the new AES [5,
16]. The construction and the properties of the S-boxes have not been checked
during this work, and it is assumed that they have the properties claimed.

4.4 The key schedule

The key schedule is simple (though computationally intensive) and it is based
around the repeated application of a function denoted MT. MT takes as input
two 32-bit quantities and provides as output two 32-bit quantities according to
the following equations. We will write MT(a,b) = (z,y) where

r = aXx0x01010101
t = (z>>24) A 0x000000ff
y b @ (Solt][|S1[t]|[S2[t]1].S5[¢])



The function MT is used within a network of 3’°—2 strands where k is one of
128, 192, or 256 bits in length. For the case of k = 128, the network has four

strands A-D as shown here.

A B C D

MT

g

We will make some simple observations on this process in Section 8.

4.5 Initial comments

The round function for CIPHERUNICORN-A is complicated. Certainly it makes
analysis difficult, but the fact that there are two strands of computation running
concurrently with only limited interaction raises several questions.

It seems to be the case that the bulk of any cryptographic strength derives
from Computation I. The results of Computation II are used to vary the opera-
tion flow in Computation I in modest ways. First, four bits from Computation
IT are used to determine which particular mini-rounds are used in the last two
mini-rounds of Computation I. Second, 32 bits of key- and text-dependent ma-
terial are exclusive-ored to both outputs in Computation I. Given that there are
only 16 possibilities for the last two mini-rounds anyway, and that the second
effect is of questionable value with regards to a differential attack, the additional
benefit of Computation II is not so clear.

During both Computation I and Computation II integer multiplication by
a fixed odd constant is used as a means of complicating analysis and providing
diffusion. A similar technique is used in the cipher MARS [3]. While a single-
bit difference in the most significant bit (A = 0x80000000) and the parity
of the least significant bit (I' = 0x00000001) are preserved across the integer
multiplication, it seems that multiplication can generally be an effective way of
increasing the avalanche of change in a cipher. This is particularly the case when
the higher-order bits of the output from the multiplication operation are used
in immediately subsequent operations (since multiplication tends to propagate
bitwise differences to the higher-order bits of the product).



4.6 Some simplifications to CIPHERUNICORN-A

It is unfortunate that the round function of CIPHERUNICORN-A is too compli-
cated to be readily analyzed. In fact, it seems to have been a design aim that
security be derived through having a round function that is difficult to analyze.
This runs counter to the design philosophy of many other cipher designers.

To help gain a greater intuition into the true security that might be offered

by CIPHERUNICORN-A we will consider two simplified variants of the round
function.

5

1. The designers consider a variant of CIPHERUNICORN-A in which the in-

teger addition of key material is ignored and each integer multiplication
a X c is approximated by

a® ((aA0oxtf)<24) ® ((a A 0xf£00)<16) @ ((a A 0x££0000)<8).

While the designers of CIPHERUNICORN-A call this modified round func-
tion mF, we will denote this variant by UNI-A-REP-MULT to show that
the multiplication step has been replaced. It is illustrated in Figure 2.

. Since the function A3 is too complicated to consider naturally we will

define a simpler variant of CIPHERUNICORN-A. It is unlikely that this
variant without the function A3 will be stronger than one with A3, so
we will consider a version of CIPHERUNICORN-A with the A3 function
removed and all multiplication constants fixed to 1. We will label this
variant of the cipher UNI-A-NO-A3.

The Function A3

The A3 function takes as input two 32-bit words (viewed as a 64-bit word by
simple concatenation) and provides two 32-bit words (derived from a 64-bit word
by truncation) as output. It appears to be intended to provide mixing across the
whole of the input to the round function and we have A3(a,b) = (z,y) where

(z[ly) = (al|b) © ((al|b) <23) ® ((a]|b) <41).

An equivalent way of looking at A3 is shown here.

K23

K18

!
i
EN{



Figure 2: A modified round function for CIPHERUNICORN-A.
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At one level it might be reasoned that A3 could be irrelevant with regards
to differential cryptanalysis since A3(r @ s) = A3(r) @ A3(s). Indeed, in estab-
lishing conservative bounds for a characteristic or differential it is reasonable
to assume that A3 offers no resistance to the cryptanalyst. However when it
comes to any particularly detailed analysis, the bit positions involved in a spec-
ified characteristic are likely to be important and A3 is still likely to play a role
in hindering the development of differential and linear attacks.

