
Evaluation Report on the Discrete Logarithm
Problem over finite fields

Jacques Stern

1 Introduction

This document is an evaluation of the discrete logarithm problem over finite fields
(DLP), as a basis for designing cryptographic schemes. It relies on the analysis of
numerous research papers on the subject.

The present report is organized as follows: firstly, we review the DLP and several
related problems such as the Diffie-Hellman problem. Next, we analyze the various
algorithms that are currently known to solve the problem. For each algorithm, we study
its asymptotic behaviour, as well as its practical running time, based on experiments
reported in the literature. Finally, we derive consequences in terms of key sizes for
cryptosystems whose security depend on the hardness of the DLP. We conclude by
making some predictions on how the key sizes might evolve. This is as requested by
IPA.

2 The DLP and related problems

In this section, we review the DLP and several related problems, such as the compu-
tational and decisional Diffie-Hellman problems and we investigate their security in
terms of complexity-theoretic reductions.

2.1 The DLP as a cryptographic primitive

The discrete logarithm problem in a finite group G can be stated as follows: compute x
from g and u = gx. Integer x is called the discrete logarithm of u in base g, x = logg(u).
Of particular interest in the present report, is the case when G is the multiplicative
group of a a finite field K with q = pn elements, where p is a prime. In this setting,
cryptographic applications are almost exclusively related with the case p = 2 and the
case n = 1. The first case corresponds to a field of characteristic 2, while the second uses
the group Z?

p of invertible elements of Zp. Each case is an instance of a larger family:

1

fields of small characteristic p and fields of small degree n, respectively. Subgroups are
also used. For example, p can be chosen such that p− 1 has a large prime factor q of
prescribed size. In this case, there is a subgroup of order q, consisting of elements x in

Z?
p such that x

p−1
q = 1 mod p.

The basic security assumption on which cryptosystems based on the DLP rely is
one-wayness (OW): an attacker cannot recover x from g and gx. In a more precise
complexity-theoretic framework, this means that the success probability Succdlp(A) of
any polynomial time adversary A attempting to invert x :−→ gx is negligible, i.e.
asymptotically smaller than the inverse of any polynomial function of the security
parameter k. The security parameter can be taken as the degree n of the field, for
small characteristic, and as the bit-size of p for small degree. Probabilities are taken
over g and x. In the case of fields of small degree, it is implicit that a prime generation
algorithm K(1k) produces p. It uses randoin coins Ω and probabilities also range over
these random coins.

To go from asymptotic to exact estimates, we can define Succdlp(τ, k) as the proba-
bility for an adversary to find the preimage of a given element within time τ . We turn
the above into symbols, in the case of prime fields (n = 1):

Succdlp(A) = Pr[p← K(1k), g ∈R G, x ∈R {0, . . . , p−1}, u← (gx mod p) : A(p, u) = x].

The hardness of the DLP is the statement that, for large enough k, this probability is
extremely small.

Many cryptographic schemes rely on the assumption that the DLP is hard. To
name a few, the El Gamal public key cryptosystem and signature scheme [10], the
Digital Signature Algorithm DSA [9], the Cramer-Shoup cryptosystem [8, 35].

2.2 The Diffie-Hellman problem

The modern approach to cryptographic design relies on the notion of security proof.
Such proofs are reductions in the sense of complexity theory. Given an attacker A
that breaks the cryptographic scheme, one designs another machine B, solving the
underlying hard problem. The relation between running times and success probabilities
of A and B is further made explicit, so that, if the security loss is not too large, concrete
estimates on key sizes may be derived from the proof.

Ideally, one would like to establish the security of a scheme based on the sole
assumption that the underlying problem is hard. Unfortunately, very few schemes allow
such a proof. One of them is the Cramer-Shoup cryptosystem, quoted above [8]. For the
others, the best one can hope for, is a proof carried in a non-standard computational
model, as proposed by Bellare and Rogaway [2], following an earlier suggestion by
Fiat and Shamir [11]. In this model, called the random oracle model, concrete objects
such that hash functions are treated as random objects. This allows to carry through

2

the usual reduction arguments to the context of relativized computations, where the
hash function is treated as an oracle returning a random answer for each new query.
A reduction still uses an adversary as a subroutine of a program that contradicts a
mathematical assumption, such as the hardness of the DLP. However, probabilities are
taken not only over coin tosses but also over the random oracle.

