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Executive Summary

This report studies the security of the block cipher CipherUnicorn-E against two classes
of attack: differential and linear cryptanalysis. I present the results of a limited time
analysis of this cipher.

The analysis provides strong evidence that CipherUnicorn-E resists conventional
differential and linear cryptanalysis attacks. In light of these results, it seems unlikely
that a differential or linear cryptanalytic attack on the full CipherUnicorn-E construc-
tion will succeed without major new ideas.
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1 Introduction

CipherUnicorn-E is a 64-bit block cipher proposed in the CRYPTREC standards effort.
In this report, I evaluate the security of CipherUnicorn-E against differential cryptanal-
ysis and linear cryptanalysis.

Section 2 examines whether differential cryptanalysis can be used to mount an at-
tack on CipherUnicorn-E. The answer is no: CipherUnicorn-E appears to be secure
against conventional differential cryptanalysis. The technical results can be summa-
rized as follows: I argue that the probability of the best differential characteristic
of the CipherUnicorn-E round function is upper bounded by 2−21, and then this im-
plies that the probability of the best differential characteristic is at most 2−126, which
effectively rules out the possibility of a successful differential cryptanalytic attack
on CipherUnicorn-E. The conclusion is that CipherUnicorn-E has adequate security
against conventional differential cryptanalysis.

Then, Section 3 examines whether linear cryptanalysis can be used to mount an at-
tack on CipherUnicorn-E. This section provides strong evidence that CipherUnicorn-E
is secure against conventional linear cryptanalysis. The technical results are as follows:
no non-trivial linear characteristic for one round has bias larger than 2−12.3, so there is
no linear characteristic for the full cipher with bias larger than 2−74, and hence linear
cryptanalytic attacks against CipherUnicorn-E can be expected to fail. The conclusion
is that CipherUnicorn-E has adequate security against conventional linear cryptanaly-
sis.

1.1 Caveats

The results of this evaluation should be interpreted with care.
First, this is a limited time evaluation by a single cryptographer. It is widely ac-

cepted in the cryptographic community that acquiring enough confidence in a new ci-
pher usually requires years of scrutiny by the cryptographic community at large. While
this report does describe significant evidence for the security of CipherUnicorn-E, it is
no substitute for years of public study.

Second, this evaluation was limited in scope: I only studied security against con-
ventional differential and linear cryptanalysis. While this report does provide strong
evidence that these two classes of attacks will not work against CipherUnicorn-E, no
promises can be made about other types of attacks. I have not attempted to evaluate the
security of CipherUnicorn-E against generalizations of differential and linear crypt-
analysis, such as truncated differential cryptanalysis, higher-order differential crypt-
analysis, impossible differentials, boomerang attacks, and so on. Nor have I attempted
to evaluate the security of CipherUnicorn-E against other attacks known in the liter-
ature, such as interpolation attacks, integrals, or slide attacks. I am not aware of any
viable attacks on CipherUnicorn-E, but I have not studied other potential methods for
attacking CipherUnicorn-E in any depth.

Third, on a technical note, I have focused primarily on differential characteristics
and linear characteristics, rather than differentials or linear hulls. Recall that differen-
tial characteristics specify one way that differences can propagate through the cipher,
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whereas differentials specify many ways: characteristics specify “one trail”, while dif-
ferentials specify “many trails.” From the point of view of security evaluation, there
are two important differences. First, differentials may have higher probability than
characteristics, and the existence of a high-probability differential is sufficient to break
a cipher, even if no high-probability characteristics exist. Second, characteristics are
much more amenable to evaluation than differentials: while it is often feasible to bound
the probability of the best characteristic, finding the highest-probability differential is
typically an intractable task. Similar comments apply to linear characteristics vs. linear
hulls.