With regards to differential cryptanalysis there are some obvious degenerate
examples where A3 actually reduces the Hamming weight of a characteristic. For
example A3(Oxeeeeeececeececeeeee) = 0x4444444444444444 and the Hamming
weight has dropped from 48 to 16. However these and other degenerate examples
are unlikely to be of much significance to the overall security of the cipher.
Certainly if our concern is input differences of low Hamming weight, then it
seems that the function A3 is likely to produce higher Hamming weight output
differences thereby helping the avalanche of change in the cipher.

With regards to linear cryptanalysis the situation is slightly different. It
is fairly easy to identify linear approximations across the function A3 (holding
with probability one) for which the Hamming weight of the input parity relation
is low, yet the Hamming weight of the output parity relation is even lower. For
instance if we set

ry 0x0000020000800001 and
I'c = 0x0000000000000001

then we have that
A3(a) . FQ =a- Fl.

While such instances are interesting, it is difficult to see how they might
be of specific use to the cryptanalyst. Particularly so when we consider the
likely resistance of CIPHERUNICORN-A to linear cryptanalysis in general (see
Section 7).

6 Differential Cryptanalysis

Differential cryptanalysis was invented by Biham and Shamir [2]. While some
advanced variants have been proposed [8, 9, 12] these will not be our concern in
this report. In differential cryptanalysis, the cryptanalyst attempts to predict
(with some probability) the evolution of a difference between two inputs as
they pass through the encryption process. The notion of difference can vary
depending on the cipher, but in this case it seems that bitwise exclusive-or
would be most appropriate.

The evolution of the difference can be expressed in different ways. It is
typical to trace this evolution in an exact manner, defining an input and output
for a given operation in the encryption process. Under certain assumptions, the



probability of this path (which is called a characteristic) is estimated by the
product of the probabilities at each step in the process.

It is typical to assume that a cryptanalyst aims to find a 14-round character-
istic when attacking a 16-round cipher. (We assume that the two outer rounds
of the cipher can be removed in what is frequently referred to as a 2R-attack.)
The success of such an attack is dependent on the probability of the identified
characteristic. Actually it is more accurate to say that the success of the attack
is dependent on the accumulated probability of all possible characteristics with
the same starting and ending difference. Thus accumulation of relevant charac-
teristics is typically termed a differential [11]. Throughout this section we will
switch our attention between characteristics and differentials as the need arises.

In the self-evaluation report [18] the designers of CIPHERUNICORN-A pro-
vided some conservative estimates for the resistance of the cipher to differential
cryptanalysis. In this section we will look at their technique, consider our own
independent approach and provide our own conclusions on the resistance of
CIPHERUNICORN-A to differential cryptanalysis.

6.1 Differential cryptanalysis of UNI-A-REP-MULT

In this section we will consider the round function shown in Figure 2 which
was used by the designers in evaluating the resistance of CIPHERUNICORN-A to
differential cryptanalysis.

In their self-evaluation report [18] the designers make conservative estimates
on the resistance of the cipher to differential cryptanalysis. In particular they
consider the resistance of UNI-A-REP-MULT to differential cryptanalysis. The
designers claim that an upper bound on the probability of a differential for a
round of UNI-A-REP-MULT is around 2712, At the level of detail provided in the
self-evaluation report [18] and with the limited time available for this review,
no improvements over the basic differential attack for one round were observed.
The designers then took the reasonable step of assuming that an upper bound
for the probability of a differential over one round of UNI-A-REP-MULT would
likely provide a conservative estimate for the probability of a differential over one
round of CIPHERUNICORN-A. From this, estimates on bounds for the probability
of a differential for CIPHERUNICORN-A can be derived.

6.2 Differential cryptanalysis of UNI-A-NO-A3

To pursue our own independent analysis of CIPHERUNICORN-A we consider the
simplified variant UNI-A-NO-A3. We start by observing the following differen-
tial feature in CIPHERUNICORN-A.

10
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Suppose we find some A and A; such that A % A with probability p = 275,
Then with probability 27° the byte difference at the position marked (*) will be
zero. This means that the same inputs will be used to the second set of S-boxes
for both texts in the pair. This results in the same outputs. Then since the
difference in the input to the third set of S-boxes is the same as the difference to
the first set of S-boxes, with probability 277 the actual inputs themselves will
be the same. In such a case, we have exactly the same set of outputs in both
the first and third set of S-boxes which cancel out. Thus the differential

(07 07 A; A,O, 07 Alao) — (0707 A; A; 0707 A170)

will hold with probability 2 !% across three sets of S-boxes. This is closely
analogous to observations made independently in the external review [1].