In the case of the discrete logarithm, whatever the computational model is, it is
often the case that security is not related to the DLP itself, but rather to the so-
called decisional Diffie-Hellman problem, or its computational version. The decisional
Diffie-Hellman assumption over a group G asserts that it is hard to distinguish the
distributions D and R, where

R = {(g1, g2, u1, u2)}

with all four elements taken at random in G and

D = {(g1, g2, u1, u2)}

with logg1
(u1) = logg2

(u2). A quantitative version measures the maximum advantage
AdvDDH(τ) of a statistical test T that runs in time τ . This means the maximum of the
difference of the respective probabilities that T outputs 1, when probabilities are taken
over D or R.

Related to the above is the computational Diffie-Hellman assumption (CDH), which
states that it is hard to compute gxy from g, gx, and gy. It is obvious that DDH is a
stronger assumption than CDH, which in turn, is stronger than the assumption that
the DLP is hard. However, no other relation is known and the only way to solve the
hard problems underlying DDH or CDH is to compute discrete logarithms. There are
some indications, in other settings, that DDH might be easy, in some cases, while the
CDH remains difficult (see [13] and [12]). However, the references just quoted are not
relevant to the context of finite fields.

In conclusion, the only method known to attack the Diffie-Hellman problems is
to solve the DLP. Therefore, in order to estimate whether the parameters of a crypto-
graphic scheme, relying on the hardness of these problems, offer a wide security margin,
one needs to refer to the performances of the various algorithms known for the DLP.

3 Algorithms for the DLP

3.1 Exponential algorithms

There is an algorithm due to Pohlig and Hellman (see [29]), which reduces the deter-
mination of the discrete logarithm in a field to the analogous problem in subgroups.
For example, if p−1 is a product of small factors qi, relatively prime to each other, the

3

algorithm separately operates on subgroups of order qi However, this is irrelevant in a
cryptographic context, since generation algorithms can simply avoid such primes p.

The best algorithm known to date for solving the DLP in any given group G is the
Pollard ρ-method from [30] which takes computing time equivalent to about

√
πn/2

group operations. In 1993, van Oorschot and Wiener in [38], showed how the Pollard
ρ-method can be parallelized so that, if t processors are used, then the expected number

of steps by each processor before a discrete logarithm is obtained is '
√

πn/2

t
. In order

to compute the discrete logarithm of y in base g, each processor computes a kind of
random walk within elements of the form gayb, selecting xi+1 as yxi or x2

i or else gxi,
according to a deterministic but randomly looking choice (say based on a hash value).
“Distinguished” points xi are stored together with their representations xi = gaiybi in a
list that is common to all processors. When a collision occurs in the list, the requested
discrete logarithm becomes known. There is no record involving discrete logarithms in
subgroups of Z?

p. However, one can estimate what such a record would be, by recalling
the current record for computations in the group of points of an elliptic curve. In april
2000, the solution to the ECC2K-108 challenge from Certicom led to the computation
of a discrete logarithm in a group with 2109 elements. This is one of the largest effort
ever devoted to a public-key cryptography challenge. The amount of work required
to solve the ECC2K-108 challenge was about 50 times that required to solve the 512-
bit RSA cryptosystem (see [3]) and was thus close to 400000 mips-years. Because,
the standard arithmetical operations execute faster than elliptic curve additions, an
equivalent effort in the area of subgroups of Z?

p would presumably reach a few bits
more. Referring to [26], we find that it would mean an extra 4 to 5 bits.

It should be noted that the exponential algorithms decribed in this section are
superseded by the subexponential algorithms that appear further on in the present
report. However, when dealing with subgroups, their computing time is related to the
size of the subgroups rather than the size of the field. Accordingly, they give indications
on the minimum size of the subgroup. Based on [26], it appears that moderate sizes
such as 256 bits, should withstand attacks for the next 50 years.