In this report, I study only characteristics, not differentials or hulls. Evaluating the
differentials and hulls of CipherUnicorn-E appears to be beyond the state of the art,
and I do not know how to find a provable bound on their probability. Therefore, I shall
rely on a standard heuristic, which says that the probability of the best differential is
not much larger than the probability of the best characteristic. This heuristic, while not
necessarily justified in principle from a theoretical viewpoint, seems to be accurate in
practice for many ciphers. While I do not expect that this feature of our analysis will
cause any inaccuracy, and while this limitation seems to be more or less unavoidable
with the current state of the art in cryptography, the reader should recognize that there
is always the chance that the heuristic could turn out to be inaccurate, and in this case
the security of CipherUnicorn-E would need to be revisited.

That said, the results presented in this report do present good reasons to be quite
confident in the security of CipherUnicorn-E against differential and linear cryptanal-
ysis.

1.2 Notation

I use x⊕ y for the XOR of x and y, x � y for their sum modulo 232, and x � y for the
left-shift of x by y positions. I will sometimes write a 32-bit value x in terms of its
four bytes, x = (a,b,c,d), where a denotes the most significant byte and d the least
significant, i.e., x = a ·224 +b ·216 + c ·28 +d.

2 Differential Cryptanalysis of CipherUnicorn-E

CipherUnicorn-E is a Feistel cipher with 16 rounds, using a 32-bit round function
F : {0,1}32 → {0,1}32. The security of the cipher against differential cryptanalysis
relies on the non-existence of high-probability differential characteristics ∆X → ∆Y for
F . Consequently, we will work towards a upper bound on the probability of the best
differential characteristic for F .

Recall that the probability of a characteristic ∆X → ∆Y for F is defined as

Pr[∆X → ∆Y ]
def
= Pr[F(X)⊕F(X ⊕∆X) = ∆Y ],

where on the right-hand side X is a random variable uniformly distributed on {0,1}32.
We will calculate a upper bound on the probability of the best characteristic, i.e., an
estimate for max∆X ,∆Y 6=0 Pr[∆X → ∆Y ].
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In CipherUnicorn-E, the round function F has the structure

F(x) = f (x� k,g(x� k))

where f represents the “main stream”, g the “temporary key generation function” (in
the terminology of the designers), and k part of the round subkey. We can analyze the
probability of the best differential characteristic for F in terms of the best differential
characteristics of f and g separately.

I consider each of these two substructures in turn, next. First, I show an upper
bound 2−14 for the best characteristic for f . Then, I show an upper bound 2−7 for the
best characteristic for g. The conclusion is that there is there is no characteristic for the
full round function F with probability better than 2−21. (Most likely the true value is
much smaller, but this will suffice as an upper bound.)

This bound suffices to show that CipherUnicorn-E is secure against conventional
differential cryptanalysis. If we assume that the attacker can bypass the first round and
mount a 2-R attack, the attacker will need to find a 13-round differential characteristic.
Every such characteristic involves at least 6 active rounds, and since each active round
has probability at most 2−21, we see that the probability of the best 13-round differential
characteristic will be at most 2−21×6 = 2−126. As such an attack would require vastly
more chosen plaintexts than are available, we conclude that CipherUnicorn-E appears
to be secure against differential cryptanalysis.

2.1 Differential Characteristics of f , the “Main Stream”

The function f is computed as below.

Algorithm f (s,z):
1. Apply T (1), T (2), T (3), T (4) to s to obtain t.
2. Compute u = t � k′, where k′ is some additional key material.
3. Apply T (1), T (2), T (3), T (4) (in a permuted order determined by four bits of z)

to u to obtain v.
4. XOR a byte of y into v, then apply a T (·) round (which one is selected by z).
5. XOR another byte of z into the result, then apply another T (·) round, and call the result w.
6. Return w as the value of f (s,z).

Any non-trivial differential characteristic for Step 1, above, must include at least
one active T (·)-round. An exhaustive computer search confirms that the probability of
the best differential characteristic for a single active T (·)-round is 1/27. Consequently,
we can conclude that the best differential characteristic through Step 1 has probability
at most 1/27.

Similarly, any non-trivial differential characteristic that goes through Step 3 also
involves an active T (·)-box in Step 3, and thereby contributes another factor of 1/27

(or smaller) to the overall probability. This allows us to argue that the best differential
characteristic for f , i.e., for the main stream, has probability at most 1/27 × 1/27 =
2−14.