Since A 3 A1 holds with probability 2% for A = 0x40 and A; = 0x20, for
example, we can immediately use this differential structure in an attack on the
full round function of UNI-A-NO-A3 as follows. This is illustrated in Figure 3
and we can specify the following 64-bit differential

(0,0, 0x40, 0x40, 0, 0, 0x20, 0) — (0,0, 0x60, 0x40, 0,0,0,0,0)

that holds over the entire round of CIPHERUNICORN-A with probability 2713 x
% X % ~ 27144, The factors of % and % are necessary since the mini-rounds at
the end of the round need to take inputs with a zero difference. Note that we
have assumed that the integer addition of key material in the round has had
no effect on the evolution of the differential. This particular differential has low
Hamming weight input and output differences. As a consequence the interaction
between the integer addition of any key material and the exclusive-or difference

may well be quite limited. Indeed, there are key values (namely 0x00000000)

11



for which there is no interaction at all, so we might adopt a conservative position
and use such cases in our analysis.

If we were to take a very conservative approach then we might say that
the multiplication and A3 operations have no effect on the evolution of this
differential. This would then give us an estimate of 2714* for the probability of
a one round differential in CIPHERUNICORN-A. Clearly this does not contradict
the upper-bound of 27!2 claimed in the self-evaluation report [18]. However this
differential is more detailed in that it is fully specified over all 64 bits of input
and output. It has also been experimentally verified (see Section 6.3). Thus
it gives some confirmation to the upper-bound presented in the self evaluation
report, but it also hints at the fact that earlier bounds [18] might be tighter
than expected.

Indeed the independent review [1] provides confirmation for this intuition.
There a differential for part of the round function of CIPHERUNICORN-A is
outlined that holds with an estimated probability of 2713. This differential
incorporated the multiplication and A3 function (at least in an undetailed way).
However it did not extend well when considering the action of Computation II.
Instead, it was necessary to identify a truncated differential yielding 32 bits of
information with a probability of 2713 [1].

The differential presented here passes directly through both Computation
I and Computation II of the modified round function. Further we obtain a
fully specified 64-bit approximation that holds with probability 2744, While it
does not take account of the multiplications that are used, nor the presence of
the A3 function (which would very likely hinder the joining of different round
differentials), it does fall in line with the estimates provided in [1] and also
(surprisingly) with the very conservative figures provided in the self-evaluation
report [18].

6.3 Unanticipated effects

We implemented the round function of UNI-A-N0O-A3 and verified the claimed
probability of the differential in Figure 3. With a trial over 224 randomly chosen
input texts and with the keys taking the values specified in Section 6.2, the mea-
sured probability of the differential was 27144°, This matched the theoretical
prediction.

While only very limited experimentation could be employed, there was little
sign of any unexpected or degenerate differential behavior in the cipher. Thus,
with current understanding, there seems little reason to question the normal
technique of multiplying the probabilities of constituent characteristics and dif-
ferentials in estimating the probability of a characteristic or differential for the
cipher in its entirety.

12



Figure 3: A simple differential for UNI-A-NO-A3.
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6.4 Implications for the full cipher

Given the exceptional complexity of CIPHERUNICORN-A we are left with little
alternative but to study much simplified versions of the cipher. However if we
make too many changes then we are in no real position to assess how close to
the true behavior of the cipher such variants might be.

Estimates given in the self-evaluation report [18] are very crude and conser-
vative. While some specific improvements to the accuracy of the figures might
be possible, significant improvements at a practical level for the cryptanalyst
have not been apparent in this short review. In addition, limited experimen-
tation found little evidence to question the typical approach of multiplying the
probability of differentials and characteristics when they are joined. We might
therefore conclude the following.

For CIPHERUNICORN-A it seems unlikely that an active differential for a
single round could be readily identified that would hold with a probability much
greater than 2712 for even a small proportion of the keyspace. The function A3
and the integer multiplications are expected to make a tangible contribution to
the security of CIPHERUNICORN-A.

Provided some care is taken, there is currently little evidence to question
the typical approach of multiplying the probabilities of component differentials
in estimating the probability of the complete differential. With the current
state of knowledge, it would be reasonable to view CIPHERUNICORN-A as being
practically resistant to differential cryptanalysis.