3.2 The index calculus method

Efficient algorithms to solve the discrete logarithm problem over finite fields use the
so-called index calculus method (see [27, 34] for a survey). In this section, we explain
the basic principle of this method. Its latest instantiations, the number field sieve and
the function field sieve, will be detailed later. We let G = K∗ and we assume that the
base g is a generator of G, so that all logarithms are well-defined. This is no restriction,
since randomly chosen elements are generators with high probability.

The index calculus method uses a fixed small set called the factor base B ⊆ G, and
tries to write elements as a product of members of the factor base. The base consists

4

of objects which are small and irreducible, in an appropriate sense:

• In a prime field Fp, where we identify field elements with integers in {0, . . . , p−1},
a factor base consists of all prime numbers less than some prescribed bound.

• In a field of characteristic 2, F2n , where we write field elements as polynomials
of degree < n, a factor base consists of all irreducible polynomials of degree less
than some prescribed bound.

The algorithm has two steps:

1. A precomputation step, where the logarithms logg b of all members of the factor
base are obtained

2. A computation step, which tries enough gay until the result factors over the factor
base, thus providing the requested logarithm logg y.

The first step itself has two stages:

• A sieving step, where one gathers multiplicative relations between elements of
the factor base. Such relations are of the form

∏
bi∈B bei

i = 1, where the product
ranges over B and each ei is an integer.

• A linear algebra step, where, taking logarithms, each relation produces a linear
equation with unknowns the discrete logarithms of the factor base. When enough
relations have been found, the logarithms of the factor base are obtained by linear
inversion.

Observe that the various logg b, b ∈ B, are computed up to some multiplicative constant.
To find the value of the constant, one usually adds g as an element of B. Also note
that the first stage can easily be distributed.

Enlarging the factor base makes the sieving easier, but increases the number of
relations needed to successfully perform the linear algebra. A fundamental problem in
the analysis of index calculus algorithms is to estimate the probability that the sieving
process produces enough relations. Such estimates rely on the heuristic assumption
that elements appearing in the sieving process behave randomly. This assumption has
been verified extensively. The resulting complexity estimates are naturally expressed
in terms of the L-function:

Lq[s; c] = exp(c(ln q)s(ln ln q)1−s).

The reason why this function is involved is its relation with the asymptotic probability
that a random element can be factored into elements of a factor base (see [18, 28]).
For instance, it is known that the probability that a random integer < Lx[ν; λ] has all
its prime factors < Lx[w; µ] is asymptotically

Lx[ν − w;−λ(ν − w)/µ + o(1)].

5

3.3 The Number Field Sieve

In the case of prime fields, the method described in the previous section has been
extended in [7], working with an imaginary quadratic number field. The extension has
been termed Gaussian Integer Method. Its time complexity is Lp[1/2; 1 + o(1)]. It has
been used until 1998 to establish records:

• 85 digits in 1996 (see [42])

• 90 digits in 1998 (see [19])

The Gaussian Integer Method has been generalized in [16, 32]. The resulting al-
gorithm, called the number field sieve, adapts the general number field sieve (GNFS)
factoring algorithm [25] to the computation of discrete logarithms in fields of small
degree. It was first proposed by Gordon [16], in the case of prime fields Fp, with a
conjectured running time Lp[1/3; 32/3 + o(1)]. The improved heuristic running time
Lp[1/3; (64/9)1/3 + o(1)] was obtained by Schirokauer [32]. Recently, Schirokauer [33]
extended the number field sieve to any field of fixed degree. The complexity is still
measured by the same function, replacing p by the cardinality pn of the field. To keep
the exposition simpler, we restrict oursekves to the case of a prime field Fp: given
y ∈ F∗

p and a generator g of F∗
p, we wish to compute the unique x ∈ {1, . . . , p− 1} such

that
y ≡ gx (mod p).