At this point, a caveat should be mentioned. The alert reader might ask: are these
probabilities are truly independent? The answer is not entirely clear. Without the
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insertion of the subkey k′ in Step 2, the answer would be a definite ‘no’, and our bound
of 214 would be completely unjustified; fortunately, however, Step 2 does introduce
key material, so our bound above may be ok. If Step 2 introduced key material using
the XOR operation, instead of using addition modulo 232, then the two probabilities for
Step 1 and Step 3 would indeed be independent, since XORing with key material erases
everything except the XOR-difference; consequently, the upper bound of 2−14 would
be fully justified in this case.

Unfortunately, the use of addition rather than XOR complicates matters. I know
of no proof that Steps 1 and 3 should be independent, so in principle, multiplying the
probabilities of Step 1 and Step 3 is not necessarily justified. The theoretical issue is
that the values after Step 2 retain information not only on the XOR-difference before
Step 2, but also some partial information on the values of both inputs to Step 2. In
practice, though, there is every reason to believe that the use of addition is at least
as good as, and possibly better than, XOR. I tried very hard to find even a contrived
scenario where use of addition could be less secure than XOR, and I could not find
one. In practice, addition reduces the differential probability even further, because the
carry bits introduce a limited amount of non-linearity that makes it hard to predict the
differences entering Step 3.

In summary, then, independence is not strictly 100% guaranteed from a theoretical
standpoint, but I am confident that in practice the independence assumption is unlikely
to cause inaccuracy in our analysis. This situation, by the way, is a consequence of the
design philosophy of “adopting a structure that is difficult to analyze”: such a structure
may be difficult for the malicious attacker to analyze, but this philosophy comes with
the disadvantage that it is also difficult for legitimate evaluators to develop reliable
evidence for the security of CipherUnicorn-E. In any case, I fully expect that there is
no differential characteristic for f with a probability noticeably exceeding 2−14. In the
rest of this report, I will use 2−14 as the upper bound on the probability of the best
differential characteristic for f (the “main stream”).

One might wonder whether this upper bound is very conservative. At first glance, it
appears to complete ignore the extra security provided by the modular addition in Step
2 and by the final two K/T -rounds in Steps 4 and 5. However, I do not believe those
features provide as much security as one might expect. In particular, I believe one can
find a differential characteristic for f with probability fairly close to the upper bound.
One possibility might look something like this:

∆s
T (1)
−→ (0,0,0,∆t3)

T (2,3,4)
−→ (0,0,0,∆t3) (Step 1, prob. 2−7)

�k′
−→ (0,0,0,∆u3) (Step 2, prob. ≈ 1)

T (2,4,3)
−→ (0,0,0,∆u3)

T (1)
−→ (∆v1,∆v2,∆v3,∆v4) (Step 3, prob. 2−7 ×2−4)

K(2)
−→ (∆v1,0,∆v3,∆v4)

T (2)
−→ (∆v1,0,∆v3,∆v4) (Step 4, prob. 1)

K(4)
−→ (∆v1,0,0,∆v4)

T (4)
−→ (∆v1,0,0,∆v4) (Step 5, prob. 1)

where, e.g., ∆z = (0,∗,∆v2,∆v3).
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We explain the ideas behind the above characteristic in detail next. It is straightfor-
ward to find a differential characteristic ∆s → ∆t for the first four T -rounds that holds
with probability 2−7 so that ∆t = (0,0,0,∆t3), i.e., ∆t is zero in all but the low byte:
the active round will be the first T -round, and I have verified that one can find many
characteristics for the first T -round that hold with probability 2−7. We can addition-
ally choose t so that ∆t has low Hamming weight, and then the difference will pass
through the modular addition (Step 2) with high probability (I assume this probability
can be chosen to be very close to 1). We will hope that, through blind luck, Step 3
will use an ordering of the T -boxes that uses T (1) last in both pairs; in this case, the
first three T -rounds will have probability 1, and we can arrange the final T (1)-round to
have probabilty 2−7. If we can choose ∆z appropriately, we can ensure that both pairs
use the same T -ordering in Step 3, and then the probability that T (1) appears last is
2−2. Finally, we can choose ∆z so that the differences entering the last two T -rounds
(Steps 4 and 5) are cancelled out by the K-round before passing through the S-boxes,
thereby ensuring that Steps 4 and 5 are passed through with probability 1. We may
need another factor of 2−2 to control the order of the other T -rounds in Steps 4 and 5.