7 Linear Cryptanalysis

Linear cryptanalysis [13] has been very effective in the analysis of DES [14, 15]
but less so against other ciphers. While there are some advanced variants to
this basic attack [7, 10, 19], the practical significance of these methods is likely
to be slight.

In linear cryptanalysis we are concerned with predicting the value of a single
bit of information. This bit is typically formed as the exclusive-or combination
of different bits in some word. The bits from a word a, say, forming the bit of
information can be indicated by a (0,1)-vector I'. The value of the bit we are
interested in can be conveniently represented by the dot product a - I'. This
single bit value will have the values zero and one with a certain probability
p. The effectiveness of a linear cryptanalytic attack can be measured in terms
of two closely related concepts: the bias € and what we’ll call the correlation
coefficient LP. In the self-evaluation report [18] the correlation coefficient LP is
used. In this report we will use the bias € where € = |1/2 — p|.

It is an interesting consequence of the design of CIPHERUNICORN-A that
the cryptanalyst will probably aim to use linear approximations involving the
output of many S-boxes. Since the same input byte is used for four S-boxes at

14



a time, the combination of the output from the S-boxes can be readily approxi-
mated while avoiding the proliferation of additional bits at the input side of the
approximation. Thus it is likely that better linear approximations will involve
multiple S-boxes. Further, approximations simultaneously involving several S-
boxes allow for much larger biases than we would expect from the approximation
of single S-boxes individually (such as might be the case if we were using lighter
Hamming weight linear approximations). This runs counter to typical tech-
niques when applying linear cryptanalysis in other environments. Often we aim
to minimize the number of S-boxes involved in an approximation and hence to
reduce the Hamming weight of the approximations involved.

7.1 Linear cryptanalysis of simplified round functions

In this section we will consider the round function in the simplified variant UNI-
A-REP-MULT shown in Figure 2. This was used by the designers to estimate the
resistance of CIPHERUNICORN-A to linear cryptanalysis.

The designers identify a linear approximation for UNI-A-REP-MULT hold-
ing with an estimated correlation coefficient of LP = 272247, However, using
exactly the same methodology we can identify a linear approximation holding
with correlation coefficient LP = 2721-68 This improved linear approximation is
illustrated in Figure 4. It can be seen that it is a trivially straightforward linear
approximation. It is unknown whether or not a specific linear characteristic can
be identified that follows this outlined trail. The reader is referred to the self
evaluation report [18] for more details of the notation used, but by following the
example given there we might estimate that

LP

{input mask = 0 for (Sp||S1||S2||S3)}®
(27271)8 = 92168

Thus, using the same techniques that were used in the self-evaluation report [18],
we observe that the correlation coefficient for a single round of UNI-A-REP-MULT
might be better bounded by 272168 instead of 272247,

With regards to other simplified variants of the cipher, it seems that linear
approximations with similar paths will likely offer similar results. The presence
or absence of either the A3 function or the integer multiplication is essentially
irrelevant at this level of detail.

Of course the practical significance of such improvements are very slight.
Indeed, work by Chabaud and Vaudenay [4] and Selcuk [20] suggests that the
low correlation values for the cipher as a whole implied by these per round
figures, are not very useful. The important thing, practically speaking, is that
there appears to be little opportunity to use linear cryptanalytic techniques
against the cipher.

15



Figure 4: An improved linear approximation for UNI-A-REP-MULT.

key addition [key addition key addition key addition
[ r A3 ]
[0}-o 0}o
1] 1]
2] 2]
3] 3]
o -
10— 10—
1 1
21 Pl
b= 3 b= 3
—o
0 =Sl
= 0
2] 1
3 ]
e 2
- 3]
1 9]
5] 8
=13 | 101
10— 11—
1] 121
2] =131
131 _
10 10—
1] 1]
2] 121
=13 | 13
—0—% 10}
L1 1]
2] 2]
131 i3]
0]
111
121
— 3
0%
11
12
13]
0]
1]
12|
= 3

16



7.2 Unanticipated effects

It is an interesting question whether the biases and correlation coefficients for
sub-components of a round of CIPHERUNICORN-A can be reasonably combined
using techniques such as the piling-up lemma [13] for biases or the multiplication
of correlation coefficients. Only in such a way were the designers able to come
up with bounds on the effectiveness of a linear approximation for the whole
round function.