3.3.1 Overview

The number field sieve (NFS) first selects two low-degree irreducible polynomials f1(X)
and f2(X) in Z[X] with small coefficients such that f1(X) and f2(X) have a common
root m in Fp. These polynomials define two number fields Q(α1) and Q(α2). Because
m is a root, there is a natural ring homomorphism ϕj from Z[αj] to Fp (j ∈ {1, 2}),
induced by ϕj(αj) = m. We extend ϕj to the field Q(αj), ignoring potential divisibility
problems.

The ring of integers of a number field is not necessarily a unique factorization
domain, but the ring of fractional ideals always is. Thus, NFS selects two ideal factor
bases B1 and B2 (corresponding to Q(α1) and Q(α2)), consisting of prime ideals of
smooth norm. We define other notions of smoothness as follows: a fractional ideal I of
Q(αj) is smooth if it can be factored over the factor base Bj, and an algebraic number
x is smooth if the fractional ideal 〈x〉 it spans is smooth.

By sieving, the NFS finds a huge collection of pairs (ai, bi) of small integers such
that each ai − biαj is smooth: as a result, the factorization of 〈ai − biαj〉 is known.
We first focus on the number field Q(α1). Linear algebra modulo p− 1 produces many

6

integer vectors (ei) such that the fractional ideal∏
i

〈ai − biα1〉ei

is a (p − 1)-th power. This does not necessarily imply that the algebraic number∏
i(ai−biα1)

ei is a (p−1)-th power in Q(α1). However, using specific linear maps from
Q(α1) to Zp−1, Schirokauer [32] was able to add a few linear equations to ensure that∏

i(ai − biα1)
ei is in fact a (p− 1)-th power in Q(α1). If this holds, then:

ϕ1

(∏
i

(ai − biα1)
ei

)
≡ 1 (mod p),

that is, ∏
i

(ai − bim)ei ≡ 1 (mod p).

Taking logarithms yields:∑
i

ei logg(ai − bim) ≡ 0 (mod p− 1).

But each ai − bim is smooth because ai − biαj is smooth. Therefore the previous
equation can be rewritten as:∑

q∈B

e′q logg q ≡ 0 (mod p− 1),

where B is a set of small prime numbers, and each e′q is a known integer. Many such
linear equations are obtained and more with the second number field Q(α2). When
enough equations have been found, another use of linear algebra outputs logg q for
many q ∈ B, up to some multiplicative constant. Such q’s are called good primes. In
our description, we mentioned using linear algebra twice, to produce (p− 1)-th powers
on one hand, and to compute the logarithms of good primes, on the other hand. They
can actually be merged into a huge single step.

It remains to explain the computation of an individual logarithm. Note that ap-
plying the method to a single known power of g, will first remove the multiplicative
constant. To compute the discrete logarithm x of y = gx mod p, it is enough to find
exponents ei ∈ Z such that:

y ≡
∏
pi∈B

pei
i (mod p),

where each pi is a good prime, and not just pi ∈ B, since only the logarithms of
the good primes are known. There are several methods to find such exponents. We

7

describe the technique presented in [23], which seems to be the most efficient known,
as it does not require any huge linear algebra step contrary to earlier method of [40].
Using two-dimensional lattice reduction, one can compute two linearly independent
integer vectors (A1, B1) and (A2, B2) with coordinates ≈ √p such that:

y ≡ A1

B1

≡ A2

B2

(mod p).

It follows that for any integers α and β:

y ≡ αA1 + βA2

αB1 + βB2

(mod p).

Now, since Ai and Bi are reasonably small, one can try to find pairs (α, β) such that
both αA1+βA2 and αB1+βB2 are smooth with respect to good primes, using a sieving
technique. If no candidate is found within a reasonable time, one tries again, replacing
y by ysi, where s is the largest good prime.

3.3.2 Practical experiments

The first practical experiment of NFS for discrete logarithms was presented at Euro-
crypt ’95 [39]. Further results appeared in [40, 41, 22]. The current record is [21],
where discrete logarithms in a 120-digit prime field could be computed, following the
approach of [23]. Paper [41] reports experiments with a larger 129-digit prime field,
but its cardinality has a special form, which allows for better complexity. The current
record of [21] was obtained in 10 weeks, on a single 525-MHz quadri-processor Digital
Alpha Server 8400 computer. Sieving took 42 days and produced 2685597 equations
with 1242551 unknowns. Structured Gaussian elimination [24, 23] took one extra day
to reduce the system to 271654 equations in 271552 unknowns with 22690782 non-zero
entries. Then, using a a parallel version of Lanczos’s algorithm [14], linear algebra was
performed in 30 days over 4 processors. One this has been done, the computation of
each additional individual logarithm takes about 12 hours.