To summarize the implications of this lengthy discussion, we obtain a carefully
chosen differential characteristic (∆s,∆z) → ∆w for f that holds with probability close
to 2−18. This is not too far from the simple upper bound of 2−14 derived above, so I
suspect the 2−14 upper bound probably cannot be significantly improved without a lot
more work. This completes the analysis of f , the “main stream.”

2.2 Differential Characteristics of g, the “Temporary Key Genera-
tion Mechanism”

The analysis of g is a bit more involved. The function g incorporates many operations
that exploit the additive structure (rather than the XOR structure) of 32-bit words.

In particular, the Y -rounds use addition modulo 232 as well as left-shift: e.g., com-
putations such as x′ = x � (x � 3). A left-shift by k positions can be perhaps best
viewed as multiplication by 2k, and so we find that the Y -rounds correspond to multi-
plication modulo 232 of the input by some constant. For instance, the above-mentioned
example x′ = x� (x � 3) can be equivalently expressed as x′ = (1+23)x mod 232. We
see that the Y (3,8,16) round corresponds to multiplication by (1+23)(1+28)(1+216)
modulo 232, and the Y (7,9,13) round to multiplication by (1 + 27)(1 + 29)(1 + 213).
Fortunately, both of these constants are odd, so the Y rounds are bijective.

The additive structure of the Y -rounds and presence the subkey additions suggest
that XOR-differentials may not do so well: additive differentials modulo 232 may be
more appropriate. However, the T -rounds are best approximated using XOR-differentials,
not additive differentials, so it is clear that we need to consider both viewpoints.

We recall the generalization of XOR-differentials to other groups. If (x,x∗) rep-
resents a pair of encryptions, then their XOR-difference and additive-difference are
defined as follows:

∆⊕x
def
= x∗⊕ x ∆

�
x

def
= x∗ � x = x∗− x mod 232.

We note that it is possible to convert between the two types of differences: for instance,
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if ∆⊕x = 1, then ∆
�

x = 1 holds with probability about 1/2, or in other words,

Pr[∆
�

x = 1 | ∆⊕x = 1] = 1/2 Pr[∆
�

x = 3 | ∆⊕x = 1] = 1/4 . . .

The conversion works this way because of the carry bits in addition. One finds that
the conversion tends to hold with high probability only for differences with low Ham-
ming weight, or more generally, with a small number of runs of 1’s in their binary
representation.

For convenience in writing long differentials combining both additive and XOR-
differentials, we will sometimes subscript the difference itself with the appropriate
symbol to indicate which type of difference is being considered. For instance, 1⊕ → 7

�

represents the differential holding when F(X ⊕ 1)� F(X) = 7. I will consider differ-
entials where we are allowed to use either additive or XOR-differentials at essentially
every position, and I will look for an upper bound on the probability of the best differ-
ential characteristic for g.

First, note that the Y -rounds have many probability-1 additive differential charac-
teristics.

δ
�

Y (i, j,k)
−→ γ

�
(prob. 1)

when γ = (1+2i)(1+2 j)(1+2k)δ mod 232.

Note that if we know the input difference δ , we can compute the output difference γ
using a single multiplication, and similarly we can go backwards by using the inverse
modulo 232.

Subkey additions also leave additive differences unchanged (with probability 1).
This makes additive differential characteristics a very effective tool for attacking the
subkey additions and the Y -rounds.