In the absence of well-developed analytical techniques, we might turn to
direct empirical evidence. Such testing cannot be exhaustive. In fact one al-
most has to know the effect one is looking for before it can be demonstrated.
Certainly, detecting any significant divergence from the expected behavior with
such a limited set of experiments would be highly surprising. So while the re-
sults of this section might provide no strong evidence of unexpected behavior, it
remains unknown whether or not there might be hidden problems in the cipher.

Our experiments are based around the networks given in Figures 5 and 6.
For experiments involving the network in Figure 5 we used the 64-bit input
mask 0x00eeb12e 0x00000000. This input mask offers a linear approximation
across the ouputs of S-boxes Si, Sa, S3 with bias 44/256 ~ 272>, The input
mask to the S-boxes is set to zero. For the network in Figure 6 we use the 64-bit
input mask 0x00eebl2e 0x00eebl2e. The purpose of this network is to allow
for additional interactions between Computation I and Computation II.

Other approximations might well have a more direct interaction with either
the pseudo-multiplication used in UNI-A-REP-MULT or the real multiplication
in CIPHERUNICORN-A. However such approximations seemed likely to be prac-
tically unmeasurable. Instead the concern of these experiments was to con-
sider any hint of a hidden interaction between different strands of text leading
to an unanticipated increase or decrease in the bias of the linear approxima-
tion. We measured the bias of the linear approximation formed with the input
masks 0x00eeb12e 0x00000000 for the network in Figure 5 and 0x00eebi12e
0x00eeb12e for the network in Figure 6 together with the output mask and
conditions indicated here.

1. The network in Figure 5 with output mask 0x00eeb12e 0x00000000 at
position A and the multiplication M set to 1.

2. The network in Figure 5 with output mask 0x00eeb12e 0x00000000 at
position B and the multiplication M set to 1.

3. The network in Figure 5 with output mask 0x00eeb12e 0x00000000 at
position B with the multiplication M replaced by the pseudo-multiplication
used in UNI-A-REP-MULT.

4. The network in Figure 5 with output mask 0x00eeb12e 0x00000000 at
position B with the multiplication M replaced by the multiplication used
in CIPHERUNICORN-A.
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Figure 5: Network used to assess linear approximations in CIPHERUNICORN-A.
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Figure 6: Network used to assess linear approximations in CIPHERUNICORN-A.
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5. The network in Figure 6 with output mask 0x00eeb12e 0x00000000 at
position B and the multiplication M set to 1.

6. The network in Figure 6 with output mask 0x00eeb12e 0x00000000 at
position B with multiplication M replaced by the pseudo-multiplication
used in UNI-A-REP-MULT.

7. The network in Figure 6 with output mask 0x00eeb12e 0x00000000 at
position B with the multiplication M replaced by the multiplication used
in CIPHERUNICORN-A.

For each experiment, we computed the expected bias using the so-called
piling-up lemma [13]. We also measured the bias over a large randomly chosen
set of inputs. The results are given in the following table.

|| Ezperiment || Ezxpected bias | Measured bias | Number of texts ||

1 2—4.08 2—4.06 220
2 277.16 277.15 220
3 2—7.16 2—7.15 220
4 277.16 277.04 220
5 2—10.24 2—10.13 224
6 2710.24 279.84 224
7 2—10.24 2—10.04 224

While the biases might be very slightly larger than expected there is little
here to cause comment. Indeed, it would be a surprise if such a simple network
could be identified that would clearly demonstrate any unusual behavior. Other
approximations and more extensive testing might provide different results and
lead to different conclusions.

We are in the unfortunate position that using the piling-up lemma to combine
biases or multiplying linear correlation coefficients is, despite its known and
acknowledged faults, the only tool available to the cryptanalyst. However, from
the limited work carried out here, there is little evidence to suggest that using
these techniques would lead to particularly misleading results.

7.3 A cautionary observation

In the independent review [1] of CIPHERUNICORN-A it was observed that the
same input to two different sets of S-boxes would yield the same outputs which
would cancel out. This was used to derive an observation about fixed points
within the round function for CIPHERUNICORN-A [1]. Earlier in this report (see
Section 6.2) we used a related observation differentially. Here we might consider
using the observation as part of a linear cryptanalytic attack. Consider the
network illustrated here.
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Suppose that @ = b. Then the inputs to the first and third S-box com-
binations must be the same, as must the outputs. When this happens, the
outputs cancel out and it appears that any linear approximation across the
three mini-rounds defined by any input and output mask I' must be perfect.
This is troublesome since there seems to be nothing to prevent us setting, say,
I' = 0x00000001. This would therefore imply a linear approximation across two
independent S-boxes with a cumulative bias of 279.