3.4 The Function Field Sieve

The function field sieve adapts the general number field sieve GNFS factoring algo-
rithm [25] to the computation of discrete logarithms in finite fields of small charac-
teristic. It was first discovered by Coppersmith [5] in the case of fields F2n , with a
conjectured running time L2n [1/3; c + o(1)], where c ≈ 1.4. Note that Coppersmith’s
algorithm predates the number field sieve. Adleman [1] proposed the function field
sieve as a generalization of Coppersmith’s algorithm to any finite fields of small char-
acteristic. More precisely, the function field sieve computes discrete logarithms in Fpn

8

with expected running time Lpn [1/3; c + o(1)] for some constant c, when log p ≤ ng(n),
where g is any function from N to]0; 0.98[which converges to zero.

To keep the exposition simple, we only present Coppersmith’s algorithm. This
algorithm can be viewed as a special case of the function field sieve [1] (see [34]),
though the constant in the complexity of the function field sieve is worse.

3.4.1 Overview of Coppersmith’s algorithm

We want to compute discrete logarithms in the field K = F2n , which we represent,
in the usual way, as F2[X]/〈f(X)〉, where f(X) is a monic irreducible polynomial of
degree n over F2. Polynomial f(X) is chosen of the form Xn + f1(X) where f1(X)
has very small degree. It is conjectured, but not proven, that such an f1(X) with
degree O(log n) always exists. Recall that squaring in K is a linear operation, which is
computed for free and that factoring is easy.

We select a factor base B consisting of all irreducible polynomials of degree less
than a prescribed bound, and define smoothness accordingly: a polynomial is smooth
if it can be factored into elements of B. Let r be such that 2r ' n1/3 and h = d n

2r e.
Sieving, we search for polynomials A(X) and B(X) of degree approximately n1/3, such
that

C(X) = A(X)Xh + B(X),

and
D(X) = C(X)2r ≡ A2r

Xh2r−nf1 + B2r

(mod f(X)).

are both smooth. The original sieving procedure of [5] was improved by [15]. Observe
that the degrees of C(X) and D(X) are approximately n2/3. When C(X) and D(X) are
smooth, the relation D(X) ≡ C(X)2r

(mod f(X)) produces a linear equation modulo
2n−1, with unknowns the logarithms of the members of the factor base. A huge linear
algebra step yields all values of log b(X) for b(X) ∈ B.

To compute the individual logarithm of y, one uses the fact that factoring can be
efficiently performed in K. One thus selects a random integer s until ygs (mod f(X))
is smooth, and then derives logg y.

3.4.2 Practical experiments

Experimental results are reported in [5, 15, 36]. The most recent record is [22], which
computes logarithms over F2521 . The entire computation was done in one month on a
single 525MHz quadri-processor Digital Alpha Server 8400 computer. The approach
was based on a careful implementation of the general function field sieve [1], rather
than the use of Coppersmith’s algorithm. Sieving took 3 weeks and yielded 472121
equations with 450940 unknowns. Structured Gaussian elimination [24, 23] reduced
the system to 197039 equations in 196939 unknowns with 12220108 non null entries, in

9

one hour. Then, it took 10 days to run Lanczos’s algorithm [14] and complete the linear
algebra. The computation of an individual logarithm takes an additional 12 hours.

Very recently, [36] presented a new implementation of Coppersmith’s algorithm
and preliminary experiments to compute discrete logarithms over F2607 . Sieving was
completed and took 19,000 MIPS years. As a comparison, the factorization of RSA-
155 required an estimated 8,000 MIPS years. Sieving yielded about 900, 000 relations
involving about 760, 000 columns. After one day of structured Gaussian elimination,
following [31]), the matrix was reduced to size 484, 603×484, 603. The linear algebra is
still under way, using the improvement [37] of the block Wiedemann algorithm [6, 43].