Second, note that we can obtain probability-1 characteristics for the T -rounds if we
use XOR-differences. For instance, we have the following

(0,a,b,c)⊕
T (1)
−→ (0,a,b,c)⊕ (prob. 1)

(0,0,b,c)⊕
T (1),T (2)
−→ (0,0,b,c)⊕ (prob. 1)

We can see that the only difficulty in constructing high-probability differential char-
acteristics for g (the “temporary key generation mechanism”) will be the need to con-
vert between additive and XOR-differences. We have probability-1 characteristics for
all components of g, so if we could convert freely between the two without restriction,
we would have a probability-1 characteristic for g by combining the characteristics for
the components. In real life, though, things don’t work this way: we must convert be-
tween additive and XOR-differences to get the characteristics to line up, and this comes
at a price of reducing the probability of the characteristic.

It is not hard to see that we need to switch between additive and XOR-differences in
at least four positions. The natural places are before and after each of the two segments
of two T -rounds. Because the interaction of additive and XOR-differences are difficult
to analyze theoretically, due to the complications created by the carry bits, I carried out
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an computer search for the best differential characteristic. In particular, I searched for
all differential characteristics in which the T -rounds are passed through with probabil-
ity 1. This places enough restrictions on the structure of a differential characteristic to
exhaustively search all possibilities: there are essentially only 216 possible differences
to consider just before the pair of T (1),T (2)-rounds, and working backwards through
g we can enumerate all possible high-probability characteristics.

The results of this exhaustive computer search are as follows. No characteristics
with probability exceeding 2−13 were found. One of the best characteristics was the
following (with values reported in hexadecimal):

0xB787C072
�

g
−→ 0x00007F02

�
(prob. ≈ 2−13)

There were a number of other characteristic with similar and smaller probabilities. This
particular differential characteristic can be expanded, showing intermediate values, as
follows:

0xB787C072
�

�k′
−→ 0xB787C072

�
(prob. 1)

Y (3,8,16)
−→ 0xFF8BC602

�
= 0x008...⊕ (prob. 1)

T (1)
−→ 0x008..⊕ = 0x0073C5FE

�
(prob. ≈ 2−10)

�k′′
−→ 0x0073C5FE

�
(prob. 1)

Y (7,9,13)
−→ 0x000080FE

�
= 0x0000...⊕ (prob. 1)

T (1),T (2)
−→ 0x0000...⊕ = 0x00007F02

�
(prob. ≈ 2−3)

A word of warning: These probabilities are very approximate. Because I was searching
primarily for an upper bound on the probability of the best differential characteristic,
it is possible that the true probability of this differential characteristic is considerably
lower. I did not try to confirm whether the full characteristic for g is even possible; in-
stead, I focused on upper bounds for characteristics for each of the components. Also,
I did not spend a lot of effort trying to assess this characteristic from the point of view
of an attacker—rather, I focused on finding an upper bound on the highest probabil-
ity characteristic, with the goal of showing that no ordinary differential cryptanalytic
attack on CipherUnicorn-E is likely to succeed.

If we try to maximize the probability only of passing through T (1) (and converting
between additive and XOR-differences around this T -round), ignoring the probability
of the final two T -rounds, the best probability is still fairly low: at most about 2−8.
One example of such a characteristic, with probability around 2−8, is

0x563BC537
�

�,Y
−→ 0xFFF7DDEF

�

T (1),�
−→ 0x00082211

�
(prob. ≈ 2−8)

Y
−→ 0x00006C91

�

T (1),T (2)
−→ ·· · (prob. 1)

This suggests that the conversion between additive and XOR-differences is the main
barrier to high-probability differential characteristics.
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Returning to the study of the full g function, the results of the computer search can
be summarized as follows. The computer search enumerated all characteristics where
the three T -rounds are passed through with probability 1, i.e., where the S-boxes are
inactive. Assuming there are no bugs in my computer program, this shows there are no
characteristics for g from this class with probability better than 2−13. We can see that
the conversion between additive and XOR-differences has imposes serious degradation
on the probability of characteristics.