The mistake is that we overlook compensating biases that result from the
cases when the inputs a and b are not the same. Consider the case of I' =
0x00000001. If a # b the probability of the approximation holding is not 1/2 it
is 127/255 and so instead of a probability for the linear approximation of

1 255 1 1 1
- — X - = — _|_ -
256 256 2 2 512
we would have a probability of

1 256 127 1

256 T 256 “ 255 2

An interesting, yet uneventful, observation.

7.4 Implications for the full cipher

Estimates given in the self-evaluation report [18] for the linear cryptanalysis of
CIPHERUNICORN-A are very crude. But they should also be conservative since
they ignore the full effects of the integer multiplication and the function A3.
While we have made some improvements to the estimates given in that self-
evaluation report, this marginal improvement is unlikely to be of any practical
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significance. For CIPHERUNICORN-A it seems unlikely that an active linear
approximation for a single round with a practically significant bias could be
readily identified for even a small proportion of the keyspace.

Provided some care is taken, limited experimentation has found no partic-
ular reason to question the typical methodology of multiplying the correlation
coefficients in an assessment of the effectiveness of linear cryptanalysis. It seems
that integer multiplication and the use of the function A3 are likely to have a
tangible effect in hindering the development of a practical linear cryptanalytic
attack. Thus, with the current state of knowledge, it would be reasonable to
view CIPHERUNICORN-A as being practically resistant to linear cryptanalysis.

8 Key Schedule Analysis

In Section 4.4 we introduced the key schedule function for CIPHERUNICORN-A.
It is based around the recursive use of a simple network that is dependent on
the length of key. Here we have illustrated the network for a key length of 128
bits.

A B C D

MT

g

We have not looked at the key schedule in any great detail, but we can make
the following observation.

Suppose that MT(a, b) = (b, a). If we were to start the computation with the
value (a, b, b, b) then at each stage of the key schedule calculation the four words
would always have the value (a,b,b,b). Since key material is always extracted
from the left-most strand, every 32-bit word of key material would then have
the value a. To see whether there are some a and b such that MT(a, b) = (b, a)
we need to find solutions to

b a x 0x01010101,
t = (b>24) A 0x000000ff, and
a = b® (Solt]l[S:[e]|lS2[¢]]|Ss[t])-

There is a solution with ¢ = 0x61db99c8 and b = 0x9f3d61c8. This means
that there are equivalent keys for CIPHERUNICORN-A. The 128-bit key K128,
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the 192-bit key K192, and the 256-bit key K256 all provide exactly the same
set of subkeys and hence provide exactly the same encryption transformation
on 128-bit blocks. These keys are given here in hexadecimal notation.

K128 = 0x61db99c89f3d61c89f3d61c89f3d61c8

K192 = 0x61db99c89f3d61c89f3d61c89f3d61c89f3d61c89£3d61c8

K256 = 0x61db99c89f3d61c89f3d61c89f3d61c89f3d61c89£3d61c8
9£3d61c89£3d61c8

While it is not immediately clear what impact this property has in practice, it
might be viewed as a certificational weakness.

9 Conclusions

This report describes a brief cryptographic review of CIPHERUNICORN-A. While
a broad range of cryptanalytic attacks were considered during this work, our
attention was particularly focused on differential and linear cryptanalysis.

In general, the techniques of the designers to quantify the effectiveness of dif-
ferential and linear cryptanalysis appear to be reasonable. There remain some
open questions with regards to this analysis and it is unknown how closely it
compares to actuality. While slight improvements to bounds on the probability
of a linear approximation for CIPHERUNICORN-A can be made, with our current
understanding, CIPHERUNICORN-A should be viewed as being practically resis-
tant to both differential and linear cryptanalysis. There is also a certificational
weakness in the key schedule of CIPHERUNICORN-A. Nevertheless, current anal-
ysis appears to confirm the continued practical resistance of CIPHERUNICORN-A
to advanced cryptanalytic attack.

This review took place over a limited time and with limited resources. It
should be anticipated that additional analysis may well yield improved results
in the cryptanalysis of this cipher and provide a greater understanding of the
true security offered.
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