Comparing both methods seems to suggest that the output of the sieving is better
with the implementation [22] of the function field sieve, than with the implementa-
tion [36] of Coppersmith’s algorithm. We mentioned that Coppersmith’s algorithm
could be viewed as a special case of the function field sieve. In Coppersmith’s algo-
rithm, one requires C(X) and C(X)2r

to be simultaneously smooth. Without going
into mathematical details at this point, we briefly mention that this corresponds to the
choice of a polynomial of degree 2r in the function field sieve. However, such degree 2r

may not be optimal compared to other choices, which are not a power of 2. Theoreti-
cal analysis actually suggests that the optimal degree should be (n log n)1/3. Since the
function field sieve allows for any degree in selecting the polynomial, an appropriate
implementation may be faster than Coppersmith’s algorithm. Adleman already had
mentioned in [1] that it should be possible to optimize and specialize the function field
sieve in F2n and achieve a better running time than Coppersmith’s algorithm. Besides,
sieving tricks used in the number field sieve can be applied to the function field sieve,
and not to Coppersmith’s algorithm. It is therefore quite plausible that the method
of [22] can be extended to larger fields, thus beating the performances of [36].

4 Consequences in terms of key sizes

4.1 The current status of the DLP

4.1.1 Prime fields

Surprisingly, it is very difficult to precisely estimate what is the largest size that cur-
rent techniques for solving the DLP over prime fields could reach. The theoretical
complexity Lp[1/3; c + o(1)], c ≈ 1.92, is a rough estimate, which is not of much use.
Due to memory constraints, the size of the factor has to be kept significantly smaller
than the optimal choice that theory would dictate.

This is in contrast with the situation of factoring. The largest factorization with the
NFS factoring algorithm is a 512-bit RSA number [3] and this figure gives an accurate
account of what factoring algorithms can achieve. Practical experience with the NFS
method for the discrete logarithm appears more limited and the records are way behind.

10

The current record [21] only tackles a 120-digit prime field, which corresponds to bit-
length 397. However, in [26], the authors state that

It is generally accepted that, for any b in the current range of interest,
factoring b-bit integers takes about the same amount of time as computing
the discrete logarithm in b−x-bit field, where x is a small constant around
20.

This opinion may stem from the observation that the heuristic theoretical complexity
of the NFS algorithms is the same for factoring and the DLP. Observe that the gap
between records does not lead to a fair comparison: the computing power used in [21]
is an order of magnitude below what [3] required. Still, it is conceivable that the gap
is somehow larger than anticipated in [26]. Despite their similarities, there are several
technical differences between the two NFS algorithms.

• The polynomial selection differs. For instance [23] used the fact that one can
efficiently solve polynomial equations over a finite field, which has no equivalent
in the setting of factoring. Different polynomial selections lead to different sieving
regions and different choices of factor bases.

• The sieving also slightly differs. In the factorization setting, the linear algebra is
over F2. This allows to use, besides the factor base, one or more so-called large
primes.

• The linear algebra differs. In the factorization setting, the matrix is binary,
whereas in the discrete logarithm setting, the matrix elements are integers modulo
p− 1. This limits drastically the size of the factor base.

4.1.2 Fields of characteristic 2

It is equally difficult to precisely estimate what is the largest size that current techniques
for solving the DLP over binary fields could reach. Again, the heuristic complexity
Lq[1/3; c + o(1)], where c ≈ 1.4 for Coppersmith’s algorithm, does not help much.
Besides having lower complexity than NFS, Coppersmith’s algorithm is much simpler to
implement. Implementing the function field sieve is almost as difficult as implementing
the number field sieve. However, because factoring polynomials over finite fields is
easy, sieving can be done more efficiently in the function field sieve than in the number
field sieve. Therefore, the function field sieve should be faster in practice than the
number field sieve. Based on the above observations, it is no surprise that the two
records in characteristic two are considerably larger than in the case of prime fields:
F2607 and F2521 . As noted in section 3.4.2, the former figure corresponds to a large
scale experiment based on Copermsmith’s algorithm, while the latter, based on the
function field sieve, uses limited computing power, which leaves room for considerable
improvement.