We can also consider all characteristics where some T -round is active. I verified ex-
haustively that there is no characteristic for any active T -round with probability larger
than 2−7. This shows that, among the characteristics with an active T -round, none have
probability higher than 2−7. In fact, I suspect that all such characteristics have a much
lower probability, because if a T -round is active we obtain intermediate differences
with very high Hamming weight, which makes the probability of passing through the
additions and Y -rounds quite low. As a result, I suspect that there is no characteristic
for g from this class with probability greater than 2−13, but I have no proof, and I do
not know how to verify this conjecture. In any case, the weaker (and fully-justified)
bound of 2−7 will be sufficient for our purposes.

Note that these two classes of characteristics cover all possibilities. In every charac-
teristic, either some T -round is active (and we have a characteristic of the second class),
or all T -rounds are inactive (and we have a characteristic of the first class). Therefore,
an upper bound on the probability of the best characteristic is max(2−13,2−7) = 2−7.

The conclusion is that there is no differential characteristic for g (the “temporary
key generation mechanism”) that holds with probability greater than 2−7. Most likely,
the true maximum differential probability is much smaller—I conjecture that it is prob-
ably at most 2−13 or so—but despite the existence of partial evidence, I do not know
of any proof for this conjecture. Therefore, I will use only the fully-justified and more
conservative figure of 2−7.

3 Linear Cryptanalysis of CipherUnicorn-E

Linear cryptanalysis seems to be a much less effective method for attacking CipherUnicorn-
E than differential cryptanalysis. This is perhaps not surprising, because this sort of
construction (an “unbalanced, target-heavy generalized Feistel network” [2]) tends to
much more resistant to linear attacks than to differential attacks. As a consequence,
analyzing the security of CipherUnicorn-E against linear cryptanalysis seems much
easier than analyzing its security against differential attacks.

Recall that the probability of a linear approximation Γ → Γ′ is defined as

Pr[Γ → Γ′]
def
= Pr[(X ·Γ)⊕ (F(X) ·Γ′) = 1],

where on the right-hand side X is a random variable uniformly distributed on {0,1}32

and where x · y denotes the dot-product of two 32-bit vectors. The bias of the linear
approximation Γ → Γ′ is then defined as

Bias[Γ → Γ′]
def
= 2|Pr[Γ → Γ′]−1/2|.
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Note that biases multiply when we concatenate independently-keyed functions (this is
the content of Matsui’s piling-up lemma), and that a linear characteristic of bias b can
be used in an attack using on the order of 1/b2 known texts (Matsui’s rule of thumb).
We will calculate a upper bound on the bias of the best linear characteristic, i.e., an
estimate for maxΓ,Γ′ 6=0 Bias[Γ → Γ′].

We start by analyzing the bias of the best linear characteristic for the CipherUnicorn-
E Feistel function. Note that any non-trivial linear approximation for a T -round (inside
the Feistel function) must include at least one active S-box. Moreover, the CipherUnicorn-
E Feistel function includes at least 8 T -rounds. If we let bT denote the bias of the best
linear characteristic for a single T -round, then the bias of the best linear characteristic
for the Feistel function will be at most b8

T (again, by the piling-up lemma). This then
gives us a bound for the bias of the best 13-round linear characteristic: it can be no
larger than (b8

T )6 = b48
T .

I do not know know what the maximum bias bT for a single T -round is. I have
verified computationally that, if we restrict to the case where at most two S-boxes are
active, the best probability is 1/2±44/256, and hence the best bias is 88/256≈ 2−1.54.
This was checked by an exhaustive search over all the 224 such linear characteristics, a
computation with workfactor approximately 232. Note that every linear characteristic
for a T -round can be specified by a 40-bit quantity: the 8-bit mask Γ entering the S-box
inputs, and a 32-bit mask covering the entire output of the T -round.

If this result also were to extend to the case where three or four S-boxes are active,
we would have a bound 2−1.54×48 ≈ 2−74 on the best bias for the whole cipher. A
linear attack using a characteristic of bias 2−74 would need at least 2148 known texts,
which vastly exceeds the number of texts available to any attacker. Consequently, if
this partial bound extends to the unanalyzed cases, this would be compelling evidence
that CipherUnicorn-E is secure against linear cryptanalysis.