11

4.2 Selecting key sizes

In practical situations, the sizes of cryptographic keys based on the DLP have to be
chosen so that they outreach the expected performances of the algorithms for solving
the DLP, during the entire lifetime of the system. This involves making predictions.
In [3], the authors derive the following formula

Y = 13.24D1/3 + 1928.6

for predicting the calendar year for factoring D-digit number by NFS. Following the
opinion stated in [26], that the DLP in prime fields is 20 bits behind, which is apparently
a conservative estimate, we obtain

Y = 13.24(D + 6)1/3 + 1928.6

for predicting the calendar year for the discrete logarithm. Applying the formula
with D = 309, i.e. for a 1024 bit modulus, produces Y = 2019. Similarly, one gets
Y = 2042 for 2048-bit integers and Y = 2070 for 4096-bit. Thus, current key sizes for
cryptosystems appear safe. Although no similar formula has been proposed for fields
of characteristic 2, it is advisable, based on the observations from section, to adopt key
sizes that are much larger.

References

[1] L. M. Adleman. The function field sieve, Proc. ANTS-I, LNCS 877, Springer-
Verlag, 108–121, 1994.

[2] M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for
Designing Efficient Protocols, Proc. 1st CCS, 62–73, ACM Press, New York,
1993.

[3] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Mur-
phy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand,
F. Morain, A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann. Factorization
of 512-bit RSA modulus, Proc. Eurocrypt ’00, LNCS 1807, 1–18, Springer-Verlag,
2000.

[4] Certicom. Information on the Certicom ECC challenge,
http://www.certicom.com/research/ecc challenge.html

[5] D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two IEEE
Trans. Inform. Theory, 30(4):587–594, 1984.

12

[6] D. Coppersmith. Solving linear equations over GF(2) via block Wiedemann algo-
rithm, Math. Comp., 62:333–350, 1994.

[7] D. Coppersmith, A.M. Odlyzko and R.Schroeppel. Discrete Logarithms in GF(p),
Algorithmica 1, 1–15, 1986.

[8] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack, Proc. Crypto’98, LNCS 1462, 13–25,
1998.

[9] Proposed federal Information Processing Standard for Digital Signature Standard,
Federal Register, v.57, n.21, 3747–3749.

[10] T. El Gamal. A public key crtyptosystem and signature scheme based on discrete
logarithms, IEEE Trans. on Inform. theory, 469–472, 1985.

[11] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification
and Signature Problems, Proc. Crypto ’86, LNCS 263, 186–194, Springer-Verlag,
Berlin, 1987.

[12] G. Frey, M. Müller, and H. G. Rück. The Tate-Pairing and the Discrete Logarithm
Applied to Elliptic Curve Cryptosystems, IEEE Trans. Inform. Theory, 45:1717–
1719, 1999.

[13] G. Frey and H. G. Rück. A Remark Concerning m-Divisibility and the Discrete
Logarithm in the Divisor Class Group of Curves, Math. Comp., 62:865–874, 1994.

[14] G.H. Golub and C.F. van Loan. Matrix computations, The John Hopkins Univer-
sity Press, 1989.

[15] D. Gordon and K. S. McCurley. Massively parallel computation of discrete loga-
rithms, Proc. Crypto ’92, LNCS 740, 312–323, Springer-Verlag, 1993.

[16] D. M. Gordon. Discrete logarithms in GF(p) using the number field sieve, SIAM
J. Discrete Math., 6(1):124–138, 1993.

[17] R. Harley, D. Doligez, D. de Rauglaudre, X. Leroy, Elliptic Curve Discrete Loga-
rithms: ECC2K-108,
http://cristal.inria.fr/ harley/ecdl7/

[18] A. Hildebrand and G. Tenenbaum. Integers without large prime factors, J. Théor.
Nombres Bordeaux, (5):411–484, 1993.