Unfortunately, the task of finding the best linear characteristic for a single T -round
appears challenging. I do not know of any easy way to compute the exact value of bT .
The problem is that the naive approach—namely, enumerating all 240 of the possible
characteristics—requires a very large workfactor (about 248 operations). This means
that an exhaustive enumeration strategy appears to be out of the reach of today’s com-
puters.

I am forced to leave it as an open problem to estimate the true value of bT . This
seems like an interesting algorithm problem, and there is some hope for algorithmic
improvements in this regard. We note that it is equivalent to the following problem
(which is in turn closely connected to coding theory):

Given a 256×41 matrix M over GF(2) and a value n ∈ R, check whether
there exists a 41-bit column vector v 6= 0 so that Mv is a vector of Hamming
weight at most n.

The connection is as follows. Fill in each row of the matrix M with the 8-bit input to
the S-boxes, the 32-bit output formed of the T function, and a final column that always
contains a 1 bit. Then there is a one-to-one correspondence between vectors v such
that Mv has low weight and linear characteristics Γ → Γ′ of the T -round of large bias:
the correspondence is given by v = (Γ,Γ′,v41), and Mv has weight n if and only if
Bias[Γ → Γ′] = |n/128−1|.
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There is some hope for solving this algorithmic problem. For instance, if we want
to check whether there exists a vector Mv with weight at most n, then we could use the
following randomized algorithm:

1. Do the following c× (1−n/256)−41 times:
2. Pick 41 random columns of M, and erase the rest. We obtain a 41×41 matrix M′.
3. For all solutions v to the equation M′v = 0 with v 6= 0, do:
4. If Mv has weight at most n, output v.
5. Output “no solution found.”

One can expect that this algorithm will output an incorrect answer with probability
at most e−c. For an error probability of 2−20 and with n = 64, this algorithm will
require about 221 inversions of a 41×41 matrix, corresponding to about 221×413 ≈ 237

operations. The output would tell us, with high confidence, whether or not there is any
linear characteristic for the CipherUnicorn-E T -round with bias exceeding 1/2. If the
answer is that there is no such characteristic (as we expect), then this would imply
(except for a 2−20 probability of error) that there is no linear characteristic with bias
exceeding 248 for the full CipherUnicorn-E cipher, and this would be sufficient to rule
out the possibility of linear cryptanalytic attacks on CipherUnicorn-E.

Unfortunately, due to time constraints, I have not been able to develop this direction
further. I am forced to leave it as an open problem to determine the probability of the
best linear characteristics for the CipherUnicorn-E S-boxes and T -rounds.

I will note in passing that my brute-force search for good linear characteristics
found a number of linear approximations that seem to contradict the designer’s security
claims for the CipherUnicorn-E S-boxes. For example, here are four linear characteris-
tics of the T -function. I specify the 8-bit mask Γ covering the input byte to the S-boxes
and the 32-bit mask Γ′ = (Γ′

0,Γ
′
1,Γ

′
2,Γ

′
3) covering the output of the T -function (where

Γ′
i is the mask for the S-box Si). All masks are given in hexadecimal.

Pr[D6 → (16,CB,00,00)] = 1/2±44/256

Pr[46 → (7A,00,D1,00)] = 1/2±44/256

Pr[90 → (00,32,73,00)] = 1/2±44/256

In contrast, the designers’ self-evaluation report seems to claim a maximum probability
of 1/2± 2−3.08 for these approximations [1], which is a puzzling discrepancy. There
seem to be at least three possibilities: I could be misunderstanding the specification of
the cipher or their analysis; my program could be in error; or the designers’ calculations
could be erroneous. I do not know what the cause of this discrepancy is, and perhaps
it should be investigated further. In any case, the conclusion that CipherUnicorn-E ap-
pears to be secure against linear cryptanalysis seems to remain intact given our current
knowledge.
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