[19] A. Joux and R. Lercier. Computing a discrete logarithm in GF (p), p a 90 digit
prime,
http://www.medicis.polytechnique.fr/ lercier/english/dlog.html

13

[20] A. Joux and R. Lercier. Computing a discrete logarithm in GF (p), p a 100 digit
prime,
http://www.medicis.polytechnique.fr/ lercier/english/dlog.html

[21] A. Joux and R. Lercier. Computing a discrete logarithm in GF (p), p a 120 digits
prime
http://www.medicis.polytechnique.fr/ lercier/english/dlog.html

[22] A. Joux and R. Lercier. Computing a discrete logarithm in GF (2521

http://www.medicis.polytechnique.fr/ lercier/english/dlog.html

[23] A. Joux and R. Lercier. Improvements to the general number field sieve for discrete
logarithms in prime fields, Math. Comp., 2001, to appear.

[24] B. A. Lamacchia and A. M. Odlyzko. Computation of discrete logarithm in prime
fields, Designs, Codes and Cryptography, (1):47–62, 1991.

[25] A. K. Lenstra and H. W. Lenstra, Jr. The Development of the Number Field Sieve,
Lecture Notes in Mathematics 1554, Springer-Verlag, 1993.

[26] A.K. Lenstra and E. Verheul. Selecting cryptographic key sizes, PKC’2000, LNCS
1751, 446–465, 2000.

[27] A. Odlyzko. Discrete logarithms: The past and the future, Designs, Codes and
Cryptography, 19:129–145, 2000.

[28] D. Panario, X. Gourdon, and P. Flajolet. An analytic approach to smooth poly-
nomials over finite fields, Algorithmic Number Theory – Proc. ANTS-III, LNCS
1423, Springer-Verlag, 1998.

[29] S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance, IEEE Trans. Inform. Theory, 24, 106–
110, 1978.

[30] J. Pollard. Monte Carlo methods for index computation mod p, Math. Comp., 32,
918–924, 1978.

[31] C. Pomerance and J. W. Smith. Reduction of huge, sparse matrices over finite
fields via created catastrophes, Experiment. Math., 1(2):89–94, 1992.

[32] O. Schirokauer. Discrete logarithms and local units, Philos. Trans. Roy. Soc.
London Ser., A 345(1676):409–423, 1993.

[33] O. Schirokauer. Using number fields to compute logarithms in finite fields, Math.
Comp., 69(231):1627–283, 2000.

14

[34] O. Schirokauer, D. Weber, and T. Denny. Discrete logarithms: The effectiveness
of the index calculus method, Proc. ANTS-II, LNCS 1122, Springer-Verlag, 1996.

[35] V. Shoup and T. Schweinberger. ACE Encrypt: The Advanced Cryptographic
Engine’ public key encryption scheme, Manuscript, March 2000. Revised, August
14, 2000.

[36] E. Thomé. Computation of discrete logarithms in F2607 , Proc. Asiacrypt ’01,
LNCS, to appear.

[37] E. Thomé. Fast computation of linear generators for matrix sequences and appli-
cation to the block Wiedemann algorithm, Proc. ISSAC ’01. ACM Press, 2001.

[38] P.C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications, J. Cryptology, 12, (1999), 1–28.

[39] D. Weber. An implementation of the number field sieve to compute discrete
logarithms mod p, Proc. Eurocrypt ’95, LNCS 921, 95–105, Springer-Verlag, 1995.

[40] D. Weber. Computing discrete logarithms with the general number field sieve,
Proc. ANTS-II, LNCS 1122, Springer-Verlag, 1996.

[41] D. Weber and T. Denny. The solution of McCurley’s discrete log challenge, Proc.
Crypto ’98, LNCS 1462,458–471, Springer-Verlag, 1998.

[42] D. Weber, T. F. Denny and J. Zayer.
http://felix.unife.it/Root/d-Mathematics/d-Number-theory

/t-Weber-discrete-logarithm-record-960925

[43] D. H. Wiedemann. Solving sparse linear equations over finite fields, IEEE Trans.
Inform. Theory, 32:54–62, 1986.

15

